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Abstract 

We present constructions of bases for a Hamming code having small ll'idth and height. i.e. 
number of ls in each row and column in the corresponding matrix. Apart from being com
binatorially interesting in their own right, these bases also lead to improved embeddings of a 
hypercube of cliques into a same-sized hypercube. 

1. Introduction 

Let n = 2k - I, k ~ 2, and let Ak be the k by /1 matrix over GF(2) whose ith column, 
for I ~ i ~ n, is the k-bit binary representation of i. For example, 

0 1 
0 0 

0 

We denote by Ck the nullspace of Ak, 1.e. the set of n-vectors x with Ak · x = O". We 
are interested in finding a basis of the nullspace, Ck. of Ab that has small heiyht and 
width. The height of a set of vectors is defined as the maximum number of ones in 
any vector, while width is defined as the maximum over all /1 positions, of the number 
of vectors in the set having a l in that position. A basis of height h and width w is 
called a (h,w)-basis. The pair (h,w) is called the weight. 

Low weight bases for the nullspace Ck have applications in coding theory [8], combi
natorial designs [2], network embeddings [ 1, 6], and distributing resources in hypercube 
computers [I O]. In fact, Ck is a one-error-correcting code which was first discovered 
by Hamming [5] for words of length 2k - k - I. More precisely, Hamming proved that 
the words of length 2k - k - 1 can be encoded as words of length 2k - 1 so that each 
word has Hamming distance at most I to exactly one codeword. 

1 This work was supported in part by an NSERC lnternational Fellowship and ITRC. 
*Correspondence address: CW!, P.O. Box 94079, I 090 GB Amsterdam, The Netherlands. E-mail: 
tromp@cwi.nl. 

0304-3975/97/$17.00 © 1997 ----Elsevier Science B.V. All rights reserved 
PI! S0304-3975(96)00278-2 



338 J. Tromp et al. I Thcoffrirnl Computer Science 181 ( 1997) 337-345 

Recently, bases for Ck were shown to be useful for hypercube embeddings. An 
embedding of a network G into a network H consists of an assignment of nodes of G 
to nodes of H and a mapping from edges of G onto paths in H. Desirable properties 
of an embedding are small load (maximum number of nodes of G assigned to the 
same node in H ), low dilation (maximum length of a path that an edge is mapped 
to) and low congestion (maximum number of paths using an edge). In [ 1 ], Aiello 
and Leighton discovered that for any k > 0, a ( h, w )-basis for Ck induces a one-to
one embedding of a hypercube of cliques H2, -k '1;;· Kk in a same-sized hypercube H21, 

with dilation h and congestion 2w + 2. Moreover, this embedding is useful in finding 
etti.cient embeddings of (dynamic) binary trees in the hypercube and reconfigurations 

of the hypercube around faults. 
Although the existence of a height 3 basis for Ck is well known, the existence 

question for a (3, 3 )-basis is open ([6, p. 430]). Towards this problem, only weak 
results were obtained in [l, 6, 9, 12]. In this paper, we present two classes of bases 
with small weight, which improve the existing bounds on weight. In Section 2, we 
present a (3,5)-basis for ck that has a very simple structure. 

There are many constructions of codes from the incidence matrices of graphs, de
signs, etc. (for example, see [3, 9]). Using the approach observed in [9], we construct 
a class of (3,4 )-bases in Section 3. As a consequence, we obtain a better one-to-one 
embedding of a hypercube of cliques into a same-sized hypercube, with dilation 3 and 
congestion I 0. 

Finally, we propose a construction of (3, 3 )-bases. In [ 1 ], Aiello and Leighton ob
served that a primitive trinomial of degree k induces a (3, 3 )-basis for C1" But, primitive 
trinomials do not always exist. This observation is generalized in Section 4. We show 
that the existence of a trinomial f(x) such that gcd(f (x ),x2' - 1 + l) is primitive of 
degree k implies a (3, 3 )-basis for Ck. We present results of computations supporting 
our conjecture that such trinomials always exist. 

2. A simple construction of a (3, 5)-basis 

Note that the rank of Ak equals k. It follows that Ck has rank n - k, and that a basis 
for it consists of n - k linearly independent vectors. We identify a boolean n-vector 
with its support, i.e. the set of positions (as non-zero boolean k-vectors) where it has 
a I. For example, the support of (0100101) is {010, 101, 111 }. The product Ak. { u, v, w} 
is easily seen to equal the sum over GF(2) (bitwise exclusive-or) of u, v, and w. E.g. 
A3 · {010, 101, 111} = 010 E6 101 ffl 111 = 03. To better visualize the exclusive-or 
operation, we sometimes write the vectors in the support below each other with the 
bits aligned: 
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For a bit b, we denote by b its complement h I. For a binary string vector x, lxl 
denotes the length of x. 

A basis of Ck is constructed as follows. For x E {O. l }1• and i + p + 2-:::;,k, Jet h"" 

be the vector 

{ o'_,_,, 2 X1 X2 Xi-1 X; l 
O' } 

ok-i-p-2 0 X1 X;-2 X; I OP. ' 

ok-i-p-2 
X1 XJ.2 Xi-2.i-··1 0 OP 

where we write x1,1 for x1 ·=~· xr For definiteness, we have for the cases i = 0, I: 

{ 0,_,,_, 
O" } {°'"' 

X1 O"} h - ok-p-2 0 OP, , l - ok-{'-3 0 X1 OP. . "·" - Jx,,p -

ok- p-2 0 OP ok-p-3 0 QI' 

Note that A" · hx.p = O". so that any hx.p is in Ck. 

Our proposed basis simply consists of the set B of all hx.p· We must check that 

these vectors are indeed independent and that we have the right number of them. 

To see the latter, partition B into k - l sets B 1,, and each BP into k - p - l sets Bp.i· 

containing all hx.1, with [x[ = i. Clearly, different pairs (x, p) define different vectors. 

Thus, the size of B is 

k-2 k-·2-p k-2 

I:: I:: i= I::(2"- 1-"-I)=2k-2-ck-l)=n-k. 
pc~ i=O p=O 

Thus, to prove that B is a basis, it remains to show that its elements are linearly 

independent. 

2. 1. lndependenff 

Consider any nonernpty subset C of B. We prove independence by showing that the 

sum of all vectors in C is not o". 
Let p be minimal such that C n Bp i= f/J and for this p, let i be maximal such 

that CnBp,i of= 0, say br.p E CnBp,i· By definition, hx.p has ok-i-p-· 2 1.dOP in its 

support. For any other hx'.p' to have ok-i- p- 2 1x I QP in its support, would require either 

p' = p - I or [x' [ = [x[ + 1, so by minimality of p and maximality of i, such a hx'.p' 

cannot be in C. Since hx.p is thus the only vector in C with ok-i- P- 2 1.d OP in its 

support, the sum of all vectors in C also has ok-i- p- 2 1x I OP in its support and hence 

is not o". 

2.2. Height and width 

The height of B is obviously 3, since each vector hx,p has exactly 3 one bits. We 

claim that the width of B is at most 5. To see this, consider any position z. If z is of 
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the fonn Qk-q-l jQI/ then it appears only in the support of b,,q, b1.q-I (if q > 0), and 
b1,q· Hence, the width at such positions is no more than 3. 

Otherwise, : is of the form ok-j-q-21 YI )'2 ... YJ 1 QI/. Consider the bx,p that have this 
: in their support We necessarily have one of the following three cases. 
L : = lxlO". This implies p = q and x = y, and so accounts for one bx,p· 
2. z = Jx1 ... x;_ 1XjJOP. This implies p = q, X1:;-2 = Yl:J-1 and Xi = YJ, and so 

accounts for two hx.p (x;_ 1 can be 0 or I). 
3. : = Jx1xu ... x;- 2,;_ 1 lOOP. This implies p = q - I and x1 = Y1.x2 = Y2 x1 = 

y 1 y2.x3 = y3 ·:Bx2 = y 1 ~B y2 y3,. .. ,X;-1 =Yi ffi Y2 EB · · · "9 y1, and so accounts 
for two bx.p (x; can be 0 or I ). 

In total we find that at most five hx.p can have a one in position z, as claimed. 

3. A (3, 4) basis 

While the (3, 5) basis may be preferred in some applications for its simplicity, we 
can get a better (3. 4) basis by combining results from finite fields with an inductive 
construction based on finding Hamiltonian paths in complete bipartite graphs. 

We start with the empty base B 1 for the null space C1 = { O} of A 1. which is the 
I by I matrix (I). Next we explain how to extend Bk to a basis Bk+ 1 for the null space 
Ck+ 1. A subset B~ of 2k - I - k vectors in Bk+ I will be derived from the 2k -- I - k 
vectors in Bk. Namely, for each vector { u, v, w} in Bb where u, v, w E { 0, I }k, we put 
{Ou. Or. Ow} into B~. 

We form Bk+ 1 as the union of B~ and a set B of 2k - 1 more vectors, to get the 
required number of 2k - 1 - k + 2k - 1 = 2H1 - 1 - (k + 1) vectors. These vectors 
will have a support consisting of one position in X = Ol{O. I}"- 1 and one in each 
Y; = li{O,I}"- 1. i = 0,1. Note that, for such a vector {Olx,10y0 ,llyi} to be in 
the nullspace, it must satisfy x = y0 C:Ll y 1, so that it is determined by just the pair 
(10y0,lly1) E Y0 x Y1. Our problem can thus be seen as the selection of 2" - I 
edges in the complete bipartite graph G on Yo U Y1. We will consider X to be a set 
of colors and say that an edge between I 0 Yo and 11 y 1 has col or 0 I (y0 y 1) E X. 
Getting a low width basis corresponds to minimizing the maximum degree of any 
vertex and simultaneously minimizing the maximum number of edges of any color. 
Our construction is based on finding a Hamiltonian path in the graph G (see [9] ). 
Such a path contains exactly the required number I Y0 U Y1 I - 1 = 2k - I of edges 
{I 0 yo, 11 YI}, each corresponding to a basis vector {y0 w y 1, y0 , y 1}. 

Suppose we have found a set B of 2k - 1 vectors corresponding to the edges in a 
Hamiltonian path. Since a path is acyclic, any non-empty subset of vectors in B induces 
a subgraph with at least one vertex of degree I. Such a vertex is a position which 
is in the support of the subset vector sum, and furthermore, will remain so under the 
addition of any vectors in B~, which have no support in Yo U Y1• This proves that if 
Bk is a basis of Ck, then Bk+l is a basis of Ck+i. as desired. 
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Table I 

Position OOO I 0010 0011 0100 0101 0110 0111 !OOO 1001 1010 1011 II 00 1101 1110 I 111 

Color 2 2 0 2 0 0 0 0 0 0 0 0 
Degree 0 l 2 2 2 2 2 2 2 2 
Total 3 2 4 4 4 2 2 2 2 2 2 

Fork= 1,2,3, we use the following Hamiltonian paths: 

Table 1 gives the number of ones in each position of B4, as the total number of 
basis vectors in which it appears as either a color y0 y1 or as a vertex y1 (its degree 
in the Hamiltonian path). 

Since the maximum degree in a Hamiltonian path is 2, the width in positions 
i{O, 1y-1 of any Bk will be at most 2. For k~4, the table shows that the width 
in positions O{O, l}k-I \{Ok} of Bk is at most 4. In order to continue our induction 
beyond k = 4, it suffices to find a Hamiltonian path in which each color x E X ap
pears at most twice. Equivalently, we need to find a Hamiltonian cycle in which each 
x E X colors exactly two edges. The reason we make the first 3 induction steps ex
plicit is that such a Hamiltonian cycle does not exist in the complete bipartite graph 
on { 1 OOO, 1001, 1010, 1011} U { l l 00, 1101, I 110, 1 111}. Instead we compensated for the 
triple use of the col or 0101 in the third path by limiting the degree of node 5 to 1 in 
the second path. 

3.1. Hamiltonian cycles 

We turn to algebra to find the paths with the required color restrictions. 
Let GF(2)[x] denote the class of binary polynomials, that is, with coefficients 0 

or 1, and addition and multiplication mod2. We borrow a result from finite field 
theory which says that for any k, there exists a primitive binary polynomial f(x) of 
degree k. This means that GF(2 )(x]/(f ), the class of residues modulo f, is a finite field 
whose multiplicative group is generated by x. In other words, the set {x0,x 1,. .. ,xi-2 } 

contains all n = 2k - 1 non-zero elements. 
We can bring GF(2)[x]/(f) in one-one correspondence to each of the three position 

sets X, Yo and Y1 in the inductive step from k + I to k + 2, where they each have size 2k. 
A position p = p 1 ••• Pk+2 will correspond to the binary polynomial 2=;:01 Pk+2- 1xi, 
i.e. we ignore the two first bits that distinguish between X, Yo, and Y1. For example, 
with k = 4, 101101 E Yo corresponds to x3 + x2 + I. 
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Let (x + 1 i- 1, the inverse of x + I, be equal to xr for some r, 0:::; r < 2k - I. 
Note that x1 r--;. Lj < ;xi = (x1 + I )(x + I )- 1 = x'(x1 + I) is a bijection from all 
the non-zero elements of GF(2 )[x ]/(f) to all elements except xr (0 + 1) = xr. Also, 
Lj < ll x 1 = xr(xll + 1) = xr( I + 1) = 0. 

These facts are the basis of the following cycle decomposition (using L 1 as a 
shorthand for L~=O xj ): 

xr 1 xr .rr+ I 0 

y" 0 Y, 
tl I r-· 2 l'-1 ,. r+J 11 -3 n·-2 

2.: 2:: z: 2.: 2.: 2.: 2.: z: 0 x,. 

The left cycle uses every col or 2:1, 0:::; i < n exactly twice, once on the edge between 
Li-I and xi, and once on the edge between xi+I and Li+l. The right cycle uses the 
single color not expressible as Li, namely x', exactly twice. A series of 5 edge swaps 
transform the two cycles into the following Hamiltonian cycle: 

Y,, 

We will refer to the 2-cycle decomposition as 2-cycle and to the Hamiltonian cycle 
as I-cycle. The edge between x0 = 1 and 0 in the 2-cycle has color l, as does the 
edge between xr+ 1 and x' in the I-cycle, since x1+ 1 + x,. = x,.(x + I) = l. The edge 
between Lr-·1 and xr- 1 in the 2-cycle has color Lr- I, as does the edge between 
x0 =I and Lr+\ in the I-cycle, since Lr+I + 1 = Lr-I +xr+\ +x' + 1 = L'- 1. 

The edge between x' + 1 and Lr+ 1 in the 2-cyclc has col or L,., as does the edge 
between Lr-- 2 and xn- I in the I-cycle, since Lr-2 + xn- l = Lr + xr + xr- I + x- 1 = 
2:,,. +x- 1(xr+l +xr + 1) = L,.· The edge between Ln-l and xn-I in the 2-cycle has 
color ;:,n- I = 0, as does the edge between 0 and 0 in the I-cycle. The edge between 
0 and x' in the 2-cycle has color x,., as does the edge between xr- I and Ln-2 in the 
I-cycle, since xr- I + Ln-2 = xr--l + x- 1 = xr + x- 1(xr+ 1 + x,. + 1) = x'. 

It remains to show that this transformation does not suffer from r being too close 
to 0 or n - I. Indeed, x'+ 1 + x,. + 1 = 0 implies that r + 1 ~ k ~ 3, hence r - 1 > I 
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and we are safe on the left. Similarly, xii-/'+ x + I = (x' r I + x + I = 0 implies that 

n - r ?:-k ?::3, hence r + 1 ~ n - 2, so we are safe on the right too. 

Altogether, this shows 

Theorem 1. For any k, C" has a (3, 4 )-basis. 

An n-dimensional hypercube of cliques is the cross product of an (11 - llogrj )

dimensional hypercube and a complete graph with 2 llog rJ nodes. By Theorem I, we 

have 

Corollary 2. There is a one-to-one embeddiny of a hypercube of' clilJlU'S in a same

sized hypercube with dilation 3 and con9estio11 10. 

Proof. See [6]. D 

4. On (3, 3) bases 

In this section we give a sufficient condition for the existence of a (3, 3 )-basis 

for Ck. Suppose some degree k primitive polynomial h(x) is the gcd of a trinomial 

f(x) = l + xi + x"' and x" + I. Then Ck has a (3, 3 )-basis, constructed as follows. 

Consider the n x n circulant matrix F generated by f; the ith column r; of this matrix 

(i = 0, ... , n - I ), is formed by the coefficients of xif(x) mod x 11 + 1. For example, 

with n = 7, h(x) = f (x) = I + x + x3 generates the matrix 

0 0 0 0 

0 0 0 0 

0 0 0 0 

F = 0 

0 0 

0 0 0 

0 0 0 

0 0 

0 

0 0 0 0 

We use the fact that h(x) is primitive to define a column reordering of Ak, called A~, 

whose ith column corresponds to x' mod h(x ). Now A~F; corresponds to x'f(x) mod 

x 11 + 1 mod h(x) = xif (x) mod h(x) = 0, since h(x) divides both f(x) and x11 + l. Thus, 

all columns of F are in the nullspace C! of A~. 

From a theorem of Konig and Rados [7], it follows that the rank of F is n -

deg(gcd(f(x),x11 + I))= n - deg(h(x)) = n - k. Now if some column i is linearly 

dependent on columns 0, ... , i - 1, then, since F is circulant, column i + 1 is linearly 

dependent on columns I, ... , i and therefore also on columns 0, ... , i - 1. Similarly, 

columns i + 2, ... , n - 1 would be linearly dependent on the first i columns. Thus, the 
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Table 2 
Trinomials /(.r) = x111 + x' + I that imply the existence of (3, 3 )-bases 

k 111 k 111 j k m j 

8 13 67 76 29 120 174 31 
12 19 6 69 75 23 122 128 15 
13 16 3 70 82 15 125 128 3 
14 17 2 72 93 7 126 141 70 
16 29 6 74 80 39 128 131 50 
19 22 3 75 77 4 131 138 61 
24 55 6 76 88 43 133 136 43 
26 29 12 77 80 9 136 139 30 
27 29 78 89 2 138 183 23 
30 41 12 80 83 23 139 142 3 
32 59 29 82 85 19 141 148 71 
34 37 6 83 85 14 143 147 
37 43 4 85 93 28 144 159 14 
38 42 I 86 91 22 146 149 6 
40 43 3 88 154 37 147 149 19 
42 51 7 90 111 28 149 151 2 
43 53 2 91 99 13 152 155 38 
44 52 15 92 103 39 154 157 22 
45 59 12 96 123 1 155 158 75 
46 58 9 99 101 13 156 188 59 
48 70 27 IOI 103 2 157 164 25 
50 54 7 102 115 3 158 167 54 
51 53 4 104 109 9 160 177 19 
53 61 28 107 109 8 162 166 27 
54 93 23 109 118 21 163 171 70 
56 67 31 110 117 19 164 189 68 
59 61 26 112 133 I 165 173 42 
61 66 17 114 118 7 166 186 53 
62 77 30 115 125 6 168 179 38 
64 74 21 116 136 I 171 173 10 
66 83 20 117 123 31 

first n - k columns of F must actually be linearly independent, else the rank of F 
would be less than n - k. This shows that Fa, ... ,Fn-k- I fom1s a basis of q, and, by 
an appropriate permutation of dimensions, a basis of Ck. 

The existence of degree k primitive polynomials h(x) that are the gcd of a trinomial 
f(x) = I + x"' + xi and x" + 1, is demonstrated in Table 2 for k::::; 171. Only those 
k for which there is no primitive trinomial of degree k are listed; see Stahnke [ 11 J 
for a table of primitive binary polynomials up to degree 171. Therefore, we pose the 
following: 

Conjecture 1. There always exists a trinomial f (x) such that gcd(f (x ), xz' - I + I) is 
a primitive polynomial of degree k over GF(2), for any k. Consequently, any Ck has 
a (3, 3 )-hasis. 

The subsequent effort by [ 4] shows the conjecture to hold through all k::::; 500. 
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