
Theoretical Computer Science 101 (1992) 239-263
Elsevier

239

From failure to success: comparing
a denotational and a declarative
semantics for Horn clause logic*

F.S. de Boer
Department of Computer Science, Technical University Eindhoven, P.O. Box 513, 5600 MB
Eindhvven, The Netherland.1

J.N. Kok
Department of Computer Science, University r~/' Utrecht, P.O. Box 80089, 3508 TB Utrecht, The
Netherlands

C. Palamidessi
Dipartimento di ln.fi1rnwtica, Universita di Pisa, Corso Italia, 40, 56125 Pisa, Italy

J.J.M.M. Rutten
Centre fi1r Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands

Abstract

De Boer, F.S., J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, Theoretical Computer Science 101
(1992) 239-263.

The main purpose of the paper is to relate different models for Horn clause logic: operational,

denotational, declarative. We study their relationship by contrasting models based on interleaving,

on the one hand, to models based on maximal parallelism, on the other. We make use of complete

metric spaces as an important mathematical tool, both in defining and in comparing the various
models.

1. Introduction

The most basic example of a (parallel) logic programming language is Horn

Clause Logic (HCL). An HCL program is a finite set of definite clauses of the form

H ~ B, where H is an atom and ii is a finite sequence of atoms. We shall introduce

* Part or this work was carried out in the context of ESPRIT Basic Research Action (3020) Integration.

The research of C. Palamidessi was partially supported by the Dutch REX (Research and Education in
Concurrent Systems) project.

0304-3975/92/$05.00 © 1992-Elsevier Science Publishers B.V. All rights reserved

240 F.S. de Boer et al.

three different types of models for HCL: operational, denotational and declarative.
The first and the latter were already introduced elsewhere (see below). In addition
to the definition of two denotational models for HCL, the contribution of this paper
consists of a systematic comparison of the different models. In particular, we shall
establish a precise relationship between the denotational and the declarative models.
Although we have been recently investigating various models for more advanced
parallel logic languages like G HC and Parlog [4, 5], which contain constructs such
as the commit operator and annotations for communication, it is necessary to
understand the precise relationship of these models first at the basic level of HCL.

I. I. The operational models

We shall consider two operational models, which are both based on a transition
system (in the so-called SOS style [10]). The first one, called OFI (FI for fair
interleaving), corresponds to the standard (sequential) operational semantics of
HCL based on SLD resolution (like in [15, 12]); it uses a fair derivation rule
(reduction from left to right) in order to model also failure behavior. From OF1 we
can deduce the three sets that are classically used to describe the operational behavior
of an HCL program: the success set, the finite failure set, and the infinite failure set.

The second operational semantics, OMI» models maximal parallelism; the deriva
tion rule used here amounts to executing in parallel one resolution step for each
atom in a goal. (In this way, fairness is automatically ensured.) Then a goal, consisting
of several atoms, can do one step by composing all local substitutions of the
individual atoms in parallel by means of a parallel composition operator S for
substitutions (introduced in [13]). It has two effects: it tests whether these substitu
tions are mutually compatible and, if so, it takes the union of all the bindings. This
model is of interest because it could serve as a basis for a parallel implementation
of HCL based languages; furthermore, it can be seen as a starting point for the
formalization of additional features such as atomic unification (cf. [14]). Technically,
O'MP (or, more precisely, the denotational model corresponding to it) will play a
role as an intermediate in establishing the correspondence between O'F1 and the
declarative model, to be presented in a minute.

For both operational models, we shall introduce corresponding denotational
models. Their main characteristic is compositionality: the meaning of the conjunction
of two goals will be computed by composing the meanings of the separate goals.
(Note that we do not study compositionality with respect to the union of programs;
this we consider to be a separate issue.)

1.2. The denotational models

In order to be compositional, the denotational models are considerably more
complicated than their operational counterparts. This is mainly due to the difficulty
of describing failure behavior in a compositional manner. The denotational model
corresponding to OF1 will be called fl!r 1• In order to allow for the definition of an
operator for parallel composition, corresponding to the conjunction of goals, the

Comparing semantics ji1r Horn clause logic 141

codomain of this model (also called its semantic universe) will be more complicated

than the operational one. Both for ~)f- 1 and (1"MP it suffices to consider sets of sequences

(or words) of substitutions. Here, we need sets of sequences (or vectors) of sequences

(or words) of pairs of substitutions. We shall prove the correctness of 0:n with

respect to Of'1 by showing that the latter equals the composition of an abstraction
operation with the former.

Next a second denotational model, called f0Mp, is introduced, which equals the
operational semantics OMP· Its semantic universe is the same as the one of CJ'~1 p,
which is simpler than that of G1F 1 • The semantic operator for the parallel composition

(conjunction) of two goals is the operator~ described above, but now extended to
sets of sequences of substitutions.

1.3. The declarative model

The third type of model we describe is the declarative semantics. We recall the

definition of the declarative semantics Qiu as introduced in (9]. The term declarative

means that the program is seen as a set of first-order formulas and that the semantics

is intended in the model-theoretic sense, i.e., characterizing the set of logical

consequences of the program. This semantics is obtained as the least fixed-point of

a continuous transformation Ton the interpretations of the program, the so-called

immediate consequence operator. An important distinction between the denotational

models above and the declarative semantics is that the latter describes the success

set only, whereas the denotational semantics additionally model (finite and infinite)

failure. The first declarative semantics for HCL was proposed by van Emden and

Kowalski in [15] (see also [12]). In their approach, interpretations are sets of ground

atoms and the least fixed-point, which is equivalent to the least Herbrand model of

the program, characterizes the validity of the ground atoms only. The construction

in [9] extends this approach in that interpretations may also contain non-ground

atoms. Therefore 0Ju can also express the validity of so-called generic atoms, i.e.,

atoms of the form p(x).

1.4. The mathematical tools

We work mainly in the framework of complete metric spaces, in which we follow

the tradition initiated by De Bakker and Zucker in [3]. The metric approach is

particularly useful in those situations where (sets of) sets of sequences occur, since

these can be supplied with a standard metric. This is the case in the operational

and (all but one) denotational models, since they describe in addition to success

behavior also (finite and infinite) failure behavior, for which the use of sequences

seems natural. The metric structure of our semantic universa is exploited in two

ways: first, it enables us to introduce both our models and our semantic operators

as the (by Banach's theorem) unique fixed-points of so-called contractions. Secondly,

this uniqueness implies that in order to prove the equality of two models, it is

sufficient to show that they are both a fixed-point of the same contraction. It is in

particular this second point that distinguishes between the metric and the more

242 F.S. de Boer et al.

usual partial order (or lattice) approach: a continuous operator on a complete partial
order has a (least) fixed-point but may have more than one. Therefore it is there
more involved to prove such equalities (cf. [6].) We shall use ordered structures in
those cases where we want to describe only success behavior, such as the declarative
semantics.

1.5. Comparing the models

After that we have introduced all these models, we shall make a precise and
complete comparison. The two operational models are related to the corresponding
two denotational models, as just mentioned. The main result of the paper consists
in establishing a connection between the first denotational model, 0JFI, and the
declarative model <!tu. This is done in two steps.

First we shall relate 9LJH and <ftMP· To this end, an intermediate denotational
model .1' is introduced, to which both will then be related. Secondly-and this is
the more difficult part-<!tMr and 9Llec are compared. Again an intermediate denota
tional semantics, called files (CS for computed substitutions) is introduced. It is
essentially a model for maximal parallelism, like 0JM 1,, but does not deliver sets of
sequences of substitutions, but sets of single substitutions only. As a consequence,
it only models success behavior. The relationship between 0JMP and 0!cs is fairly
easy; the only technical problem is that the first model is defined as the fixed-point
of a contraction on a complete metric space, whereas the latter is given as the least
fixed-point of a continuous function on a complete lattice. Finally, 0!cs and f'!J)u

are related. Although their connection is intuitively obvious, it takes some (technical)
effort to make this precise.

At the end of our paper, we mention some consequences that can be deduced
from the various relations between the different models. The most important of
these is that we can easily establish a proof of the soundness and completeness of
the declarative semantics with respect to the success set (which was derived from
t'Jf.i)· In this way, we find a fairly transparent alternative to the equivalence proof
given in [9], the latter being quite complicated. The main problem is the contrast
between the bottom-up and (maximally) parallel nature of the declarative semantics
and the top-down and interleaving nature of the operational semantics. The inter
mediate models that we have introduced above allow for a decomposition of this
proof into several steps, and thus give some insight into the contrasting concepts
involved.

2. Mathematical preliminaries

We assume the following notions to be known: complete metric space, continuous
function on a metric space, compact subset of a metric space. (The reader might
consult, e.g., [7].) We shall also use the following notions from order theory:
complete partial order (CPOJ, complete lattice, continuous function on a CPO.

Comparing semantics for Horn clause logic 24~

. Let (M 1, di) and (M 2 , d2) be two complete metric spaces. A function f: M 1 --. M2

is called nonexpansive if for all x, y E M 1

d1Cf(x),f(y)) ~ d 1 (x, y).

It is called contracting (or a contraction) if there exists i: E [O, 1) such that for all

x,yEM1

d1Cf(x),f(y)) ~ £· d1(X, y).

Nonexpansive and contracting functions are continuous. The following fact is known

as Banach's Theorem: let (M, d) be a complete metric space and f: M--> M a

contraction. Then f has a unique fixed point, that is, there exists a unique x E M

such that f(x) = x.

The set M1--+ M1 is the set of all functions from M1 to M 2 • It can be turned into

a complete metric space by taking as a metric

dCf1 J2) =sup {d2Cf1 (x),f~(x))}
xc M 1

(all our metrics will have [O, l] as their range). Let

o/'ncoCM) = {X: X s; MAX is nonempty and compact}.

We can turn o/' ncoC M) into a complete metric space by defining a metric dH, called

the Hausdorff distance induced by d (the metric on M), as follows: For every

X, y E [JJn~o(M)

dH(X, Y) = max{sup{d(x, Y)}, sup{d(y, X)}}
xc)(\'L)'

where d (x, Z) = infzcZ{ d (x, z)} for every Z c M, x E M.

We shall often use the following notation: we write (x, y E) X when introducing

a set X with typical elements x and y.

A typical example of a complete metric space that we shall often use is the set

(w 1 , w 2 E) Ax =A* u A'" of all finite and infinite words over an alphabet A, supplied

with a metric d given by

where w(k) denotes the prefix of the word w of length k. We denote the usual

concatenation of two words by w1 • w2 •

3. The language HCL

We only give an informal introduction to the language HCL. For further details

we refer to [12, 1].

The sets Term of terms, (A, B, HE) Atom of atomic formulas (or atoms), and

((}, <T, y E) Subset of substitutions are defined as usual. Elementary atoms (EA tom)

are of the form p(x), where p is a predicate and x is a tuple of distinct variables.

A definite clause is a construct of the form H ~ B1 , ••• , B,, (n ""O), where H and

244 F.S. de Boer et al.

each B; is an atom; H is called the head and B1 , ••• , B11 (also denoted by ii) the
body of this clause. An HCL program W is a finite set of definite clauses. A goal
statement (or goal) is a construct of the form r A 1 , ••• , A,, (n:;,, 0), where each A;
is an atom. If n > 0 we denote r A1 , ••• , A11 also by r A. If n = 0 we have the
so-called empty goal, and we write o. The set of all goals is denoted by Goal.

We have the usual notion of most general unifier of two atoms A and H, denoted
by mgu(A, H). For the composition of two substitutions we write 0 1 01 . For technical
convenience, we shall throughout this paper consider only idempotent substitutions,
i.e., satisfying ()0 =()(see [13] for some discussion on ths point). The set of variables
occurring in the atom A is indicated by Var(A). For an atom A and a substitution
() we write e1A for the restriction of() to Var(A). The empty substitution is denoted
by E.

The classical operational semantics of HCL programs is based on the notion of
refutation. Let G = r A 1 , ••• , Am be a goal and let H r 8 1 , ••• , B,, be a (properly
renamed variant of a) clause in the program W. Assume that A; and H are unifiable
with most general unifier e. Then the goal

is derivable from G by one resolution step. A repeated application of such a
resolution step is called a derivation. A derivation is successful (and called a
refutation) if it ends with the empty goal D; it is failing if no further reductions are
possible while the empty goal has not been reached; and it is infinite otherwise. A
selection rule is a function that gives for each goal the atom to be reduced.
A derivation according to a certain selection rule is called an SLD-derivation. A
selection rule is fair if and only if all the atoms in all the possible goals generated
in SLD-derivations are eventually selected. Classically, the (operational) semantics
of an HCL program is defined by three sets:
• the success set (Oss), containing all the atoms that have a refutation, instantiated

by the last substitution (the so-called computed answer substitution);
• the finite failure set (OFFs), containing all the atoms for which all the fair

SLD-derivations are failing (see [2]);
• the infinite failure set (01Fs), containing all atoms, for which there are no successful

derivations and there is at least one fair infinite derivation.
The notion of success set given above is not completely satisfactory for characterizing
the operational behavior of a logic program. In this paper, we use a different notion
of success set: we take the one introduced in [8, 9], which contains all the elementary
atoms that have a refutation, instantiated by the computed answer substitution (see
the next section and the one on the declarative semantics).

4. Operational semantics

We present two operational semantics for HCL, both based on a labelled transition
system (in the style of [10)). The first one models interleaving and uses a breath-first

Comparing semantin ./ilr Horn clause logic 245

selection rule which is fair. The second operational semantics, in which all the atoms

occurring in a goal are reduced at the same time, describes maximal parallelism.

Throughout the rest of this paper, we assume the program W to be fixed.

4.1. Interleaving

First we introduce a labelled transition system for fair interleaving, on which our
first operational semantics will be based.

Definition 4.1. Let (Goal, Subst, _,.) be the labelled transition system, whose transi

tion relation __., s;; Goal x Subst x Goal is defined as the smallest relation satisfying
the following axiom:

--A,A ~ f\e, Be.

(As usual, we write A~ B rather than (.... A, e, B) E---...) Here e =

mgu(A, H) and H..,. Bis a clause of W. We assume this clause to be renamed such
that A, A and H have no variables in common.

Note that in the above axiom, a breath-first selection rule is used. In this way,

fairness is automatically ensured. This left-to-right strategy does not impose any

restrictions; we still get all possible fair behaviors. This can be proved by making

use of the so-called switching (or square) lemma (see [12]). Another feature of the

above transition system is the fact that the computed substitution (above the arrow)

is applied to the goal at the right of the arrow. This ensures that all subsequently

computed substitutions will be consistent with (i.e., extensions of) the current one.

Based on this transition system we define an operational semantics V_,: Goal_,.

PsT, which associates with a goal a set of sequences of substitutions. The semantic

universe (X, YE) Psi (ST is an abbreviation for streams) is given by

where Subst~', the set of finite, infinite and deadlocking sequences (or words, or

streams), is defined by

(v, w, z E) Subst~' = Subst* u Subst"' u Subst* · o.

As a metric on PsT we take the Hausdorff metric induced by the standard metric

on sequences (see the preliminaries). The empty sequence is denoted by A. and the

concatenation of two sequences w1 and w2 by w1 • w2 • To denote failure we have
added to the set of substitutions a special element o. We postulate for any substitution

e that 8(5, the composition of e and o, equals o; for any sequence of substitutions

v we have that o · v, the concatenation of o and v, is equal to o. Each sequence

represents a particular computation that corresponds to a specific choice of clauses.

The elements of such a sequence represent the partial results of the computation.

Finite sequences not ending in o (elements of Subst +) correspond to successfully

246 F.S. de Boer et al.

terminating computations (refutations). Sequences ending in o (in Subst* · B) rep
resent failing computations. Infinite sequences (in Subst'") are associated with

infinitely failing computations.

Definition 4.2. Let el'r1 be the unique fixed point of the contracting operator
<Pr,: (Goal~ Psy) ~ (Goal~ ? 51), which is given by

<P1-1(fl[u] = {E}

<PFl(F)[~ A]= u {O· (O""""FI F[A']): ~A~~ A'}

u{o:~A-f--7}

Here N'+FI: Subs! x PST~ PsT is defined by {i,,._f-1 x = { e~FI x: x EX}, with

The contractivity of <PFI in the above definition is straightforward. The compact
ness of <Pr1(F)[~A] follows from the fact that only finitely many transitions are
possible from ~A.

The definition of ('JF1[:1] is obvious. For a nonempty goal ~A we have that
O'FI[~ A] equals {B} if there are no transitions possible from ~A (indicated by
~A-/-?). Otherwise, tJ\, 1[~A] contains all sequences that start with e and continue
with a sequence stemming from 0~ 1 [~A'], in which every element is composed with
e. The latter is caused by the application of e AM-r 1 to OF,[~ A'], which is added
because we want to collect the total effect of all intermediate substitutions.

The definition has been presented in a fixed-point format, because this will ease
the comparison of Or1 with other models still to come. We could, however, have
given a more direct definition based on transition sequences. A second remark
concerns the use of the somewhat abstract operation e~ 1 . 1 • This could have been
avoided as well by using a different type of transition system, in which a configuration
\~A, a-) would consist of both a goal and a substitution. The latter could then be
used to store all the bindings found so far. The axiom corresponding to the one
above would be

((~A, A), er) ~ ((~A, B), o-0)

with B and 13 as above.

The following counterexample shows that 0 11 is not compositional. Consider the
following program

{p(x) ~ s1 (x), p(x) ~ s"(x), q(x) ~ s3(x)

s 1 (a)~, s2 (b)~, s3 (a)~, s1 (b)~, r(a)~}.

It is easy to see that with respect to this program <'J Fi[~ p(x)] = 0 1. 1[~ q (x) TI. But,
on the other hand, we have {x/ a}o E OF,[~ r(x), p(x)]\O,.,[~ r(x), q(x)TI.

Comparing semantics .fiJr Horn dause logic 247

4.2. Success, finite failure and infinite failure sets

From the operational semantics 0\. 1 we can derive the success set, the finite failure
set and the infinite failure set in the following way:

Oss = { p(x) 6: p(i) E EA tom/\ 6 E last(OFI[~ p(i)ll n Subst+)},

OFFs ={A: OF,[~ All c::; Subst* · 8},

011-s ={A: OF1[~All n Subst* = 0 /\ OF 1[~ All n Substw ~ 0}.

In the first set, the function last takes from a set of sequences the last elements (not
equal to 8). Those elements represent the computed answer substitution for success
ful refutations. The notion of success set we consider here is introduced in [9, 8]
and extends the standard one given in [12, 15]. (See also the section on the declarative
semantics for some more discussion.) The second set, eJFFs, contains those atoms
that give rise to only failing computations, i.e., sequences of substitutions that end
in 8. The last set, 0 1Fs, contains the so-called infinitely failing atoms; those give rise
to no successful computations and at least one fair infinite one.

4.3. Maximal parallelism

The next execution model we consider for our language is called maximally
parallel. Each step in the execution of a goal consists conceptually of two stages:
first, all atoms present in the goal perform one step independently. Secondly, the
substitutions resulting from these local computations are composed in order to
obtain the global outcome of the computation. For this composition we introduce
a new operator on substitutions called parallel composition. (Sometimes it is called
reconciliation operator; cf. [11].) It is defined as follows.

Definition 4.3. We define the parallel composition of two substitutions 6 and u,

denoted by 6 ° a, by

6 0 a = { ;gu (S (6) u S (a)) if it exists,

otherwise,

where S(6) = {(x, t): x/ t E 8}. Furthermore we define 6 ° 8 = 8 ° 8 = 8. (Note that the
notion of mgu is extended to sets of pairs of terms.)

This operator tests whether the two substitutions are compatible and, if this is
the case, yields the minimal substitution containing the same information (bindings)
as these substitutions. Otherwise it yields 8. It is straightforward to show that 0 is
commutative, associative, and indempotent (modulo the renaming of variables).

The proof of the correspondence of the interleaving and the maximally parallel
semantics will make use of the following property of this operator.

248 F:S. de Boer et al.

Lemma 4.4. For all substitutions 81 and 82

8 18 82 = 81mgu(S(82)81)

where 5(82)8 1 ={(x81 , t8 1):(x, t)ES(82)}.

For the proof of this lemma and additional discussion of 8 we refer to [13]. The

definition of 8 is illustrated by the following example.

Example 4.5. Let 01 = {x/f(y, a), z/ g(b)} and O:>. = {x/f(b, w), z/ g(y) }. Then

81 8 82 = mgu{(x,f(y, a)), (z, g(b)), (x,f(b, w)), (z, g(y)?}

= { x //(b, al, z I g (b l, .v I b, w I a}.

If we take 8 1 as before and 02 = {x/f(a, w), z/ g(y)}, then we have

81 8 82 = mgu{ (x,f(y, a)), (z, g(b)), (x,f(a, w)), (z, g(y))}

=8.

Next we introduce a transition relation for maximal parallelism. It is specified

by the following axiom and rule.

Definition 4.6. We define

(1)
II -

<- A ----> <- B

where 8 = mgu(A, H) and H <-Bis an (appropriately renamed) clause of W.

- H -
<-A----;><-A',

(2)

Note that in the conclusion of the rule above, we can have that (! 8 ir equals 8.

This means that the two substitutions are not compatible.

Definition 4.7. The operational semantics O'Mr is defined as the fixed point of the

contraction <PMP: (Goal-> Psrl-> (Goal-> PsT), given by

<PM p(F)[Lt]= { c}

<PMr(F)[<-A] = LJ { 8· (O,,,...MPF[<-A']): <-A~ <-A'}

U{o:<-A~}

Here~MP:SubstXPsr->PsT is defined by o""""Ml'X={8N+Ml'x:xEX}, with

(JN'>-MPA =A,

Comparing semantics fin- Hom clause logic 249

The definition of <'.l'MP is very similar to that of OF,. Two differences should be

noticed here. First, the transition relation that is used is different from the one in

the definition of 0 11 ; secondly, the definition of the function e"""~iP differs from

the function IJ ,,_FI. It COmpOSeS IJ in paraJ/e/ With the elements Of t'.IMP[~ A'n, as

opposed to 8""'"'"FI, which uses ordinary composition. Here we use the parallel

composition, because in the transition system above, the substitution above the

arrow is not applied to the atom at its right-hand side. Therefore, the next computa

tion step will not take this substitution into account and the next substitution that

is computed has to be reconciled with the previous one.

5. Denotational semantics for interleaving

In this section, we develop a denotational semantics 01F 1 for the operational

interleaving semantics V\. 1 . We start by introducing the complete metric space P11 ,

which is defined by

PFI = sP 11 c 0 (((Subst X Substt;) ")')

with a metric on P~ 1 similar to the one on Psr· It consists of sets of (finite and

infinite) sequences of finite sequences of pairs of substitutions. Such a sequence

(called a vector) we denote by (v,, ... , v11 , •• •), where each V; is a finite sequence

of pairs of substitutions. We shall use the following prefixing operator, which

composes a vector containing one pair of substitutions, ((81 , e,)) and a vector

(v,, v,, .. .), and is defined by

< c e, , e2) > · < v, , v,, ... > = (((e 1 , e, J), v, , v,, ...).

We use pairs of substitutions to represent the basic (unification) steps in the

computation. The first substitution of a pair is called the input substitution and can

be seen as an assumption on the behavior of the environment or, in other words,

the computation that has taken place so far. The second one, called the output

substitution, denotes the result of this computation step. As we shall see below, it

will be the substitution resulting from a unification. Failure of such a unification is

denoted by o. (An alternative would have been to use functions from substitutions

to substitutions. This would yield a semantics that is less abstract, i.e., more

discriminating.)
Next we explain why we use vectors (instead of just sequences of pairs of

substitutions). When we define a compositional semantics we introduce a semantic

merge operator II 1 1 • Operationally, a goal is executed by performing from left to

right one step of each atom in the goal. The operator II FI is defined such that it

mimics this strategy. If we had sequences of pairs of substitutions in our basic

domain we would not be able to do this: we would not know how many processes

(atoms) contributed to this goal. Vectors have this kind of information. The intuition

is that the nth element of a vector represents the nth left to right swap of the goal.

250 F.S. de Boer et al.

Hence the operator II FI combines two vectors by concatenating their elements, i.e.,

their sequences of substitutions, component-wise.

Definition 5.1. We define II FI: PFI x PFI"' PF1, for every X, YE PF1, by

XllF1 Y=LJ{xllF1Y:xEX,yE Y}

where

(vi, V2, .• ->llF1(W1, W2, ...)=(v1. W1, V2' W2, ...),

(V1, • · · , Vn) II FI (W1, W2, · . ·) = (V1' W1, · · •, Vn' Wn, Wn+I, · · ·).

Now we are ready to give the definition of the denotational semantics f:tlF 1•

Definition 5.2. We define 0JF1: Goal"' PF1:

!1lFIIT 0 TI = {>..},

0lF1[-E--A] = {((ll, llmgu(All, H)))· 0lF1[-E-- BTI: e E Subst, H -E-- BE W}

U{((ll, 8)):\;/H-E--BE W[mgu(All, H) does not exist)},

f0F1[-E--A1, A2TI = f0F1[-E--A1] II FI 0lr1[-E--A2].

This recursive definition can be justified with the use of contractions in the standard

way. (See Definition 6.2 for an example.)
The following example may help in understanding the definitions of 0JF1 and II FI.

Consider a query -E--A1, ... , A,,,. Assume that for any i the first reduction step of
A; delivers the input-output pair (a;, [3;) and produces the conjunction B;, C;.
Assume furthermore that the first reduction steps of B; and C; produce the pairs
('}';, 8;) and (e;, </>;), respectively. Then the following vector will be an element of
gJFI[-E--A1, ... , A,,.TI:

«Ca1, [3 1), ••• , (a,,,, [3,,,)),

((Y1, 81), (e1, </>1), ... , (y,,,, 8,,,), (em, <Pm)), ...).

In Section 8, the correctness of g)F1 with respect to eJ'F1 will be proved.

6. Denotational semantics for maximal parallelism

We next introduce a denotational variant, named g)MP. of the operational model
OMP for maximal parallelism. Unlike the case of fair interleaving, we need not
introduce a new semantic universe; we can again take PsT· Recall that PsT is defined
as

PsT= (Jl>nc0 (Subst~').

Before we introduce the model ffiMP• we first extend the parallel composition operator
c; to a parallel operator llMP defined on sets of sequences of substitutions.

Comparing semanticsj(Jr Horn clause logic

Definition 6.1. We define /IMP: PsTX PsT-" PsT by, for all X and yin PsT,

Xl/MP Y=LJ{xl/MPy:xEX,yE Y}.

Here x l/MPY is defined by the following cases.

ifu1ou2 =8,

otherwise.

251

Note that II M P is recursively defined. Formally, we can introduce it as the unique

fixed point of a suitably defined contraction.

Now we can introduce the semantics :l!MP· It turns out to be equal to OMr; this

will be proved in Section 8.

Definition 6.2. Let the function 0LJMP: Goal...,. Psr be the unique fixed point of the

contraction 1.J.r MP: (Goal--" PsT)--" (Goal-" Ps1), given by

1.J.rMP(F)[11n = {E},

1.f.!MP(F)[~ ATI = U {mgu(A, H)N'->-MPF(~ B): H ~BEW}

u {B:VH~BE Wmgu(A, H) does not exist},

1f'MP(F)[~A 1, A2TI = 1fr MP(F)[~ A,D II Mr 1.f.r MP(Fl[..- A2Il·

It is not difficult to show that 1.J.IMI' in the above definition is contracting; a proof

would make use of the fact that I/ MP is nonexpansive, an observation that on its

turn is rather straightforward.

7. Declarative semantics

In this section, we recall the definition of the declarative semantics <!l!ec introduced

in [9]. The term declarative means that the program is seen as a set of first order

formulas and that the semantics is intended in the model-theoretic sense, i.e.,

characterizing the set of logical consequences of the program. This semantics is

obtained as the least fixed-point of a continuous transformation Ton the interpreta

tions of the program. Such a transformation is called immediate consequence operator

because for an interpretation /,the set T(l) contains all the (atomic) consequences

obtained from the (atomic) formulas that are true in I by a one step inference from

the program. The first declarative semantics for HCL was proposed by van Emden

and Kowalski in [15]. In their approach, interpretations are sets of ground atoms

and the least fixed-point, shown equivalent to the least Herbrand model of the

program, characterizes the validity of the ground atoms only. The construction in

252 F.S. de Boer et al.

[9] extends this approach in that interpretations contain also non ground atoms
and therefore the least fixed-point allows to express validity for so-called generic
atoms.

Next we give the construction of [9] in more detail. We refer to that paper for
the proofs of the results we mention here. For Theorem 7.7 a proof will be presented
in Section 9.

Definition 7.1. The partially ordered set of (extended) interpretations, with typical
element I, is defined as (PDec. <;),where P00c= 97'(Atom).

Proposition 7 .2. (Poec. <;) is a complete lattice.

Definition 7.3. The (extended) immediate consequence operator T: Pn.c ~ PDec. is
defined by

T(l) = {Hmgu(B, B'): H ,,_ iiE W, B' E !}.

Proposition 7.4. The operator T is continuous.

Since T is continuous, its least fixed-point lfp(T) exists; moreover, (fp(T) =
Un,.0 T"(0), where T"(I) is defined by

T 0 (l) =I, T"+ 1(I)= T(T" (I)).

The declarative semantics is defined as follows.

Definition 7.5. ~ec = lfp(T).

The next theorem gives the relation between the model-theoretic semantics of W
and CZ!Jec.

Theorem 7.6. For every atom A,

WF= A (i.e., A is a logical consequence of W) iff

3A' E 22lec3 8 E Subst[A' fJ =A].

Finally, the following result expresses the relation between 2Llec and the success set.

Theorem 7. 7. 2Llec = 0 ss .

8. The relations between the models

8.1. The relations between the denotational and the operational models

8.1.1. Relating 0 FI and 22lF1

We start with the relation between OF1 and 22lFi. the operational and denotational
semantics based on interleaving. They will be connected by the following abstraction
operator.

Comparing semantics Jin· Horn clause logic 253

Definition 8.1. The operator f3Fi: Subst~ _,,.PH~ Psr is defined by f3r1(8)(X) ={A.},
and for 8 ~ 8, by

f3F1(8)({A.}) ={A.}

f3F1(e)(X) = U { e1 · f3F1(81)(xlf!,1,11): X11,,H 11 ""0}.

Here x(B,11,J is defined by x(f!,01i={(v1,V2,••·>:<(e, 6l1)·v1, V2, ...)EX}.

(The well-definedness of f3FI can be established in the by now familiar way: it
can be given as the fixed-point of a contraction.) The abstraction operator f3FI first
selects from the set X the connected sequences, that is, those sequences such that
the output substitution of a pair equals the input substitution of the following pair.
From such a connected sequence it takes all the output substitutions.

We have the following theorem relating <'.l'F1 and 0JF1. (Recall that E is the empty
substitution.)

Theorem 8.2. For every goal +-A we have f3 1,1(E) 0 f'OF 1[.,.._A]= OF1[.,.._A].

Proof. We prove f3 1.1(E) 0 0lr1=<0\.1 by showing that /3r1(E) 0 0lF1 is a fixed-point of
the contraction <PF1. Then the equality follows from Banach's theorem. We omit
the deadlock case, which can be taken care of straightforwardly.

The steps marked with (1) and (2) are explained below.

<PF1(/3f'I(E) 0 0JFI)[.,.._A, A]

=LJ {8·(6l"""'11(/311(E) 0 9LJFl[<-A8, BtJ])):

H.,._BE Wand 8=mgu(A, H)}

1~U {8· (/3F1(6l) 0 0JF1[.,._ A, B]): H.,.._ BEW and e = mgu(A, H)}

= f3F1(E)(u {<(e, e)) -(f:!JFI[<-A] II FI ffiFI[<- BD:

H <- BE W and 8 = mgu (A, H)})

121 - . -
= /3 FI(E)(LJ{ < (E, e))- <j)FI[<- B] II FI 0lr1[+-A]:

H .,.._ BE W and 8 = mgu (A, H)})

=f3F1(E)(LJ{((E, tJ)/ · 9LlF1[+- B]:

H.,.._ BE Wand e = mgu(A, H)} II FI 0JF1[+-A])

=/3r1(E)(0JF1[.,._ A] ll110ld.,._ A])

=/3F1(E) 0 0JFJ[+-A, A].

Step (1). The identity e"""'F1f3F1(E) 0 0JF1[.,..A8,B6l]=/3F1(8j 0 :'._0n[.,._A,B] is jus
tified by the following observations. Let (v1 , • ••) E 0:IF1[.,.._A, B] be a connected

254 F.S. de Boer et al.

sequence with its first pair of the form (e, e'), for some e'. It follows that Vi==

((e, ee 1), ••• , (ee 1 • • • e,,_ 1, ee, · · · e")), with e; == mgu(A;eei · · · B;-1, H;),

for some H; ~ B;. Here we have A1, ... A 11 =A, B. So for v; ==

((c.,e1), ... ,(e1,···e11 _ 1,e1···e11)) there exists a sequence (v;, ...)E

fi'Fr[~Xe,BeTI. Now each pair occurring in (v2, ...)Efi'Fr[~B1,···· B,,TI is of the

form (ee', ee'e"), where e"=mgu(Bee', H), for some atoms Band H. But due to

the renaming mechanism, which we implicitly assume, we have that e does not

affect the variables of B. So we have that e" == mgu(Be', H) implying that we can

eliminate e from the sequence (v2 , •••). This argument could be formalized by the

introduction of an explicit renaming mechanism.

Step (2). We show that ,lhr(c.)(((E, e)). (XII FI Y)) == fhr(c.)(((E, e)) . y II FI x). (For

convenience, we write (v11) 11 for (v1, v2 , •. •).)

f3FI(E)(((E, e)). (X llFI Y))

= /3 FI (E) ({ ((E' e)) . ((WI!) n II FI (Vn),,) :

(w11) 11 EX,(v,,) 11 E Y})

==(from Definition 5.1 and Definition 8.1)

f3FI(E)({ ((E, e) W1, Vi W2, ...) : (W11),, E X, (V,,),, E Y})

=f3FI(E)({((E, e), V1' •. .) llFI(W1' ...):(wll)ll EX, (vll)ll E Y})

==f3F1(<.)(((E, fJ))· YllF1X). D

8.1.2. Relating VMP and ;2ZJMP

Next we prove the identity of the operational model OMr and the denotational

model ;2ZJMP for maximal parallelism.

Theorem 8.3. VMP== ;2ZJMP·

Proof. Similarly to the proof of Theorem 8.2, it can be shown that ;2ZJMP is a fixed-point

of the contraction <PMr. from which the theorem follows. D

8.2. Relating f1lF 1 and !:0MP

In order to relate f0r-1 and f0Mr, we introduce an intermediate semantics!}: Goal~

PI, with P1 == gp nco((SubstU°,-), as the fixed-point of the contraction 1Jf: (Goal~ Pi)~
(Goal~ P1) defined as follows.

Definition 8.4. We define

1/f(F)[oTI = {£},

1/f(F)[~ ATI = U {(mgu(A, H)) · F(B): H ~BE W}

U {8: 'V H ~ fj E Wmgu(A, H) does not exist},

lfr(F)[~ A1, A2TI == lfr(F)[~ A1TI 11 lfr(FJ[~ AJ.

Here II is defined in a similar way as II FI.

Comparing semantics .for Hom clause logic

Now 0JF1 and ,j are related by the following abstraction operator.

Definition 8.5. We define a: PF 1 ~ P1 by

a(X) = {<81 ... e,, Eh+1 ... e,, ...): ((E, 61) ... (E, fJd,

(E, f)k+1l ... (t:, fJ,), .. ·)EX}.

(We have omitted the case that X contains finite sequences.)

255

This abstraction operator selects from each set those sequences that make no

assumptions on the environment, i.e., of which all pairs have E (the empty substitu
tion) as the first element.

Theorem 8.6. So= a 0 0Jf' 1.

Proof. It can be shown that a 0 rziJF 1 is a fixed-point of 1/'. D

We continue the equivalence proof of ~FI and 01Mr by relating~ and 0JMP· For
this purpose we again need an abstraction operator.

Definition 8.7. We define aMP: P1 ~ Ps-r by

a M rC<s I ' S2' ...)) = (8 s I) . (8 (s I . s2)) ... ,

where S; E Subst; and 8 61 ... e,, = 81 8 ... 0 e,,. (If n = 1 then 8 e = fJ.)

This operator takes for each word fJ 1 • • • fJ,, E Subst; the parallel compos1t10n,

thus turning it into one maximally parallel step. Further, it passes through the result

of previous steps to the next one to be considered. This mimics the behavior of the

""'"MP operator in the definition of 0JMP· Now we can establish the following theorem.

Theorem 8.8. 0.lMP = aMP 0 .9'.

Proof. Again it can easily be shown that aMp 0 .fo is a fixed-point of IJfMP· D

Combining the two above theorems yields the following corollary.

8.3. Relating 0.lMP and r:!JJec: an intermediate model 0:!cs

We introduce an intermediate denotational semantics .01cs (CS is an abbreviation

for computed substitutions), to which both 0JMP and 0Jec will be related. It can be

seen as a denotational variant of 0Jcc, which yields for every goal the set of computed

answer substitutions; since it delivers a set of substitutions, rather than a set of

sequences of substitutions, it models only success behavior. Like 0JMP it is a model

for maximal parallelism. Formally, 0lcs is introduced as the least fixed-point of a

continuous function on a complete lattice, which we introduce next.

256 FS. de Boer et al.

Definition 8.10. The set Pcs, with typical element F is given by Pcs = Goal-->

9J>(Subst).

The set gP(Subst) of sets of substitutions, is a complete lattice with respect to set

inclusion. Thus gP cs is also a complete lattice, when supplied with the inclusion

relation induced by the one on 9J>(Subst):f1 ~j~ iff 'ef ~ A[f1(~A) ~f2(~A)]. Since

we do not need to consider sequences, a lattice structure, rather than a metric one,

suffices as a domain for f21cs.

The least upper bound of a set§'~ Pcs, denoted by UFd'• is defined by

Before giving the definition of ~:l!cs we first extend the definition of 8, the operator

for the parallel composition of substitutions, to sets of substitutions. We put, for

X, YE [lJ>(Subst),

X 8 Y = { {J 8 a : {J E X, a E Y, e 8 a ¥- o}.

The following lemma states that it is continuous, a fact that we shall need in the

definition below.

Lemma 8.11. Let {X,,,},,,di. {Y11 },, •• 0 be chains in Pf'(Subst) ('efk[Xk~Xk+i/\ Yk~

Yk+ I]). Then Uk ·() (xk 8 Yd= (LJ,,, -o X,,,) 8(LJ11 'il y/1).

Next we introduce 0:ics: Goal-> 9J>(Subst).

Definition 8.12. Let Siles: Goal--> rJJ>(Subst) be the least fixed-point of the continuous

(with respect to the lattice structure on Pcs) operator Pcs: (Goal--> gP(Subst))->
(Goal--> PJ>(Subst)), given by

Pcs(F)[r1] = {E},

Pcs(F)[~A] =LJ {(mgu(A, H)8F(~ B)J1v"r(AJ: H ~BEW},

Pcs(F)[~ A1, AJ = Pcs(F)[~ A1] 81Jtcs(FJ[~ A2].

The continuity of Pcs is a direct consequence of Lemma 8.11.

8.4. Relating 0JM r and 5'.i!cs

The relation between the models 0JMP and 0:\s is described by the abstraction
operator acs: PsT-> 9J> (Subst) defined by

acs(X) = last(X n Subst+).

(The function last used above yields for a set of finite sequences the set of their
last elements.) We have the following theorem.

Comparing semantics ji1r Horn clause logic 257

Theorem 8.13. 0lcs = acs 0 0JMP·

The theorem is immediate from the following two lemmas, which can be proved

by ind~ction on n. Let the functions J_ and J> be defined by 1-(.... A) = 0 and

J,w(<-A)={sw}, for all <-A.

Lemma 8.14. For all n: P~\(1-) = (acso P~p)(J, ..).

Lemma 8.15. For all n and <- B:

Proof of Theorem 8.13. For any <- B we have

(acs 0 ~.0MrH <- B) =a\ s(Fm P~1PU>)(.,_ B))

8.5. Relating fzlcs and 0!u:

=(Lemma 8.15) D'cs(LJ 1/l'~p(J>)(<-B))

= U ll'cs(P~"(f;, .. l(.,_ B))

=(Lemma 8.14) U PZs(1-)(<-Bl

Next we shall compare the denotational semantics modeling the computed answer

substitutions, on the one hand, and the declarative semantics, on the other. The

relation will be given by defining two uniform functions, v and µ and by showing

that 0Ju:= v(.<Jlcsl and illcs= µ(01u). Here uniform means that these two functions

do not depend upon the specific program W

The sketch of the proof is the following: first we consider a sub-domain P of the

domain of P'cs such that µ and v make T and Pcs to commute on this domain,

namely: P'cs(µ(I))=µ(T(l)), and v(Pcs(F))= T(v(F)) for all FEP. Then we

show that v allows to simulate step by step the fixed-point construction of l/fcs by

T and vice-versa, namely: for each n~O, T"(0)= v(P'2'5(F0)) and 1P2s(Fo)=

µ(T"(0)) (where F0 is the minimal element of P). Finally, by continuity of v and

µ, we can commute also the least upper bounds of these chains, so that (Ip(T) =

LJ., -o T" (0l = v(LJ,, •O P'Z·s(Fol)= v((fp(P'cs)) and (fp(Pcs) = Und! PZ·s(Fol=

µ(LJ,,.o T"(0))=µUfp(T)).

We use the following notation: Var(Al is the set of variables occurring in A.
Dom(&) (the domain of 8) is the set {x:x8~x}. Cod(&) (the codomain of 8) is

the set u" /)om(f)) Var(x()). If x is a set of substitutions and A is an atom, then XA

is the set {()A: 8 E X}, where ()A is any renaming of e with respect to A, i.e., such

that Vx[Var(x8A) (l Var(Al = 0].

258 F.S. de Boer et al.

Definition 8.16. P is the subset of Pcs =Goal~ '?Jl(Subst) of all elements F that satisfy
the following properties.

(Rl) F[o]={E}
(R2) \ffJ[Dom(e).:;x =:} (ec;F[~p(x)H) 1 p(x 1 o=F[~p(x)fJ]]
(R3) F[~ A1' A2] = F[~ A1](; F[~ A2]
(R4) 'v'A'v'8E F[~A] [Dom(e).:; Var(A)]

The motivation of these restrictions is of a technical nature: the set P will turn
out to be isomorphic to the set Pnw The isomorphism pair, (v, µ,), will be defined
later. (R3) requires the information given by F about generic goals to be obtainable
by the information about atomic goals. This corresponds to the compositional nature
of interpretations in Pnec: the meaning of a conjunction is declaratively defined in
terms of its conjuncts. (R2) also reflects a kind of compositionality: the possibility
to obtain the information about an instantiated atom from the uninstantiated one.
(Rl) and (R4) impose a sort of minimality on the information associated to a goal.

The set P is a complete partial order with respect to the ordering it inherits from
Pcs. This we prove next.

Proposition 8.17. (P,.:;) is a complete partial order; the least upper bound of a chain

(Fn),, is given by Un F,,. In other words, (P, .:;) is a sub CPO of (Pcs, <:;).

Proof. We have to show that for any chain (F,,) 11 in P, Un F,, preserves the properties
(Rl)-(R4). (Rl), (R2) and (R4) are obvious. (R3) follows by Lemma 8.11. D

Definition 8.18.

• The function v: P ~ PDec is defined by

v(F) = {p(i)B: e E F[~ p(i)] A p(i) E EAtom}.

• The function µ, : Pnec ~ P is defined by

µ,(/)[rJ] = {e},

µ,(/)[+-A]= {mgu(A, A')1A: A' EI A Var(A') 11 Var(A) = 0},

µ,(!)[+-Ai, A2] = µ,(I)[+-A1]~ µ,(I)[+-A2].

Remark 8.19. The function µ, is well defined, i.e., \;/I E PDec[µ, (I) E P]. Indeed, (Rl),
(R3) and (R4) are trivial, and (R2) is an immediate consequence of the following
lemma.

Lemma 8.20. Let e be an idempotent substitution, and assume Dom(e).:; x. Let A be
an atom such that Var(A) n {i} = 0 and Var(A) 11 Var({xe}) = 0. Then

(e c; mgu(p(i), A))lpil'JO = mgu(p(i) e, Al1w10.

Comparing semantics for Horn clause logic 259

Proof. The proof uses some elementary properties of idempotent substitutions (see
[13]). D

The following facts can be readily established.

Proposition 8.21. The functions v and µ, are continuous.

Proposition 8.22. P is closed with respect to Pcs, i.e., VFE P [Pcs(F)E P].

The following result shows that µ, and v commute the functions Pcs and T on P.

Lemma 8.23.
(1) lfFEPthen v(Pcs(F))=T(v(F)).

(2) If IEPDec then Pcs(µ,(I))=µ,(T(I)).

The functions v and µ, allow to simulate, step by step, the fixed-point construction

of 2Zlcs in q/Jec, and vice-versa. There is only one difficulty: the fixed-point construction

of Pcs starts from the minimal element of Pcs, that is the function FJ_ such that

for every A, F 1 [~AD= 0. Unfortunately, F 1 is not the minimal element of P, in fact

F1 e P. The minimal element of P is the function F0 such that

[- {{E} iff~A=u,
Fo ~ ATI =

0 otherwise.

However, the fixed-point of Pcs can be also obtained by starting from F0 , as the

following remark shows.

Remark 8.24. We have F0 =µ,(0) and Fo= Pcs(FL).

Lemma 8.25.
(1) Vn~O [T"(v(F0))=v(Pts(Fo)lJ.

(2) Vn ~o [P~'s(µ,(0))=µ,(T"(0))].

Proof. By induction on n.

Finally, we show the correspondence between 92lcs and 20ec.

Theorem 8.26.
(1) 20ec= v(92lcs).
(2) 2Zlcs = µ,(20ec).

260 F.S. de Boer er al.

Proof.
(1) 0)u; ==(Ip(T)

== u T"(0)

== U T" (v(F0)) (by Remark 8.24, part 1)
n -~..,.o

== U v(lJr;' 5 (F0)) (by Lemma 8.25, part 1)
tl .,.()

== v (~, lJr;\(F0)) (by continuity of v)

== v(ljp(lfrcsll (by Remark 8.24, part 2)

== v(01cs).

(2) Similar to the previous one. D

9. Collecting the results

After the long and exhausting previous section, the reader might be comforted
by a schematic overview of the relationships that were established. We have the
following equalities .

.J == l¥ 0 0J FI ·

0lcs == µ, ('l/!ec).

0:iu: = v(.0lcs).

In Fig. 1, these equalities are graphically represented. Moreover, it contains some
arrows between DF1 and the sets c\s, 0 1+s and O\Fs, indicating that the definition
of these sets is based on that of 0 11 .

Combining some of the equalities above, we find

a maybe somewhat complicated but precise relationship between the declarative
semantics 0Ju and the denotational semantics 0JF 1. From this the following theorem,
which establishes the soundness and completeness of the declarative semantics, is
fairly immediate. Thus an alternative is given for the quite complicated proof that
is given in [9]. The fact that here the relationship between C!iJec and 0JF 1 and, hence,
between 'dJec and Vss has been decomposed into several steps makes the proof below
more transparent.

Comparing semantics jiJr Horn clause logic 261

(}FI----? (i)\ FS

I~,,
II

Fig. I.

Theorem 9.1 A E O'ss <=:>A E ffiec.

Proof.

AEO\s <=:>(definition Oss)3p(.X)38 1 ···8nEO'F 1[~p(x)E:A=p(x)8n

<=:> (01-1 = f3F1° ffiFi)3p(x)3s1, ... , sk E ffiF1[~ p(x)]:

s, · · · sk = < (E, 81), (81, 82), C 82, 83), ... , (8,, -1, 8,,)) "' A = p (x) 8,,

<=:> (using 8mgu(A8, H) = 8°mgu(A, H),

a direct consequence of Lemma 4.4)

3p(x)3s,, ... , sk E ffir1[~ p(x)Il:

s, · · · s, = ((E, 81), (E, 82), ... , (e, 8n)) 11A=p(x)(8,8. · .8 8,,)

<=:> (_jl =Cl' o ffiF1)

V1 ... vk = 81 ... 8,, /\A= p(x)(81 O•. ·08,,)

<=:> (0JMP= Cl'Mp 0 Ji)3p(x)381 ... 8,, E ffiMr[~ p(x)]: A= p(x)e,,

<=:> (0\·s = acs 0 ffiMP)3p(x)38 E 0lcs[~ p(x)]: A= p(x)8

<=:> A E ffiec. 0

We deduce from the equalities above a second fact, which says that 0 55 , (i)'FFS

and 0 11,s can be characterized in terms of OMr (= 92JMP), instead of OF1 • In other

words, for the semantics of an HCL program, it does not matter whether we consider

an interleaving or a maximally parallel model. Although this might not seem very

surprising, it is not completely straightforward, since (i)'Mr and O'F1 have a different

262 F.S. de Boer et al.

deadlock behavior: the former delivers deadlock for more goals than the latter. (See
the counterexample at the end of Section 4.1.)

Theorem 9.2. We have the following equalities.

Oss = { p(.X) e: p(.X) E EAtom A e E last(CiMr[~ p(x)] n Subst+)}.

Ci1+s ={A: eJ'MP[~A] c; Subst* · O}.

0 11 s ={A: (Ml'[~ A] n Subst* = 0 A 0\1p[~A] n Subst'" #- 0}.

Proof. Similar to that of the previous theorem. D

Acknowledgment

We thank Jean-Marie Jacquet, Peter Knijnenburg and Erik de Vink for their
detailed comments on a draft of this paper.

References

(l] K.R. Apt, Introduction to logic programming, in: .I. \an Leeuwen, ed., Handbook of" Theorelical
Comp1uer Science, Vol. B I Elsevier, Amsterdam, l 990 I 493-574.

[2] K.R. Apt and M.H. van Emden, Contributions to the theory of logic programming, J. ACM 29(3)
(1982) 841-862.

[3] J.W. de Bakker and J.l. Zucker, Processes and the denotational semantics of concurrency, lnfimn
and Co111rol 54 I 19821 70-120.

[4] F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, Control flow versus logic: a denotational
and a declarative model for guarded Horn clauses, in: A. Kreczmar and G. Mirkowska, eds., Proc.
Mathematical Foundations of" Computer Science I MFC 'S '89), Lecture Notes in Computer Science,
Vol. 379 (Springer, Berlin, 1989) 165-177.

[5] F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, Semantic models for a version of
Parlog, in: G. Levi and M. Martelli, eds., Proc. Internal. Con(on Logic Programming (!CLP 89),
pages 621-636. MIT Press, 1989: also Theoret. Comput. Sci. 86 (1991) 3-33.

[6] E.P. de Vink, Concurrency semantics applied to logic programming, Technical report, Vrije Univer
siteit, Amsterdam, 1990.

[7] R. Engelking, General Topology (Polish Scientific Publishers, Warsaw, 1977).
[8] M. Falaschi, G. Levi, C. Palamidessi and M. Martelli, A new declarative semantics for logic

languages, in: Proc. Cont: and Symp. on Logic Programming (MIT Pre", Cambridge, MA, 1988)
993-1005.

[9] M. Falaschi, G. Levi, C. Palamidessi and M. Martelli, Declarative modeling of the operational
behavior of logic languages, Theoret. Comput. Sci. 69(3) (19891 289-318.

[I OJ M. Hennessy and G.D. Plotkin, Full abstraction for a simple parallel programming language, in:
J. Becvar, ed., Prue. Mathemalical Fl1undatio11s 1~/" Computer Science (M FCS '79), Lecture Notes in
Computer Science, Vol. 74 (Springer, Berlin, 19791 108-120.

[11] J.-M. Jacquet, Conclog: A methodological approach to concurrent logic programming, Ph.D. thesis,
Facultes Universitaires Notre Dame de la Paix, Namur, 1989.

(12] J.W. Lloyd, hn111dations of" Logic Programming (Springer, Berlin, 2nd edn., 1987).
[l 3] C. Palamidessi, Algebraic properties of idempotent substitutions, in: M.S. Paterson, ed., Proc. I 7th

Internal. Colloq. on Automa1a, Languages and Programming, Lecture Notes in Computer Science,

Comparing semantics for Horn clause logic 263

Vol. 443 (Springer, Berlin, 1990) 386-399; full version available as Technical Report TR-33/89,
Dipartimento di lnformatica, Universita di Pisa.

[14] E.Y. Shapiro, A subset of Concurrent Prolog and its interpreter, Technical Report TR-003, !COT,
Tokyo, 1983.

[15] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language,
J. ACM 23(4) (1976) 733-742.

