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Abstract

An algorithm is given for the numerical evaluation of a class of func-
tions of the confluent hypergeometric type. The method of computation

is based on the well-known Miller algorithm and on asymptotic expansions.
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1. Introduction

In 1953 A. van Wijngaarden wrote a paper on transformations of
formal series, [5]. He discussed a general transformation " the
asymptotic expansion of certain integrals for large parameter values.
Special attention was paid to a transformation from which the following

functions arose
® Kk k-1

(1-1) s, (z) =z J e7?t ¢ (1+t)7 dt, k = 0,1,2,..., Re z > 0.
0

This transformation can be described in different ways. One way is

the following. If in the Laplace integral
(1-2) £(z) = 2 J e F(t) at
0

the function F is expanded in powers of t and the order of summation

and integration is interchanged then a formal series

[=<]

(1=3) £(z) ~ ) F(k>(o) 27K
k=0

results. When, however, F(t) is expanded in the following way

c tk(1+t)'k’1

(1-k) F(t) = .

I~ 8

k=0
then we obtain by termwise integration
(1-5) £(z) ~ ] ¢, s.(2)
k=0kk

with 8y defined in (1-1). The series in (1-5) can be considered as a

transformation of the series in (1-3).

In a forthcoming paper [3] Lauwerier will consider van Wijngaarden's

trensformation from a different point of view.




Van Wijngaarden announced the construction of tables for the
functions sk(z) for complex values of z. The construction of these
tables turned out to be a heavy task and the tables did not reach the
stage of publication. Nowadays, with large scale computer systems at
our disposal, tabular values are not as interesting as methods of com-

puting.

The aim of this paper is to give information about the numerical
evaluation of sk(z) for |arg z| < 7 and k = 0,1,..., K, where K is some
positive integer.

In the next section some elementary properties of the functions Sy

are discussed. In fact s, can be expressed as a confluent hypergeometric
function (Whittaker function). In section 3 the asymptotic behaviour of
Sy is determined. With these results the convergence of the algorithm

in section L4 ig proven. In section 5 the computation for small values

of |z| is discussed. Also in that case asymptotic expansions are of
fundamental importance. Our methods of computation apply to a more ge-
neral class of functions, in fact to the whole class of confluent hyper-
geometric functions to which the functions S, belong. Information on

that point will be given in section 7.

2. The functions sk(z)

The functions sk(z), defined by (1-1) for Re z > 0, k = 0,1,2,...,
can be expressed in terms of confluent hypergeometric functions. Using

the notation of Abramowitz and Stegun [1, chapter 13], we have

(2-1) sk(z) =z k! U(k+1,1,2).

Relevant properties of s

of U(a,b,z).

k(z) can be derived from well-known properties

Equation (1-1) defines sk(z) in the halfplane Re z > 0. The domain
31

2

(z) is a many-valued function of z. We will

of definition can be extended to |arg z| < by rotating the path of

integration. The function Sy
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consider its principal branch in the plane cut along the negative real

axis, this branch being determined by the condition that s (z) is real

k
and positive if z is real and positive.

For convenience we will denote

(2-2) uk(z) = sk(Z)/z,
k=0,1,2,... . Then uy satisfies the confluent hypergeometric differential
equation
- " - 1] - =
(2=3) 2w + (1 z)uk (k+1)uk 0.
A second solution of this equation, linearly independent of W s is the
function
(2-1) 7 (2) = M(k+1,1,2);

yo(z) = ez, y1(z) (1+z)e?. M(a,b,z) is known as Kummer's function. In

the notation of hypergeometric functions the function M(a,b,z) is defined

by

E r(a+n) r(b) z-
r(a) T(b+n) n!

(2-5) M(a,b,z) = \F.(a3b;z) =
n=0

A corresponding series-representationfor s (z) can be derived from a

k
known representation of U(a,b,z) in [13; 13.1.6]. For k = 0,1,2,... we have

1

© n
(2-6) s (z) = - & 7 DEEEUZ 000y y(ieme) - 2v(an)),

where ¥(z) = I''(z)/I'(z). The series converges for all z in the finite

z plane.

From the contiguous relations of the confluent hypergeometric functions

we derive

(2=7) (k+1) s .. (2) = (2k+1+2) sk(Z) + ks _(z)=o0.

k+1 k-1




e

This formula can also be obtained by partial integration of (1-1). The
recurrence formula (2-7) can be considered as a homogeneous linear dif-
ference equation of the second order, of which of course U is also a

solution, but Uy is not linearly independent of s, . An independent so-

K
lution turns out to be the function Vi defined in (2-k4).

3. Asymptotic expansions

In this section we will study the asymptotic behaviour of s, and Yy

k
for large values of k and for various values of z, |arg z| < T,

For small values of |z|, k fixed, the asymptotic behaviour follows
from (2-5) and (2-6), viz.

(3-1) 1+ 0(z),

O
i
[N]
1]

(3=2) s.(z) = = z(1n z + ¥(k+1)) + O(|z2 in z|).

For bounded values of ]zl, say |z| < M, and large values of k we
will use the differential equation (2-3) and a theorem due to Olver
[4, 1956]. First we give a transformation of the dependent variable.
If uk(z) is a solution of (2-3) then

(3-3) w(z) = 22 e 2% y (2)

satisfies the equation

" Ky 11y
(3—&) W= ( = - hzz + u) w = 0.

The transformation of the independent variable

(3-5) z

]
ct

and the substitution

(3-6) k +3 =14 A



yield

l'w' - [Ag Ly t2]W = 0,
t t2

(3-7) w' -

the differentiation in this equation being with respect to t.

For large values of A and uniformly bounded values of ltl the so-
lutions of (3-7) will behave like the solutions of the so-called
basic-equation
(3-8) A AL

t2

1]
(@]

The solutions of this equation are t K. (At) and t I _(\t), where K_ and

0 0 0
IO are modified Bessel functions. By direct substitution in (3-7) it h

can be verified that the formal series

© A (t) © B (t)

(3-9) wi(t) ~ t K (At) nZO ign - §~K1(At) nZO zgn ,
o An(t) . o Bn(t)

(3-10) wy(t) ~ £ I (ht) nZO a T I,(At) nZO B

formally satisfy (3-7). The functions An and Bn are polynomials in t,

recursively given by

Ao(t) =1,
v
(3-11) ¢ 2Bn(t) = - Aé(t) + JO {x An(x) - Ag(x)/x}dx,
E 2
2An+1(t) = Bn(t)/t - Bé(t) + JO x Bn(x) dx + 2 .19
\

the integration constant & 41 being arbitrary. The first few coefficients

will be given in section 5. By application of Olver's theorem it can be
shown that the series in (3-9), (3-10) are asymptotic expansions (in
Poincaré's sense) of two linearly independent solutions v, and L&) of (3-7)
for large values of A. These expansions hold uniformly in a closed bounded

z-domain which includes the origin.
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After these preliminary results we return to the functions u, and Yy s

introduced in the foregoing section. The functions

1 2 _1 2
F(t) = 72" ¢ uk<t2), 6(t) = 2% ¢ yk(tg) are
solutions of (3-7). Hence
F(5) = o, v (8) + oy wy(t), G(8) = B w(2) + B, wy(t),

where s Oy 81, 82 are independent of t. To evaluate these coefficients

we need the following well-known properties of the Bessel functions.

I (x)

(3-12) 0

T+ 0(x), K(x)==1nx + 0(1), x » 03

0

(3-13) (21x)"2 (1 + 0(1)), X

IO(X) (x) = (ﬂ/2x)% e X (1+0(1)), x > =;

0
the formulas in (3-12) hold for arbitrary values of arg x, those of (3-13)

hold for |arg x| < 2.

For real z and for all values of k considered we have

0 < uk(z) <-%; this follows from (1-1) and (1-2). Hence «

5 = 0 for all
values of k. Because of the uniform property of the expansions (3-9)
and (3-10) we may keep A = 2/k+} fixed and let t + O through positive

values. Since yk(z) is bounded if z » 0 (see (3-1)) it is obvious that

81 = 0. Finally, from (3-1), (3-2) and (3-12) it follows that o, = 2,
82 = 1. Moreover all integration constants in (3-11) have to vanish
(n = 0,1,2,...). Hence, using the various transformations we obtain
(3-1k) (z) oy (o) ] B0 5 § %072
3-1 s, (z) ~2z " {K (¢ - — 1},
S 07" n=o (ux+2)®  Vhk+2 n=0 (Lx+2)®
(3-15) o) 1z @ A (V2) I.(z) OZO B (V2)
3-15 v (z) ~ e*" {I (g) + s
k 0 n=0 (Lx+2)®  Vhk+2 n=0 (Lx+2)"
for k » =, where
(3-16) g =2 Vz(k+3),
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z > 0 if z > 0. The expansions are uniformly valid with respect to z in
a bounded domain of the z-plane, which contains the origin.

Corollary. For fixed values of |z| it follows from (3-1k4), (3-15) and
(3-13) that

3 1
(3-17) 5,.(2) ~ 7° R R
3 1
(3-18) yk(z) ~ Ig72 (zk)“1/h e22 7t 2vVzk

as k > ». The restrictions on z in (3-17) and (3-18) are
(3-19) |arg z] < m, z fixed, z % O.

It has to be pointed out that (3-17) and (3-18) are not valid for
both k and 2z Dbeing large. Representations, which are valid for large
k uniformly in lz| for lz[ > &8 > 0, can be derived by applications of

theorem A in Olver [3, 1954]. This will now be done.

Again, the starting point is the differential equation (3-4). The

transformation
(3-20) z = 2 t, A = 2k+1
yields
d2w 2 t+1 1
(3-21) 5 - (A = - “E) w =0
dt t
and a further transformation
(3-22) w= (7)Y, x = (A + /TR + /A(TRED
results in
dev 2
(3-23) — -+ v=0
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The function f(x) cannot be given explicitly in terms of x, but in the

variable t we have

3+8t 1 .
16t(1+t)3 t(1+t)

f(x) =

the relation between x and t is given in (3-22). According to Olver, for

large values of A the solutions of (3-23) behave like the solutions
+ . .
e—?\X of the basic-equation v'" - K2v = 0. As a consequence, we have for

and w. of (3-21)

two linearly independent solutions v, 5

(3-2L4) w (t) ~ (—E—)% explM{1n(/2 + /T+8) + /E(1+t)11,

(3-25) (1) ~ (<5 expl MIn(/B+ /TFD) + AT}
as A > o,

Using Olver's theorem we can prove that this formulas hold uniformly
in t in the domain |t| > &, |arg t] < m-g, where € and § are fixed positive
numbers (e < m).As in (3-9) and (3-10) we can construct asymptotic series
which formally satisfy (3-23), but here we are interested in the first
order approximation only..

To give the results for Yy and s, we proceed as in the foregoing case.

k
First we remark that

(206)7% & s, (228) = F(t),

N
o
F
i
N
~—
1]

(2xt) et yk(ext) = G(t)

N
®
<
—
N
~—
1]
ol

(where X = 2k+1) are solutions of (3-20). Hence

F(t) = aw (8) + o

1 wg(t), G(t) = B,w, (t) + 82w2(t),

2 11

where A5 Cp, 81, 82 are independent of t. To evaluate these coefficients

we use (3-17) and (3-18). If in (3-20) z is fixed and A is large then t is
small. In this case it follows from (3-2L4) and (3-25)




as k —~o

a, =vam, 81 =

>

-

and, using (3-2L4)
(3-26) Sk(Z)

(3-27)

as k +> «, where o

Taking into account (3-17) and (3-18) we have o, = B, =
1/V27. Hence

Yk(z) ~ (th o/2mz)

5 0 and

.
3%
omzt e?” w
2

(t) >

1
32

1/vVenzr e*” w_(t)

1

and (3-25) we have

Ni—

~ (2mz th a)? exp {3z - (k+3)(20 + sh 2a)},

=

exp {3z + sh 2a)}

is defined by

(3-28) z = L(k+3) shga;

sh o is real and positive if z is positive. In (3-26), (3-27) the

restrictions on z are
(3-29)

larg z| <m-e, 0<e<m, |z] > 6§ > 0.

In (3-26) and (3-27) we can fix k and let z - », Taking limiting forms

of the functions of o for large o we obtain

k!
5. (2) k

Z

zkez
yk(z) ~ k! s

as z > + ©, k fixed. These formulas correspond to well-known results of

the confluent hypergeometric functions. The formula for s, can be derived
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direct from (1-1). The formula for ¥, then follows from (3-26), (3-27),
z z
Nth ~ .
yk(z) sk(z) o e e

The formulas (3-17) and (3-26) may also be derived from (1-1) by using
saddle point technigues.

The asymptotic expansion in (3-1L4) will be used for the numerical
evaluation of sk(z) for large values of k (and small values of |z|). See
section 5. Formula (3-17) gives information about the rate of convergence
of series with sk(z), for instance series of type (1-5).

4. Method of computation

The recurrence relation (2-7) is an important tool for generating a
sequence of wvalues sk(z) for fixed z and k = 0,1,2,..., K. If the values
of sk(z) are known for two consecutive values of k, then the functions
may be computed for other values of k by successive application of the

recurrence relation.

In [2], Gautschi investigates the problem of numerical instability
for general three-term recurrence relations. In this connection he in-
troduces the concepts of minimal solution and dominant solution of a
recurrence relation. Starting from two initial values, an application
of the recurrence relation in the forward direction (i.e. in the di-
rection of increasing order) yields a disastrous build-up of errors for
the minimal solution, whereas the computation of the dominant solution

remains numerically stable.

If the recurrence relation

(L-1) g vy _, =0

+ +
a'n yn o n-1

n+1 n

has two linearly independent solutions fn and g, having the property

(4-2) lim fn/gn =90

n-rw

then fn is called a minimal solution and g, is called the dominant

solution of (4-1). From (3-17) and (3-18) it follows
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s (2) WZR

-—(—JNEZWG .

(4-3) Yy

k > », under the conditions in (3-19). Consequently, in our case,

sk(z) is a minimal solution of (2-7) and yk(z) is a dominant solution.

Gautschi's paper concentrates mainly on the development of an algo-
rithm for the computation of minimal solutions. This algorithm is based
on Miller's method which enables computation without any knowledge of

starting values for large k.

To describe the algorithm for the computation of the minimal

solution fn(n = 0,1,...,0) of (L-1) 1let

(b-L) m_zo A, f=t, t # 0,
(4-5) n T fn+1/fn’
1 0
(L-6) to=f L A T,
m=n+1
where t and XO’ A1,... are given quantities and the series (3-4) is

known to converge. At first we suppose that T and tn are known for some

value n = v > N. From (4-1) and (L-5) there follows

(L-7) ro_q= —bn/(an+rn), n=v, v-l,..., 1,

and from (4-6) and (L-T)

(L-8) t = T (Xn+tn), n=v, v-1, ..., 1.

Hence r and tn can be obtained recursively for O < n < v; in particular

we have, using (4-k)

a1
().J,_Q) to = fo (t - Aof0)3
and so
(L-10) f o=4%/(A_+1t.),
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giving the initial value of the minimal solution. The remaining values

can be obtained from

(4=11) fo=r T ,0=1,2,0.., N

When the algorithm is executed with the (incorrect) starting values

riv) =0, tvv) = 0, we have the following set of recursions
(
r(v) =0, r(v) =-b /(a + r(v))
v n-1 n n n
n V, v=T, .., 1,
(h_12) Jt(\)) =0, t(\)) - I‘(\)) (A + t(\)))
\V n-1 n-1 n n
(v) _ (v) (v) _ _(v) .(v)
fO - t/()\O * tO )5 fn T Tn-1 fn-—1’ s 2, > N
\

Gautschi showed that the set of recursions (4-12) is numerically stable
and that

(v)

(4-13) lim fn = fn (n=0,1,..., N)
>0
if and only if
f v
. v+1 _
(L-1k) lim ) Ay &y = 05

V> Py+1 m=0

vhere g is a dominant solution of (4-1).

Under the restrictions on z given in (3-29) the functions
sk(z) (k = 0,1,..., X) can be computed with Gautschi's algorithm (L-12).

For the series in (L-4) the following series can be used

(<)

(L-15) Y s (z) = 1.
k=0 F

This formula may be proved by substitution of (1-1).
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Hence
t =1 =1, a = ~(2n+1+z)/(n+1), bn = n/(n+1),

(cf. (4=1) and (2-7)). We can choose v so large that

(4-16) ks(z)k <e,e>0,k=0,1,..., K,

if and only if condition (L-1L4) is fulfilled.
In our case 1t reads

sv+1(z) v

(4=17) lim ——— ) v (2) =0
V> yv+1(z) méo m

for the values of z specified in (3-19).

To verify condition (L4~1T7) we compute the finite sum in this

formufa. We have

V
(4-18) Loy (2) = (vi)(y

m=0

ve1'2) =y (2))/z.

This formula can be derived by using (2-T7) and mathematical induction with
respect to v. With (L4-18), (4-3), and (3-18) it is easy to prove that
(L-17) holds for |arg z| < m, z # 0, = fixed.

The positive integer v in (4-12), which indicates the starting-point
of the backward recurrence, can be chosen so that (4-16) is fulfilled. The
number v depends on €, z and K; v is large if |z| is small, even v - « if
z + 0. This can be recognized by observing that for z - 0 the series in
(h—TS) converges poorly. Besides, and this is the main point, the dominance

of ¥y over s becomes rather weak, as can be seen from (L-3).

k

Therefore, for small values of Iz| the algorithm becomes less
* attractive, and as a consequence, for small values of Iz[ we need accurate

starting values of sk(z) for two consecutive values of k.
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Throughout this paper we will fix the dividing-line in the z-plane

for the two methods at |z| = 1. An optimal choice of a boundary may be
found by numerical methods. From our experience, |z[ = 1 is a convenient
choice.

5. The computation for |z| <1, z £ 0

The algorithm describes in (4-12) provides us with a numerical procedure

for the computation of s (z) (k = 0,1,..., K) which converges and which

k
is numerically stable for every z in the z-plane satisfying |arg z| < m,
Z + 0. However for small values of ]z|, the number v may be considerably
large when (4-16) has to be satisfied and therefore the procedure con-

(v) (v)

verges slowly, unless correct values of r, Y

in (4-12). In that case we need two starting values sv(z) and s

are substituted

(z),

and t

v+1
v > N.

The series-representation (2-6) converges for all finite values of z.
However, when k is a large integer cancellation of significant digits
occurs when the series is summed numerically. Besides, convergence is

rather poor when k is large.

Since sv(z) has to be evaluated for large values of v it is more
attractive to use an asymptotic expansion of sv(z) va}id for large values
of v, while small values of |z| do not invalidate thecapproximation.
In section 3 we derived an expansion satisfying these requirements,
namely (3-14). This expansion gives an excellent approximation for sk(z)
for large k and fixed values of lzl, while the approximation is becoming

better according as |z| becomes smaller.
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The first few values of the polynomials An and Bn are
A (t) =1,

A (t) = tg(th—12)/72,

Az(t) = th(5t8—1128tu+27216)/1 55520,
A () = t2( 16 12 8 L
3 = 35t T-31500t “+58 59216t -2067 63840t +5486 TL560)/11757 31200,
a,(t) = £ (5620_ 11472t 0470 6838412213282 030085+
+6 51177 79200th-h9 98537 21600)/33 86105 85600,
B&t)=tyu,

B (t) = +(5t5-432t™42160) /6180,

8 i

B.(t) = t3(7t%-3528t%+2 98224t -30 48192)/65 318k0,

6 8

B.(t) = t(5t2°—7560t1 +27 76896t12-26h2 28480t

I

+47953 03680t -65840 9LT20) /70543 87200.

By substitution of polynomial representations of An and Bn in (3-11)
recurrence relations for the coefficients of these polynomials may be

derived in order to compute An and Bn for other values of n.

Some remarks on the computation of the modified Bessel functions

Ko(c) and K1(;) will follow in section 7.

6. The estimation of v

In this section we give an estimate of the starting value v to be
used in algorithm (4-12), given the relative accuracy desired. Gautschi
[2] obtained an approximation for the relative error which in our
notation reads as follows (see Gautschi's discussions around 3.18 and 5.11

in [2])




(
(6_1) _.l.;_._._.__.._lg.—_._'z (Z) - Ul

v large, k¥ = 0,7,..., K.

Our aim is to determine v such that

(6-2) SN SRR [

holds for k = 0,1,..., K, |z| > 1, Iarg z| < 7, where € is the relative
accuracy desired. Since iyk(z)/sk(z)l ultimately grows rapidly with k,
see (4-3), it is plausible to expect that when (6-2) holds for k = K

it will also be valid when k < K, particularly when K 1s large. We

therefore consider the simplified problem of bounding

s +1
(6-3) s, (z) - =

v+ 1

We assume K, and thus v, so large that the functions in (6-3) may be
replaced by approximations of these functions holding for large values

of v and K.

The asymptotic expressions in (3-17) and (3-18) are not suitable for large

|z|, therefore it is necessary to use the more intricate formulas (3-26)
and (3-27).

Applications of (3-26) and (3-27) to (6-3) gives (if a few unimportant

coefficients have been omitted)

1
(6-l4) k k seRe{gz—\)f(oc)} . e2Re{K f(B)—vf(a)},
s, (z)
k
f(a) = 2a + sh 2a,
shga = z/bv, sha>0if z > 0,
sh®8 = z/UK, sh 8 > 0 if z > O.
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The positive integer Vv can be chosen so large (if z, K and € are known)

that simultaneously

(6-5) JReldz—ve(a)} 5 2Re{kf(8)-vf(a))

N <

o=
m

The proper value of v can be found by inverting the function Re{vf(a)}.

Somer properties of this function will now be given.

Let
2 ig
sh™a = z/bv = re” /bhv, r > 0, -m <9 < T,
. m T
o=y + 18, y > 0, - §~< § < 5
Then, by eleminating §,
(6-6) Re{vf(a)} = ——rE—— [2y{ch 2y+cos 8} + sh 2y{1+cos 8 ch 2y}]
2sh™ 2y
and
(6-7) v o= “—-25—*" {ch 2y+ cos 61}.
2 sh™ 2y

Denoting (6-6) by ¢(Y) then

lim ¢(y) = «, 1im ¢(y) = 3 r cos 6
Y-—)—O Yo

and

6" (v)= A {ch2 2y+2 cos 6 ch 2y+1}.

sh3 2y

Thus, ¢(y) is a monotone decreasing function of y and the equation

(6-8) o(y) =p

. . -1
has a unique solution y = ¢ (p) for all p > 2 r cos 6.
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The inequalities in (6-5) are equivalent with ¢(Y) > 3 r cos & + In(2/¢),

o(y) > ¢(X) + 3 1n(2/e) where XA is implicitly given by (cf. (6-T7))

(6-9) K {ch 2\ + cos 6}.

2sh 2\

This equation may be inverted to give A explicitly, viz.

(6-10) A =3 arc ch (y + /§2+2y cos 9+;),

where v = r/UK.

If we set

(6-11) Yy = ¢‘1 {max(3 r cos 8+In(2/e), ¢(A)+3i1n(2/e))}

then the number v given by (6-7) may be used for starting the algorithm
described in (4-12).

For real values of z approximations of ¢‘1 are easily obtained. Ry

inverting (6-8) for large values of p we have

(1++= &M, p/r > o,

-1
(6-12)  ¢7o) = s

r
b

3 R

and by inverting for values of p close to 3z we obtain

(6-13) ¢—1(p)2vo(1+—————2q—§——-—),q+1,q>1,
q + Yo(q +1)

where q = 2p/r, ' 31n (%{%). Using (6-12) for g > 2 and (6-13) for
1 < g < 2, we have a suitable approximation of ¢_1(p) for all p > 1.

For real values of z (6 = 0, z = r) we will give the successive steps
in the computation of v. The three quantities z, K and € are given.
compute A from (6-10); X = 1n (V¥ + Vy+1); v = z/LK;

compute ¢(A) = z(2X + sh 2%)/hsh2k;

compute y = ¢—1(p) from (6-12) or (6-13

)

)

) compute p = max {3z + In (2/e), ¢(A) + 3 1n (2/e)};
) )s

) compute v from (6-T).
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The estimated value of v can be compared with the smallest value
of v empirically found, for a given set of values z, K and €. Emperical
values were found by running algorithm (4-12) with v = K + 15, K + 20,

K+ 25,... (v) ,(k =0,1,..., K)

agreed within a relative accuracy of € with the respectlve values of
£(v=5)
X .

until for the first time the K + 1 values f

In the following table we give some values of the starting number v
-1 .. .
for ¢ = 10 0. The empirical values may be compared with the values
between brackets which are obtained from the asymptotic relations. For

small values of K the estimated values appear to be less accurate.

K 15 30 50 80 100

Z
1.0 155(147) 155(146) 160(168) 210(221) 2h5(253)
3.0 60(53) 80(79) 110(110) 150(152) 180(180)
.0 L5(L2) 65(66) 95(9k ) 135(134) 160(160)
10.0 35(33) 55(5k) 80(80) 115(117) 140(1L41)
25.0 30(26) Ls(Lk) T0(68) 105(102) 125(125)
50.0 30(22) Ls5(L40) 65(63) 95(96) 120(117)
80.0 30(21) 45(38) 65(60) 95(92) 115(11L)

If |z| < 1 the choice of v depends on the number of terms used in
the asymptotic series (3-1L4). We used this expansion with n = L for the

A-series and with n = 3 for the B-series and v 3_max(K,100).

(z), k =

In this way

we found nine correct significant digits in s 0,1,..., K.

k

7. Generalizations

When instead of (1-2) integrals of the type

f(z) = z J £& 72 F(t)dt

0

are considered,-1 < Re a < 0, the analysis proceeds in the same manner.

(a)

The function F(t) is expanded as in (1-4) and the functions N

, now

depending on o, can be written as
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s OL)(z) =g J e-zt tk+a(1+t)—k—1dt =
0

z T(k+a+1) U(k+a+1,0+1,2).

These functions may be computed by using analogous methods as described
in sections 4 and 5. In fact it is possible to evaluate the whole class

of hypergeometric functions u, = U(a+k,b,z), k¥ = 0,1,... in this way.

k

The asymptotic properties of w and s, are not essentially different,

k
since it suffices to consider 0 < a <1, 0 < b < 1. (For n = 0,1,2,...
the functions U(a,b+n,z) can be computed with starting values for

n = 0,1; in this case computation in the forward direction is numerically

stable). The asymptotic series for u_ (analogous to the representation

k

is Sy in (3-14)) follows from Olver's paper. The coefficients An and Bn

will depend on a and b. The Bessel functions have to be replaced by
Kb-1 and Kb.

The BesseliﬁnctionsKa(z) may also be computed by the methods of
section 4, at least if |z| is not too small, say |z| > 1. Namely, we

can write Ké(z) as a confluent hypergeometric function,

1 -
Ka(z) = 72 (22)% 7% U(a+},2a+1,2z).
For small values of |z{ the calculation can be attempted by using the

well-known formula

I_a(z) - Ia(z)

il
a 2 sin am

In a forthcoming publication we will work out some new ideas on the

numerical evaluation of the Bessel'furétionKé(z).
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