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Abstract 

De Boer, F.S., J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, Theoretical Computer Science 101 
( 1992) 239-263. 

The main purpose of the paper is to relate different models for Horn clause logic: operational, 

denotational, declarative. We study their relationship by contrasting models based on interleaving, 

on the one hand, to models based on maximal parallelism, on the other. We make use of complete 

metric spaces as an important mathematical tool, both in defining and in comparing the various 
models. 

1. Introduction 

The most basic example of a (parallel) logic programming language is Horn 

Clause Logic (HCL). An HCL program is a finite set of definite clauses of the form 

H ~ B, where H is an atom and ii is a finite sequence of atoms. We shall introduce 
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three different types of models for HCL: operational, denotational and declarative. 
The first and the latter were already introduced elsewhere (see below). In addition 
to the definition of two denotational models for HCL, the contribution of this paper 
consists of a systematic comparison of the different models. In particular, we shall 
establish a precise relationship between the denotational and the declarative models. 
Although we have been recently investigating various models for more advanced 
parallel logic languages like G HC and Parlog [ 4, 5], which contain constructs such 
as the commit operator and annotations for communication, it is necessary to 
understand the precise relationship of these models first at the basic level of HCL. 

I. I. The operational models 

We shall consider two operational models, which are both based on a transition 
system (in the so-called SOS style [10]). The first one, called OFI (FI for fair 
interleaving), corresponds to the standard (sequential) operational semantics of 
HCL based on SLD resolution (like in [15, 12]); it uses a fair derivation rule 
(reduction from left to right) in order to model also failure behavior. From OF1 we 
can deduce the three sets that are classically used to describe the operational behavior 
of an HCL program: the success set, the finite failure set, and the infinite failure set. 

The second operational semantics, OMI» models maximal parallelism; the deriva
tion rule used here amounts to executing in parallel one resolution step for each 
atom in a goal. (In this way, fairness is automatically ensured.) Then a goal, consisting 
of several atoms, can do one step by composing all local substitutions of the 
individual atoms in parallel by means of a parallel composition operator S for 
substitutions (introduced in [13]). It has two effects: it tests whether these substitu
tions are mutually compatible and, if so, it takes the union of all the bindings. This 
model is of interest because it could serve as a basis for a parallel implementation 
of HCL based languages; furthermore, it can be seen as a starting point for the 
formalization of additional features such as atomic unification ( cf. [ 14 ]). Technically, 
O'MP (or, more precisely, the denotational model corresponding to it) will play a 
role as an intermediate in establishing the correspondence between O'F1 and the 
declarative model, to be presented in a minute. 

For both operational models, we shall introduce corresponding denotational 
models. Their main characteristic is compositionality: the meaning of the conjunction 
of two goals will be computed by composing the meanings of the separate goals. 
(Note that we do not study compositionality with respect to the union of programs; 
this we consider to be a separate issue.) 

1.2. The denotational models 

In order to be compositional, the denotational models are considerably more 
complicated than their operational counterparts. This is mainly due to the difficulty 
of describing failure behavior in a compositional manner. The denotational model 
corresponding to OF1 will be called fl!r 1• In order to allow for the definition of an 
operator for parallel composition, corresponding to the conjunction of goals, the 
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codomain of this model (also called its semantic universe) will be more complicated 

than the operational one. Both for ~)f- 1 and (1"MP it suffices to consider sets of sequences 

(or words) of substitutions. Here, we need sets of sequences (or vectors) of sequences 

(or words) of pairs of substitutions. We shall prove the correctness of 0:n with 

respect to Of'1 by showing that the latter equals the composition of an abstraction 
operation with the former. 

Next a second denotational model, called f0Mp, is introduced, which equals the 
operational semantics OMP· Its semantic universe is the same as the one of CJ'~1 p, 
which is simpler than that of G1F 1 • The semantic operator for the parallel composition 

(conjunction) of two goals is the operator~ described above, but now extended to 
sets of sequences of substitutions. 

1.3. The declarative model 

The third type of model we describe is the declarative semantics. We recall the 

definition of the declarative semantics Qiu as introduced in (9]. The term declarative 

means that the program is seen as a set of first-order formulas and that the semantics 

is intended in the model-theoretic sense, i.e., characterizing the set of logical 

consequences of the program. This semantics is obtained as the least fixed-point of 

a continuous transformation Ton the interpretations of the program, the so-called 

immediate consequence operator. An important distinction between the denotational 

models above and the declarative semantics is that the latter describes the success 

set only, whereas the denotational semantics additionally model (finite and infinite) 

failure. The first declarative semantics for HCL was proposed by van Emden and 

Kowalski in [ 15] (see also [ 12]). In their approach, interpretations are sets of ground 

atoms and the least fixed-point, which is equivalent to the least Herbrand model of 

the program, characterizes the validity of the ground atoms only. The construction 

in [9] extends this approach in that interpretations may also contain non-ground 

atoms. Therefore 0Ju can also express the validity of so-called generic atoms, i.e., 

atoms of the form p(x). 

1.4. The mathematical tools 

We work mainly in the framework of complete metric spaces, in which we follow 

the tradition initiated by De Bakker and Zucker in [3]. The metric approach is 

particularly useful in those situations where (sets of) sets of sequences occur, since 

these can be supplied with a standard metric. This is the case in the operational 

and (all but one) denotational models, since they describe in addition to success 

behavior also (finite and infinite) failure behavior, for which the use of sequences 

seems natural. The metric structure of our semantic universa is exploited in two 

ways: first, it enables us to introduce both our models and our semantic operators 

as the (by Banach's theorem) unique fixed-points of so-called contractions. Secondly, 

this uniqueness implies that in order to prove the equality of two models, it is 

sufficient to show that they are both a fixed-point of the same contraction. It is in 

particular this second point that distinguishes between the metric and the more 
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usual partial order (or lattice) approach: a continuous operator on a complete partial 
order has a (least) fixed-point but may have more than one. Therefore it is there 
more involved to prove such equalities ( cf. [ 6 ]. ) We shall use ordered structures in 
those cases where we want to describe only success behavior, such as the declarative 
semantics. 

1.5. Comparing the models 

After that we have introduced all these models, we shall make a precise and 
complete comparison. The two operational models are related to the corresponding 
two denotational models, as just mentioned. The main result of the paper consists 
in establishing a connection between the first denotational model, 0JFI, and the 
declarative model <!tu. This is done in two steps. 

First we shall relate 9LJH and <ftMP· To this end, an intermediate denotational 
model .1' is introduced, to which both will then be related. Secondly-and this is 
the more difficult part-<!tMr and 9Llec are compared. Again an intermediate denota
tional semantics, called files (CS for computed substitutions) is introduced. It is 
essentially a model for maximal parallelism, like 0JM 1,, but does not deliver sets of 
sequences of substitutions, but sets of single substitutions only. As a consequence, 
it only models success behavior. The relationship between 0JMP and 0!cs is fairly 
easy; the only technical problem is that the first model is defined as the fixed-point 
of a contraction on a complete metric space, whereas the latter is given as the least 
fixed-point of a continuous function on a complete lattice. Finally, 0!cs and f'!J)u 

are related. Although their connection is intuitively obvious, it takes some (technical) 
effort to make this precise. 

At the end of our paper, we mention some consequences that can be deduced 
from the various relations between the different models. The most important of 
these is that we can easily establish a proof of the soundness and completeness of 
the declarative semantics with respect to the success set (which was derived from 
t'Jf.i)· In this way, we find a fairly transparent alternative to the equivalence proof 
given in [9], the latter being quite complicated. The main problem is the contrast 
between the bottom-up and (maximally) parallel nature of the declarative semantics 
and the top-down and interleaving nature of the operational semantics. The inter
mediate models that we have introduced above allow for a decomposition of this 
proof into several steps, and thus give some insight into the contrasting concepts 
involved. 

2. Mathematical preliminaries 

We assume the following notions to be known: complete metric space, continuous 
function on a metric space, compact subset of a metric space. (The reader might 
consult, e.g., [7].) We shall also use the following notions from order theory: 
complete partial order (CPOJ, complete lattice, continuous function on a CPO. 
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. Let ( M 1, di) and ( M 2 , d2 ) be two complete metric spaces. A function f: M 1 --. M2 

is called nonexpansive if for all x, y E M 1 

d1Cf(x ),f(y)) ~ d 1 (x, y ). 

It is called contracting (or a contraction) if there exists i: E [O, 1) such that for all 

x,yEM1 

d1Cf(x),f(y)) ~ £· d1(X, y). 

Nonexpansive and contracting functions are continuous. The following fact is known 

as Banach's Theorem: let (M, d) be a complete metric space and f: M--> M a 

contraction. Then f has a unique fixed point, that is, there exists a unique x E M 

such that f(x) = x. 

The set M1--+ M1 is the set of all functions from M1 to M 2 • It can be turned into 

a complete metric space by taking as a metric 

dCf1 J2) =sup {d2Cf1 (x),f~(x))} 
xc M 1 

(all our metrics will have [O, l] as their range). Let 

o/'ncoCM) = {X: X s; MAX is nonempty and compact}. 

We can turn o/' ncoC M) into a complete metric space by defining a metric dH, called 

the Hausdorff distance induced by d (the metric on M), as follows: For every 

X, y E [JJn~o( M) 

dH(X, Y) = max{sup{d(x, Y)}, sup{d(y, X)}} 
xc )( \'L )' 

where d (x, Z) = infzcZ{ d (x, z )} for every Z c M, x E M. 

We shall often use the following notation: we write (x, y E) X when introducing 

a set X with typical elements x and y. 

A typical example of a complete metric space that we shall often use is the set 

( w 1 , w 2 E) Ax =A* u A'" of all finite and infinite words over an alphabet A, supplied 

with a metric d given by 

where w(k) denotes the prefix of the word w of length k. We denote the usual 

concatenation of two words by w1 • w2 • 

3. The language HCL 

We only give an informal introduction to the language HCL. For further details 

we refer to [12, 1]. 

The sets Term of terms, (A, B, HE) Atom of atomic formulas (or atoms), and 

( (}, <T, y E) Subset of substitutions are defined as usual. Elementary atoms (EA tom) 

are of the form p(x), where p is a predicate and x is a tuple of distinct variables. 

A definite clause is a construct of the form H ~ B1 , ••• , B,, (n ""O), where H and 
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each B; is an atom; H is called the head and B1 , ••• , B11 (also denoted by ii) the 
body of this clause. An HCL program W is a finite set of definite clauses. A goal 
statement (or goal) is a construct of the form r A 1 , ••• , A,, (n:;,, 0), where each A; 
is an atom. If n > 0 we denote r A1 , ••• , A11 also by r A. If n = 0 we have the 
so-called empty goal, and we write o. The set of all goals is denoted by Goal. 

We have the usual notion of most general unifier of two atoms A and H, denoted 
by mgu(A, H). For the composition of two substitutions we write 0 1 01 . For technical 
convenience, we shall throughout this paper consider only idempotent substitutions, 
i.e., satisfying ()0 =()(see [13] for some discussion on ths point). The set of variables 
occurring in the atom A is indicated by Var(A). For an atom A and a substitution 
() we write e1A for the restriction of() to Var(A). The empty substitution is denoted 
by E. 

The classical operational semantics of HCL programs is based on the notion of 
refutation. Let G = r A 1 , ••• , Am be a goal and let H r 8 1 , ••• , B,, be a (properly 
renamed variant of a) clause in the program W. Assume that A; and H are unifiable 
with most general unifier e. Then the goal 

is derivable from G by one resolution step. A repeated application of such a 
resolution step is called a derivation. A derivation is successful (and called a 
refutation) if it ends with the empty goal D; it is failing if no further reductions are 
possible while the empty goal has not been reached; and it is infinite otherwise. A 
selection rule is a function that gives for each goal the atom to be reduced. 
A derivation according to a certain selection rule is called an SLD-derivation. A 
selection rule is fair if and only if all the atoms in all the possible goals generated 
in SLD-derivations are eventually selected. Classically, the (operational) semantics 
of an HCL program is defined by three sets: 
• the success set ( Oss), containing all the atoms that have a refutation, instantiated 

by the last substitution (the so-called computed answer substitution); 
• the finite failure set ( OFFs), containing all the atoms for which all the fair 

SLD-derivations are failing (see [2]); 
• the infinite failure set ( 01Fs), containing all atoms, for which there are no successful 

derivations and there is at least one fair infinite derivation. 
The notion of success set given above is not completely satisfactory for characterizing 
the operational behavior of a logic program. In this paper, we use a different notion 
of success set: we take the one introduced in [8, 9], which contains all the elementary 
atoms that have a refutation, instantiated by the computed answer substitution (see 
the next section and the one on the declarative semantics). 

4. Operational semantics 

We present two operational semantics for HCL, both based on a labelled transition 
system (in the style of [ 10) ). The first one models interleaving and uses a breath-first 
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selection rule which is fair. The second operational semantics, in which all the atoms 

occurring in a goal are reduced at the same time, describes maximal parallelism. 

Throughout the rest of this paper, we assume the program W to be fixed. 

4.1. Interleaving 

First we introduce a labelled transition system for fair interleaving, on which our 
first operational semantics will be based. 

Definition 4.1. Let (Goal, Subst, _,.) be the labelled transition system, whose transi

tion relation __., s;; Goal x Subst x Goal is defined as the smallest relation satisfying 
the following axiom: 

--A,A ~ .... f\e, Be. 

(As usual, we write .... A~ .... B rather than ( .... A, e, .... B) E---...) Here e = 

mgu(A, H) and H..,. Bis a clause of W. We assume this clause to be renamed such 
that A, A and H have no variables in common. 

Note that in the above axiom, a breath-first selection rule is used. In this way, 

fairness is automatically ensured. This left-to-right strategy does not impose any 

restrictions; we still get all possible fair behaviors. This can be proved by making 

use of the so-called switching (or square) lemma (see [ 12]). Another feature of the 

above transition system is the fact that the computed substitution (above the arrow) 

is applied to the goal at the right of the arrow. This ensures that all subsequently 

computed substitutions will be consistent with (i.e., extensions of) the current one. 

Based on this transition system we define an operational semantics V\_,: Goal_,. 

PsT, which associates with a goal a set of sequences of substitutions. The semantic 

universe ( X, YE) Psi (ST is an abbreviation for streams) is given by 

where Subst~', the set of finite, infinite and deadlocking sequences (or words, or 

streams), is defined by 

( v, w, z E) Subst~' = Subst* u Subst"' u Subst* · o. 

As a metric on PsT we take the Hausdorff metric induced by the standard metric 

on sequences (see the preliminaries). The empty sequence is denoted by A. and the 

concatenation of two sequences w1 and w2 by w1 • w2 • To denote failure we have 
added to the set of substitutions a special element o. We postulate for any substitution 

e that 8(5, the composition of e and o, equals o; for any sequence of substitutions 

v we have that o · v, the concatenation of o and v, is equal to o. Each sequence 

represents a particular computation that corresponds to a specific choice of clauses. 

The elements of such a sequence represent the partial results of the computation. 

Finite sequences not ending in o (elements of Subst +) correspond to successfully 



246 F.S. de Boer et al. 

terminating computations (refutations). Sequences ending in o (in Subst* · B) rep
resent failing computations. Infinite sequences (in Subst'") are associated with 

infinitely failing computations. 

Definition 4.2. Let el'r1 be the unique fixed point of the contracting operator 
<Pr,: (Goal~ Psy) ~ (Goal~ ? 51), which is given by 

<P1-1(fl[u] = {E} 

<PFl(F)[~ A]= u {O· (O""""FI F[A']): ~A~~ A'} 

u{o:~A-f--7} 

Here N'+FI: Subs! x PST~ PsT is defined by {i,,._f-1 x = { e~FI x: x EX}, with 

The contractivity of <PFI in the above definition is straightforward. The compact
ness of <Pr1(F)[ ~A] follows from the fact that only finitely many transitions are 
possible from ~A. 

The definition of ('JF1[:1] is obvious. For a nonempty goal ~A we have that 
O'FI[~ A] equals {B} if there are no transitions possible from ~A (indicated by 
~A-/-?). Otherwise, tJ\, 1[ ~A] contains all sequences that start with e and continue 
with a sequence stemming from 0~ 1 [ ~A'], in which every element is composed with 
e. The latter is caused by the application of e AM-r 1 to OF,[~ A'], which is added 
because we want to collect the total effect of all intermediate substitutions. 

The definition has been presented in a fixed-point format, because this will ease 
the comparison of Or1 with other models still to come. We could, however, have 
given a more direct definition based on transition sequences. A second remark 
concerns the use of the somewhat abstract operation e~ 1 . 1 • This could have been 
avoided as well by using a different type of transition system, in which a configuration 
\~A, a-) would consist of both a goal and a substitution. The latter could then be 
used to store all the bindings found so far. The axiom corresponding to the one 
above would be 

((~A, A), er) ~ ((~A, B), o-0) 

with B and 13 as above. 

The following counterexample shows that 0 11 is not compositional. Consider the 
following program 

{p(x) ~ s1 (x ), p(x) ~ s"(x ), q(x) ~ s3(x) 

s 1 (a)~, s2 (b)~, s3 (a)~, s1 (b)~, r(a)~}. 

It is easy to see that with respect to this program <'J Fi[~ p( x)] = 0 1. 1[ ~ q ( x) TI. But, 
on the other hand, we have {x/ a}o E OF,[~ r(x), p(x)]\O,.,[ ~ r(x), q(x)TI. 
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4.2. Success, finite failure and infinite failure sets 

From the operational semantics 0\. 1 we can derive the success set, the finite failure 
set and the infinite failure set in the following way: 

Oss = { p(x) 6: p(i) E EA tom/\ 6 E last( OFI[ ~ p(i)ll n Subst+ )}, 

OFFs ={A: OF,[~ All c::; Subst* · 8}, 

011-s ={A: OF1[ ~All n Subst* = 0 /\ OF 1[~ All n Substw ~ 0}. 

In the first set, the function last takes from a set of sequences the last elements (not 
equal to 8). Those elements represent the computed answer substitution for success
ful refutations. The notion of success set we consider here is introduced in [9, 8] 
and extends the standard one given in [ 12, 15]. (See also the section on the declarative 
semantics for some more discussion.) The second set, eJFFs, contains those atoms 
that give rise to only failing computations, i.e., sequences of substitutions that end 
in 8. The last set, 0 1Fs, contains the so-called infinitely failing atoms; those give rise 
to no successful computations and at least one fair infinite one. 

4.3. Maximal parallelism 

The next execution model we consider for our language is called maximally 
parallel. Each step in the execution of a goal consists conceptually of two stages: 
first, all atoms present in the goal perform one step independently. Secondly, the 
substitutions resulting from these local computations are composed in order to 
obtain the global outcome of the computation. For this composition we introduce 
a new operator on substitutions called parallel composition. (Sometimes it is called 
reconciliation operator; cf. [ 11 ].) It is defined as follows. 

Definition 4.3. We define the parallel composition of two substitutions 6 and u, 

denoted by 6 ° a, by 

6 0 a = { ;gu ( S ( 6) u S (a)) if it exists, 

otherwise, 

where S( 6) = {(x, t): x/ t E 8}. Furthermore we define 6 ° 8 = 8 ° 8 = 8. (Note that the 
notion of mgu is extended to sets of pairs of terms.) 

This operator tests whether the two substitutions are compatible and, if this is 
the case, yields the minimal substitution containing the same information (bindings) 
as these substitutions. Otherwise it yields 8. It is straightforward to show that 0 is 
commutative, associative, and indempotent (modulo the renaming of variables). 

The proof of the correspondence of the interleaving and the maximally parallel 
semantics will make use of the following property of this operator. 
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Lemma 4.4. For all substitutions 81 and 82 

8 18 82 = 81mgu(S(82)81) 

where 5(82 )8 1 ={(x81 , t8 1):(x, t)ES(82 )}. 

For the proof of this lemma and additional discussion of 8 we refer to [ 13]. The 

definition of 8 is illustrated by the following example. 

Example 4.5. Let 01 = {x/f(y, a), z/ g(b)} and O:>. = {x/f( b, w ), z/ g(y) }. Then 

81 8 82 = mgu{(x,f(y, a)), (z, g( b )), (x,f( b, w )), (z, g(y )?} 

= { x //( b, al, z I g ( b l, .v I b, w I a}. 

If we take 8 1 as before and 02 = {x/f(a, w), z/ g(y)}, then we have 

81 8 82 = mgu{ (x,f(y, a)), (z, g( b )), (x,f( a, w)), (z, g(y))} 

=8. 

Next we introduce a transition relation for maximal parallelism. It is specified 

by the following axiom and rule. 

Definition 4.6. We define 

( 1) 
II -

<- A ----> <- B 

where 8 = mgu(A, H) and H <-Bis an (appropriately renamed) clause of W. 

- H -
<-A----;><-A', 

(2) 

Note that in the conclusion of the rule above, we can have that (! 8 ir equals 8. 

This means that the two substitutions are not compatible. 

Definition 4.7. The operational semantics O'Mr is defined as the fixed point of the 

contraction <PMP: (Goal-> Psrl-> (Goal-> PsT), given by 

<PM p( F)[ Lt]= { c} 

<PMr( F)[<-A] = LJ { 8· ( O,,,...MPF[ <-A']): <-A~ <-A'} 

U{o:<-A~} 

Here~MP:SubstXPsr->PsT is defined by o""""Ml'X={8N+Ml'x:xEX}, with 

(JN'>-MPA =A, 
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The definition of <'.l'MP is very similar to that of OF,. Two differences should be 

noticed here. First, the transition relation that is used is different from the one in 

the definition of 0 11 ; secondly, the definition of the function e"""~iP differs from 

the function IJ ,,_FI. It COmpOSeS IJ in paraJ/e/ With the elements Of t'.IMP[ ~ A'n, as 

opposed to 8""'"'"FI, which uses ordinary composition. Here we use the parallel 

composition, because in the transition system above, the substitution above the 

arrow is not applied to the atom at its right-hand side. Therefore, the next computa

tion step will not take this substitution into account and the next substitution that 

is computed has to be reconciled with the previous one. 

5. Denotational semantics for interleaving 

In this section, we develop a denotational semantics 01F 1 for the operational 

interleaving semantics V\. 1 . We start by introducing the complete metric space P11 , 

which is defined by 

PFI = sP 11 c 0 ( ( (Subst X Substt;) ")') 

with a metric on P~ 1 similar to the one on Psr· It consists of sets of (finite and 

infinite) sequences of finite sequences of pairs of substitutions. Such a sequence 

(called a vector) we denote by (v,, ... , v11 , •• • ), where each V; is a finite sequence 

of pairs of substitutions. We shall use the following prefixing operator, which 

composes a vector containing one pair of substitutions, (( 81 , e, )) and a vector 

(v,, v,, .. . ), and is defined by 

< c e, , e2) > · < v, , v,, ... > = ((( e 1 , e, J), v, , v,, ... ). 

We use pairs of substitutions to represent the basic (unification) steps in the 

computation. The first substitution of a pair is called the input substitution and can 

be seen as an assumption on the behavior of the environment or, in other words, 

the computation that has taken place so far. The second one, called the output 

substitution, denotes the result of this computation step. As we shall see below, it 

will be the substitution resulting from a unification. Failure of such a unification is 

denoted by o. (An alternative would have been to use functions from substitutions 

to substitutions. This would yield a semantics that is less abstract, i.e., more 

discriminating.) 
Next we explain why we use vectors (instead of just sequences of pairs of 

substitutions). When we define a compositional semantics we introduce a semantic 

merge operator II 1 1 • Operationally, a goal is executed by performing from left to 

right one step of each atom in the goal. The operator II FI is defined such that it 

mimics this strategy. If we had sequences of pairs of substitutions in our basic 

domain we would not be able to do this: we would not know how many processes 

(atoms) contributed to this goal. Vectors have this kind of information. The intuition 

is that the nth element of a vector represents the nth left to right swap of the goal. 
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Hence the operator II FI combines two vectors by concatenating their elements, i.e., 

their sequences of substitutions, component-wise. 

Definition 5.1. We define II FI: PFI x PFI"' PF1, for every X, YE PF1, by 

XllF1 Y=LJ{xllF1Y:xEX,yE Y} 

where 

(vi, V2, .• ->llF1(W1, W2, ... )=(v1. W1, V2' W2, ... ), 

( V1, • · · , Vn) II FI ( W1, W2, · . ·) = ( V1' W1, · · •, Vn' Wn, Wn+I, · · · ). 

Now we are ready to give the definition of the denotational semantics f:tlF 1• 

Definition 5.2. We define 0JF1: Goal"' PF1: 

!1lFIIT 0 TI = {>..}, 

0lF1[-E--A] = {((ll, llmgu(All, H)))· 0lF1[-E-- BTI: e E Subst, H -E-- BE W} 

U{((ll, 8)):\;/H-E--BE W[mgu(All, H) does not exist)}, 

f0F1[-E--A1, A2TI = f0F1[-E--A1] II FI 0lr1[-E--A2]. 

This recursive definition can be justified with the use of contractions in the standard 

way. (See Definition 6.2 for an example.) 
The following example may help in understanding the definitions of 0JF1 and II FI. 

Consider a query -E--A1, ... , A,,,. Assume that for any i the first reduction step of 
A; delivers the input-output pair (a;, [3;) and produces the conjunction B;, C;. 
Assume furthermore that the first reduction steps of B; and C; produce the pairs 
( '}';, 8;) and ( e;, </>; ), respectively. Then the following vector will be an element of 
gJFI[-E--A1, ... , A,,.TI: 

«Ca1, [3 1), ••• , (a,,,, [3,,,)), 

(( Y1, 81), (e1, </>1), ... , ( y,,,, 8,,,), (em, <Pm)), ... ). 

In Section 8, the correctness of g)F1 with respect to eJ'F1 will be proved. 

6. Denotational semantics for maximal parallelism 

We next introduce a denotational variant, named g)MP. of the operational model 
OMP for maximal parallelism. Unlike the case of fair interleaving, we need not 
introduce a new semantic universe; we can again take PsT· Recall that PsT is defined 
as 

PsT= (Jl>nc0 (Subst~'). 

Before we introduce the model ffiMP• we first extend the parallel composition operator 
c; to a parallel operator llMP defined on sets of sequences of substitutions. 
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Definition 6.1. We define /IMP: PsTX PsT-" PsT by, for all X and yin PsT, 

Xl/MP Y=LJ{xl/MPy:xEX,yE Y}. 

Here x l/MPY is defined by the following cases. 

ifu1ou2 =8, 

otherwise. 
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Note that II M P is recursively defined. Formally, we can introduce it as the unique 

fixed point of a suitably defined contraction. 

Now we can introduce the semantics :l!MP· It turns out to be equal to OMr; this 

will be proved in Section 8. 

Definition 6.2. Let the function 0LJMP: Goal...,. Psr be the unique fixed point of the 

contraction 1.J.r MP: (Goal--" PsT)--" (Goal-" Ps1 ), given by 

1.J.rMP(F)[11n = {E}, 

1.f.!MP( F)[ ~ ATI = U {mgu(A, H)N'->-MPF( ~ B): H ~BEW} 

u {B:VH~BE Wmgu(A, H) does not exist}, 

1f'MP( F)[ ~A 1, A2TI = 1fr MP( F)[ ~ A,D II Mr 1.f.r MP( Fl[ ..- A2Il· 

It is not difficult to show that 1.J.IMI' in the above definition is contracting; a proof 

would make use of the fact that I/ MP is nonexpansive, an observation that on its 

turn is rather straightforward. 

7. Declarative semantics 

In this section, we recall the definition of the declarative semantics <!l!ec introduced 

in [9]. The term declarative means that the program is seen as a set of first order 

formulas and that the semantics is intended in the model-theoretic sense, i.e., 

characterizing the set of logical consequences of the program. This semantics is 

obtained as the least fixed-point of a continuous transformation Ton the interpreta

tions of the program. Such a transformation is called immediate consequence operator 

because for an interpretation /,the set T(l) contains all the (atomic) consequences 

obtained from the (atomic) formulas that are true in I by a one step inference from 

the program. The first declarative semantics for HCL was proposed by van Emden 

and Kowalski in [ 15]. In their approach, interpretations are sets of ground atoms 

and the least fixed-point, shown equivalent to the least Herbrand model of the 

program, characterizes the validity of the ground atoms only. The construction in 
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[9] extends this approach in that interpretations contain also non ground atoms 
and therefore the least fixed-point allows to express validity for so-called generic 
atoms. 

Next we give the construction of [9] in more detail. We refer to that paper for 
the proofs of the results we mention here. For Theorem 7.7 a proof will be presented 
in Section 9. 

Definition 7.1. The partially ordered set of (extended) interpretations, with typical 
element I, is defined as (PDec. <;),where P00c= 97'(Atom). 

Proposition 7 .2. ( Poec. <;) is a complete lattice. 

Definition 7.3. The (extended) immediate consequence operator T: Pn.c ~ PDec. is 
defined by 

T(l) = {Hmgu(B, B'): H ,,_ iiE W, B' E !}. 

Proposition 7.4. The operator T is continuous. 

Since T is continuous, its least fixed-point lfp( T) exists; moreover, (fp( T) = 
Un,.0 T"(0), where T"(I) is defined by 

T 0 (l) =I, T"+ 1( I)= T( T" (I)). 

The declarative semantics is defined as follows. 

Definition 7.5. ~ec = lfp( T). 

The next theorem gives the relation between the model-theoretic semantics of W 
and CZ!Jec. 

Theorem 7.6. For every atom A, 

WF= A (i.e., A is a logical consequence of W) iff 

3A' E 22lec3 8 E Subst[A' fJ =A]. 

Finally, the following result expresses the relation between 2Llec and the success set. 

Theorem 7. 7. 2Llec = 0 ss . 

8. The relations between the models 

8.1. The relations between the denotational and the operational models 

8.1.1. Relating 0 FI and 22lF1 

We start with the relation between OF1 and 22lFi. the operational and denotational 
semantics based on interleaving. They will be connected by the following abstraction 
operator. 
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Definition 8.1. The operator f3Fi: Subst~ _,,.PH~ Psr is defined by f3r1(8)(X) ={A.}, 
and for 8 ~ 8, by 

f3F1(8)({A.}) ={A.} 

f3F1( e )(X) = U { e1 · f3F1( 81)(xlf!,1,11): X11,,H 11 ""0}. 

Here x(B,11,J is defined by x(f!,01i={(v1,V2,••·>:<(e, 6l1)·v1, V2, ... )EX}. 

(The well-definedness of f3FI can be established in the by now familiar way: it 
can be given as the fixed-point of a contraction.) The abstraction operator f3FI first 
selects from the set X the connected sequences, that is, those sequences such that 
the output substitution of a pair equals the input substitution of the following pair. 
From such a connected sequence it takes all the output substitutions. 

We have the following theorem relating <'.l'F1 and 0JF1. (Recall that E is the empty 
substitution.) 

Theorem 8.2. For every goal +-A we have f3 1,1(E) 0 f'OF 1[ .,.._A]= OF1[ .,.._A]. 

Proof. We prove f3 1.1(E) 0 0lr1=<0\.1 by showing that /3r1(E) 0 0lF1 is a fixed-point of 
the contraction <PF1. Then the equality follows from Banach's theorem. We omit 
the deadlock case, which can be taken care of straightforwardly. 

The steps marked with (1) and (2) are explained below. 

<PF1(/3f'I( E) 0 0JFI )[.,.._A, A] 

=LJ {8·(6l"""'11(/311(E) 0 9LJFl[<-A8, BtJ])): 

H.,._BE Wand 8=mgu(A, H)} 

1~U {8· (/3F1(6l) 0 0JF1[.,._ A, B]): H.,.._ BEW and e = mgu(A, H)} 

= f3F1( E )( u {<( e, e )) -( f:!JFI[ <-A] II FI ffiFI[ <- BD: 

H <- BE W and 8 = mgu (A, H)}) 

121 - . -
= /3 FI( E )(LJ{ < ( E, e ))- <j)FI[ <- B] II FI 0lr1[ +-A]: 

H .,.._ BE W and 8 = mgu (A, H)}) 

=f3F1(E)(LJ{((E, tJ)/ · 9LlF1[+- B]: 

H.,.._ BE Wand e = mgu(A, H)} II FI 0JF1[ +-A]) 

=/3r1(E)(0JF1[.,._ A] ll110ld.,._ A]) 

=/3F1(E) 0 0JFJ[+-A, A]. 

Step (1). The identity e"""'F1f3F1(E) 0 0JF1[.,..A8,B6l]=/3F1(8j 0 :'._0n[.,._A,B] is jus
tified by the following observations. Let ( v1 , • •• ) E 0:IF1[ .,.._A, B] be a connected 
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sequence with its first pair of the form ( e, e'), for some e'. It follows that Vi== 

((e, ee 1), ••• , (ee 1 • • • e,,_ 1, ee, · · · e")), with e; == mgu(A;eei · · · B;-1, H;), 

for some H; ~ B;. Here we have A1, ... A 11 =A, B. So for v; == 

((c.,e1), ... ,(e1,···e11 _ 1,e1···e11 )) there exists a sequence (v;, ... )E 

fi'Fr[~Xe,BeTI. Now each pair occurring in (v2, ... )Efi'Fr[~B1,···· B,,TI is of the 

form (ee', ee'e"), where e"=mgu(Bee', H), for some atoms Band H. But due to 

the renaming mechanism, which we implicitly assume, we have that e does not 

affect the variables of B. So we have that e" == mgu( Be', H) implying that we can 

eliminate e from the sequence ( v2 , ••• ). This argument could be formalized by the 

introduction of an explicit renaming mechanism. 

Step (2). We show that ,lhr( c.)( (( E, e)). (XII FI Y)) == fhr( c.)( ( ( E, e )) . y II FI x ). (For 

convenience, we write (v11 ) 11 for (v1, v2 , •. • ).) 

f3FI(E)(((E, e)). (X llFI Y)) 

= /3 FI ( E) ( { ( ( E' e)) . ( (WI!) n II FI ( Vn),,) : 

(w11 ) 11 EX,(v,,) 11 E Y}) 

==(from Definition 5.1 and Definition 8.1) 

f3FI( E )( { ( ( E, e) W1, Vi W2, ... ) : ( W11 ),, E X, ( V,,),, E Y}) 

=f3FI(E)({((E, e), V1' •. . ) llFI(W1' ... ):(wll)ll EX, (vll)ll E Y}) 

==f3F1(<.)(((E, fJ))· YllF1X). D 

8.1.2. Relating VMP and ;2ZJMP 

Next we prove the identity of the operational model OMr and the denotational 

model ;2ZJMP for maximal parallelism. 

Theorem 8.3. VMP== ;2ZJMP· 

Proof. Similarly to the proof of Theorem 8.2, it can be shown that ;2ZJMP is a fixed-point 

of the contraction <PMr. from which the theorem follows. D 

8.2. Relating f1lF 1 and !:0MP 

In order to relate f0r-1 and f0Mr, we introduce an intermediate semantics!}: Goal~ 

PI, with P1 == gp nco( (SubstU°,-), as the fixed-point of the contraction 1Jf: (Goal~ Pi)~ 
(Goal~ P1) defined as follows. 

Definition 8.4. We define 

1/f(F)[oTI = {£}, 

1/f(F)[ ~ ATI = U {(mgu(A, H)) · F(B): H ~BE W} 

U {8: 'V H ~ fj E Wmgu(A, H) does not exist}, 

lfr(F)[ ~ A1, A2TI == lfr(F)[~ A1TI 11 lfr(FJ[~ AJ. 

Here II is defined in a similar way as II FI. 
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Now 0JF1 and ,j are related by the following abstraction operator. 

Definition 8.5. We define a: PF 1 ~ P1 by 

a(X) = {<81 ... e,, Eh+1 ... e,, ... ): ((E, 61) ... (E, fJd, 

(E, f)k+1l ... (t:, fJ,), .. ·)EX}. 

(We have omitted the case that X contains finite sequences.) 
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This abstraction operator selects from each set those sequences that make no 

assumptions on the environment, i.e., of which all pairs have E (the empty substitu
tion) as the first element. 

Theorem 8.6. So= a 0 0Jf' 1. 

Proof. It can be shown that a 0 rziJF 1 is a fixed-point of 1/'. D 

We continue the equivalence proof of ~FI and 01Mr by relating~ and 0JMP· For 
this purpose we again need an abstraction operator. 

Definition 8.7. We define aMP: P1 ~ Ps-r by 

a M rC<s I ' S2' ... ) ) = ( 8 s I) . ( 8 ( s I . s2)) ... , 

where S; E Subst; and 8 61 ... e,, = 81 8 ... 0 e,,. (If n = 1 then 8 e = fJ.) 

This operator takes for each word fJ 1 • • • fJ,, E Subst; the parallel compos1t10n, 

thus turning it into one maximally parallel step. Further, it passes through the result 

of previous steps to the next one to be considered. This mimics the behavior of the 

""'"MP operator in the definition of 0JMP· Now we can establish the following theorem. 

Theorem 8.8. 0.lMP = aMP 0 .9'. 

Proof. Again it can easily be shown that aMp 0 .fo is a fixed-point of IJfMP· D 

Combining the two above theorems yields the following corollary. 

8.3. Relating 0.lMP and r:!JJec: an intermediate model 0:!cs 

We introduce an intermediate denotational semantics .01cs (CS is an abbreviation 

for computed substitutions), to which both 0JMP and 0Jec will be related. It can be 

seen as a denotational variant of 0Jcc, which yields for every goal the set of computed 

answer substitutions; since it delivers a set of substitutions, rather than a set of 

sequences of substitutions, it models only success behavior. Like 0JMP it is a model 

for maximal parallelism. Formally, 0lcs is introduced as the least fixed-point of a 

continuous function on a complete lattice, which we introduce next. 
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Definition 8.10. The set Pcs, with typical element F is given by Pcs = Goal--> 

9J>(Subst). 

The set gP(Subst) of sets of substitutions, is a complete lattice with respect to set 

inclusion. Thus gP cs is also a complete lattice, when supplied with the inclusion 

relation induced by the one on 9J>(Subst):f1 ~j~ iff 'ef ~ A[f1( ~A) ~f2( ~A)]. Since 

we do not need to consider sequences, a lattice structure, rather than a metric one, 

suffices as a domain for f21cs. 

The least upper bound of a set§'~ Pcs, denoted by UFd'• is defined by 

Before giving the definition of ~:l!cs we first extend the definition of 8, the operator 

for the parallel composition of substitutions, to sets of substitutions. We put, for 

X, YE [lJ>(Subst), 

X 8 Y = { {J 8 a : {J E X, a E Y, e 8 a ¥- o}. 

The following lemma states that it is continuous, a fact that we shall need in the 

definition below. 

Lemma 8.11. Let {X,,,},,,di. {Y11 },, •• 0 be chains in Pf'(Subst) ('efk[Xk~Xk+i/\ Yk~ 

Yk+ I]). Then Uk ·() ( xk 8 Yd= (LJ,,, -o X,,,) 8(LJ11 'il y/1 ). 

Next we introduce 0:ics: Goal-> 9J>(Subst). 

Definition 8.12. Let Siles: Goal--> rJJ>( Subst) be the least fixed-point of the continuous 

(with respect to the lattice structure on Pcs) operator Pcs: (Goal--> gP(Subst))-> 
( Goal--> PJ>(Subst) ), given by 

Pcs(F)[r1] = {E}, 

Pcs(F)[~A] =LJ {(mgu(A, H)8F(~ B)J1v"r(AJ: H ~BEW}, 

Pcs( F)[ ~ A1, AJ = Pcs(F)[ ~ A1] 81Jtcs( FJ[ ~ A2]. 

The continuity of Pcs is a direct consequence of Lemma 8.11. 

8.4. Relating 0JM r and 5'.i!cs 

The relation between the models 0JMP and 0:\s is described by the abstraction 
operator acs: PsT-> 9J> ( Subst) defined by 

acs(X) = last(X n Subst+). 

(The function last used above yields for a set of finite sequences the set of their 
last elements.) We have the following theorem. 
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Theorem 8.13. 0lcs = acs 0 0JMP· 

The theorem is immediate from the following two lemmas, which can be proved 

by ind~ction on n. Let the functions J_ and J> be defined by 1-( .... A) = 0 and 

J,w(<-A)={sw}, for all <-A. 

Lemma 8.14. For all n: P~\(1-) = (acso P~p)(J, .. ). 

Lemma 8.15. For all n and <- B: 

Proof of Theorem 8.13. For any <- B we have 

( acs 0 ~.0MrH <- B) =a\ s( Fm P~1PU> )( .,_ B)) 

8.5. Relating fzlcs and 0!u: 

=(Lemma 8.15) D'cs(LJ 1/l'~p(J>)(<-B)) 

= U ll'cs( P~"(f;, .. l( .,_ B)) 

=(Lemma 8.14) U PZs(1-)(<-Bl 

Next we shall compare the denotational semantics modeling the computed answer 

substitutions, on the one hand, and the declarative semantics, on the other. The 

relation will be given by defining two uniform functions, v and µ and by showing 

that 0Ju:= v(.<Jlcsl and illcs= µ(01u). Here uniform means that these two functions 

do not depend upon the specific program W 

The sketch of the proof is the following: first we consider a sub-domain P of the 

domain of P'cs such that µ and v make T and Pcs to commute on this domain, 

namely: P'cs(µ(I))=µ(T(l)), and v(Pcs(F))= T(v(F)) for all FEP. Then we 

show that v allows to simulate step by step the fixed-point construction of l/fcs by 

T and vice-versa, namely: for each n~O, T"(0)= v(P'2'5(F0)) and 1P2s(Fo)= 

µ( T"(0)) (where F0 is the minimal element of P). Finally, by continuity of v and 

µ, we can commute also the least upper bounds of these chains, so that (Ip( T) = 

LJ., -o T" (0l = v(LJ,, •O P'Z·s( Fol)= v((fp( P'cs)) and (fp( Pcs) = Und! PZ·s( Fol= 

µ(LJ,,.o T"(0))=µUfp(T)). 

We use the following notation: Var(Al is the set of variables occurring in A. 
Dom(&) (the domain of 8) is the set {x:x8~x}. Cod(&) (the codomain of 8) is 

the set u" /)om( f)) Var(x() ). If x is a set of substitutions and A is an atom, then XA 

is the set {()A: 8 E X}, where ()A is any renaming of e with respect to A, i.e., such 

that Vx[ Var(x8A) (l Var(Al = 0]. 
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Definition 8.16. P is the subset of Pcs =Goal~ '?Jl(Subst) of all elements F that satisfy 
the following properties. 

(Rl) F[o]={E} 
(R2) \ffJ[Dom(e).:;x =:} (ec;F[~p(x)H) 1 p(x 1 o=F[~p(x)fJ]] 
(R3) F[ ~ A1' A2] = F[~ A1](; F[~ A2] 
(R4) 'v'A'v'8E F[~A] [Dom(e).:; Var(A)] 

The motivation of these restrictions is of a technical nature: the set P will turn 
out to be isomorphic to the set Pnw The isomorphism pair, ( v, µ,), will be defined 
later. ( R3) requires the information given by F about generic goals to be obtainable 
by the information about atomic goals. This corresponds to the compositional nature 
of interpretations in Pnec: the meaning of a conjunction is declaratively defined in 
terms of its conjuncts. (R2) also reflects a kind of compositionality: the possibility 
to obtain the information about an instantiated atom from the uninstantiated one. 
(Rl) and (R4) impose a sort of minimality on the information associated to a goal. 

The set P is a complete partial order with respect to the ordering it inherits from 
Pcs. This we prove next. 

Proposition 8.17. ( P,.:;) is a complete partial order; the least upper bound of a chain 

(Fn),, is given by Un F,,. In other words, (P, .:;) is a sub CPO of (Pcs, <:;). 

Proof. We have to show that for any chain ( F,,) 11 in P, Un F,, preserves the properties 
(Rl)-(R4). (Rl), (R2) and (R4) are obvious. (R3) follows by Lemma 8.11. D 

Definition 8.18. 

• The function v: P ~ PDec is defined by 

v( F) = {p(i)B: e E F[~ p(i)] A p(i) E EAtom}. 

• The function µ, : Pnec ~ P is defined by 

µ,(/)[rJ] = {e}, 

µ,(/)[+-A]= {mgu(A, A')1A: A' EI A Var(A') 11 Var(A) = 0}, 

µ,(!)[+-Ai, A2] = µ,(I)[+-A1]~ µ,(I)[+-A2]. 

Remark 8.19. The function µ, is well defined, i.e., \;/I E PDec[µ, (I) E P]. Indeed, ( Rl ), 
(R3) and (R4) are trivial, and (R2) is an immediate consequence of the following 
lemma. 

Lemma 8.20. Let e be an idempotent substitution, and assume Dom( e).:; x. Let A be 
an atom such that Var(A) n {i} = 0 and Var(A) 11 Var( {xe}) = 0. Then 

( e c; mgu( p(i), A))lpil'JO = mgu( p(i) e, Al1w10. 
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Proof. The proof uses some elementary properties of idempotent substitutions (see 
[13]). D 

The following facts can be readily established. 

Proposition 8.21. The functions v and µ, are continuous. 

Proposition 8.22. P is closed with respect to Pcs, i.e., VFE P [Pcs(F)E P]. 

The following result shows that µ, and v commute the functions Pcs and T on P. 

Lemma 8.23. 
(1) lfFEPthen v(Pcs(F))=T(v(F)). 

(2) If IEPDec then Pcs(µ,(I))=µ,(T(I)). 

The functions v and µ, allow to simulate, step by step, the fixed-point construction 

of 2Zlcs in q/Jec, and vice-versa. There is only one difficulty: the fixed-point construction 

of Pcs starts from the minimal element of Pcs, that is the function FJ_ such that 

for every A, F 1 [ ~AD= 0. Unfortunately, F 1 is not the minimal element of P, in fact 

F1 e P. The minimal element of P is the function F0 such that 

[ - {{E} iff~A=u, 
Fo ~ ATI = 

0 otherwise. 

However, the fixed-point of Pcs can be also obtained by starting from F0 , as the 

following remark shows. 

Remark 8.24. We have F0 =µ,(0) and Fo= Pcs(FL). 

Lemma 8.25. 
(1) Vn~O [T"(v(F0 ))=v(Pts(Fo)lJ. 

(2) Vn ~o [P~'s(µ,(0))=µ,(T"(0))]. 

Proof. By induction on n. 

Finally, we show the correspondence between 92lcs and 20ec. 

Theorem 8.26. 
(1) 20ec= v(92lcs). 
(2) 2Zlcs = µ,(20ec). 
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Proof. 
( 1) 0)u; ==(Ip( T) 

== u T"(0) 

== U T" ( v( F0)) (by Remark 8.24, part 1) 
n -~..,.o 

== U v( lJr;' 5 ( F0 )) (by Lemma 8.25, part 1) 
tl .,.() 

== v (~, lJr;\( F0 )) (by continuity of v) 

== v(ljp(lfrcsll (by Remark 8.24, part 2) 

== v(01cs). 

(2) Similar to the previous one. D 

9. Collecting the results 

After the long and exhausting previous section, the reader might be comforted 
by a schematic overview of the relationships that were established. We have the 
following equalities . 

.J == l¥ 0 0J FI · 

0lcs == µ, ('l/!ec ). 

0:iu: = v(.0lcs). 

In Fig. 1, these equalities are graphically represented. Moreover, it contains some 
arrows between DF1 and the sets c\s, 0 1+s and O\Fs, indicating that the definition 
of these sets is based on that of 0 11 . 

Combining some of the equalities above, we find 

a maybe somewhat complicated but precise relationship between the declarative 
semantics 0Ju and the denotational semantics 0JF 1. From this the following theorem, 
which establishes the soundness and completeness of the declarative semantics, is 
fairly immediate. Thus an alternative is given for the quite complicated proof that 
is given in [9]. The fact that here the relationship between C!iJec and 0JF 1 and, hence, 
between 'dJec and Vss has been decomposed into several steps makes the proof below 
more transparent. 
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(}FI----? (i)\ FS 

I~,, 
II 

Fig. I. 

Theorem 9.1 A E O'ss <=:>A E ffiec. 

Proof. 

AEO\s <=:>(definition Oss)3p(.X)38 1 ···8nEO'F 1[~p(x)E:A=p(x)8n 

<=:> ( 01-1 = f3F1° ffiFi)3p(x)3s1, ... , sk E ffiF1[ ~ p(x)]: 

s, · · · sk = < ( E, 81 ), ( 81, 82), C 82, 83), ... , ( 8,, -1, 8,, )) "' A = p ( x) 8,, 

<=:> (using 8mgu(A8, H) = 8°mgu(A, H), 

a direct consequence of Lemma 4.4) 

3p(x)3s,, ... , sk E ffir1[ ~ p(x)Il: 

s, · · · s, = ((E, 81), (E, 82), ... , (e, 8n)) 11A=p(x)(8,8. · .8 8,,) 

<=:> (_jl =Cl' o ffiF1) 

V1 ... vk = 81 ... 8,, /\A= p(x)(81 O•. ·08,,) 

<=:> (0JMP= Cl'Mp 0 Ji)3p(x)381 ... 8,, E ffiMr[~ p(x)]: A= p(x)e,, 

<=:> (0\·s = acs 0 ffiMP)3p(x)38 E 0lcs[~ p(x)]: A= p(x)8 

<=:> A E ffiec. 0 

We deduce from the equalities above a second fact, which says that 0 55 , (i)'FFS 

and 0 11,s can be characterized in terms of OMr ( = 92JMP), instead of OF1 • In other 

words, for the semantics of an HCL program, it does not matter whether we consider 

an interleaving or a maximally parallel model. Although this might not seem very 

surprising, it is not completely straightforward, since (i)'Mr and O'F1 have a different 
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deadlock behavior: the former delivers deadlock for more goals than the latter. (See 
the counterexample at the end of Section 4.1.) 

Theorem 9.2. We have the following equalities. 

Oss = { p(.X) e: p(.X) E EAtom A e E last( CiMr[ ~ p(x)] n Subst+ )}. 

Ci1+s ={A: eJ'MP[ ~A] c; Subst* · O}. 

0 11 s ={A: (Ml'[~ A] n Subst* = 0 A 0\1p[ ~A] n Subst'" #- 0}. 

Proof. Similar to that of the previous theorem. D 

Acknowledgment 

We thank Jean-Marie Jacquet, Peter Knijnenburg and Erik de Vink for their 
detailed comments on a draft of this paper. 

References 

(l] K.R. Apt, Introduction to logic programming, in: .I. \an Leeuwen, ed., Handbook of" Theorelical 
Comp1uer Science, Vol. B I Elsevier, Amsterdam, l 990 I 493-574. 

[2] K.R. Apt and M.H. van Emden, Contributions to the theory of logic programming, J. ACM 29(3) 
(1982) 841-862. 

[3] J.W. de Bakker and J.l. Zucker, Processes and the denotational semantics of concurrency, lnfimn 
and Co111rol 54 I 19821 70-120. 

[ 4] F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, Control flow versus logic: a denotational 
and a declarative model for guarded Horn clauses, in: A. Kreczmar and G. Mirkowska, eds., Proc. 
Mathematical Foundations of" Computer Science I MFC 'S '89 ), Lecture Notes in Computer Science, 
Vol. 379 (Springer, Berlin, 1989) 165-177. 

[5] F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, Semantic models for a version of 
Parlog, in: G. Levi and M. Martelli, eds., Proc. Internal. Con( on Logic Programming (!CLP 89), 
pages 621-636. MIT Press, 1989: also Theoret. Comput. Sci. 86 ( 1991) 3-33. 

[6] E.P. de Vink, Concurrency semantics applied to logic programming, Technical report, Vrije Univer
siteit, Amsterdam, 1990. 

[7] R. Engelking, General Topology (Polish Scientific Publishers, Warsaw, 1977). 
[ 8] M. Falaschi, G. Levi, C. Palamidessi and M. Martelli, A new declarative semantics for logic 

languages, in: Proc. Cont: and Symp. on Logic Programming (MIT Pre", Cambridge, MA, 1988) 
993-1005. 

[9] M. Falaschi, G. Levi, C. Palamidessi and M. Martelli, Declarative modeling of the operational 
behavior of logic languages, Theoret. Comput. Sci. 69( 3) ( 19891 289-318. 

[I OJ M. Hennessy and G.D. Plotkin, Full abstraction for a simple parallel programming language, in: 
J. Becvar, ed., Prue. Mathemalical Fl1undatio11s 1~/" Computer Science ( M FCS '79), Lecture Notes in 
Computer Science, Vol. 74 (Springer, Berlin, 19791 108-120. 

[11] J.-M. Jacquet, Conclog: A methodological approach to concurrent logic programming, Ph.D. thesis, 
Facultes Universitaires Notre Dame de la Paix, Namur, 1989. 

(12] J.W. Lloyd, hn111dations of" Logic Programming (Springer, Berlin, 2nd edn., 1987). 
[ l 3] C. Palamidessi, Algebraic properties of idempotent substitutions, in: M.S. Paterson, ed., Proc. I 7th 

Internal. Colloq. on Automa1a, Languages and Programming, Lecture Notes in Computer Science, 



Comparing semantics for Horn clause logic 263 

Vol. 443 (Springer, Berlin, 1990) 386-399; full version available as Technical Report TR-33/89, 
Dipartimento di lnformatica, Universita di Pisa. 

[14] E.Y. Shapiro, A subset of Concurrent Prolog and its interpreter, Technical Report TR-003, !COT, 
Tokyo, 1983. 

[ 15] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language, 
J. ACM 23(4) (1976) 733-742. 


