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Abstract. By a novel argument we prove the completeness of (ground) resolution. The argument 
allows us to give the completeness proofs for various strategies of resolution in a uniform way, 
thus contributing to the insight into these strategies. For example, our exposition shows how the 
more efficient strategies can be derived from an analysis of the redundancies in the completeness 
proofs. Moreover, by using Zorn's Lemma in dealing with infinite sets of ground clauses, we 
obtain completeness proofs which are completely independent of the cardinality of both the 
language and the set of clauses. We discuss the set theoretic status of these results. 

1. Preliminaries 

1.1. Logic 

Let .2 ={pa I a EA}, with A some index set, be a set of propositional atoms. We 
do not make any assumption about the cardinality of .2. A literal is an atom or the 
negation of an atom. Literals Pa and 1p0 are called complementary (Pa is called 
positive, 'Pa negative). If L is a literal, then its complement is denoted by [. The 
set of all literals will be denoted by .2it. An interpretation is a subset I of .2, 
corresponding to the truth valuation "1!1 (Pa)= TRUE if Pa E J, and FALSE otherwise. 
A clause is a finite set of literals, which should be thought of as the disjunction of 
these literals. 

Truth of a literal L (respectively a clause C) in an interpretation J, denoted by 
I I= L (respectively I I= C), is defined as follows: 

JI= Pu iff Pa E /, 

I I= 'Pa iff Pa e I, 

/l={L 1 , ••• ,L,,} (n;;.,O) iff Jl=L; for some I,,;;j,,;;n. 

* The material for this article has been taken from the PRISMA document P346. The research is part 
of the PRlSMA project (PaRallel Inference and Storage MAchine), a joint effort with Philips Research 
Eindhoven, partially supported by the Dutch "Stimulerings-projectteam Informatica-onderzoek" (SPIN). 
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Note that the empty clause is false in any interpretation. The truth set (respectively 
falsity set) of an interpretation I is defined as :J(J) = {LE: :::fit I IF= L} (respectively 
§(/)={LE Y'itl not II= L} = 2'it-:J(l)). Note that neither :J(l) nor :i'(J) contains 
complementary literals, and that both contain an occurrence, positive or negative, 
of every Pa c<J:. For a set of clauses S we define S.;-( I) = { C E: S 1 IF= C} and S." (I) = 
S - S, 1 ( !). A set of clauses S is called satisfiable if there exists an interpretation I 
in which every clause from S is true. Such an interpretation I is called a model of 
S (or a model for S). 

1.2. Tran.~finite induction 

Let < be a well-founded partial ordering on a set S (i.e. < is an irreflexive, 
transitive relation on S such that every descending sequence is finite). The principle 
of tran.~finite induction with respect to < states that if some property P of elements 
of S is progressive, then it holds for every element of S. Here progressivity of P 
means that P(x) is implied by Vy< x P(y ), for all x E: S. The validity of this principle 
of proof, formally requiring an application of the Axiom of Choice, is intuitively 
obvious. For, assume P is progressive and 1 P( Xo) for some x0 E: S (towards a 
contradiction). Then there exists x 1 < x0 with 1 P(x1 ). Iteration of this argument 
yields an infinite descending sequence, which contradicts the well-foundedness of 
<. It should be noted that we do not use at all the full proof theoretic strength of 
transfinite induction. This strength can be measured by assigning ordinals to elements 
of Sin the usual way: llxll=sup{llYll+lly<x} (with sup0=0). We only use 
transfinite induction with respect to orderings having the property that llxll < w (the 
order type of the natural numbers) for all x E S. Whether one prefers transfinite 
induction or induction on the natural number llxll (or even an informal argument 
in which the induction is not explicit) appears to be a matter of taste. However, for 
the purpose of unifying completeness proofs of various strategies of resolution and 
analyzing their differences, transfinite induction suits best. 

1.3. Zorn's Lemma 

Let c be a partial ordering on a set S. A chain in S is a totally ordered subset 
of S (i.e. satisfying the trichotomy axiom). Zorn's Lemma states that S contains a 
maximal (minimal) element, provided that every chain in S has an upper (lower) 
bound in S. Zorn's Lemma is known to be one of the most practical equivalents of 
the Axiom of Choice (see [3]). We use it in dealing with infinite sets of clauses. 

1.4. Zermelo's Well Ordering Theorem 

A well ordering of a set S is an ordering such that every non-empty subset of S 
has a smallest element. The Well Ordering Theorem of Zermelo (see [3]) states that 
every set can be well ordered. The Well Ordering Theorem is equivalent to the 
Axiom of Choice; we use it to ensure the possibility of ordered hyperresolution for 
all Y:'. 
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1.5. Resolution 

Resolution is the rule according to which a resolvent R = ( C -{ L}) u ( C' --{ [}) 
may be inferred from parent clauses C and C', containing literals L and f, respec
tively, and satisfying the requirements of the strategy. A strategy is, intuitively 
speaking, a prescription telling which clauses may be resolved. For example, we 
can require that one of the parent clauses consists entirely of positive literals. For 
some strategies this prescription may extend over more than one inference. For our 
exposition this informal notion of strategy suffices. 

A derivation (relative to a strategy) of a clause C from a set of clauses S is a 
sequence of clauses C 1 , ••• , C,, such that C,, = C and, for all 1 ,,s; k.,,; n, either Ci. is 
in S or Ck is a resolvent of some C, and C; with l ,,s; i,j < k, provided that Ck may 
be inferred from C; and Ci according to the strategy. For some strategies the notion 
of derivation has to be generalized by allowing c. to be inferred from C,,, ... , C,,, 
with I ,,s; i 1 , ••• , i; < k,j ~ 2, instead of just from C; and C;. 

Resolution can easily be proved sound, i.e. for any interpretation /, resolution 
preserves truth in I. For, at least one of two true parent clauses must contain a true 
literal different from the two complementary literals which are resolved out. In 
particular satisfiability is preserved when resolvents are added to a set of clauses; 
unsatisfiability is of course always preserved when a set of clauses is extended. 

Completeness of a resolution strategy is the property that from any unsatisfi.able 
set of clauses the empty clause can be derived. Completeness is usually proved as 
follows: let S be an unsatisfiable set of clauses, close S under resolution according 
to the strategy and then applying the following. 

Proposition 1.1. Every set of clauses which is closed under resolution according to the 
strategy and does not contain the empty clause is satisfiable. 

In the next section we shall prove this proposition for various resolution strategies: 
binary resolution [7], semantic resolution [ 6] (where the notion of renaming is 
introduced), P1-resolution as well as SLD-resolution [5], hyperresolution [8] and 
ordered hyperresolution [10] (where the idea of ordering the atoms is attributed to 
Reynolds and worked out in the more general setting of semantic resolution). All 
proofs will be by transfinite induction and have the following general form: first 
prove for some well-founded ordering < on S and some interpretation J that truth 
in J of clauses from S is progressive, then conclude that .I is a model for S by 
transfinite induction. 

2. Completeness 

2.1. Binary resolution 

In the case of binary resolution, no restrictions are specified and every two clauses 
containing complementary literals may be resolved. Let S be a set of clauses which 
is closed under binary resolution and does not contain the empty clause. Note that 
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we do not assume that S is finite. Fix an arbitrary interpretation I. The interpretation 
/ may informally be seen as a first try for a model of S. If this try fails (i.e. if S,1' (I) 
is not empty), then I has to be "adjusted" on literals occurring in clauses from 
S.F (I). This adjustment should not affect the truth of clauses from Sg(I). Therefore 
some "minimal" adjustment is made, yielding a model J of S. 

Let X be the set of all literals which occur in clauses from Sfffe (I) (formally 
X = U S.F (/) ). Note that X s;; fli(I) does not contain complementary literals. We 
say that a subset Y of X covers S,'l' (I) (or Y is a covering of S,'fi (I)) if every clause 
from S:'fi (/) contains at least one literal from Y. In particular X itself covers S:¥ (I), 
since S does not contain the empty clause. We shall construct a minimal (with 
respect to set inclusion) subset Y of X that covers S.1' (/). If X is finite, then Y is 
easily obtained from X by deleting elements in such a way that the resulting set 
still covers s3' (I). If x is infinite, then this process is iterated, intuitively speaking, 
in a transfinite way until eventually Y is reached: 

X 0 = X, ... , Xi+ 1 = X;-{L}, ... , Xw = n X;, Xw+1 = Xw -{L'}, ... , 
i<w 

with LEX; such that X;+ 1 covers S!f (I), and L' E Xw. ... similarly. Note that we 
tacitly assumed that, for example, Xw covers S,r. (I). As there are much more ordinals 
in the universe than elements of X, this process terminates with a minimal set 
covering S;: (I). 

This informal argument can be made rigorous by applying Zorn's Lemma. Let Z 
be the set of subsets of X that cover S,1 (I). Z is partially ordered by set inclusion. 
Existence of a minimal Y in Z is guaranteed by Zorn's Lemma if we prove that 
every chain in Z has lower bound in Z. Let Z' be a chain in Z. The set n Z' (with 
n 0 = X) is certainly a lower bound of Z', so it suffices to prove that n Z' is in Z, 
i.e. covers S:;; (I). Suppose {L 1 ,. • ., Ln} is a clause in S,;; (I) having no literal in 
common with n Z' (towards a contradiction). Then there exists for every 1:.;;; i~ n 
an element, say X;, of Z' which does not contain L;. Since Z' is a chain, the X;s 
are totally ordered. Hence some X; is a subset of all of them, and hence contains 
none of the literals L 1 , ••• , Ln. This clearly contradicts X; E Z' s;; Z by the definition 
of Z. 

Given a minimal set Y covering S!f (I) we define J to be the (unique) interpretation 
such that ~(J)nff(J)= Y (formally J={paE:t'lpaE Yv(-ipae YApaEJ)}). In 
other words: the interpretation J is such that the truth valuations "f/'1 and 'V, only 
differ on the atoms which occur, positively or negatively, in Y. Since Y is a minimal 
covering of S.·'l' (I) it follows that J is a model of S.1 (I) having the property that 
for every literal LE ff(J) which occurs in a clause from S,;; (I) there exists a clause 
in S,;;(J) in which Lis the only literal from ff(J); otherwise Y-{L} would cover 
S,;; (I). This property of J is crucial and shall be used in the proof of the lemma below. 

We now arrive at the point where the ordering < on S is defined. Let < be the 
transitive closure of the relation < 1 on S defined by 

R < 1 C iff RES is the resolvent of C ES and some C' ES,,. (I). 
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As R contains less literals from ff( I) than C (recall that U s,. ( /) s;;; ~(/)),it follows 
that < is a well-founded partial ordering. The lemma below implies that truth in J 
is progressive. It follows by transfinite induction that J is a model of s. and hence 
S is satisfiable. This completes the proof of Proposition 1.1 in the case of binary 
resolution. 

Lemma 2.1. For every C in S we have: if 'rJ R < 1 C JF== R, then JF= c. 

Proof. Let C be a clause of S such that 'r/ R < 1 CJ F= R. If C E 5 1 (I), then we 
immediately have JF= C since J is a model of S.f (I). Now assume C e S,- (I) is 
false in J (towards a contradiction), then C consists entirely of literals from ~(J). 
Since C is true in I, it follows that C contains a literal LE 5( I)("\ ~(1 ), so 
Le:¥(/) n ff(J) = Y. Now by the crucial property of J stated above there exists a 
clause C' E S·f (I) such that [is the only literal of C' which is true in J. Hence 
R = ( C -{l}) n ( C' -{[}) < 1 C and R consists entirely of literals which are false 
in J. This clearly contradicts 'rJ R < 1 CJ F= R. D 

2.2. Comparison with other completeness proofs 

The first completeness proof for ground resolution was given in [7] as a purely 
combinatorial result for finite sets of clauses. Completeness of quantified resolution 
(where literals are atoms or negated atoms of predicate logic and clauses are finite 
sets of literals, thought of as the universal closure of the disjunction of these literals) 
was obtained by, first, reduction to the finite ground case using Herbrand's Theorem, 
and then lifting the result back to the quantified level by using the so-called Lifting 
Lemma [7, 5.15]. It should be noted that the combinatorial argument from [7] 
immediately generalizes to the countable case, both with respect to the cardinality 
of the language and of the set of clauses. In fact, with an application of the Well 
Ordering Theorem, the argument can be generalized to arbitrary cardinalities. 

In [8] a completeness proof was presented which was based on a kind of minimality 
argument such as we used in Section 2.1. In [8], however, minimality was taken in 
the sense of number, thus limiting the argument to the finite case, whereas we take 
minimality in the sense of set inclusion. 

More recent completeness proofs, such as in [9], use Herbrand map trees, also 
called semantic trees, and do not appeal to Herbrand's Theorem. However, the 
Herbrand map tree argument relies on the countability of the language. 

In the previous subsection we obtained, by using Zorn's Lemma, a completeness 
proof for ground resolution which is completely independent of the cardinality of 
both the language and the set of clauses. The completeness of quantified resolution 
can now be proved as follows. Let S be an unsatisfiable set of clauses. Then the set 
ground ( S) of all variable-free instances (with respect to the language of S) of clauses 
from S is an unsatisfiable set of ground clauses, since every model of ground(S) 

would be a Herbrand model of S. So by the completeness of ground resolution the 
empty clause can be derived from ground(S). By the Lifting Lemma this derivation 
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can be lifted to a derivation of the empty clause from S by quantified resolution. 
Hence we have proved the completeness of quantified resolution independently of 
the cardinality of both the language and the set of clauses, without appealing to 
Herbrand's Theorem. Although in practice languages will be finitely generated and 
hence countable, we think that these features, combined with the uniform approach 
to various strategies of resolution, indicate the full generality of our proof and have 
an aesthetic merit. 

2.3. Redundancies 

If one takes a closer look at the argument developed in Section 2.1, then the 
following observations can be made: 
- the interpretation I on which the argument is based is arbitrary; 
- the minimal set Y covering S,, (I) may not be unique; 
- Lemma 2. l is stronger than progressivity since V R < 1 CJ f= R is weaker than 

VR<CJF=R. 
These observations reveal substantial redundancies in the completeness proof, since 
for any interpretation /, any minimal Y covering S,, (/), and even with < 1 = < a 
completeness result can be obtained. 

In general, a resolution strategy aims at reducing the costs of finding a derivation 
of the empty clause from a given unsatisfiable set of clauses S. If a strategy is 
complete, then we can simply close S under resolution according to the strategy, 
until eventually the empty clause is derived. The costs of this closing procedure 
depend on the number of generated resolvents. Thus the importance of reducing 
the number of generated resolvents becomes evident. To this end various strategies 
of resolution exploit the redundancies in the completeness proof of Section 2.1 
mentioned above: semantic resolution (with P1-resolution and SLD-resolution as 
special cases) fixes J, hyperresolution fixes I and trivializes the ordering ( "< 1 = < "), 
whereas ordered hyperresolution exploits the non-uniqueness of Y as well. We shall 
discuss these matters in the following subsections. 

2.4. Semantic resolution 

In the case of semantic resolution, an interpretation I is fixed in advance. Given 
a set of clauses S, resolution is only allowed between a clause from S.,- (I) and one 
from S., ( l ). This restriction does not at all affect the completeness proof from 
Section 2.1. Hence semantic resolution is complete. 

P,-resolution [8] is obtained as a special case of semantic resolution by taking 
I= kt Then S.,. (/) consists of the clauses from S not containing negated atoms, 
so-called positive clauses. 

SLD-resolution [5] is a rule of inference for so-called Hom clauses. A Horn clause 
is a clause with at most one positive literal. Note that the set of all Horn clauses is 
closed under binary resolution. We distinguish between program clauses (or definite 
clauses), which contain exactly one positive literal, and goal clauses, which consist 
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entirely of negated atoms. Thus the empty clause is a goal clause. SLD-resolution 
uses a selection rule, which selects from every goal clause a (negative) literal. 
Resolution is only allowed between program clauses and goal clauses, and with the 
restriction that the negation of the positive literal of the program clause is the 
selected literal of the goal clause. SLD-resolution can be viewed as semantic 
resolution with I= 5£: for a set of Horn clauses S, S;; (5£) consists of the goal clauses 
from S, and S.r (5£) of the program clauses. With some technical effort (concerning 
selection rules) the completeness of SLD-resolution can be obtained from the 
completeness of semantic resolution. We refrain from giving a detailed account on 
this point. 

As done in [10], hyperresolution as well as ordered hyperresolution (and also 
SLD-resolution) could be treated more generally in the context of semantic resolu
tion. For reasons of simplicity, however, we prefer to specialize to the case I= 0. 
Modulo renaming from [6], we do not lose generality. 

2.5. Hyperresolution 

In [8] hyperresolution was introduced as a refinement of P1-resolution. A 
hyperresolvent of a set of clauses S is a positive clause which is obtained by 
successive P 1-resolutions in a way depicted in Fig. 1. More precisely: a positive 
clause C,,+1 is called a hyperresolvent of S with parent clause C1 if n;;. 1, C1 ES, 
D; ES is positive and C;+ 1 is a P1-resolvent of C; and D;, for all 1 ~ i ~ n. 

c D1 

C1 D1 C2= v 
C2 D2 C3= v 

: v 
Cn Dn v 

Cn+I 

Fig. I. Fig. 2. 
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If we assume that S is closed under hyperresolution, then we can define a relation 
<~on S by 

R < ~ C iff RES is hyperresolvent of S with parent clause C ES. 

Since every hyperresolvent is positive and can as such not act as a parent clause of 
another hyperresolvent, it follows trivially that<~ is a well-founded partial ordering. 
As <~ equals its transitive closure <h we shall drop the subscript. 

In order to compare < 1' with < we assume for the time of this paragraph that S 
is closed under P1-resolution, which implies closure under hyperresolution. We then 
have 

R < 1' C iff R < C and R is positive. 

Since positive clauses are <-minimal we can view <h as "cutting short" <. 
Let S be a set of clauses which is closed under hyperresolution and does not 

contain the empty clause. The argument that S is satisfiable is again similar to that 
given in Section 2.1, taking /=0, <t1 J instead of <(I), reading "hyperresolution" 
for "resolution", and so on. Only the proof of the progressivity of truth in the 
interpretation J needs some more attention. 

Lemma 2.2. Under conditions as above we have for every C in S: if\;/ R < h CJ I= R, 
then JI= C. 

Proof. Let C be a clause of S such that \;/ R <h CJ I= R. If C E S,10 (0) (i.e. C is 
positive), then we immediately have JI= C since J is a model of 5;10 (0). Now assume 
C E S.r (0) is false in J, i.e. C consists entirely of literals which are false in J (towards 
a contradiction). Let L 1 , ••• , Ln (n > O) be the negative literals of C (here we deviate 
from Section 2.1 if n > 1 ). We have Li. . .. , Ln E .o/(0) n ~(J), so Li. . .. , [n E ~(0) n 
f!/(J) = Y. It follows by the minimality of Y that there exist D 1 , ••• , Dn ES,¥ (0) 
(i.e. positive clauses) such that l; is the only literal of D; which is true in J (I.,;; i:;;;; n ). 
Hence the hyperresolvent R of S with parent clause C, obtained as in Fig. 2, consists 
entirely of literals which are false in J. This contradicts \;/ R < 1' CJ I= R. O 

2.6. Ordered hyperresolution 

In the case of ordered hyperresolution (see [10]), we rely on the Well Ordering 
Theorem for the existence of a well-ordering on 2. Recall Fig. 1 and assume 
ci+ I = ( C; - {'Pa)) u (D; - {Pa,}) for 1:;;;; i:;;;; n. For Cn+ I to be an ordered hyperresol
vent we require Pa, to be the maximal atom of D;, for all 1:;;;; i.,;; n. Note that in a 
well-ordering every finite set indeed has a maximum. 

Ordered hyperresolution is seen to be complete in the same way as hyperresolution. 
The restriction upon the Pa,s has the effect that the deletion process in Section 2.1 
should be modified as follows. Instead of starting with a covering set X = U S.'lfi (0) 
we start with X 0 ={PalPa is the maximal atom ofa clause in S:lfi(0)}. Furthermore, 
the deletion process should be such that the minimal atom Pa EX°' such that Xa -{pa} 



Completeness of resolution 235 

covers s!ffe (0) is deleted. So we have formally X.,+1 = x" -{min{pa I Pa Ex"' and 
X"' -{pa} covers S:ffe (0)}} for all ordinals a for which X"' is not a minimal covering. 
Note that in a well-ordering such minimal atoms do always exist. Thus a minimal 
set Y covering S.¥ (0) is obtained, having the property that for every Pa E Y there 
exists a clause in S,'?' (0) in which Pa is the maximum and the only literal from Y. 
For, there exist clauses in SS' (0) in which Pa is the only literal from Y (otherwise 
Y would not be a minimal covering). Assume all such clauses have a maximum 
greater than Pa (towards a contradiction). Before deletion of one of these maxima, 
deletion of Pa would also result in a set which still covers S;y; (0). But then the 
deletion of the first of these maxima would be contrary to the definition of the 
deletion process, since Pa is smaller than the deleted literal. By this contradiction 
we have proved the desired property of the minimal covering Y. 

2. 7. The role of the Axiom of Choice 

One may ask in how far the Axiom of Choice is really necessary for the complete
ness of resolution. Let us first give simple and intuitive evidence that at least some 
weak form of the Axiom of Choice is necessary. Consider a collection cg = 
{{pa, qa} I a EA} of pairwise disjoint sets of two indistinguishable elements. A choice 
function for Cff is a function on A such that f(a) E {pa, q0 } for all a EA. Let S be 
the set consisting of clauses {pa, qa} and {fta, q0 } for every a EA. In fact S consists 
of the clausal forms of p0~1qa (a EA). The closure of S under resolution does 
not contain the empty clause: it is simply S itself plus tautologies {p0 , ji0 }, {q0 , q0 } 

for all a EA. By (the contraposition of) the completeness of resolution it follows 
that S must be satisfiable, i.e. has a model. But every model of S constitutes a choice 
function for Cff. So we have proved a special case of the Axiom of Choice, which 
is unprovable in set theory (see [ 4, Theorem 5.20]). The argument above can easily 
be extended to a proof of the so-called Axiom of Choice for Finite Sets [ 4, p. 107). 
Note that the argument above requires clauses {pa, q0 } which are not Horn clauses. 

For establishing the precise set theoretic status of the completeness of resolution 
we recall that the Compactness Theorem is a well-known (weak) consequence of 
the Axiom of Choice, equivalent to, e.g. the Prime Ideal Theorem for Boolean 
Algebras (see [ 4, Theorem 2.2] ). The completeness of resolution immediately implies 
(and in fact is equivalent to) the following version of the Compactness Theorem. 

Theorem 2.3. Every unsatisfiable set of clauses has a finite subset which is unsatisfiable. 

By the language restriction to clauses we have to exercise some care in applying 
[ 4, Theorem 2.2]: in predicate logic reduction to clausal form involves skolemization, 
which relies on the Axiom of Choice (see [l, footnote 8]). In the propositional case, 
however, the reduction simply consists of taking conjunctive normal forms. Inspec
tion of the proof of Theorem 2.2 from [ 4] tells us that the use of predicate logic 
there is completely harmless. In fact this proof could be given using propositional 
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logic only. Note that this proof involves clauses which are not Horn clauses, namely 

I ( u) v I (- u), or { p,,, p _,,} as clauses in our propositional language. 

In the previous paragraphs we gave two hints that the restriction to Horn clauses 

might affect the set theoretic status of the completeness results. Indeed the complete

ness of resolution for Horn clauses can be proved in the following elementary way. 

(It does not make sense to consider SLD-resolution in this respect, since the selection 

function already presupposes a choice function on the set of non-empty goal clauses.) 

Let S be a set of Horn clauses which is closed under resolution and does not contain 

the empty clause. Then S, (0) consists entirely of clauses consisting of one single 

atom. These atoms form a minimal covering of S.; (0) and hence a model of S. The 

set theoretic effect of the restriction to Horn clauses nicely corresponds to the 

complexity theoretic facts that the satisfiability problem for finite sets of clauses is 

NP-complete (see [2]), whereas the same problem for Horn clauses can easily be 

seen to be in the complexity class P. 
Another interesting special case that we can consider is the case in which the 

language is countable. Then the set of all clauses is also countable. The completeness 

of resolution can then be proved without any appeal to the Axiom of Choice. The 

easiest way to see this is to inspect the proof of the completeness of ordered 

hyperresolution in Section 2.6. A countable language can trivially be well-ordered, 

without appealing to the Well Ordering Theorem, by using the enumeration as 

ordering. The minimal covering is then constructed in at most w steps of the deletion 
process described in Section 2.1, which is made completely deterministic by the 

modifications from Section 2.6. This observation explains why the Herbrand map 

tree argument in [9], where the language is countable, does not appeal to the Axiom 

of Choice, nor to Herbrand's Theorem or the Compactness Theorem. 
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