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Abstract 

An algorithm is given for the numerical evaluation of a class of func­

tions of the confluent hypergeometric type. The method of computation 

is based on the well-known Miller algorithm and on asymptotic expansions. 
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1. Introduction 

In 1953 A. van Wijngaarden wrote a paper on transformations of 

formal series, [5]. He discussed a general transformation c~ the 

asymptotic expansion of certain integrals for large parameter values. 

Special attention was paid to a transfo:nnation from which the following 

functions arose 

( 1-1 ) Joo 

-zt k -k-1 sk(z) = z 
0

e t (1+t) dt, k = 0 , 1 , 2 , ••• , Re z > 0 • 

This transformation can be described in different ways. One way is 

the following. If in the Laplace integral 

( 1-2) f(z) = z J: e-zt F(t) dt 

the function Fis expanded in powers oft and the order of summation 

and integration is interchanged then a formal series 

00 

( 1-3) f(z) ~ I 
k=O 

results. When, however, F(t) is expanded in the following way 

( 1-4) 
00 

F(t) = 2 c tk(1+t)-k-1 
k=O k 

then we obtain by termwise integration 

00 

( 1-5) 

with sk defined in (1-1 ). The series in (1-5) can be considered as a 

transformation of the series in (1-3). 

In a forthcoming paper [3] Lauwerier will consider van Wijngaarden's 

transformation from a different point of view. 
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Van Wijngaarden announced the construction of tables for the 

functions sk(z) for complex values of z. The construction of these 

tables turned out to be a heavy task and the tables did not reach the 

stage of publication. Nowadays, with large scale computer systems at 

our disposal, tabular values are not as interesting as methods of com­

puting. 

The aim of this paper is to give information about the numerical 

evaluation of sk(z) for jarg zj < TI and k = 0,1 , ... , K, where K is some 

positive integer. 

In the next section some elementary properties of the functions sk 

are discussed. In fact sk can be expressed as a confluent hypergeometric 

function (Whittaker function). In section 3 the asymptotic behaviour of 

skis determined. With these results the convergence of the algorithm 

in section 4 is proven. In section 5 the computation for small values 

of I z I is discussed. Also in that. case asymptotic expansions are of 

fundamental importance. Our methods of computation apply to a more ge­

neral class of functions, in fact to the whole class of confluent hyper­

geometric functions to which the functions sk belong. Information on 

that point will be given in section 7. 

2. The functions skhl 

The functions sk(z), defined by (1-1) for Re z > O, k = 0,1 ,2, ... , 

can be expressed in terms of confluent hypergeometric functions. Using 

the notation of Abramowitz and Stegun [1, chapter 13], we have 

( 2-1 ) sk(z) = z k! U(k+1,1,z). 

Relevant properties of sk(z) can be derived from well-known properties 

of U(a,b,z). 

Equation (1-1) defines sk(z) in the halfplane Re z > 0. The domain 
d . . . I I 3TI • f of ef1n1t1on can be extended to arg z < 2 by rotating the path o 

integration. The function sk(z) is a many-valued function of z. We will 
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consider its principal branch in the plane cut along the negative real 

axis, this branch being determined by the condition that sk(z) is real 

and positive if z is real and positive. 

For convenience we will denote 

( 2-2) 

k = 0,1 ,2, .... Then uk satisfies the confluent hypergeometric differential 

equation 

(2-3) z u; + (1-z)~ - (k+l )~ = 0. 

A second solution of this equation, linearly independent of uk, is the 

function 

(2-4) 

z 
e ' 

yk(z) = M(k+l,1,z); 

y1(z) = (l+z)ez. M(a,b,z) is known as Kummer's function. In 

the notation of hypergeometric functions the function M(a,b,z) is defined 

by 

(2-5) ( ) ( ) ~ r(a+n) r(b) zn 
M a,b,z = 1F1 a;b;z = n~O r(a) r(b+n) n! . 

A corresponding series-representation for sk ( z) can be derived from a 

known representation of U(a,b,z) in [1; 13.1.6]. Fork= 0,1 ,2, ... we have 

(2-6) z ~ r(k+n+1 )zn 
sk(z) = - k! l n! n! 

n=O 
{ln z + ~(k+n+l) - 2~(n+1 )}, 

where ~(z) = r'(z)/r(z). The series converges for all z in the finite 

z plane. 

From the contiguous relations of the confluent hypergeometric functions 

we derive 

(2-7) 
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This formula can also be obtained by partial integration of (1-1 ). The 

recurrence formula (2-7) can be considered as a homogeneous linear dif­

ference equation of the second order, of which of course 7'" is also a 

solution, but 7'" is not linearly independent of sk. An independent so­

lution turns out to be the function yk defined in (2-4). 

3. Asymptotic expansions 

In this section we will study the asymptotic behaviour of sk and yk 

for large values of k and for various values of z, larg zl < TI. 

For small values of lz\, k fixed, the asymptotic behaviour follows 

from (2-5) and (2-6), viz. 

( 3-1 ) yk(z) = 1 + O(z), 

(3-2) sk(z) = - z(ln z + lfi(k+1 )) + 0( lz2 ln zl ). 

For bounded values of lzl, say lzl < M, and large values of k we 

will use the differential equation (2-3) and a theorem due to Olver 

[4, 1956]. First we give a transformation of the dependent variable. 

If uk(z) is a solution of (2-3) then 

(3-3) 

satisfies the equation 

(3-4) w" - (k+~ 1 1) 
z - 4z2 + 4 w = 0. 

The transformation of the independent variable 

(3-5) 2 
z = t 

and the substitution 

(3-6) 
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yield 

(3-7) 
1 

w" - - w' t 

the differentiation in this equation being with respect tot. 

For large values of A and uniformly bounded values of It! the so­

lutions of (3-7) will behave like the solutions of the so-called 

basic-equation 

(3-8) 1 
w" - - w' t 

The solutions of this e~uation are t K0(At) and t r0(At), where K0 and 

r0 are modified Bessel functions. By direct substitution in (3-7) it 

can be verified that the formal series 

(3-9) 
0) B ( t) 

t I n - - K (H) 2n' A 1 n=O A 

(3-10) 
0) B ( t) 

+f I1(At) I n 
2n' 

n=O A 

formally satisfy (3-7), The functions A and B are polynomials int, 
n n 

recursively given by 

D-11) 2B ( t) 
n 

2An+1 ( t) 

A'(t) + ft {x2A (x) - A'(x)/x}dx, 
n O n n 

= B (t)/t - B'(t) + ft x 2 B (x) dx + a 1 , n n O n n+ 

the integration constant a 1 being arbitrary. The first few coefficients n+ 
will be given in section 5. By application of Olver's theorem it can be 

shown that the series in (3-9), (3-10) are asymptotic expansions (in 

Poincare's sense) of two linearly independent solutions w1 and w2 of (3-7) 

for large values of A. These expansions hold uniformly in a closed bounded 

z-domain which includes the origin. 
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After these preliminary results we return to the functions 1.1:k_ and Yk, 

introduced in the foregoing section. The functions 

F(t) are 

solutions of (3-7). Hence 

where a 1, a2 , 81, 82 are independent oft. To evaluate these coefficients 

we need the following well-known properties of the Bessel functions. 

(3-12) I 0(x) = 1 + O(x), K0(x) = - ln x + 0(1 ), x + 0; 

(3-13) 

the formulas in (3-12) hold for arbitrary values of arg x, those of (3-13) 

hold for larg xi < ~TI. 

For real z and for all values of k considered we have 

0 < ~(z) <~;this follows from (1-1) and (1-2). Hence a 2 = 0 for all 

values of k. Because of the uniform property of the expansions (3-9) 

and (3-10) we may keep A= 2/k➔l' fixed and let t + 0 through positive 

values. Since yk(z) is bounded if z + 0 (see (3-1 )) it is obvious that 

81 = 0. Finally, from (3-1), (3-2) and (3-12) it follows that a 1 = 2, 

B = 1. Moreover all integration constants in (3-11) have to vanish 
2 

(n = 0,1,2, ... ). Hence, using the various transformations we obtain 

(3-14) 

(3-15) 
00 A ( /2') r 1 ( z;) oo B ( /i) 

{Io( 1;;) l n + --'--- l n } , 
n=O ( 4k+2 )n ~ n=O ( 4k+2 )n 

fork+ 00 , where 

(3-16) l;; = 2 /z(k+~ )', 
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~ > 0 if z > O. The expansions are uniformly valid with respect to z in 

a bounded domain of the z-plane, which contains the origin. 

Corollary. For fixed values of lz/ it follows from (3-14), (3-15) and 

(3-13) that 

(3-17) 

(3-18) (zk)-1/4 1 z + 2/zk' e~ 

ask+~ The restrictions on z in (3-17) and (3-18) are 

(3-19) /arg z/ < w, z fixed, z + 0. 

It has to be pointed out that (3-17) and (3-18) are not valid for 

both k and z being large. Representations, which are valid for large 

k uniformly in /z/ for /z/ .:_ o > O, can be derived by applications of 

theorem A in Olver [3, 1954]. This will now be done. 

Again, the starting point is the differential equation (3-4). The 

transformation 

(3-20) z = 2At, A= 2k+1 

yields 

( 3-21 ) 

and a further transformation 

(3-22) w = x = ln(R + ✓ 1+t') + lt(1+t)' 

results in 

(3-23) d2v 2 
- {A + f(x)} v = O. 
dx2 -



-8-

The function f(x) cannot be given explicitly in terms of x, but in the 

variable t we have 

f(x) 3+8t 1 = ---,---,-
1 6t ( 1+t ) 3 - t ( 1+t ) 

the relation between x and tis given in (3-22). According to Olver, for 

large values of A the solutions of (3-23) behave like the solutions 
+Ax f b . . " ' 2 0 h f e- o the asic-equation v - Av= . As a consequence, we ave or 

two linearly independent solutions w1 and w2 of (3-21) 

(3-24) 

(3-25) 

as A -+ CXl, 

Using 0lver's theorem we can prove that this formulas hold uniformly 

int in the domain Jtl .:_ o, Jarg ti,:_~-£, where t and o are fixed positive 

numbers (t < ~).As in (3-9) and (3-10) we can construct asymptotic series 

which formally satisfy (3-23), but here we are interested in the first 

order approximation only .. 

To give the results for yk and sk we proceed as in the foregoing case. 

First we remark that 

, ~, 
l -At z2 e-2z ~(z) = (2>-t)- 2 e sk ( 2A t ) = F ( t ) , 

1 -h , 
-At z2 e yk(z) = ( 2At) 2 e yk(2At) = G(t) 

(where A= 2k+1) are solutions of (3-20). Hence 

where a 1 , a2 , B1 , s2 are independent oft. To evaluate these coefficients 

we use (3-17) and (3-18). If in (3-20) z is fixed and A is large then tis 

small. In this case it follows from (3-24) and (3-25) 
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1 2AR a 1 1 2/kz' 
w1 ( t) ~ t4 e ~ z 2-2 k-r. e 

·1 -2\lt' I 1 1 -2/k? w2( t) ~ t4 e ~ zr. 2-2 k-r. e 

as k ➔co . Taking into account (3-17) and (3-18) we have a 1 = s2 = 
a2 =·&, s1 = 1/&. Hence 

.. 

sk ( z) 
1 z 

w2(t), = ✓21rz\ e 2 

1 z 
= 1/~e2 w1 (t) 

and, using (3-24) and (3-25) we have 

1 

(3-26) sk(z) ~ (27TZ th a) 2 exp Oz - (k+n(2a + sh 2a)}, 

1 

(3-27) yk(z) ~ (th a/2TTz) 2 exp {~z + (k+~)(2a + sh 2a)} 

ask ➔ co, where a is defined by 

(3-28) 2 z = 4(k+~) sh a; 

sh a is real and positive if z is positive. In (3-26), (3-27) the 

restrictions on z are 

(3-29) larg zl .'.:,_ TT-£, 0 <£<TT, lzl > o > 0. 

0 and 

In (3-26) and (3-27) we can fix k and let z ➔ 00 Taking limiting forms 

of the functions of a for large a we obtain 

~ k! 
k 

z 
k z 

~~ 
k! 

as z ➔ +co, k fixed. These formulas correspond to well-known results of 

the confluent hypergeometric functions. The formula for sk can be derived 
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direct from (1-1). The formula for yk then follows from (3-26), (3-27), 

yk(z) sk(z) ~ th a ez ~ ez. 

The formulas (3-17) and (3-26) may also be derived from (1-1) by using 

saddle point techni~ues. 

The asymptotic expansion in (3-14) will be used for the numerical 

evaluation of sk(z) for large values of k (and small values of lzl ). See 

section 5, Formula (3-17) gives information about the rate of convergence 

of series with sk(z), for instance series of type (1-5), 

4. Method of computation 

The recurrence relation (2-7) is an important tool for generating a 

se~uence of values sk(z) for fixed z and k = 0,1 ,2, ... , K. If the values 

of sk(z) are known for two consecutive values of k, then the functions 

may be computed for other values of k by successive application of the 

recurrence relation. 

In [2], Gautschi investigates the problem of numerical instability 

for general three-term recurrence relations. In this connection he in­

troduces the concepts of minimal solution and dominant solution of a 

recurrence relation. Starting from two initial values, an application 

of the recurrence relation in the forward direction (i.e. in the di­

rection of increasing order) yields a disastrous build-up of errors for 

the minimal solution, whereas the computation of the dominant solution 

remains numerically stable. 

If the recurrence relation 

( 4-1 ) Yn+l + a y + b y 1 = 0 n n n n-

has two linearly independent solutions f and g having the property 
n n 

(4-2) lim f /g = 0 
n n n+oo 

then f is called a minimal solution and g is called the dominant n n 
solution of (4-1). From (3-17) and (3-18) it follows 
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(4-3) 

k ➔ 00 , under the conditions in (3-19), Consequently, in our case, 

sk(z) is a minimal solution of (2-7) and yk(z) is a dominant solution. 

Gautschi's paper concentrates mainly on the development of an algo­

rithm for the computation of minimal solutions. This algorithm is based 

on Miller's method which enables computation without any knowledge of 

starting values for large k. 

To describe the algorithm for the computation of the minimal 

solution f (n = 0,1 , ... ,N) of (4-1) let 
n 

00 

(4-4) I A f = t, t :/- o, 
m=O m m 

(4-5) r = fn+1/fn' n 

00 

(4-6) 
-1 I A f ' t = f n n m=n+1 m m 

where t and >- 0 , >- 1 , ••• are given quantities and the series (3-4) is 

known to converge. At first we suppose that r and t Rre known for some 
n n 

value n = v > N. From (4-1) and (4-5) there follows 

(4-7) r = -b /(a +r ), n = v, v-1 , ... , 1, 
n-1 n n n 

and from (4-6) and (4-7) 

(4-8) 

Hence r and t can be obtained recursively for O < n < v; in particular 
n n 

we have, using (4-4) 

(4-9) 

and so 

(4-10) 
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giving the initial value of the minimal solution. The remaining values 

can be obtained from 

( 4-11 ) f = r 1 f 1 , n = 1,2, ... , N. 
n n- n-

When the algorithm is executed with the (incorrect) starting values 

r(v) = 0, t(v) = O, we have the following set of recursions 
\) \) 

(4-12) 

( V) 
r = O, 

V 

t (v) = 0 
' V 

= - b /(a + r(v)) 
n n n 

= (v) ( + t(v)) 
rn-1 An n 

n=v,v-1, ... ,1, 

( v ) ( ( v ) ( v ) rn( v_ 1) fn( v_ 1) ' n = 1 ' 2 ' • • • ' N • f = t/ AO + t ) f = 0 0 ' n 

Gautschi showed that the set of recursions (4-12) is numerically stable 

and that 

( 4-13) lim f(-v) = f 
n n 

v➔oo 

(n=0,1, ... ,N) 

if and only if 

(4-14) 1 . f-v+1 \)I 
im-- Ag=O 

g m m ' 
v➔oo v+l m=O 

where g is a dominant solution of (4-1 ). n 

Under the restrictions on z given in (3-29) the functions 

sk(z) (k = 0,1, ... , K) can be computed with Gautschi's algorithm (4-12). 

For the series in (4-4) the following series can be used 

00 

(4-15) 

This formula may be proved by substitution of (1-1 ). 
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Hence 

t = A = 1, a = -(2n+1+z)/(n+1 ), b = n/(n+1 ), 
n n n 

(cf. (4-1) and (2-7)). We can choose v so large that 

(4-16) < £, e > 0, k = 0, 1 , .•. , K, 

if and only if condition (4-14) is fulfilled. 

In our case it reads 

(4-17) 
SVt1(z) ~ 

lim-~- l y (z) = 0 
v+00 Yv+1(z) m=O m 

for the values of z specified in (3-19). 

To verif.y condition (4-17) we compute the finite sum in this . 
formula. We have 

V 

(4-18) I y ( z ) = ( v+ 1 Hy 1 ( z ) - y ( z ) ) ; z . 
m v+ v m=O 

This formula can be derived by using (2-7) and mathematical induction with 

respect to v. With (4-18), (4-3), and (3-18) it is easy to prove that 

(4-17) holds for Jarg zl < ~, z ~ 0, z fixed . 
• 

The positive integer v in (4-12), which indicates the starting-point 

of the backward recurrence, can be chosen so that (4-16) is fulfilled. The 

number v depends one, z and K; vis large if lzl is small, even v + 00 if 

z + O. This can be recognized by observing that for z + 0 the series in 

(4-15) converges poorly. Besides, and this is the main point, the dominance 

of yk over sk becomes rather weak, as can be seen from (4-3). 

Therefore, for small values of lzl the algorithm becomes less 

~ attractive, and as a consequence, for small values of lzJ we need accurate 

starting values of sk(z) for two consecutive values of k. 
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Throughout this paper we will fix the dividing-line in the z-plane 

for the two methods at lzl = 1. An optimal choice of a boundary may be 

found by numerical methods. From our experience, lzl = 1 is a convenient 

choice. 

5, The computation for lzl < 1, z i 0 

The algorithm describes in (4-12) provides us with a numerical procedure 

for the computation of sk(z) (k = 0,1 , ... , K) which converges and which 

is numerically stable for every z in the z-plane satisfying larg zl < TT, 

z f O. However for small values of lzl, the number v may be considerably 

large when (4-16) has to be satisfied and therefore the procedure con­

verges slowly, unless correct values of r(v) and t(v) are substituted 
V V 

in (4-12). In that case we need two starting values sv(z) and sv+ 1(z), 

V > N. 

The series-rep~esentation (2-6) converges for all finite values of z. 

However, when k is a large integer cancellation of significant digits 

occurs when the series is SU!ll!lled numerically. Besides, convergence is 

rather poor when k is large. 

Since s (z) has to be evaluated for large values of v it is more 
V 

attractive to use an asymptotic expansion of s (z) valid for large values 
V ~ 

of v, while small values of lzl do not invalidate the approximation. 

In section 3 we derived an expansion satisfying these requirements, 

namely (3-14). This expansion gives an excellent approximation for sk(z) 

for large k and fixed values of lzl, while the approximation is becoming 

better according as lzl becomes smaller. 

- ◄ 
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The first few values of the polynomials A and B are n n 

A0(t) = 1 ' 

A1 ( t) = t 2 (t4-12)/72, 

A2( t) = t 4 (5t8-1128t4+27216)/1 55520, 

A3(t) = t 2 (35t 16-31500t 12+58 59216t8-2067 6384ot4+5486 74560)/11757 31200, 

A4(t) = t 4 (5t20-11472t 16+70 68384t 12-13282 03008t8+ 

+6 51177 792oot4-49 98537 21600)/33 86105 85600, 

B0 ( t) = t 3/ v, 

B1 ( t) = t(5t8-432t4+2160)/648o, 

B2( t) = t 3 (1t 12-3528t8+2 98224t 4-3o 48192)/65 31840, 

B3 ( t) = t(5t20-156ot 16+27 76896t 12-2642 2848ot8 

+47953 0368ot 4-6584o 94720)/70543 87200. 

By substitution of polynomial representations of A and B in (3-11) 
n n 

recurrence relations for the coefficients of these polynomials may be 

derived in order to compute A and B for other values of n. 
n n 

Some remarks on the computation of the modified Bessel functions 

K0(~) and K1(~) will follow in section 7. 

6. The estimation of v 

In this section we give an estimate of the starting value v to be 

used in algorithm (4-12), given the relative accuracy desired. Gautschi 

[2] obtained an approximation for the relative error which in our 

notation reads as follows (see Gautschi's discussions around 3.18 and 5,11 

in [ 2]) 
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( 6-1) 
f(\!) - s (z) 

k k 

\! large, k = 0,1, ... , K. 

Our aim is to determine v such that 

(6-2) 
f(v) - s (z) 

k k < €: 

holds fork= 0,1, ... , K, Jz\.:. 1, \arg z\ < TI, where Eis the relative 

accuracy desired. Since Jyk(z)/sk(z)\ ultimately grows rapidly with k, 

see (4-3), it is plausible to expect that when (6-2) holds fork= K 

it will also be valid when k < K, particularly when K is large. We 

therefore consider the simplified problem of bounding 

( 6-3) 

We assume K, and thus v, so large that the functions in (6-3) may be 

replaced by approximations of these functions holding for large values 

of\! and K. 

The asymptotic expressions in (3-17) and (3-18) are not suitable for large 

jzJ, therefore it is necessary to use the more intricate formulas (3-26) 

a.nd ( 3-27). 

Applications of (3-26) and (3-27) to (6-3) gives (if a few unimportant 

coefficients have been omitted) 

/v) - s (z) 
Re{~z-vf(a)} + 2Re{K f(S)-\!f(a)} (6-4) k k 

sk(z) ~e e , 

f(et) = 2a + sh 2a, 

2 z/4v, if sh a = sh Ct > 0 z > o, 

sh2B = z/4K, sh B > 0 if z > o. 
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The positive integer v can be chosen so large (if z, Kand E are known) 

that simultaneously 

(6-5) Re{~z-vf(a.)} 2Re{Kf(S)-vf(a)} 
e < ~E, e < ~E. 

The proper value of v can be found by inverting the function Re{vf(a)}. 

Somer properties of this function will now be given. 

Let 

2 ie sh a= z/4v = re /4v, r > o, -TI< e < TI, 

a= y + io, y > O, - ~ < o <; 

Then, by eleminating o, 

(6-6) Re{vf(a.)} = r [2y{ch 2y+cos 8} + sh 2y{1+cos e ch 2y}] 
2sh2 2y 

and 

(6-7) V = r { ch 2y+ cos e } . 
2 sh2 2y 

Denoting (6-6) by ¢(Y) then 

and 

lim ¢ ( y) = 00 , lim ¢ ( y) = ~ r cos e 
y➔O y➔oo 

2yr 
¢'(y)=- 3 

sh 2y 

2 { ch 2y+2 cos e ch 2y+1}. 

Thus, ¢(y) is a monotone decreasing function of y and the equation 

(6-8) ¢(y) = p 

has a unique solution y = ¢-1(p) for all p > ~ r cos 8. 
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The inequalities in (6-5) are equivalent with ¢(y) > ~ r cos e + ln(2/E), 

¢(y) >¢(A)+~ ln(2/E) where A is implicitly given by (cf. (6-7)) 

(6-9) K = r {ch 2>.. + cos e}. 
2sh2 2>.. 

This equation may be inverted to give>.. explicitly, viz. 

(6-10) 

where y = r/4K. 

If we set 

( 6-11 ) 

then the number v given by (6-7) may be used for starting the algorithm 

described in (4-12). 

For real values of z approximations of ¢-1 are easily obtained. By 

inverting (6-8) for large values of p we have 

( 6-12) -1 ( r ( 1 r 4 ¢ p) "" p 1 + 45 (p) ) , p/r ➔ co, 

and by inverting for values of p close to ~z we obtain 

-1 2q ) ¢ (p)"'y0 (1+ 2 ,q ➔ 1,q>1, 
q+yo(q+1) 

(6-13) 

where q = 2p/r, y0 = ~ln (.9±.!.1). Using (6-12) for q > 2 and (6-13) 
q- -

1 < q < 2, we have a suitable approximation of ¢-1(p) for all p > 1. 

for 

For real values of z (e = 0, z = r) we will give the successive steps 

in the computation of v. The three quantities z, Kand E are given. 

1 ) compute A from (6-10); A= ln (/?+ /y+1'); y = z/4K; 

2) compute ¢(>..) = z(2A + sh 2 2>.. )/4sh A; 

3) compute p = max Oz +. ln (2/E), $(>..) + ~ ln ( 2/ E)}; 

4) compute y -1( = ¢ p) from (6-12) or (6-13); 

5) compute v from ( 6-7 ) . 
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The estimated value of v can be compared with the smallest value 

of v empirically found, for a given set of values z, Kand e. Emperical 

values were found by running algorithm (4-12) with v = K + 15, K + 20, 

K + 25,, .. until for the first time the K + values f~v) ,(k = 0,1 , ... , K) 

agreed within a relative accuracy of e with the respective values of 
f(v-5) 
k . 

In the following table we give some values of the starting number v 

f 1 0- 1 O T · • . th 1 ore= . he empirical values may be compared with e va ues 

between brackets which are obtained from the asymptotic relations. For 

small values of K the estimated values appear to be less accurate. 

K 1 5 30 50 80 100 

z 

1.0 155(147) 155(146) 160(168) 210(221) 245(253) 

3.0 60(53) 80(79) 110(110) 150(152) 180(180) 

5.0 45(42) 65(66) 95(94) 135(134) 160(160) 

10.0 35(33) 55(54) 80(80) 115(117) 140(141) 

25.0 30(26) 45(44) 70(68) 105(102) 125(125) 

50.0 30(22) 45(40) 65(63) 95(96) 120(117) 

80.0 30( 21 ) 45(38) 65(60) 95( 92) 115(114) 

If lzl < 1 the choice of v depends on the number of terms used in 

the asymptotic series (3-14). We used this expansion with n = 4 for the 

A-series and with n = 3 for the B-series and v 2:_max(K,100). In this way 

we found nine correct significant digits in sk(z), k = 0,1 , ... , K. 

7. Generalizations 

When instead of (1-2) integrals of the type 

f(z) = z I: ta e-zt F(t)dt 

are considered,-1 <Rea< O, the analysis proceeds in the same manner. 

The function F(t) is expanded as in (1-4) and the functions s~a), now 

depending on a, can be written as 
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(Cl) ( ) 
sk z = z 

= z r(k+a+1) U(k+a+1 ,a+1,z). 

These functions may be computed by using analogous methods as described 

in sections 4 and 5. In fact it is possible to evaluate the whole class 

of hypergeometric functions uk = U(a+k,b,z), k = 0,1 , ••. in this way. 

The asymptotic properties of uk and sk are not essentially different, 

since it suffices to consider O.:.. a.:.. 1, 0 < b.:.. 1. (For n = 0,1 ,2, ... 

the functions U(a,b+n,z) can be computed with starting values for 

n = 0,1; in this case computation in the forward direction is numerically 

stable). The asymptotic series for uk (analogous to the representation 

is skin (3-14)) follows from Olver's paper. The coefficients An and Bn 

will depend on a and b. The Bessel functions have to be replaced by 

¾-1 and ¾· 

The Bessel functions K ( z) may also be computed by the methods of 
a 

section 4, at least if lzl is not too small, say lzl > 1. Namely, we 

can write K (z) as a confluent hypergeometric function, 
a 

1 
K (z) = ,r 2 (2z)a e-z U(a+L2a+1,2z). 

a 

For small values of lzl the calculation can be attempted by using the 

well-known formula 

I (z) - I (z) 
K (z) = 2!:. -a . a 

a 2 sin aTT 

In a forthcoming publication we will work out some new ideas on the 

numerical evaluation of the Bessel ft:r"t:ion K ( z). 
a 
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