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Abstract. For reasons of efficiency, in almost all implementations of Pro log the occur check is left 
out. This a mechanism should protect the program against introducing circular bindings of variables. 
In practice the occur check is very expensive, however, and it is left to the skills of the user, to 
avoid these circular bindings in the program. In this paper a semantics of Prolog without occur 
check is introduced. The new kind of resolution, i.e. SLD-resolution without occur check, is 
referred to as CS LO-resolution. Important theorems such as soundness and completeness of both 
CSLD-resolution and the "negation as failure" rule, are established. 

I. Introduction 

For reasons of efficiency, in almost all implementations of Pro log the occur check 
is left out, which is a mechanism that should protect the program against introducing 
circular bindings of variables. For instance in a substitution {x/f(x)}, the variable x 
is bound to a term f(x) containing the variable x again. The problem is, that any 
such binding endangers the correct behaviour of a Prolog system. In fact, without 
the occur check we no longer have soundness of SLD-resolution (see [ 12]). For 
example consider the program 

P: test~ p(x, x) 

p(y,f(y)) ~. 

Given the goal ~test, a Prolog system without occur check will answer "yes" since 
p(x, x) will be successfully unified with p(y,f(y)) by the substitution {x/ y, y / f( y)}. 
However, this answer is quite wrong, since test is not a logical consequence of P. 

In practice, however, the occur check is very expensive and it is usually left to 
the skills of the user to avoid these circular bindings in the program. For instance 
in [14], a method is presented to detect circular bindings more efficiently, by 
preprocessing Prolog programs. 

It would be convenient to develop a theory for SLD-resolution without occur 
check, and for this reason Prolog II (see [3]) has been studied quite intensively in 
the past few years. Roughly speaking, Prolog II is standard Prolog without occur 
check and can be regarded as a system which manipulates infinite trees (see [2]). 

The question remains, whether or not Prolog II can be thought of as a logic 
programming language, since the example above shows that Prolog II presents 
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incorrect derivations. This problem was solved in [6], by formulating a soundness 
theorem for Prolog II. In the above example, the computed substitution {x/ y, 
y / f( y)} can be translated to a set of equations {x = y, y = f( y)}, and clearly test is 
a logical consequence of Pu {x = y, y = f( y )}. There are still many results left to 
be established, such as completeness, to develop a complete theory for Prolog II. 

In this paper a semantics for logic programs without occur check is presented by 
considering circular bindings {x/ f(x)} as recursive equations {x = f(x)}, and extend­
ing the Herbrand universe (consisting of all closed terms) by adding to it all infinite 
terms {x = f(f(f( .. . )))} (see [ 4]). We introduce a new kind of resolution, which 
will be referred to as CSLD-resolution (complete SLD-resolution), which is precisely 
SLD-resolution but without occur check. Following this idea, we find that both 
soundness and completeness for CSLD-resolution as well as for the negation as 
failure rule is obtained. It turns out that due to the new setting, the proof of the 
completeness theorem for the negation as failure rule becomes much shorter com­
pared with the well-known proofs in [9], [12] and [15]. Then, we conclude as a 
general result that comp(P) u {A} has a "complete" Herbrand model iff it has a 
model, which indicates that we may expect CSLD-resolution to have some nice 
extra properties that we do not have for ordinary SLD-resolution. 

Independently from this paper, similar results were stated in [7] and [ 13] on the 
"Constraint Logic Programming" scheme, in [8] on Prolog II as a Logic Program­
ming Language scheme, and in [10], giving a logical semantics to a language without 
occur check containing both equations and inequations. 

There are a few theoretical differences between these references and the contents 
of this paper. Consider for example the fact that we will only need a small equational 
theory for Prolog II, whereas in [6] and [8] this theory contains infinitely many 
existential formulas, one for every recursive equation. For this reason we do not 
need to put any constraints on the models of Prolog II programs and the results 
are more general. Still, apart from the question of whether the main results are new, 
we believe we have found a rather elegant formalisation of the theory, making the 
techniques used in this paper of interest by themselves. The concepts and notations 
in this paper are quite similar to those in [12], which may be considered a contribution 
to standardising the theory of logic programming without occur check. 

2. Complete Herbrand models 

We will assume P to be a set of program clauses '<l(B1 I\· · ·I\ Bk' A), usually 
written as A~ B1 , ••• , Bk> where B1 , ••• , Bk> A are atoms not containing"=". The 
language of P will be denoted by L(P) or Lp. In this section we will formally 
introduce complete Herbrand models for P. First we will present a precise definition 
of a complete term, as can be found in [12], and next establish some general model 
theoretical results. 
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Let w* be the set of all finite sequences of non-negative integers. Such a finite 
sequence will be written as [i 1, ••• , id, for some i 1 , ••• , ik E w. For all m, n E w* we 
write [m, n] for the concatenation of m and n, and for i E w we write [m, i] instead 
of [m[i]]. For X E w* we write JXJ for the cardinality of X. 

Definition 2.1. Tr:;;, w* is called a tree if T satisfies the following conditions: 
(i) for all n E w* and i, j E w, [n, i] ET Aj < i ==:} n ET A [n, j] ET 

(ii) J{i: [n, i]E T}Jis finite for all nE T. 

So, by Definition 2.1 we can interpret [ ] as the root of the tree and [n, OJ, 
[n, 1], ... , [n, k] as the descendents of the node n for all n ET, k < w. Now let S 
be a set of symbols and ar: S-+ w be a mapping defining the arity of a symbol. 

Definition 2.2. A complete term (over S) is a function t:dom(t)-+S such that: 
(i) the domain of t, <lorn( t), is a non-empty tree 

(ii) for all n E dom(t), ar(t(n)) = J{i: [n, i] E dom(t)}J. 
In a language L, a complete atom is a complete term t such that t([ ]) is a predicate 
symbol. 

Definition 2.3. The depth dp( t) of a term t is defined by: 
(i) dp(t) = oo, if t is infinite 
(ii) dp(t)=l+max{JnJ: nEdom(t)}, if t is finite. 
The tree dom( t) is called the underlying tree of t. The set of all complete terms 

over S is denoted by Terms; these terms can be looked at as (possibly) infinite 
terms. By definition a term t is finite if and only if dom(t) is finite. Next, we will 
define a metric on Terms. 

Definition 2.4. Let s, t E Terms and s ;t. t then we define {3(s, t) as being the least 

depth at which s and t differ. Then we define: 
(i) d(s, t)=Oifs=t 

(ii) d(s, t) = 2-f3<s,t) ifs~ t. 

Proposition 2.5. (Terms, d) is an (ultra-) metric space. 

The proof is simple, and omitted here. Note that the larger the depth is at which 
two terms differ, the smaller is their distance. Next, we define the truncation of a 
term, to have finite approximations of infinite terms. Assume [}, to be an extra 
constant symbol (hence with arity zero), not in S (nor in Term5 ). 

Definition 2.6. The truncation at depth n of a term t, notation a 11 (t), can be found 
from the complete term t by replacing all symbols at depth n by [}, and leaving out 
all symbols at greater depth. The underlying tree dom(a 11 (t)) is adjusted in the same 
way, by leaving out all nodes without a label. 
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Definition 2.7. A metric space (X, d) is compact if every sequence in X has a 
subsequence which converges to a point in X. 

Proposition 2.8. (Term5 , d) is compact {ff S is finite. 

For a proof of this well known theorem, see [12]. From Definition 2.6 we find: 
dp(an(t)) ~ n + 1, for all t. Moreover, d(a,,(t), t) ~ 2 n and therefore lim,,_"'. a"(t) = 
t. Next we will consider complete Herbrand models for a program P, having all 
possibly infinite terms as its universe. 

Definition 2.9. Let P be a program, then the complete Herbrand universe CUP is 
defined by TermL(PJ. A complete Herbrand model for [p is a model .M with domain 
CU p, such that 

(i) a·u =a, for all constants a E Lp 
(ii) fu ( t 1 , ••• , tk) = f(t1u, ... , tf1 ), for all functions f E L,, and complete terms 

t 1 , ••• , tk E TermuPJ. 
A complete Herbrand model for a program P is a complete Herbrand model for 
Lp which satisfies P. 

Definition 2.10. The complete Herbrand base CB,,, or CBL(PJ, of a program P is 
defined by 

CB,,={tECU,,: t is a complete atom}. 

The elements of CBp can be represented as trees as well. Moreover, the metric 
d on CUP can be extended to CB,,. Informally, we will write U,, for the set of all 
finite terms in L,, and B,, for the set of all finite elements from CB,,. 

In general any complete Herbrand model for a program P, can be associated with 
a subset of the complete Herbrand base CB,,: such a subset then denotes the 
complete set of "ground" atoms, holding in the model. For any ground atom A and 
Herbrand model Jtl, we will use both notations A E Jtl and .M F= A, to express that 
A holds in the model .!U and F=A to express that A holds in all (possibly non­
Herbrand) models. 

3. Recursive specifications 

In this section we consider so called recursive specifications, which are finite sets 
of positive equational formulas and will be used later instead of the usual notion 
of a substitution. Returning to Prolog, we will need a different unification algorithm, 
since we will work in complete Herbrand models. 
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Definition 3.1. Let P be a program. Then the theory Eq(Lp) (or Eq(P)) consists of 

the axioms: 

( 1) c =I d for all pairs of distinct constants c, d from Lp 

(2) Vx. f(x) =I g(x) for all pairs of distinct function symbols f, g from Lp 

(3) Vx. f(x) =I c for all function symbols f and all constants c from Lp 

(4) Vxy. X1 =I Y1 v · · · v xk =I Yk...,. f(x) =I f(y) for all function symbols f from Lp 
(5) Vx. x=x 
(6) Vxy. X1 = Y1 f\ · · · f\ xk = Yk...,. f(x) = f(y) for all function symbols f from Lp 

(7) Vxy. x 1 =y1f\· · ·f\xk=yk_,.(P(x)...,.P(y)) for all predicate symbols P 

from Lp. 

Lemma 3.2. Eq( L) holds in all complete Herbrand models for L. 

The axioms of Eq(Lp) are introduced in [12] to model finite failure: Eq(Lp) 

forces any two syntactically different terms to be different in all its models. In [12] 

we even find an extra axiom: 

(8) Vx. x =I t[x] 

for all terms t that are unequal to a variable containing the variable x. This axiom 

is needed to express that the elements in the Herbrand universe consist of all finite 

terms from Lp. Since in the complete Herbrand universe we have infinite terms as 

well, we will omit axiom (8) from our equational theory. It turns out to be convenient 

to consider substitutions no longer as a syntactic operation of binding variables, 

but directly as equational formulas. 

Definition 3.3. A (recursive) specification in a language L is a set of equations of 

the form: {t1(x) = s 1(x), ... , tk(x) = sk(x)} for (open) terms t;, S; EL and variables 

x= X1, ... , Xn. 

Definition 3.4. An open complete term in a language L is obtained by constructing 

a complete term from Lu {x;: i ~ n }, where {x;: i ~ n} denotes a finite set of variable 

symbols with arity zero. 

Note that an open complete term only has finitely many variables, called the free 

variables of the term. We will write t(x) for the term t which has variables only 

from x = x 1 , ••• , Xn (but possibly less) and similarly we write p(x) for a specification 

with variables only from x = x 1 , ••• , x,,. Note that the metric d can simply be 

generalised to open complete terms, by extending the language L with extra variable 

symbols. 

Proposition 3.5. Let L be a language with at least one constant, and let .;f;f, be a complete 

Herbrand mode/for L. Then for all open complete terms t1(x), t~(x) we have: 
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Definition 3.6. A specification p (x) is said to be in reduced form if it is of the form 

{x1 = s1(x1 , ••• , x11 ), ••• , xk = sdx1 , ••• , x,,)}, where x 1 , ••• , xk are distinct variables. 

Moreover, p(x) has a reduced form it it is equivalent to a specification which is in 

reduced form. A specification is said to be in contradictory form if it contains an 

equation a = b or f( t 1 , ••• , t11 ) = g(s1 , ••• , s,,) for some distinct symbols a, b or f, 

g, respectively. Moreover, it has a contradictory form if it is logically equivalent to 

a specification which is in contradictory form. 

Definition 3.7. A variable x is bound in p if p I= x = t for some term t which is not 

a variable. Otherwise it is called free. A specification is called ground if it has no 

free variables. 

Example. Let cr(x, y) ={x = f(x), y = x}, then er has no free variables since er I= x = 

f(x) and cd= y=f(x). Let er(x, y, z) ={x=f(y), y =z}, then x is a bound variable 

in er, whereas y and z are free. 

Definition 3.8. A specification p(x) is called consistent if p u Eq(p) is satisfiable in 

a model. 

Theorem 3.9. Let L be a language. If p (x, y) is in reduced form, with bound variables 

x""' x 1 , ••• , x11 which are distinct and free variables y, then there exist (open) complete 

terms t1(y), ... , t,,(y) with only free variables from p, such that in every complete 

Herbrand model .M for L: 

Ai I= Vxy. p(x,y)-(x1 =t1(y)/\···11 x,, = t,Jy)). 

Proof. Use the fact that for all equations x = t(x, y) in p, Jfd I= Vxy. x = t(x, y) -

x = z[z/ tw(y)], in every complete Herbrand model .M for LP and with t"'(y) := 

t(t(t( ... , y), y), y). 0 

Theorem 3.10. (i) A specification in reduced form is consistent. 

(ii) A specification in contradictory form is inconsistent. 

Proof. (i) Suppose p is in reduced form, with language L. Extend L until it contains 

at least one constant, then L has a complete Herbrand model .!U. Then from Theorem 

3.9 and Lemma 3.2 it follows that: .tU I= p u Eq(p ), thus p is consistent. Part (ii) 

follows directly from the definition of Eq(p ). O 

Corollary 3. ll. Every specification in reduced form with a constant, has a complete 

Herbrand model. 

Theorem 3.12. (i) All consistent spec(fications have a reduced form. 

(ii) All inconsistent specifications have a contradictory form. 

The proof of Corollary 3.11 follows from the proof of Theorem 3.10. Theorem 

3.12 is the reverse of Theorem 3.10. In order to prove it, an algorithm can be 
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constructed which actually decides whether a specification has a reduced form. This 
algorithm consists of the following five steps, defined in [2] (see also [8]). Suppose 
p is a specification. 

Consistency algorithm 

( 1) Delete from p all equations of the form x = x. 
(2) If p contains an equation x = y, where x and y are different variables, then 

replace x in all its occurences in p by y. 

(3) Replace an equation t = x in p by x = t, where t is not a variable. 
( 4) Replace two equations x = t and x == s in p by the equations x == t and t == s, 

where t is not larger than s (in number of symbols). 

(5) Replace an equation of the form.f(t1> ... , tn) == f(s1> ... , sn) by the equations 
t 1 =s1 , ••• , ln==Sn. 

It is well known that using these five steps repeatedly, any recursive specification 
p can be reduced into a specification which is either in reduced form or in contradic­
tory form, and equivalent to p. This provides us with a proof of Theorem 3.12. 
Furthermore, using the consistency algorithm one can define a new kind of 
unification which precisely coincides with unification in Prolog II. Assume p is a 
predicate symbol and S is a set of atoms. 

Unification algorithm 

(1) If not all atoms in S start with the same predicate symbol, then S is not 
unifiable. 

(2) Else: if S = {p(t\il, ... , 1~ 1 ): i,,;; m} then apply the consistency algorithm to 

Corollary 3.13. A specification p is consistent if! it has a reduced form. 

Definition 3.14. Let S be a set of (open) atoms. A specification p is called complete 
unifier (cu) for S, if t=V(p-?/\A,BES (A-B)). Suppose p is a cu for S. p is called 
most general complete unifier (mcu) for S, if for all complete unifiers p 1 for S and 

all complete Herbrand models .;f;f,, .;f;f, t= V(p1-? p ). 

Proposition 3.15. For any input set S of atoms, the unification algorithm computes an 

mcufor S. 

Note that Proposition 3.15 does not hold if we change Definition 3.14 by requiring 
V(p,-? p) to hold in all models instead of only complete Herbrand models. For 
instance ifs== {p(x), p(f(f(x))} then {x = f(f(x))} is computed by the unification 
algorithm, although {x == f(x)} is more general. With respect to complete Herbrand 

models, however, they are equivalent. 

Theorem 3.16. Let p be a (possibly infinite) specification in a language L with at least 

one constant, then the following are equivalent: 
(i) p u Eq(p) has a model, 
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(ii) p has a complete Herbrand model, 

(iii) p is satisfiable in all complete Herbrand models for L. 

Proof. (ii)~(iii) and (iii)~(i) are easy and left to the reader. 

(i)~(ii): suppose p = u iEW p;(x;), where all p;(x;) are finite subsets of p, and 

define for all n: Ln (x1' ... 'Xn) = ui.-,;n p;(X; ). Clearly Ln is finite and consistent and 

hence equivalent to a reduced form L~. From Theorem 3.9 it follows that 

.JU I= I~ (t7, ... , t~) for all complete Herbrand models .JU. Thus, for every natural 

number n we obtain a sequence (t~);;;.,, in CUP. Since CUP is compact every such 

sequence has a subsequence (t~);"'" which converges to a limit t 11 • By topological 

arguments we find .JU I= I~ (t1 , ••• , t,,) for all i""' n, so .JU I= L (t1 , ••• , t,,) for all n, 
i.e. p = UnEw L is satisfiable in all AL D 

Theorem 3.17. Let L be a language, and suppose A(x), B(x) EL are unifiable atoms 

with mcu p ( x) then for all complete H erbrand models .JU for L and all t = t 1 , ••• , tk E 

l.Atl, the following are equivalent: 

(i) id I= p(t), 

(ii) d (A(t), B(t)) = 0. 

Proof. (i)~(ii): if .JU I= p(t) for some complete Herbrand model .JU, then it follows 

easily from Theorem 3.16 and Definition 3.14 that for all .JU, we have .At I= A(t)~ 

B(t). Hence d(A(t), B(t))=O. 

(ii)~(i): if d(A(t), B(t))=O where: A=p(u 1(x), ... ,u,,(x)), B= 

p(vi(x), ... ,v,,(x)) then d(u;(t), V;(t))=O for all i, and hence p'= 

{u 1(x) = v1(x), ... , u11 (x) = v,,(x)} is consistent. Since p' is a cu for {A, B}, and p is 

an mcu, it follows by Definition 3.14 that .At I= p(t). D 

4. Complete SLD-resolution 

In this section we will assume P to be some fixed program, with at least one 

constant symbol in its language Lp. Specifications will be denoted by <r, p, T, ...• 

For convenience, we present a few notations in the following definition. 

Definition 4.1. For specifications a(x ), p(x) with variables x = x 1 , ••• , xk and for 

arbitrary complete terms u = u1 , ••• , uk we write: 

u Ea- :<::;> for all complete Herbrand models .At for Lp: .JU I= o-[ u ], 

a-=p :<::;> 1='</(o-"'7p), 

a-"""p :<::;> 1='</(o-~p) ('o-ismorespecificthanp'), 

a-= J_ :<:? a- is inconsistent (..1_ stands for the bottom in the ordering """), 

p = mcu( {A, B}) : <::;> p is an mcu for A and B. 

Furthermore we often write u · p or up instead of a-up. 
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Proposition 4.2. One can easily check the following statements: 

(i) (0 ·a)= CT, (J_ · CT) = ..L, (a" p) = (p ·a), ((a· p) · 7) =(a· (p · 7)). 
(ii) CT ~ p ~for some 7: a= (p · 7). 

(iii) if p(x) is ground (i.e. has no free variables) and CT(x,y), p(x, z) are 

specifications with distinct variables x, y and z, then 

paT(x, y, z) = ..L ~ pa(x, y) = ..L v p7(x, z) = ..L. 

The proof of Proposition 4.2 is easy and left to the reader. Taking p =0, it follows 

from (iii) that a(y) · 7(z)=..L ifand only ifCT(y)=..L or 7(z)=..L. 

Next, we will make straightforward adaptations to some well-known definitions. 

Definition 4.3. A goal is a pair ( G, CT) where G is a goal clause and CT is a specification. 

Definition 4.4. A computation rule (c-rule, for short) is a function R from goals 

(~Ai. ... , Ak. CT) to atoms A, such that AE {A 1 , ... , Ad. 

Definition 4.5. Let G; be the goal (~A 1 ,. .. ,Am, .. .,Ak.a) and C+ 1 =A~ 

Bi. ... , Bq a clause and R a c-rule. Now, G;+ 1 is derived from G; and C;+i by R 

and p, if 

(i) R(G;)=Am and G;+1=(~A1, .. .,Am-1, B1,. .. ,Bq,Am+i, .. .,Ak, CTp) 

(ii) CT ¥' ..L and p = mcu({A'", A}). 

Definition 4.6. Let G be a goal and R a c-rule. A CSLD-derivation for 

Pu { 0 0 , CT0 } is a sequence ( 0 0 , a 0 ), •.• , (Ok, ak), ... , such that for some sequence 

of program clauses C1, ... , ck. ... E p with new variables, G;+J is derived from G; 

and C;+ 1 by R, for all i. Note that if CTk = ..L then ( Gk, ad is the last goal in the 

derivation. A CSLD-refutation is a CSLD-derivation with (0, p) as the last goal, 

where 0 stands for the empty goal clause, and p is a consistent specification which 

is called the computed answer specification for Pu { 0 0 , CT0} with c-rule R. 

Definition 4.7. A correct answer specification for Pu ( ~ A 1 , • •• , Ak> p) is a consistent 

specification a such that P F= V'( a-? A 1 f\ · · · f\ Ak f\ p). 

CSLD-derivation stands for complete SLD-derivation. Note that such derivations 

are logical derivations as well, as is stated in the next soundness theorem, originally 

due to Van Emden and Lloyd [6]. 

Theorem 4.8 (soundness of CSLD-resolution). Computed answer spec(fications are 

correct. 

Proof. Let ( G;, CT;) 0 .,,;"'n be a CSLD-refutation for Pu ( ~A 1 , ••• , Ak. CTo). By induc­

tion we prove (induction hypothesis) P F= V'(CTn-? A1 f\ · • · f\ Ak f\ CTo). 
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(n = 1): Now 0 0 is of the form ( ~A 1 ) and P has a unit clause A~ such that a-0 p 

is consistent, where p = mcu( {A 1 , A}). By Definition 3.14 we have l='lf(p-'> (A1 -A)) 

and since <r 1 =G"0p,;;;_p (see Proposition 4.1) we find l='lf(<r1 -'>(A 1 ~A)). Since 

(A~) E P, we have PI= 'lf(A) and therefore PI= 'lf(a-1-'> A1), hence PI= 'lf(cr1__,.A111 

uo), since u 1 ,;;;_ O"o. 

(n + 1): Assume R( 0 0) =Ai, then there is a clause A.__ B 1 , ••• , Bq E P such that 

u 1 = u 0 p is consistent, where p = mcu({A;, A}) (see Definitions 4.5 and 4.6). Now 

( G;, cr;) 1"';"',,+ 1 is a CS LO-refutation for 

with length n, so by induction we obtain: 

(i) P f= 'lf(u,,+ 1-'> Ai/\· · · /\ A; .. i 11B 1 11 • • • 11Bq11A;+111 · · · 11 Ak /\ u1) 

(ii) P f= 'lf(a-,,+ 1-'> Ai/\···/\ Ai·· I/\ A;+i /\ · · · /\ Ak /\ a-o). 
Here (ii) follows from u 1,;;;_ cr0 • By Definition 3.14 it follows that f='lf(p-'>(A;-A)), 

and since A~ B 1 /\ · · · /\ Bq E P we have P f= 'If( Bi /\ · · · 11 B,1 /\ p __,.A;). Therefore 

from O"n+ 1 ,;;;_ u 0p ,;;;_ p and (i) we find that P f= 'If( a-11 +i __,.A;). Hence, with (ii), 

P F= 'If( O"n+1-'> Ai/\· · · /\ Ak /\ uo). 0 

Next we will consider a method, first introduced in [5], to find models for logic 

programs using fixed points of some monotonic mapping. We assume A(x) to be 

finite for variables x. 

Definition 4.9. For X <:; CBp we define 

CT p(X) :={A( u) E CBP: there are terms v E CUP and a clause A 1(x) 

.__ B 1(x), ... , B"(x) E P such that d(A(u), A 1(v)) = 0 

and {Bi(v), ... , B"(v)} <:; X}. 

CT P is a continuous mapping on the complete lattice formed by all subsets of 

CB p, with the usual ordering <:;. CT P is often called the one step derivation map. 

Definition 4.10. We will use the following notation: 

CT pj k + 1 = CT P ( CT P j k), k E w, 

CT P j w = LJ CT P j k. 
k .z' (•) 

A well-known theorem says that CT P j w is the least fixed point of CT p, denoted by 

lfp(CT p). We write Tp for the mapping defined on the powerset of BP which is 

CT P but then restricted to finite atoms. 
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Proposition 4.11. Let P be a program and At s; CB Pa complete Herbrand model, then 

Ad is a model for P ~ CT P ( .4l) s; Ad. 

Proposition 4.12. Let P be a program, then lfp(CT p) = n {.tt s; CBp: CTp(.tt) c;;; .H}. 

Corollary 4.13. ( i) CT P j w is a model for P. 

(ii) CT Pi w = n {Ad<;;; CBp: Ad is a model for P}. 

The proof of Proposition 4.11 is easy and left to the reader. Proposition 4.12 is 

a special instance of a general theorem in the theory of complete partial orders. Its 

proof is omitted here (see [ 12]). It follows from Corollary 4.13 that CT PI w is the 

least complete Herbrand model for P. 

Let us return to the notion of CS LO-resolution. We will see that the set of complete 

atoms with a CSLD-refutation coincides with the least fixed point CTP j w. First we 

present an important lemma. 

Lemma 4.14 (mcu-lemma). Let G be a goal and assume Pu { G0, er0} has a CSLD­

refutation ( G;, er; )0 ." ;""" with er;= er0 81 • • • 8;, where 81 , ••• , 8; are complete unifiers, 

but not necessarily most general complete. Then there is a CSLD-refutation 

co;, er:lo"i""n of the same length, such that: 

(i) (]"; = cro8; ... e; 
(ii) 8;, ... , 8; are most general complete unifiers 

(iii) O"n:;;; (]"~. 

The proof is an analogon of the proof given in [ 12]. In fact the mcu-lemma states 

that refutations with only complete unifiers, can be turned into a more general 

refutation by using most general complete unifiers. Let us define the complete 

equivalent of the success set (see [l]). 

Definition 4.15. The complete success set CSP of a program P is defined by 

CSP ={A( u) E CB P: Pu {(""" A(x ), 0)} has a CS LO-refutation with 

computed answer specification er(x, y ), such that for some 

v: (u, v) E er}. 

Proposition 4.16. CSP is well defined. 

Proof. Assume d(A 1(u), A 2(w))=O and A 1(u)ECSp, then we prove that A1(w)E 

CSp. By definition ( """A 1(x), 0) has a CSLD-refutation ( G;, O";)ihi"'·" with computed 

answer specification O"n(x,y) such that for some v:(u,v)Eer". Let p(x,z)= 

mcu( {A 1 (x ), A 2(z)}), then p is consistent and ( u, w) E p. Clearly (u, v, w) E Pn (x, y, z) 

and therefore per11 is consistent and ( G;, pa;)(b.i" 11 is a refutation for Pu {""" A2( z), p} 

(using the same clauses and the same computation rule). Now consider (""" A2(z), 0), 

( G 1 , pa1 ), ( 0 2, p0"2), ..• , ( G,,, p0"11 ) then clearly this is a refutation for Pu 

{"""A2 (z),0} except that p0"1 is not most general. Thus by Lemma 4.14 there is a 
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refutation for Pu { +- A 2(z), 0} with computed answer specification u(x, y, z);;. 
pun(x, y, z), so (u, v, w) E u. Hence A 2( w) E CSp. D 

Theorem 4.17. CSp=CTptw. 

Proof.(~): Let A(u)eCSp then Pu{(+-A(x), 0)} has a CSLD-refutation with 
answer specification u(x, y ), such that for some v: ( u, v) E u. By soundness of 
CSLD-resolution it follows that u(x, y) is correct for Pu{(+-A(x), 0)}, i.e. 
PI= \f(u(x, y)-+ A(x)), and hence .JJ, I= A(u) for all complete Herbrand models Ai 
for P, since ( u, v) E a. Then by Corollary 4.13 it follows that A( u) E CT Pt w. 

({::::):Let A(u)eCTptw then A(u)ECTptn, for some n<w. Now the proof 
proceeds by induction. 

(n=l): Then A(u)eCTp(0), so there is a unit clause A 1(y)+-EP, such that for 
some v, (u, v)Ep(x,y) and p(x,y)=mcu({A(x), A 1(y)}); since p is consistent, 
(+-A(x), 0), (D, p(x,y)) is a CSLD-refutation for Pu{+-A(x), 0} with answer 
specification p(x, y). 

(n + 1): Now, A(u) E CT p(CT Pt n), so there is a clause A 1(y) +- B 1 (y ), ... , Bq(y) E 
P and v such that: A(u) = A 1(v) and B 1(v), ... , Bq(v) E CT Pt n. Assume p(x, y) = 
mcu({A(x), A1(y)}) then (u, v) E p(x,y). By the induction hypothesis, there exist 
refutations for Pu { +- Bi(Y ), 0} with computed answer specification u;(y, Z;) such 
that for some wi> (v, wJ E ai. These refutations can be put together to obtain a new 
refutation for Pu{+-B1(y), .. .,Bq(y), 0} with a computed answer specification 
u ~ a 1 • • • uq. Since ( v, 1111 , ••• , wq) E u 1 • • • uq, such a consistent u exists, and we 
directly find that up is consistent as well, since (u, v, w1 , ••• , wq) E up. Hence up is 
the intended answer specification. D 

Theorem 4.17 is part of a more general result from [10] on a language with 
equations and inequations. 

So far, we found that the correctness theorem can be restored for CS LO-resolution. 
Moreover, CT Pt w is the least complete Herbrand model which is the intersection 
of all complete Herbrand models for P, and equal to the complete success set. Next 
we will show that we have a completeness theorem as well. 

Definition 4.18 (restriction). Let u(x,y) and p(x, z) be two specifications then we 
write u:!S..xp ifl=\fxy. (u(x,y)-+3z. p(x,z)). Furthermore we write u=xP if both 
u :!S..xP and p :!S;xu. 

Proposition 4.19. Let u(x) be ground then for all specifications p: either up= .l or 

u :!S..xP· 

Definition 4.18 is needed to indicate that u is more specific than p, although p 
may bind variables not occurring in a. Moreover, u = x p indicates that u and p are 
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equivalent with respect to the variables x. Note that u = .. J_~u= J_ for all variables 
x. Proposition 4.19 says that ground specifications cannot be further specified with 
respect to their variables: either CJ" up is inconsistent, or CJ" is more specific than p 
with respect to x. For example, let u(x)={x=f(x,x)} and p(x,y)={x=f(x,y), 
y = x} then u ""'x p, however not u ~ p (i.e. CJ" ~xy p ), since p has an extra variable 
y. In fact: CJ" = x p. 

Lemma 4.20. Let A(x) be an atom and u(x) correct for Pu{+-A(x), 0}, then there 
exists a CSLD-refutationfor Pu{+-A(x), u(x)} with p(x,y) as computed answer 
specification, such that CJ" = x p. 

Proof. First, assume a(x) is ground. Now, let u E CJ" then A(u) E CT P fw (by Theorem 
3.16, Definition 4.7 and Corollary 4.13). Therefore A(u)eCSp (by Theorem 4.17), 
hence there is a CSLD-refutation ( G;, p;) 0 ,..;.,n for Pu { +-A(x), 0} with computed 
answer specification Pn(x, y) such that for some v, (u, v) E Pn· Because (u, v) E upn, 
upn is consistent and therefore (Gj, O"pJ0,..;,,.n is a refutation for Pu{+-A(x), CJ"} 
with computed answer specification O"Pn, and by Proposition 4.2 we have O"Pn.,,;;, a. 
Since u is ground we find by Proposition 4.19, u ~x UPn· Hence u = x UPn· 

Next, assume u is not ground, and let x = (y, z) where y and z = z1 , ••• , zk are 
the bound and free variables of u, respectively. Let a= a 1 , ••• , ak be new constants 
not occurring in P, A or CJ", and such that for i, j, a;= ai ~CJ" I= Z; = zi. Next, consider 
0"1(y, z) = {z1 = a1 , ••• , z" =an}· O"(y, z), then 0"1 is consistent and ground. Hence 
there exists a CSLD-refutation for Pu{+-A, u'(y, z)} with computed answer 
specification p'(y, z, z') such that 0" 1 = y: p', or equivalently: u' = x p'. Now it is easy 
to see, that we can find a new refutation for Pu {~A, CJ"} by replacing all constants 
a by new variables, with computed answer specification p, such that u = x p. 0 

Note that Lemma 4.20 does not hold if we replace = .. by =. For example let 
P ={A( y, y )~} and consider the goal clause G = ~ A(x, f(x)) then one can easily 
see that u(x)={x=f(x)} is correct for Pu{G, 0}. Indeed, there is a computed 
answer specification p(x, y) = {x = {y,f(y)}} which is equivalent to p'(x, y) = {x = y, 
y = f( y )}. Clearly p ~ u, however since 'r;t:-'r/(x= f(x) '(x = y 11 y = f( y)) ), the con­
verse is not true. Hence p ¥' CJ". 

The point is, that in a CSLD-refutation new variables are introduced (input clauses 
have new variables), and the correct specification we started with cannot impose 
any constraints upon variables other than its own. In "common" SLD-resolution, 
this problem does not occur since computed substitutions are restricted to the goal 
variables automatically. This can be done, because in SLD-resolution new variables 
are bound to finite terms (not containing the variable again) hence one can simply 
carry out the substitution. This problem is overcome, however, by introducing """'"' 
as a logical notion of restriction. 
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Lemma 4.21 (lifting lemma). Let G be a goal clause and er be a specification. Assume 

there exists a CS LO-refutation for Pu { G, er} with computed answer specification p. 

If er~ er' then there is a CS LO-refutation for Pu { G, o-'} with computed answer 

specification p' of the same length such that p ,s; p'. 

Theorem 4.22 (completeness of CSLD-resolution). Let ( G0(x ), cr0 (x)) be a goal and 

cr(x) a correct answer specification for Pu { G0(x ), er0(x)} then there exists a computa­

tion rule R and a R-computed answer specification p(x, y) for Pu { G0(x ), ero(x)} such 

that a ~ x p. 

Proof. Assume G0 =(<-A 1(x), ... ,Adx)) then PF='v'(er--?A 1(X)/\· · ·AAdx)Aao) 

since o- is correct for Pu{G0 ,cr0}. By Lemma 4.18 there exist refutations for 

Pu { <- Aj, a} with p; as computed answer specification, such that p; = x u for all i. 

These refutations can be combined to obtain a new refutation for Pu 

{<-Ai(x), ... , Ak(x), er} with answer specification p'= p 1 ···Pk, so u = x p'. Since 

a ,s; a 0 , it follows by the lifting lemma that there exists a CS LO-refutation for 

Pu {-<-A 1 (x ), ... , Ak(x ), er0 } with computed answer specification p such that p' ,s; p. 

Since cr =xp' we have er ,s; .• P· D 

The proof of Lemma 4.21 is similar to the one in [ 12]. The completeness theorem 

presented above, can be obtained from [ 13] and some additional remarks when 

applied to the axioms in [8]. It is important to understand how resolution with 

specifications works. In fact, a computed answer specification can be looked at as 

an extra condition or constraint (see also [7]) that needs to be satisfied before a 

given conclusion may be drawn from P. The completeness theorem simply states 

that from a logic program all such sufficient conditions can be generated. The 

completeness theorem leads almost directly to the following corollary. 

Corollary 4.23. Let A(x) be a atom and u = u1 , • •• , uk complete terms, then: 

A(u) E CSP ~for some p(x, y) and some v: (u, v) E p and P F= \r'(p(x, y) _,. A(x)). 

5. Finite failure 

In this section we will consider the negation as failure rule, for CSLD-resolution. 
It turns out that all "classical" results can be restored; even better: it seems that 

working in CSLD-semantics can simplify some theoretical constructions. Let us 

start with some definitions. 

Definition 5.1. Let G be a goal. A CSLD-tree for Pu { G} with c-rule R, is 

defined by 

(i) every node of the tree is a goal and the root is equal to G 
(ii) if G' = (-<-A 1, •. ., A,,,, .. ., Ako a) is a node for some consistent a, and 

R( G') =Am then G' has a successor ( <-A1 , ••• , Am-- 1 , B1 , ••• , Bq, Am+ 1 , ••• , Ak. crp) 



Logic programs without occur check 169 

for every clause A+- B1 , ••• , Bq E P, where p = mcu( {An., A}); if u is inconsistent, 
then G' has no successor goals. 

Definition 5.2. A success branch in a CSLD-tree is a branch that ends with (0, u) 

for some consistent specification u. A failure branch is a branch ( G;, a;)0,.;"'k such 
that ak = J_, 

Definition 5.3. A finitely failed CSLD-tree, or ff-tree for short, for Pu { G} is a finite 
CSLD-tree with only failure branches. 

Definition 5.4. We will use the following notation: 

CTp!O=CBp, 

CTp!k+l=CTp(CTp!k)), kEw, 

CT P ! w = n CT P ! k. 
k-:. w 

A well-known theorem says that CT P ! w is the greatest fixed point, denoted by 
gfp( CT P ), of the continuous mapping CT P· Recall that Tp ! w does not need to be 
equal to the greatest fixed point of Tp. 

Lemma 5.5. Let A(x) be an atom and u = u1 , ••• , uk be complete terms, then 

A(u)ECTp!k+I~there is a clause A 1(y)+-B 1(y),. .. ,Bq(y)EP, such 

that for some v:(u,v)Emcu({A(x),A 1(y)}) and 

B,(v), ... , Bq(v) E CT P! k. 

Theorem 5.6. Suppose R is a fair c-rule, i.e. every atom in a goal clause is selected 

somewhere in any infinite derivation, and assume (G;, <r;);~w is an infinite CSLD­
derivation for Pu { G0 , 0'0} by R with G0 = (+-A 1 (x ), ... , A,,(x ), u0 ). !/' u are complete 

terms, then 

"r/k 3i. ((u, v) E <r;(x, y)~A,(u), ... , A,,(u) E CT p ! k). 

Proof. Let k E w, and u complete terms. Let ( G;, a;);"" be an infinite derivation for 
Pu ( G0 , 0'0 ). Then by induction on k: 

(k =0): Immediately. 
(k + 1): Let 1 ..-:.; j ..-:.; n and let m E w such that R ( G,,,) = A.i. This m exists because 

R is fair. Then there is some clause A(y) +- B 1(y),. . ., Bq(y) such that p(x, y) = 
mcu({A.i(x),A(y)}) is consistent and a,,,+ 1=u,,,·p. Assume Gm= 

(+-C1 ,. •• ,A;,. . .,C,) then G,,,+ 1 =(+-C1,. • .,B1,. •• ,Bq,. . .,C,) and clearly 
( Gm+i• <T m+i );,,1 is an infinite derivation for p u ( Gm+I> <T,,,+,)· By induction, let i' E w 

such that (u,v)Eu;·(x,y)~C,(u,v), ... ,B,(v), ... ,Bq(v), ... ,C,(u,v)ECTp!k, 

then it follows by definition of CT P that for all ( u, v) E O';·(X, y )~A( v) E CT P ! k + 1. 
Since o-1-~p we have A;(u)ECTp!k+l. So, for every j such an index i' exists. 

Now take the maximum of all n indices. D 
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Lemma 5.7. ~f ( 0, o-) has an ff-tree with depth ~ k, then ( G, crp) has an ff-tree with 

depth ~k. 

Lemma 5.8. if for some ground specification <T(x), the goal ( ~A1 (x ), ... , A,Jx), O'(x)) 

has an ff-tree with depth ~k, then for some i~ n, ( ~A;(x), O'(x)) has an ff-tree with 

depth ~k. 

Proof. By induction on n: 

(n = 1): Immediately. 
(n+l): Assume Ann(x) has no ff-tree with depth ~k. then for all c-rules R, 

Pu {An+ 1(x), a(x)} has a CSLD-derivation of length ~k + 1. Let R be a c-rule 

such that Pu {~A 1 (x), ... , An+ 1(x), a(x)} has an ff-tree with depth ~k, and let 

( G;, p;(x, Y;) ) 0 ,~,·~k+ 1 be a derivation for Pu {A,,+ 1 (x ), u(x)} via R with length ~ k + 1, 

then for all derivations ( o;' T; (x, z;) )u"';"'"' for p u { ~ A1 (x ), ... , A,, (x ), u(x)} we 

have (by Propositions 4.2(iii) and 4.19) that for all i, j, T;p; = 1- ==} T; = 1- v p; = 1-, 

since cr(x) is ground and To= p0 = <T. Then, there is a finitely failed derivation 

( G;, O;)o"';"-q via R for Pu { ~ A 1 (x), .. ., A,,+ 1(x), cr(x)} such that O; ~ T;p; and q ~ k 

(since all derivations via R are finitely failed with length ~ k) we find that r</p</ = L 

Because Pq is consistent for all q:,;:; k we have rq = 1-. 

Therefore, all derivations for Pu{~A 1 (x), .. .,A,,(x), a(x)} are finitely failed 

with length~ k, hence Pu { ~A 1 (x), ... , A,i(x), a(x)} has an ff-tree with depth~ k. 

Now by induction. D 

Lemma 5.7 is easy to prove. Note that in Lemma 5.8, u needs to be ground (see 

also [ 12]). 

Theorem 5.9. lf A 1 (u), ... , A,,(u) E CT P l k for some complete terms u E u(x), then 

there exists a ground specification p(x,y):s;IT(x) such that for (v,w)Ep(x,y), 

A 1 ( v), ... , A" ( v) E CT P l k. 

Proof. By induction on k. Assume u E <T(x), for some specification u. 

(k = 0): Immediately, since any ground p:,;:; IT suffices. 

(k + 1): Suppose A 1 (u ), ... , A 11 ( u) E CT P l k + 1 then by the definition of CT P there 

exist clauses A; (y;) ~ B; ( y;), ... , B~( y;) E P for all i ~ n, such that with p; (x, y;) = 
mcu({A;(x), A;(y;)}), p=p 1 • • • p 11 is consistent. Clearly, o-p(x,y1 , ••• ,yn) is con­

sistent as well. Writing y = y 1 , ••• , y 11 there exist v = v 1 , ••• , vn such that ( u, v) E 

up(x, y) and for all i ~ n: B\ ( v;), ... , B~( v;) E CT P l k. It follows by induction that 

there exists a ground specification r(x, y, z) ~ crp (x, y) such that for ( w, w', w") E 

T(x, y ): B; (w'), ... , B'.1( w') E CT P l k. Since p:,;:; p; we have A;( w) =A; ( w') and there­

fore A 1(w),. . .,Adw)ECTplk+l, by definition of CTp. Since ap~cr we find 

T ~ o-p :,;:; O". D 

Theorem 5.10. If o-(x) is ground and ( ~A 1 (x), ... , An(x), a(x)) has an ff-tree with 

depth ~ k, then for some i :,;:; n 

Vu. (uE cr(x)=}A;(u)eCTplk). 
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Proof. By induction on k. 
(k = 1): Directly by Lemma 5.5. 
(k+l): Suppose A;(u)ECTp!k+l, for uEu, then there is a clause A(y)<f­

B1 (y ), ... , Bq(y) E P such that p(x, y) = mcu( {A;(x), A(y)}) is consistent and for 
some v: (u, v)Ep and B 1(v), ... ,Bq(v)ECTp!k (see Lemma 5.5). Clearly ap is 
consistent and (u, v) E up(x, y). Then, by Theorem 5.9 it follows that there is some 
ground specification T(x, y, z)::;;;; ap(x, y) such that: B1(v'), ... , Bq(v') E CT P ! k for 
all ( u', v', w') ET. Since T is ground, it follows by induction that ( <f-81 (y ), ... , Bq(Y ), 
T(x, y, z)) has no ff-tree with depth :o;;;k, hence Pu ( +-A;(x), T(x, y, z)) has no ff-tree 
with depth ::;;;; k + 1. Since T ~a and both T and a are ground, it follows that T = x u. 
Hence Pu(<f-A;(x), u(x)) has no ff-tree with depth :o;;;k+l. 

Thus, we have proved that if A;(u)ECTp!k+l, then Pu(+-A;(x), u) has no 
ff-tree with depth :o;;;k+l. Suppose for aJl l:o;;;i~n, Pu(<f-A;(x), u) has no ff-tree 
with depth ~k+ 1, then it follows by Lemma 5.8 that Pu ( +-A 1(x), ... , An(x), a(x)) 
has no such ff-tree. D 

Corollary 5.11. If (+-A(x), u(x)) has an ff-tree with depth ~k. then 

Vu. (u E O'(X)=?A(u) e CT p! k). 

Note, that in Corollary 5.11, O'(x) does not need to be ground. Its proof follows 
from the last three lines of the proof of Theorem 5.10. 

Clearly, from a program one cannot derive any negative formulas. As usual, we 
can consider negation as finite failure of the computation. Consider the following 
definition. 

Definition 5.12. The complete failure set, CF p, of a program P is defined by 

CFp={A(u)ECBp: there is a specification O'(x) such that uEu 
and ( +-A(x), a(x)) has an ff-tree}. 

Proposition 5.13. CF P is well-defined. 

Proof. Assume A(u) E CF P and suppose d(A(u), A 1(v)) = 0. Let u E O'(x) such that 
( +- A(x), u(x)) has an ff-tree. Since p(x, y) = mcu( {A(x ), A 1 (y )} ) is consistent, and 
(u, v) E p we find that ap(x, y) is consistent. Now it is easy to see that any derivation 
for Pu (+-A(x), u(x)) corresponds to a derivation for Pu ( +-A 1(y), ap(x, y)), hence 
Pu ( <f-A1 (y ), O'p(x, y)) has an ff-tree. Since ( u, v) E O'p(x, y ), we find A 1 ( v) E 

CFp. D 

Proposition 5.14. Suppose a 1 (x), ... , ak (x) are specifications and u are complete terms 
such that u e u 1 (x), ... , u e O'k(x), then there exists a consistent specification p(x) such 
that u E p(x) and for all 1::;;;; i...: k, pu;(x) = J.. 
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Proof.(<:;;;): Suppose A(u)ECFp then there exists a specification o-(x), such that 

uEo- and Pu(.,_A(x),o-) has an ff-tree with depth ~k, say. By Corollary 5.11 it 

follows that A(u) e CT P ! k, hence A(u) e CT P ! w. 

(2): Suppose A(u) e CT P ! w then A(u) e CT P ! k, for some k E w, and so by 

Lemma 5.6 there is no infinite fair derivation ( G;(x, Y; ), p;(x, y;)) ;u., for Pu 

{+-A(x), 0}, such that for all i: 3v;. (u, v;)Ep;. Now, let R be a fair c-rule and let T 

be the CSLD-tree for Pu ( +-A(x), 0) with c-rule R. Delete from Tall successors 

of nodes ( G(x, y ), o-(x, y)) for which for all v: ( u, v) ea-. Clearly, the remaining tree 

T' is finite, since otherwise there would be an infinite derivation as mentioned above. 

Moreover, T cannot contain any success branches with last node (0, e) such that 

for some v: (u, v) Ee; otherwise byTheorem4.17, A(u) E CT p! w which is impossible 

since CT P j w s;;: CT P ! k. Therefore in all the leaves ( G'(x, y), O'(x, y)) of T', we have 
that for all v: ( u, v) e e'. Since T' has only finitely many leaves, by Proposition 5.14, 

there exists a specification p ( x, y) such that for some v: ( u, v) E p and for all leaves 

( G'(x, y ), e'(x, y)) of T', pe' = l.. Thus, ( +-A(x ), p (x, y)) has an ff-tree and for some 

V: ( u, V) E p. 0 

Theorem 5.15 can be considered as a corollary from results in [10]. It turns out 

that programs with CSLD-resolution have the nice property that the greatest fixed 

point of CT P is precisely the set of all non-failing (complete) atoms. Furthermore 

we found, that the complete success set is lfp( CT P ), so both sets can be described 

in terms of fixed points of CT P· Therefore we have reason to believe that CSLD­

semantics for logic programs may have a few nice properties extra that do not exist 

in "classical" SLD-semantics. 

Definition 5.16. The completion, comp( P), of a program P consists of the equational 

theory Eq(P), together with the set of all formulas 

'ix. p(x) ~ (3y. o-1 (x, y) A BUY) 11 • · • A Bk( y)) v · · · 

v (3y. o-,,(x, y) 11B;'(y)11···11 BZ(y)) 

corresponding to the collection of all clauses 

A I ( y) +- B: ( y)' ... ' B 1( y)' ... ' A,, ( y) +- B ;' ( y)' ... ' B z ( y) 

in P, such that a;(x, y) =mcu({p(x), A;(y)}) and p is a predicate symbol. 

Theorem 5.17 (soundness of the negation as failure rule) 

( .,_A,(x), ... , A,,(x), a-) has an ff-tree~comp(P) F= 'v'(u""' r(A 1 A···11 A,,)). 

Proof. Suppose (+-A 1(x), ... , A,,(x), a(x)) has an ff-tree with depth ~k via c-rule 

R, say. Now by induction on k. 
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(k=l): Suppose R(~A1(x), ... ,An(x))=Ai(x), P has clauses C.(y.)~ 
. . J J 

B~(yj), ... , B~(yj) and define pj(x, yj) = mcu( {Ai(x), Cj(yj)}). Clearly for all j-:;;,. n, 
upj(x, yj) is inconsistent and hence Eq(P) I= V(u~-ipj) for all j. Therefore 
comp(P) I= V(u ~-,Ai) and hence comp(P) I= V(u ~ 1(A1 /\ • • ·/\An)). 

(k + 1): Suppose for some j, upj(x, yj) is consistent. Then, for every such index j 
it follows that 

( ~ A1 (x), . .. , Ai-I (x), B{( }';), ... , B~( yj), A;+ 1 (x ), ... , An(x), upj(x, yj)) 

has an ff-tree with depth -:;;;,. k. Hence for all j-:;;,. n, 

comp(P) I= V(upj ~ 1(A1 fl • • • fl A;_ 1 fl B{ fl • • · /\ B~ /\ Ai+ 1 /\ • • • 11 An)). 

Since 

comp(P) I= 'Vx. (A;(x)~3y1 • (p1 /\ s: /\ · · · fl B!) v · · · v 3yn. (pn /\ B~ /\ · · · /\ B;)) 

it easily follows that comp(P) I= V(u~ 1(A 1 /\···/\An)), for all j-:;;,. n. D 

Theorem 5.17 is a strengthening of a similar theorem from [8] by weakening the 
equality theory. 

Lemma 5.18. JJ, s;; CB Pisa mode/for comp(P) if and only if JJ, is a fixed point of CT P· 

Theorem 5.19 (completeness of the negation as failure rule). Suppose R is a fair 

computation rule, i.e. every subgoal is selected in a finite number of steps. Then 

comp(P)l=V(u~1(A 1 f1· • ·f1An))~Pu(~A 1 (x),. .. ,An(x),a) has an ff-tree 
via R. 

Proof. Suppose (~A 1 (x), ... , An(x), u0 ) does not have a finitely failed CSLD-tree. 
It is proved that gfp(CT p) I= comp(P) u {3(A 1 /\ • ··/\An/\ a 0 )}. Let R be a fair 
computation rule. Suppose ( G;, u;(x, y;)) iEw is a non-failed CS LO-derivation for 
Pu(~A 1 (x), ... ,An(x),u0 ) via R. Define l;(x,y1,y2 , ••• )=LJ;Ewu;(x,y;). Since 
Lu Eq(P) is finitely satisfiable it follows from the compactness theorem that 
Lu Eq(P) has a model. Then, by Theorem 3.16, 2: is satisfiable in every complete 
Herbrand model and hence gfp( CT p) u 2: is satisfiable. Let u be such that 2: [x/ u] 
is satisfiable in gfp{ CT P ). Then for all i, u;[x/ u] is satisfiable, and hence there exist 
V; such that for all i, ( u, V;) E a;(x, Yi). Especially we find that u E u 0(x ). Since R 

is fair it follows from Theorem 5.6 that A 1(u),. . ., An(u) E CT P ! k for all k, 

hence A 1(u),. . ., An(u) E CT p!w and therefore A 1(u),. . ., An(u) E gfp(CT p), 
since CTp!w=gfp(CTp). By Lemma 5.18 we have gfp(CTp)l=comp(P), so 
gfp(CT p) I= comp(P) u {3(A 1 /\···/\An/\ a 0)}. D 

Theorem 5.19 is an immediate consequence of the corresponding theorem in [8]. 
Its proof is much simpler than the proof in [12] for SLD-resolution, due to the fact 
that the model gfp(CT p) is a complete Herbrand model. In the case of SLD­
resolution, a completeness theorem for negation as failure was proved in [9] and 
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[15] by constructing a model for comp(P) u {3(A 1 11···11An11 CTo)} which is not a 
Herbrand model. This serious complication in the proof is overcome by the fact 
that CT Pi w = gfp( CT P) (for other interpretations of fixed points see for instance 
[11)). 

We have the following corollary which cannot be obtained in ordinary SLD­
semantics. 

Corollary 5.20. comp(P) u {A 11 CT} has a complete Herbrand model iff it has a model. 
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