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Abstract

We present constructions of bases for a Hamming code having small width and height, i.e.
number of ls in each row and column in the corresponding matrix. Apart from being com-
binatorially interesting in their own right, these bases also lead to improved embeddings of a
hypercube of cliques into a same-sized hypercube.

1. Introduction

Let n =2F—1, k=2, and let 4; be the k by n matrix over GF(2) whose ith column,
for 1 <i<n, is the k-bit binary representation of i. For example,

1 01 01 01
A3=10 11 0 0 1 1
0001111

We denote by C; the nullspace of 4, i.e. the set of n-vectors x with 4; - x = 0F. We
are interested in finding a basis of the nullspace, Cj, of A, that has small height and
width. The height of a set of vectors is defined as the maximum number of ones in
any vector, while width is defined as the maximum over all » positions, of the number
of vectors in the set having a 1 in that position. A basis of height 4 and width w is
called a (h,w)-basis. The pair (h,w) is called the weight.

Low weight bases for the nullspace C; have applications in coding theory [8], combi-
natorial designs [2], network embeddings [1, 6], and distributing resources in hypercube
computers [10]. In fact, Cy is a one-error-correcting code which was first discovered
by Hamming [5] for words of length 2% — k — 1. More precisely, Hamming proved that
the words of length 2 — 4 — 1 can be encoded as words of length 2¥ — 1 so that each
word has Hamming distance at most 1 to exactly one codeword.
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Recently, bases for C; were shown to be useful for hypercube embeddings. An
embedding of a network G into a network H consists of an assignment of nodes of G
to nodes of A and a mapping from edges of G onto paths in /. Desirable properties
of an embedding are small load (maximum number of nodes of G assigned to the
same node in H), low dilation (maximum length of a path that an edge is mapped
to) and low congestion (maximum number of paths using an edge). In [1], Aiello
and Leighton discovered that for any & > 0, a (h, w)-basis for C; induces a one-to-
one embedding of a hypercube of cliques Hyx_; ® K in a same-sized hypercube Hy
with dilation 4 and congestion 2w + 2. Moreover, this embedding is useful in finding
efficient embeddings of (dynamic) binary trees in the hypercube and reconfigurations
of the hypercube around faults.

Although the existence of a height 3 basis for C; is well known, the existence
question for a (3,3)-basis is open ([6, p. 430]). Towards this problem, only weak
results were obtained in [1,6,9,12]. In this paper, we present two classes of bases
with small weight, which improve the existing bounds on weight. In Section 2, we
present a (3,5)-basis for Cj that has a very simple structure.

There are many constructions of codes from the incidence matrices of graphs, de-
signs, etc. (for example, see [3,9]). Using the approach observed in [9], we construct
a class of (3.4)-bases in Section 3. As a consequence, we obtain a better one-to-one
embedding of a hypercube of cliques into a same-sized hypercube, with dilation 3 and
congestion 10.

Finally, we propose a construction of (3,3)-bases. In [1], Aiello and Leighton ob-
served that a primitive trinomial of degree & induces a (3, 3)-basis for C;. But, primitive
trinomials do not always exist. This observation is generalized in Section 4. We show
that the existence of a trinomial f(x) such that ged( f (x),)czA‘l + 1) is primitive of
degree k implies a (3,3)-basis for C;. We present results of computations supporting
our conjecture that such trinomials always exist.

2. A simple construction of a (3, 5)-basis

Note that the rank of 4; equals k. It follows that C has rank n — k, and that a basis
for it consists of n — k linearly independent vectors. We identify a boolean n-vector
with its support, i.e. the set of positions (as non-zero boolean k-vectors) where it has
a 1. For example, the support of (0100101) is {010,101, 111}. The product 4y - {u, v, w}
is easily seen to equal the sum over GF(2) (bitwise exclusive-or) of u, v, and w. E.g.
A3 - {010,101,111} = 010 & 101 & 111 = 0°. To better visualize the exclusive-or
operation, we sometimes write the vectors in the support below each other with the
bits aligned:

s

0
1
1

10,
0 1
11
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For a bit b, we denote by b its complement b & 1. For a binary string/vector x. x|
denotes the length of x. :

A basis of Cy is constructed as follows. For x € {0, 1}, and i + p + 2<k, let by,
be the vector

TSN

0/‘ =P X X2 ... Xi—| xp 1 07,
k—i—p-—2 —

(I 0 1 X} Xi—2 X 1 Op, 5
k—i—p—2 —_

of—i=p 1 X1 X2 - Xi—-2i-1 1 0 Op

where we write x; ; for x; © x;. For definiteness, we have for the cases i = 0, 1:

Ok_l’_z 1 1 0.’” Ok‘p—-S 1 X1 1 0/),
bup=13 07772 0 1 07, 5, byp,=14 0777 0 ¥ 1 07
e BN B IO

Note that 4y - b, , = 0%, so that any by, is in C.

Our proposed basis simply consists of the set B of all b, ,. We must check that
these vectors are indeed independent and that we have the right number of them.

To see the latter, partition B into k —1 sets B, and each B, into k — p—1 sets By
containing all b, , with |x| = i. Clearly, different pairs (x, p) define different vectors.
Thus, the size of B is

k—2—

k

|
o

P k—2
=S =202k =n—k

0 =0 p=0

)

i

~

Thus, to prove that B is a basis, it remains to show that its elements are linearly
independent.

2.1. Independence

Consider any nonempty subset C of B. We prove independence by showing that the
sum of all vectors in C is not 0%.

Let p be minimal such that C N B, # @ and for this p, let / be maximal such
that C N B, ; # 0, say by, € C N B,;. By definition, by, has 0F—i=P=21x10” in its
support. For any other by, to have 0¥~/=7~21x107 in its support, would require either
p' = p—1or|x'| = |x| + 1, so by minimality of p and maximality of i, such a by
cannot be in C. Since by, is thus the only vector in C with 0F=i=P=21x10% in its
support, the sum of all vectors in C also has 0¥=/~7~?1x10” in its support and hence
is not 0,

2.2. Height and width

The height of B is obviously 3, since each vector b, has exactly 3 one bits. We
claim that the width of B is at most 5. To see this, consider any position z. If z is of
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the form 0F=4='10¢ then it appears only in the support of b, 4, b, 4—1 (if ¢ > 0), and
by 4 Hence, the width at such positions is no more than 3.

Otherwise, = is of the form 0¥=/=4=21y, y,... y;10¢. Consider the b, , that have this
z in their support. We necessarily have one of the following three cases.
I. z = 1x10”. This implies p = g and x = y, and so accounts for one by .
2.z = lx,...x;_2%10P. This implies p = ¢, X;—2 = yr;j—1 and x; = Y, and so
accounts for two b, (x;—; can be 0 or I).
z = 1¥7x)2...%_2,-1 1002, This implies p = ¢~ 1 and x; = V,x2 = 2 x| =
BV =nEn =8 mdy,. X1 = NDdnd Dy, and so accounts
for two b, (x; can be 0 or 1).
In total we find that at most five b, , can have a one in position z, as claimed.

(98]

3. A (3,4) basis

While the (3,5) basis may be preferred in some applications for its simplicity, we
can get a better (3,4) basis by combining results from finite fields with an inductive
construction based on finding Hamiltonian paths in complete bipartite graphs.

We start with the empty base B for the null space C; = {0} of 4;, which is the
1 by 1 matrix (1). Next we explain how to extend By to a basis By, for the null space
Ci+1. A subset B; of 2k — 1 — k vectors in By.1 will be derived from the 2 — 1 — k
vectors in By. Namely, for each vector {u,v,w} in By, where u,v,w € {0, 1}¥, we put
{Ou, 00, 0w} into Bj.

We form B; ., as the union of B;( and a set B of 2 — | more vectors, to get the
required number of 28 — 1 —k 4+ 2f — 1 = 2! — | — (k 4+ 1) vectors. These vectors
will have a support consisting of one position in X = 01{0,1}¥~' and one in each
Y; = 1i{0,1}¥=!, i = 0,1. Note that, for such a vector {0lx,10yy, 11y} to be in
the nullspace, it must satisfy x = yo @ y|, so that it is determined by just the pair
(10p0,11y1) € Yo x Y. Our problem can thus be seen as the selection of 2 — 1
edges in the complete bipartite graph G on Yy U Y,. We will consider X to be a set
of colors and say that an edge between 10y, and 11y, has color 0l(yy b y;) € X.
Getting a low width basis corresponds to minimizing the maximum degree of any
vertex and simultaneously minimizing the maximum number of edges of any color.
Our construction is based on finding a Hamiltonian path in the graph G (see [9]).
Such a path contains exactly the required number |Yo U Y| — 1 = 2F — | of edges
{10y0, 111}, each corresponding to a basis vector {yo @ yi, yo, v }.

Suppose we have found a set B of 2% — 1 vectors corresponding to the edges in a
Hamiltonian path. Since a path is acyclic, any non-empty subset of vectors in B induces
a subgraph with at least one vertex of degree 1. Such a vertex is a position which
is in the support of the subset vector sum, and furthermore, will remain so under the
addition of any vectors in B;, which have no support in Yy U ¥;. This proves that if
By is a basis of Cy, then By, is a basis of Cyyy, as desired.
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Table 1

Position 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Color 1 2 1 2 3 0 2 0 0 0 0 0 0 0 0
Degree 0 1 1 2 1 1 2 2 2 1 2 2 2 2 1
Total 1 3 2 4 4 1 4 2 2 1 2 2 2 2 1

For &k = 1,2,3, we use the following Hamiltonian paths:

5 5% G

Table | gives the number of ones in each position of By, as the total number of
basis vectors in which it appears as either a color yo & v or as a vertex y; (its degree
in the Hamiltonian path).

Since the maximum degree in a Hamiltonian path is 2, the width in positions
1{0,1}*~1 of any B, will be at most 2. For k<4, the table shows that the width
in positions 0{0, 1}¥=!\ {0*} of By is at most 4. In order to continue our induction
beyond k& = 4, it suffices to find a Hamiltonian path in which each color x € X ap-
pears at most twice. Equivalently, we need to find a Hamiltonian cycle in which each
x € X colors exactly two edges. The reason we make the first 3 induction steps ex-
plicit is that such a Hamiltonian cycle does not exist in the complete bipartite graph
on {1000, 1001,1010, 1011}U{1100,1101,1110,1111}. Instead we compensated for the
triple use of the color 0101 in the third path by limiting the degree of node 5 to 1 in
the second path.

3.1. Hamiltonian cycles

We turn to algebra to find the paths with the required color restrictions.

Let GF(2)[x] denote the class of binary polynomials, that is, with coefficients 0
or 1, and addition and multiplication mod2. We borrow a result from finite field
theory which says that for any k, there exists a primitive binary polynomial f(x) of
degree k. This means that GF(2)[x]/(f), the class of residues modulo f, is a finite field
whose multiplicative group is generated by x. In other words, the set {(x.x!, . 2)
contains all » = 2¥ — 1 non-zero elements.

We can bring GF(2)[x]/(f) in one-one correspondence to each of the three position
sets X, Y, and Y, in the inductive step from k+1 to k+2, where they each have size 2k,
A position p = pi... prya will correspond to the binary polynomial Zf:ol DPra—iX’,
i.e. we ignore the two first bits that distinguish between X, Yo, and Y). For example,
with k£ =4, 101101 € Y, corresponds to x> + x? + 1.
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Let (x + 1)7', the inverse of x + I, be equal to x” for some r, 0<r <2t — |,
Note that x' — 3 _,x/ = (¢ + 1)(x + 1)7" = x"(x + 1) is a bijection from all
the non-zero elements of GF(2)[x]/(f) to all elements except x"(0 + 1) = x". Also,
S =X =21+ 1) =0

These facts are the basis of the following cycle decomposition (using Zi as a
shorthand for _,x/):

0 1 r-2 r—1 r+l n=3 « n-2

D> D> s s 0 X

The left cycle uses every color Zi, 0<i < n exactly twice, once on the edge between
527" and x', and once on the edge between x'*! and S™*! The right cycle uses the
single color not expressible as Zi, namely x”, exactly twice. A series of 5 edge swaps
transform the two cycles into the following Hamiltonian cycle:

We will refer to the 2-cycle decomposition as 2-cycle and to the Hamiltonian cycle
as l-cycle. The edge between x’ = 1 and 0 in the 2-cycle has color 1, as does the
edge between x"*! and x” in the l-cycle, since x"*' +x" = x"(x + 1) = 1. The edge
between S"7* and "' in the 2-cycle has color S, as does the edge between
X =1 and """ in the l-cycle, since 3" 4+ 1 =3 x4 41 = 5N
The edge between x*' and 3)"*' in the 2-cycle has color S, as does the edge
between "% and x"! in the l-cycle, since 3 2+ x" ! =Y x4 x4 x7 =
S +x (" 42"+ 1) = 3" The edge between 3" 7% and x"~! in the 2-cycle has
color Z"_] =0, as does the edge between 0 and 0 in the l-cycle. The edge between
0 and x" in the 2-cycle has color x’, as does the edge between x"~' and Z"_Z in the
I-cycle, since "' + 3" P =x ! px = x4 4 1) = X

It remains to show that this transformation does not suffer from r being too close
to 0 or n — 1. Indeed, ' +x" + 1 = 0 implies that » + 1>k >3, hence r — 1 > |
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and we are safe on the left. Similarly, x"~" + x4+ 1 = (x")"' +x + 1 = 0 implies that
n—rzk=3, hence r + 1<n—2, so we are safe on the right too.
Altogether, this shows

Theorem 1. For any k, C; has a (3,4)-busis.

An n-dimensional hypercube of cliques is the cross product of an (n — [logr|)-
dimensional hypercube and a complete graph with 2L'°2"} nodes. By Theorem 1, we
have

Corollary 2. There is a one-to-one embedding of a hypercube of cliques in a same-
sized hypercube with dilation 3 and congestion 10.

Proof. See [6]. O

4. On (3, 3) bases

In this section we give a sufficient condition for the existence of a (3,3)-basis
for Cy. Suppose some degree k primitive polynomial A(x) is the gcd of a trinomial
f(x)=1+x/ +x" and x" + 1. Then C; has a (3,3)-basis, constructed as follows.
Consider the n x n circulant matrix F generated by f; the ith column £ of this matrix
(i=0,...,n—1), is formed by the coeflicients of x’f(x) mod x" + 1. For example,
with n =7, h(x) = f(x) = 1 +x + x> generates the matrix

1 0001 01

1100010
01 1 00 01
F=411 011000
0101100
001 0110

000 1 0 11

We use the fact that A(x) is primitive to define a column reordering of Ay, called 4,
whose ith column corresponds to x' mod h(x). Now A}F; corresponds to x' f(x) mod
x"+1 mod h(x) = x' f(x) mod h(x) = 0, since h(x) divides both f(x) and x"+ 1. Thus,
all columns of F are in the nullspace C; of 4.

From a theorem of Konig and Rados [7], it follows that the rank of F is n —
deg(ged(f(x),x" + 1)) = n — deg(h(x)) = n — k. Now if some column i is linearly
dependent on columns 0,...,i — 1, then, since is circulant, column i+ 1 is linearly
dependent on columns 1,...,7 and therefore also on columns 0,...,7 — 1. Similarly,
columns i +2,...,n — 1 would be linearly dependent on the first i columns. Thus, the
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Table 2
Trinomials f(v) = x™ + x/ 4+ | that imply the existence of (3,3)-bases
k m J k m J k m j
8 13 1 67 76 29 120 174 31
12 19 6 69 75 23 122 128 15
13 16 3 70 82 15 125 128 3
14 17 2 72 93 7 126 141 70
16 29 6 74 80 39 128 131 50
19 22 3 75 77 4 131 138 61
24 35 6 76 88 43 133 136 43
26 29 12 77 80 9 136 139 30
27 29 1 78 89 2 138 183 23
30 41 12 80 83 23 139 142 3
32 59 29 82 85 19 141 148 71
34 37 6 83 85 14 143 147 1
37 43 4 85 93 28 144 159 14
38 42 1 86 91 22 146 149 6
40 43 3 88 154 37 147 149 19
42 51 7 90 111 28 149 151 2
43 53 2 91 99 13 152 155 38
44 52 15 92 103 39 154 157 22
45 59 12 96 123 1 155 158 75
46 58 9 99 101 13 156 188 59
48 70 27 101 103 2 157 164 25
50 54 7 102 115 3 158 167 54
51 53 4 104 109 9 160 177 19
53 61 28 107 109 8 162 166 27
54 93 23 109 118 21 163 171 70
56 67 31 110 117 19 164 189 68
59 61 26 112 133 1 165 173 42
61 66 17 114 118 7 166 186 53
62 77 30 115 125 6 168 179 38
64 74 21 116 136 1 171 173 10
66 83 20 117 123 31

first n — k columns of F must actually be linearly independent, else the rank of F
would be less than n — k. This shows that Fy,...,F,_;_, forms a basis of C,ﬁ, and, by
an appropriate permutation of dimensions, a basis of Cj.

The existence of degree k primitive polynomials 4(x) that are the ged of a trinomial
S(x)=1+4+x"+x/ and x" + 1, is demonstrated in Table 2 for k< 171. Only those
k for which there is no primitive trinomial of degree k are listed; see Stahnke [11]
for a table of primitive binary polynomials up to degree 171. Therefore, we pose the
following:

Conjecture 1. There always exists a trinomial f(x) such that ged( f(x),x* =" +1) is
a primitive polynomial of degree k over GF(2), for any k. Consequently, any Cy has
a (3,3)-basis.

The subsequent effort by [4] shows the conjecture to hold through all & <500.
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