Small weight bases for Hamming codes ${ }^{1}$

John Tromp ${ }^{\text {a,*, }}$ Louxin Zhang ${ }^{\text {a }}$, Ying Zhao ${ }^{\text {b }}$
${ }^{a}$ Department of Computer Science, University of Waterloo, Waterloo, Ont., Canada N2L 3 G1
${ }^{\mathrm{b}}$ Department of Mathematics, Shanxi Teacher's University, Linfei, 041004 Shanxi, China

Abstract

We present constructions of bases for a Hamming code having small width and height, i.e. number of ls in each row and column in the corresponding matrix. Apart from being combinatorially interesting in their own right, these bases also lead to improved embeddings of a hypercube of cliques into a same-sized hypercube.

1. Introduction

Let $n=2^{k}-1, k \geqslant 2$, and let A_{k} be the k by n matrix over $G F(2)$ whose i th column, for $1 \leqslant i \leqslant n$, is the k-bit binary representation of i. For example,

$$
A_{3}=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

We denote by C_{k} the nullspace of A_{k}, i.e. the set of n-vectors x with $A_{k} \cdot x=0^{k}$. We are interested in finding a basis of the nullspace, C_{k}, of A_{k}, that has small height and width. The height of a set of vectors is defined as the maximum number of ones in any vector, while width is defined as the maximum over all n positions, of the number of vectors in the set having a 1 in that position. A basis of height h and width w is called a (h, w)-basis. The pair (h, w) is called the weight.

Low weight bases for the nullspace C_{k} have applications in coding theory [8], combinatorial designs [2], network embeddings [1, 6], and distributing resources in hypercube computers [10]. In fact, C_{k} is a one-error-correcting code which was first discovered by Hamming [5] for words of length $2^{k}-k-1$. More precisely, Hamming proved that the words of length $2^{k}-k-1$ can be encoded as words of length $2^{k}-1$ so that each word has Hamming distance at most 1 to exactly one codeword.

[^0]Recently, bases for C_{k} were shown to be useful for hypercube embeddings. An embedding of a network G into a network H consists of an assignment of nodes of G to nodes of H and a mapping from edges of G onto paths in H. Desirable properties of an embedding are small load (maximum number of nodes of G assigned to the same node in H), low dilation (maximum length of a path that an edge is mapped to) and low congestion (maximum number of paths using an edge). In [1], Aiello and Leighton discovered that for any $k>0$, a (h, w)-basis for C_{k} induces a one-toone embedding of a hypercube of cliques $H_{2^{k}-k} \otimes K_{k}$ in a same-sized hypercube $H_{2^{k}}$ with dilation h and congestion $2 w+2$. Moreover, this embedding is useful in finding efficient embeddings of (dynamic) binary trees in the hypercube and reconfigurations of the hypercube around faults.

Although the existence of a height 3 basis for C_{k} is well known, the existence question for a (3,3)-basis is open ([6, p. 430]). Towards this problem, only weak results were obtained in $[1,6,9,12]$. In this paper, we present two classes of bases with small weight, which improve the existing bounds on weight. In Section 2, we present a (3,5)-basis for C_{k} that has a very simple structure.

There are many constructions of codes from the incidence matrices of graphs, designs, etc. (for example, see $[3,9]$). Using the approach observed in [9], we construct a class of (3,4)-bases in Section 3. As a consequence, we obtain a better one-to-one embedding of a hypercube of cliques into a same-sized hypercube, with dilation 3 and congestion 10 .

Finally, we propose a construction of $(3,3)$-bases. In [1], Aiello and Leighton observed that a primitive trinomial of degree k induces a $(3,3)$-basis for C_{k}. But, primitive trinomials do not always exist. This observation is generalized in Section 4. We show that the existence of a trinomial $f(x)$ such that $\operatorname{gcd}\left(f(x), x^{2^{h}-1}+1\right)$ is primitive of degree k implies a $(3,3)$-basis for C_{k}. We present results of computations supporting our conjecture that such trinomials always exist.

2. A simple construction of a (3,5)-basis

Note that the rank of A_{k} equals k. It follows that C_{k} has rank $n-k$, and that a basis for it consists of $n-k$ linearly independent vectors. We identify a boolean n-vector with its support, i.e. the set of positions (as non-zero boolean k-vectors) where it has a 1 . For example, the support of (0100101) is $\{010,101,111\}$. The product $A_{k} \cdot\{u, v, w\}$ is easily seen to equal the sum over $\mathrm{GF}(2)$ (bitwise exclusive-or) of u, v, and w. E.g. $A_{3} \cdot\{010,101,111\}=010 \oplus 101 \oplus 111=0^{3}$. To better visualize the exclusive-or operation, we sometimes write the vectors in the support below each other with the bits aligned:

$$
\left\{\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1, \\
1 & 1 & 1
\end{array}\right\}
$$

For a bit b, we denote by \bar{b} its complement $b \oplus 1$. For a binary string/vector $x,|x|$ denotes the length of x.

A basis of C_{k} is constructed as follows. For $x \in\{0,1\}^{i}$, and $i+p+2 \leqslant k$, let $b_{x . p}$ be the vector

$$
\left\{\begin{array}{ccccccccc}
0^{k-i-p-2} & 1 & x_{1} & x_{2} & \ldots & x_{i-1} & x_{i} & 1 & 0^{p} \\
0^{k-i-p-2} & 0 & 1 & x_{1} & \ldots & x_{i-2} & \overline{x_{i}} & 1 & 0^{p} \\
0^{k-i-p-2} & 1 & \overline{x_{1}} & x_{1,2} & \ldots & x_{i-2, i-1} & 1 & 0 & 0^{p}
\end{array}\right\}
$$

where we write $x_{i, j}$ for $x_{i} \oplus x_{j}$. For definiteness, we have for the cases $i=0,1$:

$$
b_{\varepsilon, p}=\left\{\begin{array}{cccc}
0^{k-p-2} & 1 & 1 & 0^{p}, \\
0^{k-p-2} & 0 & 1 & 0^{p}, \\
0^{k-p-2} & 1 & 0 & 0^{p}
\end{array}\right\}, \quad b_{x_{1}, p}=\left\{\begin{array}{ccccc}
0^{k-p-3} & 1 & x_{1} & 1 & 0^{p} \\
0^{k-p-3} & 0 & \overline{x_{1}} & 1 & 0^{p} \\
0^{k-p-3} & 1 & 1 & 0 & 0^{p}
\end{array}\right\} .
$$

Note that $A_{k} \cdot b_{x, p}=0^{k}$, so that any $b_{x, p}$ is in C_{k}.
Our proposed basis simply consists of the set B of all $b_{x, p}$. We must check that these vectors are indeed independent and that we have the right number of them.

To see the latter, partition B into $k-1$ sets B_{p}, and each B_{p} into $k-p-1$ sets $B_{p, i}$, containing all $b_{x, p}$ with $|x|=i$. Clearly, different pairs (x, p) define different vectors. Thus, the size of B is

$$
\sum_{p=0}^{k-2} \sum_{i=0}^{k-2-p} 2^{i}=\sum_{p=0}^{k-2}\left(2^{k-1-p}-1\right)=2^{k}-2-(k-1)=n-k
$$

Thus, to prove that B is a basis, it remains to show that its elements are linearly independent.

2.1. Independence

Consider any nonempty subset C of B. We prove independence by showing that the sum of all vectors in C is not 0^{k}.

Let p be minimal such that $C \cap B_{p} \neq \emptyset$ and for this p, let i be maximal such that $C \cap B_{p, i} \neq \emptyset$, say $b_{x, p} \in C \cap B_{p, i}$. By definition, $b_{x, p}$ has $0^{k-i-p-2} 1 \times 10^{p}$ in its support. For any other $b_{x^{\prime}, p^{\prime}}$ to have $0^{k-i-p-2} 1 x 10^{p}$ in its support, would require either $p^{\prime}=p-1$ or $\left|x^{\prime}\right|=|x|+1$, so by minimality of p and maximality of i, such a $b_{x^{\prime}, p^{\prime}}$ cannot be in C. Since $b_{x, p}$ is thus the only vector in C with $0^{k-i-p-2} 1 \times 10^{p}$ in its support, the sum of all vectors in C also has $0^{k-i-p-2} 1 \times 10^{p}$ in its support and hence is not 0^{k}.

2.2. Height and width

The height of B is obviously 3 , since each vector $b_{x, p}$ has exactly 3 one bits. We claim that the width of B is at most 5 . To see this, consider any position z. If z is of
the form $0^{k-q-1} 10^{q}$ then it appears only in the support of $b_{\varepsilon, q}, b_{\varepsilon, q-1}$ (if $q>0$), and $b_{1, q}$. Hence, the width at such positions is no more than 3 .
Otherwise, z is of the form $0^{k-j-q-2} 1 y_{1} y_{2} \ldots y_{j} 10^{q}$. Consider the $b_{x, p}$ that have this z in their support. We necessarily have one of the following three cases.

1. $z=1 \times 10^{p}$. This implies $p=q$ and $x=y$, and so accounts for one $b_{x, p}$.
2. $z=1 x_{1} \ldots x_{i-2} \overline{x_{i}} 10^{p}$. This implies $p=q, x_{1: i-2}=y_{1: j-1}$ and $x_{i}=\overline{y_{j}}$, and so accounts for two $b_{x, p}\left(x_{i-1}\right.$ can be 0 or 1$)$.
3. $z=1 \overline{x_{1}} x_{1,2} \ldots x_{i-2, i-1} 100^{p}$. This implies $p=q-1$ and $x_{1}=\overline{y_{1}}, x_{2}=y_{2} \oplus x_{1}=$ $\overline{y_{1}} \oplus y_{2}, x_{3}=y_{3} \oplus x_{2}=\overline{y_{1}} \oplus y_{2} \oplus y_{3}, \ldots, x_{i-1}=\overline{y_{1}} \oplus y_{2} \oplus \cdots \oplus y_{j}$, and so accounts for two $b_{x, p}\left(x_{i}\right.$ can be 0 or 1).
In total we find that at most five $b_{x, p}$ can have a one in position z, as claimed.

3. A $(3,4)$ basis

While the $(3,5)$ basis may be preferred in some applications for its simplicity, we can get a better $(3,4)$ basis by combining results from finite fields with an inductive construction based on finding Hamiltonian paths in complete bipartite graphs.

We start with the empty base B_{1} for the null space $C_{1}=\{0\}$ of A_{1}, which is the 1 by 1 matrix (1). Next we explain how to extend B_{k} to a basis B_{k+1} for the null space C_{k+1}. A subset B_{k}^{\prime} of $2^{k}-1-k$ vectors in B_{k+1} will be derived from the $2^{k}-1-k$ vectors in B_{k}. Namely, for each vector $\{u, v, w\}$ in B_{k}, where $u, v, w \in\{0,1\}^{k}$, we put $\{0 u, 0 v, 0 w\}$ into B_{k}^{\prime}.

We form B_{k+1} as the union of B_{k}^{\prime} and a set B of $2^{k}-1$ more vectors, to get the required number of $2^{k}-1-k+2^{k}-1=2^{k+1}-1-(k+1)$ vectors. These vectors will have a support consisting of one position in $X=01\{0,1\}^{k-1}$ and one in each $Y_{i}=1 i\{0,1\}^{k-1}, i=0,1$. Note that, for such a vector $\left\{01 x, 10 y_{0}, 11 y_{1}\right\}$ to be in the nullspace, it must satisfy $x=y_{0} \oplus y_{1}$, so that it is determined by just the pair $\left(10 y_{0}, 11 y_{1}\right) \in Y_{0} \times Y_{1}$. Our problem can thus be seen as the selection of $2^{k}-1$ edges in the complete bipartite graph G on $Y_{0} \cup Y_{1}$. We will consider X to be a set of colors and say that an edge between $10 y_{0}$ and $11 y_{1}$ has color $01\left(y_{0} \oplus y_{1}\right) \in X$. Getting a low width basis corresponds to minimizing the maximum degree of any vertex and simultaneously minimizing the maximum number of edges of any color. Our construction is based on finding a Hamiltonian path in the graph G (see [9]). Such a path contains exactly the required number $\left|Y_{0} \cup Y_{1}\right|-1=2^{k}-1$ of edges $\left\{10 y_{0}, 11 y_{1}\right\}$, each corresponding to a basis vector $\left\{y_{0} \oplus y_{1}, y_{0}, y_{1}\right\}$.
Suppose we have found a set B of $2^{k}-1$ vectors corresponding to the edges in a Hamiltonian path. Since a path is acyclic, any non-empty subset of vectors in B induces a subgraph with at least one vertex of degree 1 . Such a vertex is a position which is in the support of the subset vector sum, and furthermore, will remain so under the addition of any vectors in B_{k}^{\prime}, which have no support in $Y_{0} \cup Y_{1}$. This proves that if B_{k} is a basis of C_{k}, then B_{k+1} is a basis of C_{k+1}, as desired.

Table 1

Position	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Color	1	2	1	2	3	0	2	0	0	0	0	0	0	0	0
Degree	0	1	1	2	1	1	2	2	2	1	2	2	2	2	1
Total	1	3	2	4	4	1	4	2	2	1	2	2	2	2	1

For $k=1,2,3$, we use the following Hamiltonian paths:

Table 1 gives the number of ones in each position of B_{4}, as the total number of basis vectors in which it appears as either a color $y_{0} \oplus y_{1}$ or as a vertex y_{i} (its degree in the Hamiltonian path).
Since the maximum degree in a Hamiltonian path is 2 , the width in positions $1\{0,1\}^{k-1}$ of any B_{k} will be at most 2 . For $k \leqslant 4$, the table shows that the width in positions $0\{0,1\}^{k-1} \backslash\left\{0^{k}\right\}$ of B_{k} is at most 4. In order to continue our induction beyond $k=4$, it suffices to find a Hamiltonian path in which each color $x \in X$ appears at most twice. Equivalently, we need to find a Hamiltonian cycle in which each $x \in X$ colors exactly two edges. The reason we make the first 3 induction steps explicit is that such a Hamiltonian cycle does not exist in the complete bipartite graph on $\{1000,1001,1010,1011\} \cup\{1100,1101,1110,1111\}$. Instead we compensated for the triple use of the color 0101 in the third path by limiting the degree of node 5 to 1 in the second path.

3.1. Hamiltonian cycles

We turn to algebra to find the paths with the required color restrictions.
Let $G F(2)[x]$ denote the class of binary polynomials, that is, with coefficients 0 or 1 , and addition and multiplication mod 2 . We borrow a result from finite field theory which says that for any k, there exists a primitive binary polynomial $f(x)$ of degree k. This means that $G F(2)[x] /(f)$, the class of residues modulo f, is a finite field whose multiplicative group is generated by x. In other words, the set $\left\{x^{0}, x^{1}, \ldots, x^{2^{2}-2}\right\}$ contains all $n=2^{k}-1$ non-zero elements.

We can bring $G F(2)[x] /(f)$ in one-one correspondence to each of the three position sets X, Y_{0} and Y_{1} in the inductive step from $k+1$ to $k+2$, where they each have size 2^{k}. A position $p=p_{1} \ldots p_{k+2}$ will correspond to the binary polynomial $\sum_{i=0}^{k-1} p_{k+2-i} x^{i}$, i.e. we ignore the two first bits that distinguish between X, Y_{0}, and Y_{1}. For example, with $k=4,101101 \in Y_{0}$ corresponds to $x^{3}+x^{2}+1$.

Let $(x+1)^{-1}$, the inverse of $x+1$, be equal to x^{r} for some $r, 0 \leqslant r<2^{k}-1$. Note that $x^{i} \mapsto \sum_{j<i} x^{j}=\left(x^{i}+1\right)(x+1)^{-1}=x^{r}\left(x^{i}+1\right)$ is a bijection from all the non-zero elements of $G F(2)[x] /(f)$ to all elements except $x^{r}(0+1)=x^{r}$. Also, $\sum_{j<n} x^{j}=x^{r}\left(x^{n}+1\right)=x^{r}(1+1)=0$.

These facts are the basis of the following cycle decomposition (using \sum^{i} as a shorthand for $\sum_{j=0}^{i} x^{j}$):

The left cycle uses every color $\sum^{i}, 0 \leqslant i<n$ exactly twice, once on the edge between \sum^{i-1} and x^{i}, and once on the edge between x^{i+1} and \sum^{i+1}. The right cycle uses the single color not expressible as \sum^{i}, namely x^{r}, exactly twice. A series of 5 edge swaps transform the two cycles into the following Hamiltonian cycle:

We will refer to the 2-cycle decomposition as 2-cycle and to the Hamiltonian cycle as 1 -cycle. The edge between $x^{0}=1$ and 0 in the 2 -cycle has color 1 , as does the edge between x^{r+1} and x^{r} in the 1 -cycle, since $x^{r+1}+x^{r}=x^{r}(x+1)=1$. The edge between \sum^{r-2} and x^{r-1} in the 2-cycle has color \sum^{r-1}, as does the edge between $x^{0}=1$ and \sum^{r+1} in the 1-cycle, since $\sum^{r+1}+1=\sum^{r-1}+x^{r+1}+x^{r}+1=\sum^{r-1}$. The edge between x^{r+1} and \sum^{r+1} in the 2 -cycle has color \sum^{r}, as does the edge between \sum^{r-2} and x^{n-1} in the 1-cycle, since $\sum^{r-2}+x^{n-1}=\sum^{r}+x^{r}+x^{r-1}+x^{-1}=$ $\sum^{r}+x^{-1}\left(x^{r+1}+x^{r}+1\right)=\sum^{r}$. The edge between \sum^{n-2} and x^{n-1} in the 2 -cycle has color $\sum^{n-1}=0$, as does the edge between 0 and 0 in the 1 -cycle. The edge between 0 and x^{r} in the 2 -cycle has color x^{r}, as does the edge between x^{r-1} and \sum^{n-2} in the 1-cycle, since $x^{r-1}+\sum^{n-2}=x^{r-1}+x^{-1}=x^{r}+x^{-1}\left(x^{r+1}+x^{r}+1\right)=x^{r}$.

It remains to show that this transformation does not suffer from r being too close to 0 or $n-1$. Indeed, $x^{r+1}+x^{r}+1=0$ implies that $r+1 \geqslant k \geqslant 3$, hence $r-1>1$
and we are safe on the left. Similarly, $x^{n-r}+x+1=\left(x^{r}\right)^{-1}+x+1=0$ implies that $n-r \geqslant k \geqslant 3$, hence $r+1 \leqslant n-2$, so we are safe on the right too.
Altogether, this shows
Theorem 1. For any k, C_{k} has a $(3,4)$-basis.
An n-dimensional hypercube of cliques is the cross product of an ($n-\lfloor\log r\rfloor$)dimensional hypercube and a complete graph with $2^{\lfloor\log r\rfloor}$ nodes. By Theorem 1, we have

Corollary 2. There is a one-to-one embedding of a hypercube of cliques in a samesized hypercube with dilation 3 and congestion 10.

Proof. See [6].

4. On $(3,3)$ bases

In this section we give a sufficient condition for the existence of a (3,3)-basis for C_{k}. Suppose some degree k primitive polynomial $h(x)$ is the gcd of a trinomial $f(x)=1+x^{j}+x^{m}$ and $x^{n}+1$. Then C_{k} has a (3,3)-basis, constructed as follows. Consider the $n \times n$ circulant matrix F generated by f; the i th column F_{i} of this matrix $(i=0, \ldots, n-1)$, is formed by the coefficients of $x^{i} f(x) \bmod x^{n}+1$. For example, with $n=7, h(x)=f(x)=1+x+x^{3}$ generates the matrix

$$
F=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

We use the fact that $h(x)$ is primitive to define a column reordering of A_{k}, called A_{k}^{\prime}, whose i th column corresponds to $x^{i} \bmod h(x)$. Now $A_{k}^{\prime} F_{i}$ corresponds to $x^{i} f(x) \bmod$ $x^{n}+1 \bmod h(x)=x^{i} f(x) \bmod h(x)=0$, since $h(x)$ divides both $f(x)$ and $x^{n}+1$. Thus, all columns of F are in the nullspace C_{k}^{\prime} of A_{k}^{\prime}.

From a theorem of König and Rados [7], it follows that the rank of F is $n-$ $\operatorname{deg}\left(\operatorname{gcd}\left(f(x), x^{n}+1\right)\right)=n-\operatorname{deg}(h(x))=n-k$. Now if some column i is linearly dependent on columns $0, \ldots, i-1$, then, since F is circulant, column $i+1$ is linearly dependent on columns $1, \ldots, i$ and therefore also on columns $0, \ldots, i-1$. Similarly, columns $i+2, \ldots, n-1$ would be linearly dependent on the first i columns. Thus, the

Table 2
Trinomials $f(x)=x^{m}+x^{j}+1$ that imply the existence of (3,3)-bases

k	m	j	k	m	j	k	m	j
8	13	1	67	76	29	120	174	31
12	19	6	69	75	23	122	128	15
13	16	3	70	82	15	125	128	3
14	17	2	72	93	7	126	141	70
16	29	6	74	80	39	128	131	50
19	22	3	75	77	4	131	138	61
24	55	6	76	88	43	133	136	43
26	29	12	77	80	9	136	139	30
27	29	1	78	89	2	138	183	23
30	41	12	80	83	23	139	142	3
32	59	29	82	85	19	141	148	71
34	37	6	83	85	14	143	147	1
37	43	4	85	93	28	144	159	14
38	42	1	86	91	22	146	149	6
40	43	3	88	154	37	147	149	19
42	51	7	90	111	28	149	151	2
43	53	2	91	99	13	152	155	38
44	52	15	92	103	39	154	157	22
45	59	12	96	123	1	155	158	75
46	58	9	99	101	13	156	188	59
48	70	27	101	103	2	157	164	25
50	54	7	102	115	3	158	167	54
51	53	4	104	109	9	160	177	19
53	61	28	107	109	8	162	166	27
54	93	23	109	118	21	163	171	70
56	67	31	110	117	19	164	189	68
59	61	26	112	133	1	165	173	42
61	66	17	114	118	7	166	186	53
62	77	30	115	125	6	168	179	38
64	74	21	116	136	1	171	173	10
66	83	20	117	123	31			

first $n-k$ columns of F must actually be linearly independent, else the rank of F would be less than $n-k$. This shows that F_{0}, \ldots, F_{n-k-1} forms a basis of C_{k}^{\prime}, and, by an appropriate permutation of dimensions, a basis of C_{k}.

The existence of degree k primitive polynomials $h(x)$ that are the gcd of a trinomial $f(x)=1+x^{m}+x^{j}$ and $x^{n}+1$, is demonstrated in Table 2 for $k \leqslant 171$. Only those k for which there is no primitive trinomial of degree k are listed; see Stahnke [11] for a table of primitive binary polynomials up to degree 171. Therefore, we pose the following:

Conjecture 1. There always exists a trinomial $f(x)$ such that $\operatorname{gcd}\left(f(x), x^{2^{k}-1}+1\right)$ is a primitive polynomial of degree k over $G F(2)$, for any k. Consequently, any C_{k} has a (3,3)-basis.

The subsequent effort by [4] shows the conjecture to hold through all $k \leqslant 500$.

Acknowledgements

The authors would like to thank Dan Pritikin and Gary Mullen for the careful reading of the manuscript and helpful suggestions.

References

[1] W. Aiello and T. Leighton, Coding theory, hypercube embeddings, and fault tolerance, in: Proc. 3 rd Ann. ACM Symp. on Parallel Alyorithms and Architectures (1991) 125-136; IEEE Trans. Computer, to appear.
[2] E. Assmus, Jr and H. Mattson, On tactical configurations and error-correcting-codes, J. Combin. Theory 2 (1967) 243-257.
[3] L. Babai, H. Oral and K. Phelps, Eulerian self-dual codes, SIA M J. Discrete Math. 7 (1994) 325-330.
[4] I.F. Blake, S. Gao and R.J. Lambert, Construction and distribution problem for irreducible trinomials over finite fields, in: Proc. Holloway Conf. on Finite Fields (Oxford Univ. Press, Oxford, 1995), to appear.
[5] R.H. Hamming, Error detecting and error correcting codes, Bell S.ystem Tech. Journal 29 (1950) 147160.
[6] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays • Trees • Hypercubes, Ch. 3 (Morgan Kaufmann, San Mateo, CA, 1992) 430.
[7] R. Lidl and H. Niederreiter, Finite Fields (Addison-Wesley, CA, 1983).
[8] V. Pless, Introduction to the Theory of Error-Correcting-Codes (Wiley, New York, 1989).
[9] D. Pritikin, Graph embeddings from Hamming bases, DIMACS Workshops on Interconnection Networks and Mapping and Scheduling Parallel Computations, February 1994.
[10] A. Reddy, Parallel input/output architectures for multiprocessors, Ph.D. Dissertation. Dept. of Electronical and Computer Engineering, Univ. of Illinois, Urbana, 1990.
[11] W. Stahnke, Primitive binary polynomials, Math. Comput. 124 (1973) 977-980.
[12] L. Zhang, A new bound for the width of Hamming codes, in: Proc: 6th Internat. Conf. on Computiny and Information, 1994, to appear.

[^0]: ${ }^{1}$ This work was supported in part by an NSERC International Fellowship and ITRC.

 * Correspondence address: CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. E-mail: tromp@cwi.nl.

