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Abstract 

We present constructions of bases for a Hamming code having small ll'idth and height. i.e. 
number of ls in each row and column in the corresponding matrix. Apart from being com­
binatorially interesting in their own right, these bases also lead to improved embeddings of a 
hypercube of cliques into a same-sized hypercube. 

1. Introduction 

Let n = 2k - I, k ~ 2, and let Ak be the k by /1 matrix over GF(2) whose ith column, 
for I ~ i ~ n, is the k-bit binary representation of i. For example, 

0 1 
0 0 

0 

We denote by Ck the nullspace of Ak, 1.e. the set of n-vectors x with Ak · x = O". We 
are interested in finding a basis of the nullspace, Ck. of Ab that has small heiyht and 
width. The height of a set of vectors is defined as the maximum number of ones in 
any vector, while width is defined as the maximum over all /1 positions, of the number 
of vectors in the set having a l in that position. A basis of height h and width w is 
called a (h,w)-basis. The pair (h,w) is called the weight. 

Low weight bases for the nullspace Ck have applications in coding theory [8], combi­
natorial designs [2], network embeddings [ 1, 6], and distributing resources in hypercube 
computers [I O]. In fact, Ck is a one-error-correcting code which was first discovered 
by Hamming [5] for words of length 2k - k - I. More precisely, Hamming proved that 
the words of length 2k - k - 1 can be encoded as words of length 2k - 1 so that each 
word has Hamming distance at most I to exactly one codeword. 
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Recently, bases for Ck were shown to be useful for hypercube embeddings. An 
embedding of a network G into a network H consists of an assignment of nodes of G 
to nodes of H and a mapping from edges of G onto paths in H. Desirable properties 
of an embedding are small load (maximum number of nodes of G assigned to the 
same node in H ), low dilation (maximum length of a path that an edge is mapped 
to) and low congestion (maximum number of paths using an edge). In [ 1 ], Aiello 
and Leighton discovered that for any k > 0, a ( h, w )-basis for Ck induces a one-to­
one embedding of a hypercube of cliques H2, -k '1;;· Kk in a same-sized hypercube H21, 

with dilation h and congestion 2w + 2. Moreover, this embedding is useful in finding 
etti.cient embeddings of (dynamic) binary trees in the hypercube and reconfigurations 

of the hypercube around faults. 
Although the existence of a height 3 basis for Ck is well known, the existence 

question for a (3, 3 )-basis is open ([6, p. 430]). Towards this problem, only weak 
results were obtained in [l, 6, 9, 12]. In this paper, we present two classes of bases 
with small weight, which improve the existing bounds on weight. In Section 2, we 
present a (3,5)-basis for ck that has a very simple structure. 

There are many constructions of codes from the incidence matrices of graphs, de­
signs, etc. (for example, see [3, 9]). Using the approach observed in [9], we construct 
a class of (3,4 )-bases in Section 3. As a consequence, we obtain a better one-to-one 
embedding of a hypercube of cliques into a same-sized hypercube, with dilation 3 and 
congestion I 0. 

Finally, we propose a construction of (3, 3 )-bases. In [ 1 ], Aiello and Leighton ob­
served that a primitive trinomial of degree k induces a (3, 3 )-basis for C1" But, primitive 
trinomials do not always exist. This observation is generalized in Section 4. We show 
that the existence of a trinomial f(x) such that gcd(f (x ),x2' - 1 + l) is primitive of 
degree k implies a (3, 3 )-basis for Ck. We present results of computations supporting 
our conjecture that such trinomials always exist. 

2. A simple construction of a (3, 5)-basis 

Note that the rank of Ak equals k. It follows that Ck has rank n - k, and that a basis 
for it consists of n - k linearly independent vectors. We identify a boolean n-vector 
with its support, i.e. the set of positions (as non-zero boolean k-vectors) where it has 
a I. For example, the support of (0100101) is {010, 101, 111 }. The product Ak. { u, v, w} 
is easily seen to equal the sum over GF(2) (bitwise exclusive-or) of u, v, and w. E.g. 
A3 · {010, 101, 111} = 010 E6 101 ffl 111 = 03. To better visualize the exclusive-or 
operation, we sometimes write the vectors in the support below each other with the 
bits aligned: 
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For a bit b, we denote by b its complement h I. For a binary string vector x, lxl 
denotes the length of x. 

A basis of Ck is constructed as follows. For x E {O. l }1• and i + p + 2-:::;,k, Jet h"" 

be the vector 

{ o'_,_,, 2 X1 X2 Xi-1 X; l 
O' } 

ok-i-p-2 0 X1 X;-2 X; I OP. ' 

ok-i-p-2 
X1 XJ.2 Xi-2.i-··1 0 OP 

where we write x1,1 for x1 ·=~· xr For definiteness, we have for the cases i = 0, I: 

{ 0,_,,_, 
O" } {°'"' 

X1 O"} h - ok-p-2 0 OP, , l - ok-{'-3 0 X1 OP. . "·" - Jx,,p -

ok- p-2 0 OP ok-p-3 0 QI' 

Note that A" · hx.p = O". so that any hx.p is in Ck. 

Our proposed basis simply consists of the set B of all hx.p· We must check that 

these vectors are indeed independent and that we have the right number of them. 

To see the latter, partition B into k - l sets B 1,, and each BP into k - p - l sets Bp.i· 

containing all hx.1, with [x[ = i. Clearly, different pairs (x, p) define different vectors. 

Thus, the size of B is 

k-2 k-·2-p k-2 

I:: I:: i= I::(2"- 1-"-I)=2k-2-ck-l)=n-k. 
pc~ i=O p=O 

Thus, to prove that B is a basis, it remains to show that its elements are linearly 

independent. 

2. 1. lndependenff 

Consider any nonernpty subset C of B. We prove independence by showing that the 

sum of all vectors in C is not o". 
Let p be minimal such that C n Bp i= f/J and for this p, let i be maximal such 

that CnBp,i of= 0, say br.p E CnBp,i· By definition, hx.p has ok-i-p-· 2 1.dOP in its 

support. For any other hx'.p' to have ok-i- p- 2 1x I QP in its support, would require either 

p' = p - I or [x' [ = [x[ + 1, so by minimality of p and maximality of i, such a hx'.p' 

cannot be in C. Since hx.p is thus the only vector in C with ok-i- P- 2 1.d OP in its 

support, the sum of all vectors in C also has ok-i- p- 2 1x I OP in its support and hence 

is not o". 

2.2. Height and width 

The height of B is obviously 3, since each vector hx,p has exactly 3 one bits. We 

claim that the width of B is at most 5. To see this, consider any position z. If z is of 
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the fonn Qk-q-l jQI/ then it appears only in the support of b,,q, b1.q-I (if q > 0), and 
b1,q· Hence, the width at such positions is no more than 3. 

Otherwise, : is of the form ok-j-q-21 YI )'2 ... YJ 1 QI/. Consider the bx,p that have this 
: in their support We necessarily have one of the following three cases. 
L : = lxlO". This implies p = q and x = y, and so accounts for one bx,p· 
2. z = Jx1 ... x;_ 1XjJOP. This implies p = q, X1:;-2 = Yl:J-1 and Xi = YJ, and so 

accounts for two hx.p (x;_ 1 can be 0 or I). 
3. : = Jx1xu ... x;- 2,;_ 1 lOOP. This implies p = q - I and x1 = Y1.x2 = Y2 x1 = 

y 1 y2.x3 = y3 ·:Bx2 = y 1 ~B y2 y3,. .. ,X;-1 =Yi ffi Y2 EB · · · "9 y1, and so accounts 
for two bx.p (x; can be 0 or I ). 

In total we find that at most five hx.p can have a one in position z, as claimed. 

3. A (3, 4) basis 

While the (3, 5) basis may be preferred in some applications for its simplicity, we 
can get a better (3. 4) basis by combining results from finite fields with an inductive 
construction based on finding Hamiltonian paths in complete bipartite graphs. 

We start with the empty base B 1 for the null space C1 = { O} of A 1. which is the 
I by I matrix (I). Next we explain how to extend Bk to a basis Bk+ 1 for the null space 
Ck+ 1. A subset B~ of 2k - I - k vectors in Bk+ I will be derived from the 2k -- I - k 
vectors in Bk. Namely, for each vector { u, v, w} in Bb where u, v, w E { 0, I }k, we put 
{Ou. Or. Ow} into B~. 

We form Bk+ 1 as the union of B~ and a set B of 2k - 1 more vectors, to get the 
required number of 2k - 1 - k + 2k - 1 = 2H1 - 1 - (k + 1) vectors. These vectors 
will have a support consisting of one position in X = Ol{O. I}"- 1 and one in each 
Y; = li{O,I}"- 1. i = 0,1. Note that, for such a vector {Olx,10y0 ,llyi} to be in 
the nullspace, it must satisfy x = y0 C:Ll y 1, so that it is determined by just the pair 
(10y0,lly1) E Y0 x Y1. Our problem can thus be seen as the selection of 2" - I 
edges in the complete bipartite graph G on Yo U Y1. We will consider X to be a set 
of colors and say that an edge between I 0 Yo and 11 y 1 has col or 0 I (y0 y 1) E X. 
Getting a low width basis corresponds to minimizing the maximum degree of any 
vertex and simultaneously minimizing the maximum number of edges of any color. 
Our construction is based on finding a Hamiltonian path in the graph G (see [9] ). 
Such a path contains exactly the required number I Y0 U Y1 I - 1 = 2k - I of edges 
{I 0 yo, 11 YI}, each corresponding to a basis vector {y0 w y 1, y0 , y 1}. 

Suppose we have found a set B of 2k - 1 vectors corresponding to the edges in a 
Hamiltonian path. Since a path is acyclic, any non-empty subset of vectors in B induces 
a subgraph with at least one vertex of degree I. Such a vertex is a position which 
is in the support of the subset vector sum, and furthermore, will remain so under the 
addition of any vectors in B~, which have no support in Yo U Y1• This proves that if 
Bk is a basis of Ck, then Bk+l is a basis of Ck+i. as desired. 
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Table I 

Position OOO I 0010 0011 0100 0101 0110 0111 !OOO 1001 1010 1011 II 00 1101 1110 I 111 

Color 2 2 0 2 0 0 0 0 0 0 0 0 
Degree 0 l 2 2 2 2 2 2 2 2 
Total 3 2 4 4 4 2 2 2 2 2 2 

Fork= 1,2,3, we use the following Hamiltonian paths: 

Table 1 gives the number of ones in each position of B4, as the total number of 
basis vectors in which it appears as either a color y0 y1 or as a vertex y1 (its degree 
in the Hamiltonian path). 

Since the maximum degree in a Hamiltonian path is 2, the width in positions 
i{O, 1y-1 of any Bk will be at most 2. For k~4, the table shows that the width 
in positions O{O, l}k-I \{Ok} of Bk is at most 4. In order to continue our induction 
beyond k = 4, it suffices to find a Hamiltonian path in which each color x E X ap­
pears at most twice. Equivalently, we need to find a Hamiltonian cycle in which each 
x E X colors exactly two edges. The reason we make the first 3 induction steps ex­
plicit is that such a Hamiltonian cycle does not exist in the complete bipartite graph 
on { 1 OOO, 1001, 1010, 1011} U { l l 00, 1101, I 110, 1 111}. Instead we compensated for the 
triple use of the col or 0101 in the third path by limiting the degree of node 5 to 1 in 
the second path. 

3.1. Hamiltonian cycles 

We turn to algebra to find the paths with the required color restrictions. 
Let GF(2)[x] denote the class of binary polynomials, that is, with coefficients 0 

or 1, and addition and multiplication mod2. We borrow a result from finite field 
theory which says that for any k, there exists a primitive binary polynomial f(x) of 
degree k. This means that GF(2 )(x]/(f ), the class of residues modulo f, is a finite field 
whose multiplicative group is generated by x. In other words, the set {x0,x 1,. .. ,xi-2 } 

contains all n = 2k - 1 non-zero elements. 
We can bring GF(2)[x]/(f) in one-one correspondence to each of the three position 

sets X, Yo and Y1 in the inductive step from k + I to k + 2, where they each have size 2k. 
A position p = p 1 ••• Pk+2 will correspond to the binary polynomial 2=;:01 Pk+2- 1xi, 
i.e. we ignore the two first bits that distinguish between X, Yo, and Y1. For example, 
with k = 4, 101101 E Yo corresponds to x3 + x2 + I. 
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Let (x + 1 i- 1, the inverse of x + I, be equal to xr for some r, 0:::; r < 2k - I. 
Note that x1 r--;. Lj < ;xi = (x1 + I )(x + I )- 1 = x'(x1 + I) is a bijection from all 
the non-zero elements of GF(2 )[x ]/(f) to all elements except xr (0 + 1) = xr. Also, 
Lj < ll x 1 = xr(xll + 1) = xr( I + 1) = 0. 

These facts are the basis of the following cycle decomposition (using L 1 as a 
shorthand for L~=O xj ): 

xr 1 xr .rr+ I 0 

y" 0 Y, 
tl I r-· 2 l'-1 ,. r+J 11 -3 n·-2 

2.: 2:: z: 2.: 2.: 2.: 2.: z: 0 x,. 

The left cycle uses every col or 2:1, 0:::; i < n exactly twice, once on the edge between 
Li-I and xi, and once on the edge between xi+I and Li+l. The right cycle uses the 
single color not expressible as Li, namely x', exactly twice. A series of 5 edge swaps 
transform the two cycles into the following Hamiltonian cycle: 

Y,, 

We will refer to the 2-cycle decomposition as 2-cycle and to the Hamiltonian cycle 
as I-cycle. The edge between x0 = 1 and 0 in the 2-cycle has color l, as does the 
edge between xr+ 1 and x' in the I-cycle, since x1+ 1 + x,. = x,.(x + I) = l. The edge 
between Lr-·1 and xr- 1 in the 2-cycle has color Lr- I, as does the edge between 
x0 =I and Lr+\ in the I-cycle, since Lr+I + 1 = Lr-I +xr+\ +x' + 1 = L'- 1. 

The edge between x' + 1 and Lr+ 1 in the 2-cyclc has col or L,., as does the edge 
between Lr-- 2 and xn- I in the I-cycle, since Lr-2 + xn- l = Lr + xr + xr- I + x- 1 = 
2:,,. +x- 1(xr+l +xr + 1) = L,.· The edge between Ln-l and xn-I in the 2-cycle has 
color ;:,n- I = 0, as does the edge between 0 and 0 in the I-cycle. The edge between 
0 and x' in the 2-cycle has color x,., as does the edge between xr- I and Ln-2 in the 
I-cycle, since xr- I + Ln-2 = xr--l + x- 1 = xr + x- 1(xr+ 1 + x,. + 1) = x'. 

It remains to show that this transformation does not suffer from r being too close 
to 0 or n - I. Indeed, x'+ 1 + x,. + 1 = 0 implies that r + 1 ~ k ~ 3, hence r - 1 > I 
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and we are safe on the left. Similarly, xii-/'+ x + I = (x' r I + x + I = 0 implies that 

n - r ?:-k ?::3, hence r + 1 ~ n - 2, so we are safe on the right too. 

Altogether, this shows 

Theorem 1. For any k, C" has a (3, 4 )-basis. 

An n-dimensional hypercube of cliques is the cross product of an (11 - llogrj )­

dimensional hypercube and a complete graph with 2 llog rJ nodes. By Theorem I, we 

have 

Corollary 2. There is a one-to-one embeddiny of a hypercube of' clilJlU'S in a same­

sized hypercube with dilation 3 and con9estio11 10. 

Proof. See [6]. D 

4. On (3, 3) bases 

In this section we give a sufficient condition for the existence of a (3, 3 )-basis 

for Ck. Suppose some degree k primitive polynomial h(x) is the gcd of a trinomial 

f(x) = l + xi + x"' and x" + I. Then Ck has a (3, 3 )-basis, constructed as follows. 

Consider the n x n circulant matrix F generated by f; the ith column r; of this matrix 

(i = 0, ... , n - I ), is formed by the coefficients of xif(x) mod x 11 + 1. For example, 

with n = 7, h(x) = f (x) = I + x + x3 generates the matrix 

0 0 0 0 

0 0 0 0 

0 0 0 0 

F = 0 

0 0 

0 0 0 

0 0 0 

0 0 

0 

0 0 0 0 

We use the fact that h(x) is primitive to define a column reordering of Ak, called A~, 

whose ith column corresponds to x' mod h(x ). Now A~F; corresponds to x'f(x) mod 

x 11 + 1 mod h(x) = xif (x) mod h(x) = 0, since h(x) divides both f(x) and x11 + l. Thus, 

all columns of F are in the nullspace C! of A~. 

From a theorem of Konig and Rados [7], it follows that the rank of F is n -

deg(gcd(f(x),x11 + I))= n - deg(h(x)) = n - k. Now if some column i is linearly 

dependent on columns 0, ... , i - 1, then, since F is circulant, column i + 1 is linearly 

dependent on columns I, ... , i and therefore also on columns 0, ... , i - 1. Similarly, 

columns i + 2, ... , n - 1 would be linearly dependent on the first i columns. Thus, the 
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Table 2 
Trinomials /(.r) = x111 + x' + I that imply the existence of (3, 3 )-bases 

k 111 k 111 j k m j 

8 13 67 76 29 120 174 31 
12 19 6 69 75 23 122 128 15 
13 16 3 70 82 15 125 128 3 
14 17 2 72 93 7 126 141 70 
16 29 6 74 80 39 128 131 50 
19 22 3 75 77 4 131 138 61 
24 55 6 76 88 43 133 136 43 
26 29 12 77 80 9 136 139 30 
27 29 78 89 2 138 183 23 
30 41 12 80 83 23 139 142 3 
32 59 29 82 85 19 141 148 71 
34 37 6 83 85 14 143 147 
37 43 4 85 93 28 144 159 14 
38 42 I 86 91 22 146 149 6 
40 43 3 88 154 37 147 149 19 
42 51 7 90 111 28 149 151 2 
43 53 2 91 99 13 152 155 38 
44 52 15 92 103 39 154 157 22 
45 59 12 96 123 1 155 158 75 
46 58 9 99 101 13 156 188 59 
48 70 27 IOI 103 2 157 164 25 
50 54 7 102 115 3 158 167 54 
51 53 4 104 109 9 160 177 19 
53 61 28 107 109 8 162 166 27 
54 93 23 109 118 21 163 171 70 
56 67 31 110 117 19 164 189 68 
59 61 26 112 133 I 165 173 42 
61 66 17 114 118 7 166 186 53 
62 77 30 115 125 6 168 179 38 
64 74 21 116 136 I 171 173 10 
66 83 20 117 123 31 

first n - k columns of F must actually be linearly independent, else the rank of F 
would be less than n - k. This shows that Fa, ... ,Fn-k- I fom1s a basis of q, and, by 
an appropriate permutation of dimensions, a basis of Ck. 

The existence of degree k primitive polynomials h(x) that are the gcd of a trinomial 
f(x) = I + x"' + xi and x" + 1, is demonstrated in Table 2 for k::::; 171. Only those 
k for which there is no primitive trinomial of degree k are listed; see Stahnke [ 11 J 
for a table of primitive binary polynomials up to degree 171. Therefore, we pose the 
following: 

Conjecture 1. There always exists a trinomial f (x) such that gcd(f (x ), xz' - I + I) is 
a primitive polynomial of degree k over GF(2), for any k. Consequently, any Ck has 
a (3, 3 )-hasis. 

The subsequent effort by [ 4] shows the conjecture to hold through all k::::; 500. 
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