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Abstract 

Groote, J.F., Transition system specifications with negative premises, Theoretical Computer Science 
118 (1993) 263-299. 

In this article the general approach to Plotkin-style operational semantics of Groote and 
Vaandrager ( 1989) is extended lo transition system specifications (TSSs) with rules that may contain 
negative premises. Two problems arise: firstly the rules may be inconsistent, and secondly it is not 
obvious how a TSS determines a transition relation. We present a general method, based on the 
stratification technique in logic programming, to prove consistency of a set of rules and we show 
how a specific transition relation can be associated with a TSS in a natural way. Then a special 
format for the rules, the ntyft/ntyxt format, is defined. It is shown that for this format three important 
theorems hold. The first theorem says that bisimulation is a congruence if all operators are defined 
using this format. The second theorem states that, under certain restrictions, a TSS in ntyft format 
can be added conservatively to a TSS in pure myfi/ntyxt format. Finally, it is shown that the trace 
congruence for image-finite processes induced by the pure ntyfi/nryxt format is precisely bisimula
tion equivalence. 

I. Introduction 

In recent years, many process calculi, programming languages and specification 
languages are provided with an operational semantics in Plotkin style [26, 27]. We 
mention CCS [20, 22], SCCS [21], ACP [14], MEIJE [4], Esterel [9], LOTOS [17] 
and Ada [3]. 
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In [ 15] an operational semantics in Plotkin style is defined by a TSS (transition 

system specification). Basically, a TSS consists of three components. The first compon

ent is a signature defining the language elements. All terms over this signature will be 

referred to as (process) terms or processes. The second component of a TSS is a set of 

actions or labels representing the different activities that process terms may do. The 

last component is a set of rules that define how processes can perform certain activities 

depending on the presence of specific actions in other processes. In [ 15] the possibility 

to perform activity based on the absence of actions is not considered. 

But in many cases it is convenient to have this possibility. For instance, a deadlock 

detector D( p) of a process p can naturally be specified as follows: if p can do no action 

then D( p) may signal deadlock. We find deadlock detectors described in this way 

in [18,25]. 
Deadlock detection is also used in sequencing processes. If in p. q (process p 

sequenced with q) p cannot do anything, q may start. See, for instance, [23, 10], where 

it is observed that sequencing can only be defined using negative premises. 

Negative conditions are also useful to describe priorities. Suppose 0 is a unary 

operator that blocks all actions which do not have the highest priority. An opera

tional description of O(p) could be that it can only perform action a if it cannot 

perform any activity with higher priority. Descriptions of priorities with negative 

premises can be found in [6, 13, 15]. 
Another area where negative conditions can be fruitfully applied is the area of 

(semi-) synchronous parallel operators. Suppose a sender wants to send data to 

a receiver. If the receiver is willing to accept the data then data transfer will take place. 

If the receiver is not willing to accept the data then the sender may not be blocked and 

data may, for instance, disappear. This can conveniently be described using negative 

premises. Pnueli [28] defines an operator in this way. Also the put and get primitives 

of Bergstra [8] can be defined using negative premises. 

Often, negative premises can be avoided. Using additional labels, function names 

and rules, an operational semantics can be given with only postive premises. But then 

there are many auxiliary transitions that do not correspond to positit'e activity. 

Moreover, definitions of operational semantics become more complex than necessary. 

This means that an important property of operational semantics in Plotkin style, 

namely simplicity, is violated. 

For these reasons, we believe that it is useful to investigate how one can deal with 

negative premises in TSSs. 

A format of rules that allows negative premises is the GSOS format of Bloom et al. 

[10]. All operators mentioned above can be defined in this format. The GSOS format, 

however, is incompatible with the (pure) tyft/tyxt format [15], that allows lookahead 

and no negative premises. Many useful operators definable in the tyft/tyxt format 

cannot be defined using the GSOS format. Their relations are described by the black 

arrows in Fig. l. The positive GSOS format is the most general format that is below 

both the tyjt/tyxt format and the GSOS format. Below the positive GSOS format we 

find the de Simone format [30], which was already defined by R. de Simone in 1984. 
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pure ntyft/ntyxt 

pure tyft/tyxt GSOS 

~/ 
positive GSOS 

De Simone-format 

Fig. I. Pure 111.1:ft/111yx1 extends both GSOS and pure tyfi;ryxt. 

The de Simone format is powerful enough to define all the usual operators of CCS, 
SCCS, ACP and MrnE. All formats will be explained more precisely in the last section 
of this article. 

The natural question arises whether a format exists that is more general than both 
the (pure) tyft/tyxt format and the GSOS format. An obvious candidate for such 
a format is obtained by adding negative premises to the tyft/tyxt format, getting the 
ntyft/ntyxt format. The n in the name of the format is added to indicate the possible 
presence of negative premises. We arrive at the situation depicted by the dotted lines 
in Fig. I. 

Two problems arise when rules can be in pure ntyft/ntyxt format: 
• It is possible to give an inconsistent set of rules. This occurs if one can deduce, using 

the rules, that a process can perform an action if and only if it cannot do so. In this 
case the rules do not define an operational semantics. 

• Even if the rules are consistent, it is not immediately obvious how these rules 
determine an operational semantics. The normal notion of provability of 
transitions where the rules in a TSS are used as inference rules is not satisfactory. 
We deal with the first problem by formulating a method of checking whether 

a transition relation is consistent. This method is based on the stratifications [2, 29] 
that are used in logic programming. The other problem is solved by formulating an 
explicit definition of the transition relation. 

Furthermore, general properties of the nt}ft/ntyxt format are studied. It is shown 
that bisimulation is a congruence for this format. Then in Section 5 we define the sum 
of two TSSs and we prove a theorem stating very general conditions under which 
a TSS can be added conservatively to another TSS. 

In [ 15] the completed-trace congruences induced by the pure tyft/t_vxt format and 
the GSOS format are characterized. It is interesting to know the impact of the more 
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powerful testing capabilities of the pure ntyft/ntyxt format. Surprisingly, it turns out 
that the (completed) trace congruence induced by the pure ntyft/ntyxt format is exactly 
strong bisimulation. This is shown by a small test system that provides an alternative 
for the test systems of [I, 10]. We do not need the global testing operators like the ones 
used in these articles. The combination of copying, lookahead and negative premises 
turns out to be powerful enough. 

Recently, when applying the stratification technique, we ran into the problem that it 
is not always satisfactory to find a transition relation for a set of rules. In [12] this 
problem is analysed in depth. In that paper a general criterion has been given for 
a TSS to be meaningful. We consider various techniques to prove that this criterion 
holds for a TSS. Among these is stratification and a stronger technique, called 
reduction. Furthermore, we reconsider the congruence theorem for the ntyft/ntyxt 
format and the conservativity theorems of this paper in a more extended setting, and 
we study the relation with complete axiomatisations. 

2. Transition system specifications and stratifications 

This section describes a TSS as a general framework for defining an operational 
semantics in Plotkin style. A condition is developed that guarantees the existence of 
transition relations agreeing with a TSS. This condition is comparable to local 
stratification as used in logic programming. Next we define which transition relation 
is associated with a TSS. Finally, some remarks are made about a class of TSSs which 
determine a transition relation in a unique way. We start off by defining the basic 
notations that are used throughout the paper. We assume the presence of an infinite 
set V of iiariab/es with typical elements x, y, z ... 

Definition 2.1. A (single-sorted) signature is a structure l:=(F,r), where 
- F is a set of function names disjoint with V, 
- r: F--+ N is a rank function which gives the arity of a function name; if f E F and 

r(f) = 0 then f is called a constant name. 
Let Ws V be a set of variables. The set of I:-terms over W, notation T(I:, W), is the 

least set satisfying: 
- WsT(.E, W), 

- if/eF and t 1 , ••• ,tru>eTCE, W), then/(t 1 , ... ,t,<n)ET(I', W). 
T(l:, 0) is abbreviated as T(E ); elements from T(.E) are called ground or closed terms. 
lr(l:) is used to abbreviate T(I', V), the set of open terms. Clearly, T(.E)clr(l'). 
Var(t)S Vis the set of variables in a term telr(l'). A substitution a is a mapping in 
V--+ lr(I' ). A substitution a is extended to a mapping a: lr (I')--+ T (.r) in a standard way 
by the following definition: 

a(f(t1, ... , t,<n))=f(a(ti), ... ,a(tr(f))) for feF and t1, ... ,t,<nElr(I'). 

A substitution is ground if it maps all variables onto ground terms. 
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Definition 2.2. A TSS (transition system specification) is a triple P = (E, A, R ), with 
;,; = (F, r) a signature, A a set of labels and R a set of rules of the form 

ll 

t-+t' 

with K,L index sets, tk>t~,ti,t,t'Elf(E), ak>b 1,aEA (kEK, IEL). An expression of 
the form t.:'+t' is called a (positive) literal. Here t is called the source and t' the target of 

the literal. t:!f. is called a negative literal. c/J, t/J, x are used to range over literals. The 
literals above the line are called the premises and the literal below the line is called 
the conclusion. A rule is called an axiom if its set of premises is empty. An 
axiom 

0 

" t-+t' 

" is often written as t-+t'. The notions "substitution", "Var" and "ground" extend to 
literals and rules as expected. 

Note that this definition differs from the definition of a TSS in [15] because it 
allows an infinite number of premises and premises may now be negative. The purpose 
of a TSS is to define a transition relation -+ s; Tr(E, A)= T('I) x Ax T(E ). A transition 
relation states under what actions ground terms over the signature can evolve into 
one another. This expresses the operational behaviour of these terms. Elements (t, a, t') 
of a transition relation are written as t.:'+t'. We say that a positive literal t/J holds in -+, 
notation -+I= t/J, if t/JE-+. A negative literal tf holds in -+,notation -+I= tf, if, for no 

" t'ET(L), t-+ t 1 E-+. 

For TSSs without negative premises the notion of a transition relation that must be 
associated with it is rather straightforward. All literals that can be proved by 
a well-founded proof tree, where the rules of the TSS Pare used as inference rules, are 
in the transition relation associated with P. For TSSs with negative premises, these 
proof trees cannot be used. They can only show the presence of a transition. But, in 
order to prove the premises of inference rules with negative premises, the absence of 
a transition must be proved also. This incompatibility is not easily overcome. In fact, 
it is not very obvious which transition relation should be associated with such a TSS. 
In [10] Bloom et al. require that a transition relation agrees with a TSS. In terms 
of logic programming, this means that the transition relation is a supported model of 
the TSS. 



268 J.F. Groote 

Definition 2.3. Let P=(l:,A,R) be a TSS. Let -+<;;Tr(l:,A)°be a transition relation. 
-+ agrees with P iff 

rX lkEK} 
l/JE-+ ~ 3 'l k ER and 3a: V-+T(l:) such that a(x)=l/J 

x 
and lfkeK: -+ f=a(xd. 

Unfortunately, for a given TSS P, it is not guaranteed that a transition relation that 
agrees with P exists and, if it exists, it need not be unique. We give three examples 
illustrating these points. The last example already occurred in [ 10]. 

Example 2.4. It is possible to give a TSS P such that no transition relation agrees with 
it. Let P consist of one constant f, one label a and the rule 

f !fr 

f ~ .r' 

For any transition relation -+ that agrees with P,.f~fE-+ iff f.::_,,frt-+. Clearly, such 
a transition relation does not exist. 

Example 2.5. This example shows that if a transition relation that agrees with a TSS 
exists, it need not be unique. Take, for example, a TSS with the only rule 

f ~f 

J~/ 

Both the empty transition relation and the transition relation {j..::_,,f} agree with this 
TSS. 

Example 2.6. Ifwe only use variables in the premises, we can still have an inconsistency. 
Suppose we have a TSS which consists of constants a and () and two unary function 
names f and g. Furthermore, we have exactly one label a and the following rules: 

a a 
x-+y y-+z 

Xf 
" , g(x)-+b 

a 
a-+g(f (a)). 
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No transition relation agrees with this TSS since, if it would exist, we would have that 
f (a).::.,_b is an element of this relation iff it is not. 

In this section we will develop a condition on TSSs which guarantees the existence 
of transition relations that agree with them. The idea is that a transition relation is 
constructed in a stepwise manner. Whenever it is assumed that some literal does not 
exist in a transition relation, it must be guaranteed that there is no way to derive the 
opposite from this assumption. It can be visualised how literals can be derived from 
each other in a literal dependency yraph of a TSS P = (l', A, R ). In this graph it is 
recorded by directed edges how literals depend on each other. An edge from literal 
<fi to tjJ is labelled by "p" to express that tjJ is the conclusion and 1> a positive premise of 
a(r) for some ground substitution CJ and rule rER. An edge from t~t' to tjJ is labelled 

with "n" if t/; is the conclusion of r:J(r) and tf. is a negative premise. If there is a cycle in 
the literal dependency graph with a negative edge then one may derive - from the 
assumption that, for any t", literal t~t" is not an element of a transition relation 

--+agreeing with P- that t~t' must be an element of--+, which is a contradiction. As 
an example, a part of the literal dependency graph of Example 2.6 is depicted in Fig. 2. 

Definition 2.7. Let P = (.L, A, R) be a TSS. The (labelled) literal dependency gruph 
(LDG) G related to P has as nodes the literals in Tr(.L. A) and as labels p and n. The 
edges of G are given by the triples 

(<I(</J),p,r:J(t/!)). where CJ is a ground substitution such that there is a rule rER with 
a positive premise 1> and a conclusion tf!, 

combined with 
- (<fa, n, r:J(1/;)). where O" is a ground substitution such that there is a rule rER with 

a negative premise t!:.;-. and a conclusion 1/; such that, for some t' E T(Z ), O"(t _:t') = c/J. 
If there is a path between two literals rf> and tjJ of which all edges are labelled with 

p, it is said that there is a positive dependency between</> and 1/;. If this path contains 
at least one edge with label 11, we say that 1/; depends negatively on lf>. 

In the next definition the notion of a stratifiahle TSS is introduced. It will be shown 
that for stratifiable TSSs there exists a transition relation that agrees with it. As the 
adjective stratifiahle suggests, it is possible to make a "stratification". This will be 
shown later. 

a 
0 g(J(a))-+ 5 

n P 

a 

a~ g~(J~(a~)) __ P __ _____.,.o f(a) ~ 5 

Fig. 2. The LDG belonging to Example 2.6. 
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Definition 2.8. Let P be a TSS. P is stratifiable iff there is no node in the literal 

dependency graph G of P, such that a path ending in this node contains an infinite 

number of negative edges. 

The following definition assigns an ordinal to each positive literal </>. This ordinal 

represents the number of negative edges in paths ending in rp. 

Definition 2.9. Let P be a stratifiable TSS with a literal dependency graph G. Nodes 

that have no incoming paths containing a negative edge are called LDG basic nodes. 

Furthermore, p is the equivalence relation between literals such that rp p if; iff </>=if; or 

there is a path in G from rp to if; and vice versa. Note that if rp p if; then (/> is an LDG 

basic node iff if; is an LDG basic node. Define rankp on the equivalence classes of 

Tr(I, A )/p as follows: 
- rankp(rp/p)=O if rp is an LDG basic node; 

- rankp(rp/p)=sup({rankp(if;/p)+ l l(i/J,11, x) is an edge in G and 

XE</>/p}u{rankp(if;/p)l(i/J,p,x) is an edge in G,xE<P/p and i/;r/:<f;/p}) otherwise. 

Here sup (X) gives the least ordinal ): all elements in the set X. Define 
rankp(<f>) = rankp(rp/ p ). 

Example 2.10. Here we give an example of a TSS P for which the rankp function uses 

infinite ordinals. Take the TSS P with one constant f and with natural numbers as 
labels. Take as rules 

f !f. 

f~f· 
n):O, 

for n odd. 

rankp:Tr(I,A)->w·2 is defined by rankp(f..'.:.f)=(n-1)/2 for n odd and 
, a , 

rankp(j ->f) = w + n/2 for n even. 

Checking whether or not a literal dependency graph contains cycles with negative 

edges is laborious and, therefore, not very useful for checking the consistency of a set 

of rules. The literal dependency graph can be used more fruitfully to construct 

examples showing that a given TSS is inconsistent. Local stratifications [2, 29] provide 

a more useful technique to show consistency. A stratification of a TSS is given by the 
following definition. 
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Definition 2.11. Let P = (E, A, R) be a TSS. A function S: Tr(E, A )-+at, where e1. is an 
ordinal, is called a stratification of P iff, for every rule 

{tk ~ tk I kEK }u{t1~ I leL} 
~~~~~~~~~~eR 

t-!t' 

and every substitution O": V-+ T(E ), it holds that: 

for all keK, S(O"(tk ~ tk)):S:::S(O"(t ~ t')), 

h1 a 
for all /EL and t;eT(E), S(O"(t1 -+ r;))<S(O"(t-+ t')). 

If P has a stratification, we say that P is stratified. For f3 <rt., Sp = {</>I S(</J) = fJ} is 
called a stratum. If all literals with the same label are in the same stratum then we 
speak of a label-independent stratification. In the same way, we speak of a source
independent and a target-independent stratification. 

Lemma 2.12. Let P = (1:, A, R) be a TSS. P is stratifiable iff P is stratified. 

Proof. =>: As P is stratifiable, the function rankp: Tr(E, R)-+rt. for some ordinal at is 
defined. It is easy to check that rankp is a stratification of P. 

<=: Suppose P is stratified by a stratification S: Tr(E, A )-+ix. Construct the literal 
dependency graph G of P. By transfinite induction on (J, it is shown that if S(</>)=(J 
then there is no path ending in <P in the literal dependency graph, containing an 
infinite number of negative edges. Suppose the induction holds for all /3' <fJ, S(</>)= f3 
and there is a path ending in </> labelled with an infinite number on n's. Then this 
means that there is a tail of the path 

such that</> depends positively on </1 1 , </> 1 depends positively on </> 2 , etc., while <Pn is the 
first literal that depends negatively on a literal t/J. Hence, S(t/J) < S(</>) = (J. Using the 
induction hypothesis, there is no path labelled with an infinite number of n's ending 
in t/J. But this contradicts the assumption that there was one from </J. 0 

As remarked in Example 2.5, there is not always one unique transition relation that 
agrees with P. Therefore, we define, given a TSS P with a stratification S, a relation 
-+p,s, which we call the transition relation associated with P (and based on S). The 
construction of the transition relation -+ P.s from a transition system specification is as 
follows: a literal <P with S(</J)=O is in -+p,s ifit can be "derived" using rules of P which 
do not have negative premises in the ordinary sense. We now know which literals 
<P with S(</J)=O are not in -+P,s· We use this information to "derive" the literals</> with 
S(</>) = 1 which are in -+ P,s· ln this way, we can continue for all strata. 
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The transition relation associated with P has two nice properties. When we have 

a TSS P without negative premises, then the transition relation associated with 

P coincides exactly with the transition relation containing all provable literals [15]. 

Moreover, the transition relation _, P.s is independent of the stratification S. This last 

statement is proved in Lemma 2.16. 

First the deqree(r) of a rule r in a TSS is defined. It is a cardinal that is greater than 

the number of positive premises in r. Moreover, it is regular. This means that if an 

ordinal e<q, < deyree(r) is assigned to each positive premise c/> of r, then there is still some 

ordinal f1 such that e<.p < fJ < deyree(r) for all premises c/J. If r has a finite number of 

premises, then degree(r) = w. degree is introduced to avoid taking the union over the 

class of all ordinals in Definition 2.14. In the proof of Theorem 2.15 the regularity of 

degree(r) is crucial. 

Definition 2.13. Let P =(I', A, R) be a TSS. Let rE R be a rule in R. degree(r) is the 

smallest regular cardinal greater than I K ], where K is the index set of positive premises 

of r. deyree(P) is the smallest regular cardinal such that deyree(P);:;:: deyree(r) for each 

rER. 

Definition 2.14. Let P = (l'. A, R) be a TSS with a stratification S: Tr(X, A )_,:x for 

some ordinal :x. The transition relation _, P. 5 associated with P (and based on S) is 

defined as 

_,P_s= U _,P 
'. 

o~ i<a 

where transition relations _,r s; Tr(I:, A) (0 :!S; i < :x), _,~ s; Tr(I:, A) (0 :!S; i < :x, 0 :!S;j < 
degree(?)) are inductively defined by 

-+f = u _,~ for 0 :!S; i < :x, 
0 ~)< degree(P) 

_,~={</JIS(c/J)=i, 

r" jkEK I 
3tkk JER,3cr:V_,T(I:): 

x 

O~j'<j ()~ i' <i 

and 

[bis negative= U _,rl=o-(7..k)]} 
0 ~ i' < i 

for 0 ~ i < e< and 0 :!S;j <degree(?). 

Theorem 2.15. Let P = (l', A, R) be a TSS with stratification S: Tr('L, A )-+e< j(1r some 
ordinal :x. Then there is a transition relation, namely _,P.s. that ayrees with P. 
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Proof. We show that --+p,s agrees with P: 
=>: Suppose that, for a rule 

{tk~ tk I kEK }u{t/T-~ J lEL} 
r= ER 

t ~ t' 

273 

and a ground substitution a, all premises hold in --+p,s. Define f3=S(a(t ~ t')). For 
a, 

a negative premise t 1 ~, it trivially holds that, for every t" E T(:E ), t1 ~ t" rt=Uo.;:;<p--+f. 

For"~ positive premise tk ~ tk, it holds that either (J(tk ~ tk)EUo.;;<p--+r or 

a(tk ~ tk )E --+~. Consider the set T= {j I j < degree(P) and, for some kE K, j is the 
"' smallest ordinal such that (J(tk~tDE--+~J. JTl~IKl<degree(P). As degree(P) is 

a regular cardinal, there is some 0 ~ j' ~ degree(P) such that j" <j' < degree(P) for 

every j" ET. Hence, for this j', (J(t ~ t')E --+Zr by definition. Hence, a(t ~ t' )E --+p, s· 

=:Suppose l/JE--+p,s. Then, for some O~i <et, O~j<degree(P), !/JE--+G. According 
to the definition of --+p, s, this means that there is a ground substitution a and a rule 

such that c;(x)=!/J and, if Xk is positive, a(Xk)EUo.;:r<i --+G·uUo,;;;·<; -+f. But then 

(J(Xk)E--+p.s. If Xk=t!fr then for every t'ET(l:): c;(t~t')rl=Uo"'i'<i--+f.. Due to the 

stratification, S(a(t ~ t'))<i. Hence, a(t ~ t')~--+f for i'~i and, 

therefore, a(t ~ t')rl= --+p,s. So, all premises of a(r) hold in --+p,s. D 

We show here that the particular stratification used in the construction of --+p,s is 
not of any importance. 

Lemma 2.16. Let P be a TSS which is stratified S and S'. The transition relation 

associated with P and based on Sis equal to the transition relation associated with P and 
based on S'. 

Proof. Assume P=(I',A,R). Suppose --+p,s#--+p,s·· This means that there is some 
<P such that either </JE --+p,s- --+p,s· or c/> E --+p,s· - --+p,s. Assume that cp is minimal with 
respect to S, i.e. S(c/J) ~ S(l/J) for all t/t E( --+p, s - --+ P,s· )u( --+p,s· - --+p,s ). Define i = S(</J). 
•Suppose c/JE--+p,s---+p,s" Then cj>E--+G for some O~j<degree(P) (see Definition 

2.2). Assume that cp is minimal with respect to --+G, i.e. for all !/J with S(t/t) = i and 
t/tE--+p.s---+p,s·: l/Jrl=--+G·, withj'<j. 

As --+p,s agrees with P, there is a ground instantiated rule CT(r) with conclusion 
<P and premises Xk (kEK) such that --+p,sl= Xk- As cp rt= --+p,s" it cannot be that all 
premises xdkE K) hold in --+P.S" Hence, -+psi+ Xk· for some k' EK. If fr is a positive 
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literal then h·EUo~j"<j_,~,.uLJ 0 "'i"<i_,f'.. and Xk·~->p,s·· But this contradicts 

one of the assumptions that <P is minimal. 

If Jx=t+ then, for some t'ET(L), t ~ r'E->p.s·-->p,s and S(t ..'.!+ t')<i. But this 

contradicts the minimality assumption with respect to S. 

e Considering <PE ->p.5' - ->p. s leads to a contradiction in almost the same way as the 

former case. D 

This last lemma allows us to drop the stratification as a subscript in the transition 

relation ->p,s associated with a stratifiable TSS P. Further, it provides the following 

technique to give an operational semantics in Plotkin style when there are negative 

premises around: define a TSS P and prove with a convenient stratification that P is 

stratifiable. Then Palone determines the transition relation ->p associated with P. 

In the remainder of this section we show that if we strengthen the requirements on 

stratifications, then the transition relation that agrees with P is unique. 

Definition 2.17. Let P = (J:, A, R) be a TSS and let S: Tr(Z:, A )->IX for some ordinal IX be 

a stratification of P. S is a strict stratification of" P if, for every rule 

ai. a1 

(tk -t tklkE:K}u(t1+llEL} 
r ER 

t ~ t' 

and every substitution r;, r;(t ~ t') is in a strictly higher stratum than O"(tk ~ tk) (kEK) 
"' and CJ(t1 -t t") for IEL and any t"ET(J:). In this case we call P strictly stratifiah/e. 

If P is strictly stratifiable then this is equivalent to stating that the literal depend

ency graph of P contains no infinite path ending in some literal <f>. 

Theorem 2.18. Let P he a strictly strat(fiahle TSS. Then the transition relation that is 

associated with P is the unique relation that ayrees with P. 

Proof. Let P=(:E, A, R). Suppose -> 1 is a transition relation that agrees with P. P has 

a strict stratifications S: T('L)->IX for some ordinal IX. Let ->p,s be the transition 

relation that is associated with P. Assume, in order to generate a contradiction, that 

-*P.s#-> 1. This implies that there is some literal <P such that c/>E-+p,.~--> 1 or 

</>E-+1 - -*P.s· Assume, furthermore, that cp is minimal, 1.e. for all 

i/tE(-+p,s-->ilu(->1-->p.s): S(c/>)~S(t/l). We consider only one case, namely 

</>E->p.s--> 1. The case where c/>E-> 1-->p.s goes in exactly the same way. As 

-*P.s agrees with P, there is a rule 

rx I kEK 1 
1 ,k JER 

x 
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and a substitution a: V->T(I') such that <fJ=a(x), ->p,s\=D"(Xk) for all kEK. Then, for 
some k'EK, -> 11f=a(;(k·) because otherwise, as -> 1 agrees with P, </JE-> 1 , contradicting 
the assumption. 

If a(xd is a positive literal, then cr(zlc)E->p,s, cr(fr)~-> 1 and S(Xk')<S(</J). This 

contradicts the minimality of </J. If cr(xd = t.:f+ then, for some t' E T(I'), t ~ t'E -> 1, but 

t ~ t'~->P.s and S(t ~ t')<S(</J). This contradicts the minimality of<:/> as well. D 

3. Examples showing the use of stratifications 

The techniques of the previous section are introduced for showing that specifica
tions using negative premises define a transition relation in a neat way. Here two 
examples illustrate the use of these techniques. 

Example 3.1. Here the GSOS format is defined. It differs slightly from the GSOS 
format as given by Bloom et al. (10] because we do not consider a special rule for 
guarded recursion. Suppose we have a TSS P with signature I'=(F,r), labels A and 
rules of the form 

r (/ • f "" 1 lxk-=-'--+Yk1lkEK1. IEL!futxk+ lkEK 2 , IEL 2 r 

f(x1, ... ,Xr<J)) ~ t 

withfeF, x 1, ... ,x,<n·Yki pairwise different variables, K1.K 2s;{l, .. .,r(f)}, L 1 ,L2 

finite disjoint index sets and tEu(l'). There is a unique transition relation that agrees 
with the rules. This can be seen by giving the strict stratification S: Tr(I:, A )->w: 

S (t ~ t') = n if t contains n function names. 

S is strict as the source in the conclusion of any rule contains more function names 
than any source in the premises. 

Example 3.2. In [7] a priority operator is defined on process graphs. In [15] an 
operational definition is given to the priority operator using rules with negative 
premises. However, the combination of unguarded recursion, the priority operator 
and renaming [5] gives rise to inconsistencies. Here we show that simple conditions 
on either the relabelling operator or recursion can circumvent this problem. 

We base this example on the rules for BPA~ as given in (15] (see rules 1-6 in 
Table 1 ). The TSS Pprio=(I'prio• Aprio• Rp,; 0 ), with I'p,;0 = (Fprio• r pr; 0 ), contains constant 
names a for all aEAct, where Act is a given set of atomic actions. We suppose that 
there is a "backwardly" well-founded ordering < on Act, which is used to construct 
a stratification. The signature also contains constant names e for the empty process, 
and o representing inaction, resembling NIL in CCS (20]. 
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Table 1 
BPA:\ with renaming and priorities 

(ll 

(3) 

(5) 

(7) 

(9) 

(11) 

x~x' 

x+y!.!.x' 

x~x' 

x· y~ x'·y" 

" ' x --+.'( 

x~x' llb>a x~ 
O(x) ~O(x') 

t~x' 

X " ' r-+ X 
for X, <= tEE 

J.F. Groote 

(2) 

(4) 

a ' y-+ y 

x+y!.!.y' 

(6) 
" ' x· y--+ y 

(8) 

x-+x' 
(10) 

O(x) .:. O(x') 

There is a unary function name e, the priority operator. If x can perform several 

actions, say x ~ x' and x ..'!.. x", then 8(x) allows only those transitions which are the 

highest in the ordering <. So, if a> b then 8(x) ~ 8(x') is an allowed transition while 

8(x) ..'!.. 8(x") is not possible. We have another unary function name p1., the renaming 
operator. f is a renaming function from Act to Act. p 1(x) renames the labels of the 
transitions of x by f There are two binary operators. Sequential composition is denoted 
by · (this symbol is usually omitted). Alternative composition is denoted by +. 

For recursion it is assumed that there is some given set E with process names. Each 
name in Eis a constant in the signature. Eis a set of process declarations of the form 
X <=tx for all process names X EE UxE T(l'prio)). In X <=tx for all process names X EE 
UxET(l'p,;0 )). In X <=tx, tx is the body of process name X. 

The labels in Aprio are given by Act, ( = Actu{ j} ). J is an auxiliary symbol that is 
introduced to represent termination of a process. The rules are given in Table 1. Here 

a, b range over Act,. In rule 9 of Table I we use the abbreviation l:/b >a x !!;+ in the 

premises. It means that for all b >a there is a premise x !:;.. As an infinite number of 

negative premises are allowed in the premises of a rule, rule scheme 9 generates proper 
rules. With these rules we have the following inconsistency (cf. [6] ). Define 

X <=8(p 1(X) + b), 

withf(b)=a,f(a)=c,f(d)=d for all dEAct-{a,b} and a>b. Now X ~E:: iff x!!;+. 
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As a first solution for this problem, we consider renaming functions satisfying the 
requirement that if a> b then not f (b) =a for all a, be Act, i.e. we may not rename 
actions to ones with higher priority. It is now easy to see that a transition relation 
associated with Pprio exists using the following stratification of Pprio· Define rk(a) for all 
aEAprio by 

rk(a)=sup( {rk(b)+ 11 a <b}) for aEAct, 

where sup(0)=0 and rk(j)=O. Define S: Tr(Iprio' Ap,;0 )-+0! for some ordinal et by 

S(t .!!... t')=rk(a) 

(it is straightforward to check that S is a stratification of Pprio). 
Another solution is to disallow that the priority operator appears in the body of 

a process name. In this case a stratification can be given by 

S(t .!!... t')=n, 

where n is the total number of occurrences of B's in t. 
A last possibility is obtained by disallowing unguarded recursion in the bodies of 

process definitions. A stratification can now be constructed as follows: Suppose one 

has a literal t .!!... t'. Let n be the number of B's in t. Moreover, let m be the number of the 
B's in the bodies t" of all process names X" (X" = fx,,EE) that occur unguarded in t. 

Then we define a stratification S:Tr(Eprio,Aprio)-+w by S(t.i:;.t')=n+m. One can 

check that S is a stratification of Pprio· 

4. The ntyft/ntyxt format and the congruence theorem 

Often, one considers bisimulation equivalence as the finest extensional equivalence 
that one wants to impose. If bisimulation is not a congruence then one can distinguish 
bisimilar processes by putting them in appropriate contexts. Therefore, it is a nice 
property of a format of rules if it guarantees that all operators defined by this format 
respect bisimulation. 

The notion of strong bisimulation equivalence as defined below is from Park [24]. 

Definition 4.1. Let P=(L',A,R) be a stratifiable TSS. A relation Rs;;;T(L')x T(L") is 
a (strong) (P-) bisimulation relation if it satisfies the following: 

(I) Whenever t Ru and t ~Pt', then, for some u' E T(L:), we have u ~Pu' and t' Ru'. 

(2) Conversely, whenever t Ru and u ..!:;.Pu' then, for some t' E T(L:' ), we have t ..! Pt' 

and t' Ru'. 
We say that two terms t, t'ET(E) are (P-)bisimilar, notation t~pt', iff there is 

a P-bisimulation relation R such that t Rt'. We write t<::±t' if P is clear from the 
context. Note that <:;±p is an equivalence relation. 
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In the setting of [15], where TSSs without negative premises are considered, the 
tyft/tyxt format is a very general format for which bisimulation is a congruence. 

Definition 4.2 (tyft/tyxt format; Groote and Vaandrager [15] ). Let l: = (F, r) be a 
signature. Let P=(E,A,R) be a TSS. A rule rER is in tyftformat if it has the form 

with K an index set, Jk,X; (1 ~i~r(f)) all different variables, ak>aEA, fEF and 
tbtEl"(l:). A rule rER is in tyxtformat if it fits 

(/ x _,. t 

with Kan index set, ybx all different variables, ak,aEA, tbtE1"(E). P is in tyft/tyxt 
format if all its rules are either in tyft or in tyxt format. 

A distinctive feature of the tyft/tyxt format is that it allows lookahead. This means 
that a variable on the right-hand side of an arrow in the premises can be used again in 
the premises. An example of lookahead is given by rule 2 in Table 2, where the variable 
y' is used again in B" - 1 (x', y' ). 

In [15] the generality of the tyft/tyxt format has been shown by counter examples. 
For instance, the following example shows that the format cannot be extended by 
allowing more than one function symbol on the left-hand side of the arrow in the 
conclusion. There are similar examples for all other general extensions of the format 
(see [15]). 

Example 4.3. Consider a TSS with a unary function symbolj; a constant c, one label 

a and the rulef(c) ~ f(c). Now f(j(c)) is bisimilar to c because both cannot perform 

any action. But f (f (f(c))) is not bisimilar to f (c) because f(j(f (c))) cannot perform 
any step, while f(c) can do an a-action. So, bisimulation is not a congruence. 

Now we introduce the ntyft/ntyxt format as the most general extension of the 
tyft/tyxt format with negative premises such that, for operators defined in this format, 
bisimulation is again a congruence. 

Definition 4.4 (ntyft/ntyxt format). Let l:=(F,r) be a signature. Let P=(l:,A,R) be 
a stratifiable TSS. A rule rER is in ntyft format if it has the form 

a, h1 

{ tk _,. Yk I kEK }u{t1+ \!EL} 
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with K,L index sets, ybxi (l.::;;i.::;;r(f)) all different variables, abbz,aEA,feF and 
tbti.tElr(E). A rule rER is in ntyxtformat if it fits 

a 
x-+ t 

with K,L index sets, yk.x all different variables, ak,bi.aEA and tbti.tElr(I"). P is in 
ntyftformat if all its rules are in ntyft format, and P is in ntyft/ntyxtformat if all its rules 
are either in ntyft or in ntyxt format. 

In the remainder of this section we show that the congruence theorem holds for the 
ntyft/ntyxt format. In order to do so, we need a similar well-foundedness restriction on 
the premises of the rules as was necessary to prove the congruence theorem for the 
tyft/tyxt format. It is an open question whether both congruence theorems can be 
proved without this restriction. 

a• 
Definition 4.5 (well founded). Let P =(I", A, R) be a TSS. Let W = { tk -+ tk I kE K} £; 

lr(L) x Ax u(I") be a set of positive literals over.Land A. The variable dependency 
graph (VDG) of W is a directed (unlabelled) graph with: 

- Nodes: UkeK Var(tk ~ tk), 
- Edges: { <x, y) I xE Var(tk), yE Var(tk) for some kE K }. 
W is called well jounded if any backward chain of edges in the variable dependency 
graph is finite. A rule is called well founded if its set of positive premises is well founded. 
A TSS is called well .founded if its rules are well founded. 

Note that it is not useful to include negative premises in this definition as they do 
not have a target and, therefore, do not determine values of variables. 

Example 4.6. The variable dependency graph of {f(x',yi) ~Yi, g(x, Yz) ~ yi} is 

given in Fig. 3. The set of rules is not well founded because the graph contains a cycle. 

a. 
Example 4.7. Consider the variable dependency graph G of {x.+ 1 -+xn[neN}. G is 

not well founded because, for any variable X; (iEN) that acts as a node in G, there is an 
infinite path ending in this node. A part of G is depicted in Fig. 4. 

The following lemma says that, for well-founded TSSs in ntyft/ntyxt format, it is 
sufficient to consider only target-independent stratifications. 

Lemma 4.8. Let P be a well-founded stratifiable TSS in ntyjt/ntxft format. Then P has 
a target-independent stratification. 
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II 
x ------Y1 Y2 +------x' 

L_j 
Fig. 3. A VDG with a cycle . 

. • . . , •. ,.. X3 ............. • X2 ..... --......... - .. X1 XO 

Fig. 4. A VDG that is not well founded. 

Proof. Let P = (l", A, R ), with l" = (F, r), and let S: Tr(l", A )-+ex for some ordinal a be 
a stratification of P. Define a mapping S': Tr(l", A)-+a + 1 by 

S'(t ~ t')= sup( {S(t ~ u) + 11 uE T(l")} ). 

We show that S' is a stratification of P. As S' is clearly target-independent, this is 
sufficient to finish the proof. 

Consider a rule in ntyxt format (the argument for a rule in ntyft format is exactly the 
same), 

r=----------ER, 
x~t 

and some ground substitution (J. For each positive premise tk ~ Yk we have that, for 

each term UE T(l" ), 

" a, S((J(td-+ u)) = S((J' (tk -+yd) 

~S((J'(x ~ t)) 

=S((J(X) ~ u'(t)), ( 1) 

where u' is a ground substitution defined by 

As P is well founded and in ntyft/ntyxt format, u'(tk)=o-(td and u'(x)=o-(x). 
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Now it is easy to see that S' is a stratification: 

Uk a~ 

S' (u(tk-+ yd)= sup( { S(u(tk)-+ u) + I I LIE T(I)}) 

(1) 

,,::;sup((S(u(x)~u')+llu'ET(I)}) 

=S 1 (0"(X ~ t)) 

and 

u, a1 

S' ( u(ti) -+ u)) =sup ({ S ( O"(t 1) -+ 1/) + I I u' E T(I)}) 

,,::;S(u(x ..'.'+ t)) 

<sup({S(O"(x) ~ u")+ I iu"ET(l')}) 

= s I ( {J" ( X _::. t) ). [] 

Definition 4.9. Let W be a set of positive literals which is well founded and let G be the 
variable dependency graph of W. Let Var( W) be the set of variables occurring in 
literals in W. Define for each xE Var( W): nv00 (x) =sup( {nv00(y) + 11 <_v, x> is an edge 
of G}) (sup(0)=0). 

If W is a set of positive premises of a rule in ntyft/ntyxt format then nv00 (x)E N for 

each XE Var( W); every variable h only occurs once on the right-hand side of a positive 
literal in the premises. As the term tk is finite, it contains only a finite number of 
variables x. Therefore, the set U = {nv 0 c;(x) +I I <x, yk > is an edge of G} is finite. 
Hence, nv00 (yk)=sup(U) is a natural number. 

Definition 4.10. Two stratifiable TSSs P = (X, A, R) and P' =(I', A', R') are transition

equivalent if' I= I', A= A' and -+p = -*P'-

Lemma 4.11. Let P=(I, A,R) be a strat~fiable TSS in ntyft/ntyxtformat. Then there is 
a stratifiable TSS P' =(I, A, R ') in ntyft format that is transition-equivalent with P. 
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Proof. Let I=(F, rank). Let R' contain every rule rER that is in ntyft format together 
with the rules Oj(r) for every rule rER in ntyxt format and every function namefEoF, 
where CJ f is defined as 

a f(x) =f (z 1 , ... , Zrank<.fl) if x is the source in the conclusion of r; z 1 , ... , Zrank!fl 

are variables that do not occur in r, 
aJ(x)=x otherwise. 

Note that R' is in ntyft format. As P is stratifiable, there is a stratification 
S: Tr(L.:, A )->x of P. It is not hard to see that this stratification is also a stratification 
for P'. It is enough to show that -+p.s= ->p·.s· In order to see this, we only need to 
prove that _,~ = -+!}' for all 0:::;; i < x, 0:::;; i < deyree(P). This will be done by induction 
on i and, within this induction, by induction on j. 

s: Suppose c/>E -+!}for some i and j. According to the definition of-+!}, this means 
that there is a ground instantiated rule a(r), with conclusion <P and premises Xk (kE K ), 
such that Uo "'F <j-+G·u U 0 ,;:: ;· < ;-+f'I= Xk. If Xk is positive then, inductively, 
LJo..;j«j-+!}'.uLJou<;->f,' l=Xk- If Xk'=-tf then for all t'ET(L.:): t ~ t'~Uo..;;«;-+f 
and, therefore, t~t'~LJ 0 ..;;«;-+f'. Hence, m both cases LJo..;j«j-+G'.u 
U ou<;-+f'f= Xk for all kEK. If r is an ntyft rule, one can apply a(r) again to obtain 
c/>E --->!}'. If r is in ntyxt format and the left-hand side of</> isf (I 1, ... , trank<fl), apply the 
instantiated rule CJ' (a J(r) ), where a" (x) = tk for x = zk (1:::;; k:::;; rank(f)) and CJ1 (x) = a(x) 
otherwise. Hence, c/;E -+!}'. 

;:2: The reverse implication can be shown in the same way. D 

Definition 4.12. Let P =(I, A, R) be a TSS. Let rE R be a rule. A variable x is called.fiw 
in r if it occurs in r but not in the source of the conclusion or in the target of a positive 
premise. The rule r is called pure if it is well founded and does not contain free 
variables. P is called pure if all rules in R are pure. 

Lemma 4.13. Let P = (L.:, A, R) he a strat(fiah/e and well~founded TSS in nt}:/t/ntyxt 
format. Then there is a stratifiable TSS P' = (l', A, R') in pure nt}ft/ntyxt format which 
is transition-equivalent with P. If P is in nty.ft format then P' is in pure my.ft format. 

Proof. R' contains a rule CJ(r) for every rule rt:R and substitution CJ satisfying 

CJ(x)=tET(l') if x is free in r, 

a(x) = x otherwise. 

Note that P' constructed in this way is pure; if P is in ntyft format then P' is also in 
ntyft format and any stratification for P is also a stratification for P'. The remainder of 
the proof proceeds in the same way as the proof of Lemma 4.11. [:J 

Next we state the congruence theorem. 
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Theorem 4.14. Let P be a wel/-:founded stratifiable TSS in ntyft/ntyxt format. Then 
<::::±p is a congruence relation. 

Proof. This proof closely resembles the proof of a similar theorem in [ 15]. Assume 
P=(l',A,R 0 ), with l'=(F,r). According to Lemmas 4.11and4.13, we may assume 
that P is in pure ntyft format. As P is stratifiable, there is a target-independent 
stratification S: Tr(l', A )-.ex for some ordinal ex of P. Furthermore, there is a transition 
relation --.P associated with P. We must show that for all f E F, u1, ... , u,<fl• 

U1, ... ,Vr(f)ET(l:'): 

In order to do so, we define a relation R s T(L') x T(L:) as the minimal relation 
satisfying 

(1) t?pSR, 

and, for all function names fEF, 
(2) V'l ~ k ~ r(f), Uk R vk => f(u1, ... , u,u>) Rf(v1, ... , Vrif)). 

For the relation R, we have the following useful fact. 

Fact 1. Let tET (I') and let a, a': V--. T(I") be substitutions such that.for all x in Var(t ): 
a(x)Ra'(x). Then a(t)Ra'(t). 

Proof of Fact 1. Straightforward induction on the structure of t. D 

Proof of Theorem 4.14 (continued). If we show that Risa bisimulation relation, then it 
immediately follows that R=":::±p and, consequently, that <::::±p is a congruence relation. 
In order to see that Risa bisimulation relation, we must check that R has the transfer 

property: if u R v and u ~ u' then there is a v' with v ~ v' and u' R v' and vice versa. If 

U<::::!p v then this is trivial. So, suppose u = f (u 1' ... , u,ui ), v = f (v 1o .•. , v,u>) and uk R vk 
for 1 ~ k ~ r(.f). We are ready if we have shown (by induction on /3) that the following 
holds for all /3: 
If 5/'(f(u 1 , ... , Ur<fi), a)+ 5f'(f (v1' ... , v,u1 ), a)= (J then 

-f(u 1, ••• ,u, 1 n)~u'E--.p and ukRvkfor 1~k~r(f) implies 3v' s.t.f(v 1 , .•. ,Vr(f)) 

~ v' E --.P and u' R v', 

- vice versa. 
Here we define !t(t,a)=S(t,a,t') for some t'ET(l:). The definition of 2'(t,a) is 

correct because Sis target-independent. As the induction hypothesis is symmetric, we 
need only check one half of it. Suppose the induction hypothesis holds for all (J' < fJ. 
The validity of the induction hypothesis for f3 follows immediately if the following fact 
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holds for all 1 ~ i <ix and 1 ~j ~ degree(P): 

If !l'(f (u i, ... , u,u1), a)+ !!'(f (v1, .. ., Vr<fl ), a)= fi, 

f(u 1, .. ., u,u1) ~ u'E _,.i and uk R vk for 1 ~k ~r(f), 

then 3 v' s.t. j(vi. ... , v,<n) ..'!+ v' E _,.P and u' R v'. 

We prove this statement by induction on i and, within that, by induction onj. So, 
suppose the second induction hypothesis holds for i' < i or for i' = i if j' <j. Assume 

!f'(u, a)+ !f'(v, a)= fi and u ..'!+ u' E _,.G. As _,.P agrees with P, there is a rule 

and a substitution a such that 
• a(j(xi. ... ,.x,u1))=u, 

• a(x;)=ui for 1 ~i~r(f), 
• a(t)=u', 

ak a, 
• ->pf==a(tk _,.yd and -4ppa(t1)-f+. 

We will use ruler again in order to show that, for some v', v ..'!+ v' E _,.P and u' R v'. 

Consider the VDG G of the positive premises of r. With induction on n, we show that 
the following fact holds for all n. 

Fact 2. There is a ground substitution r/ such that, for any xEnodes(G), with 

nv0 a(x) < n, a(x) Ra' (x); if x = Yk for some kEK then a'(tk ~ ydE _,.p and if x = xi then 

a'(xd=vi. 

Proof of Fact 2. Suppose x is a node of G, with nv0 dx)=n, and the claim holds for 
n' < n. As r is pure, there are two cases: 
• x=xi (1 ~i~r(f)). In this case the claim holds for n as a(x)=ui R vi=a'(x). 

• x=yk (kEK) and tk ..'!+ Yk is a premise of r. By induction, it holds that there is 

a ground substitution a' such that for all YE Var(td: a(y) Ra'( y ). By Fact I, 
a(tk) R a'(td. Now distinguish between the two cases: 

(I) a(td<:::7pa'(tk)· In this case there is a WE T(L:) such that a'(tk) ~ w E ->p and 

a(yk)R w. 

(2) There is a function name gin F and there are terms wk', w;.. for I ~k' ~r(g) such 
that 
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Furthermore, we know that 2,(a(1k),ad+.Y'(rr 1(tk),ak):;;;.P(u,a)+Y(v,a). Also 
a, 

rr(tk-+ YdE U ;· < ;-+i-u Ur <;-+IJ·. Now we can apply the first or second induc-
"' tion hypothesis, which gives that there is a w such that g(w11, ... , w~!g>)-+ w E -+p 

and O"(yk)Rw. 

So, for any x with nvoa(x) = n, we can find a wx such that O"(x) R wx· Define a ground 
substitution (5 11 such that (J11 (x 1 )=a'(x') if nv 0 u(x')#n and a 11 (x')=wx' if 
nv 0 dx1

) = n. Clearly, all inductive properties hold for (5 11
• D 

Proof of Theorem 4.14 (conclusion), Now the proof of the theorem can be finished. For 
all positive premises 1> of r, it follows that we can prove that a 1 (</>)E-+p for some 
ground substitution (5 1 satisfying the properties of Fact 2. We show that, for each 
negative premise t1 f; also hold in -+p. We know, using Fact 1, that a(ti) R a 1 (ti) 

because a{x) R a1 (x) for all variables x in t 1• By definition of R, there are two 
possibilities: 

• a(ti)+.::±pa'(ti). In this case 0" 1 (ti)~ clearly holds in -+p. 

• a(ti)=g(wi, ... , w,( 9 >) and rr'(ti)=g(w11 , .. ., w~(qJ), gEF and W;R w; (I ~i~r(g)). In . . ~ 

order to arrive at a contradiction, we assume that, for some WE TCE ), a 1 (ti)-+ w. 
Clearly, 2)(a(t1),a1)+.2'(a1 (t 1),ai)<2,(u,a)+.2'(v,a). So, by applying the first in-

"' duction hypothesis, we know that 3 w' s.t a(t1 )-+ w', But this contradicts that 

a(t,)~ holds in -+p. So, for every negative premise t 1 ~ of r: -+p/=a 1 (ti)~. 

Now, as all premises of o-' (r) hold, we may conclude that a 1(j(x 1' ... , x,1n) ~ t )E -+p. 

Define v1 =a1(t). For all xEVar(t): O"(x)R (J 1 (x). By an application of Fact I, it follows 
that a(t) R (5 1 (t) or, equivalently, u' Ru'. This completes the induction step for the 
second induction hypothesis. Cl 

5. Modular properties of TSSs 

Sometimes one wants to extend a TSS with new function and constants. Therefore, 
the sum of two TSSs is introduced [15]. The combination of two TSSs P0 and P1 is 
denoted by P0 EB P1 , where we generally assume that P1 is the extension of P0 , With 
negative premises, care is needed to guarantee that P0 EB P1 still defines a transition 
relation. 

If P1 is added to P0 (P0 =(I0 ,A 0 ,R0 )), it would be nice if all literals with source 
tET(L:0) in -+PoEBP, are exactly the literals in -+p0 • In this case we say that P0 EB P 1 is 
a conservative extension of P0 . 

Definition 5.1. Let I;=(Fi,r;) (i=O, 1) be two signatures such that fEF0 nF1 

= r0 (f)=r 1(f). The sum of I 0 and 17 1 , notation 2:0 EB I 1 , is the signature 
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Definition 5.2. Let P; = (I:;, A;, R;) (i = 0, I) be two TSSs with I: 0 EB I: 1 defined. The sum 

of P0 and P 1 , notation P0 EB P1 , is the TSS 

P0 EB P 1 =(I"oEB.[1' A 0uA 1 , RauRi ). 

Definition 5.3. Let P; =(I";, A;, R;) (i = 0, 1) be two TSSs with P = P0 EB P 1 defined. Let 

P =(I", A, R ). We say that P is a conservative extension of P0 and that P 1 can he added 

conservatively to P0 if P0 EB P1 is stratifiable and for all tET(2:0 ), aEA and t'ET(l'): 

Remark 5.4. If P0 Ef)P1 =(I",A,R) is a conservative extension of P0 =(l'0 ,A 0 ,R0 ), 

then it follows immediately that for all t, UE T(I" 0 ): t'=!p0 u-= t<::::!p0 ® P, u. 

The following theorem gives the conditions under which a TSS P 1 can be added 

conservatively to P2 • The theorem is the same as the one that holds for TSSs without 

negative premises [15], except for the constraint that P0 EB Pi is stratifiable. By an 

example, it will be shown that this condition is necessary. That the other conditions 

cannot be weakened is shown in [ 15]. 

Theorem 5.5. Let P0 =(l'0 ,A 0 ,R0 ) be a TSS in pure ntyft/ntyxt format and let 

P1 =(l' 1 , Ai, R i) he a TSS in ntyft format such that there is no rule in R 1 containiny 

a/unction name from l' 0 in the source a.fits conclusion. Let P=P0 ® P 1 he defined and 

stratifiable. Then Pi can be added conservatively to P0 . 

Proof. Let P = (l', A, R ). As P is stratifiable, there is a stratification S: Tr(l', A )--->:x for 

some ordinal -:1. for P. Define S 0 : Tr(I: 0 , A0 )--->:x by S 0 (cp) = S(</> ). It is not hard to check 

that S 0 is a stratification of P0 . Hence, --->p and --->p0 are the transition relations 

associated with P and P0 , respectively. 

It is sufficient to prove that 

tET(l'0 ), aEA 0 , t ~ t' E --->p -= t ~ t' E --->p0 , t'ET(l'0 ). 

This is done by induction on the ordinal fi (0 ~ p < :x), with S(t ~ t') = S 0 (t ~ t') = /J. 
Assume that the induction hypothesis holds for all P' <[J. 

=:Suppose t ~ t' E --->~j for some j. Here --->~j is the relation from Definition 2.14 to 

construct --->p. By induction on j, it is shown that 

T( ,, ) . A a p , a , , T(" ) t E .:, o , ll E o, t ---> pj t = t ---> t E ---> p 0 , t E ,:, o . 

As --->p agrees with P, there is a rule rER with conclusion u ~ u' and a substitution 

a: V->T(I') such that a(u)=t, a(u')=t', r~R; as all rules in R 1 are in ntyft format, 

containing function names not occurring in l' 0 on the left-hand side of their con

clusions. So, rER0 . In the remainder we will only deal with the case that r is in nty.ft 
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format. The case that r is in ntyxt format goes in the same way. So, assumer is equal to 
(u =f (x1, ... , X,ui)): 

{sk ~ Yk I keK}u{u1~ [ leL} 

f(x1, ... ,X,ul) :!... u' 

Now we use induction on nv00 (x) of the variable dependency graph G of 
the premises of r to prove that for all xe Var(r): a(x)el'0 and if x= Yk (keK) 

then a(sk .'.'.:. yk)E--+p0 • Suppose nv00 (x)=nEN. As P0 is pure, we distinguish two 
cases: 

• x=x1 (1 ~i~r(.f)). As teT(E0 ), a(x)eT(l' 0 ). 

• x = Yk (ke K) and sk ~ Yk is a positive premise of r. By induction, we know that, for 

all yeVar(sd, a(y)eT(E0 ). As rER 0 , a(sdeT(E0 ). By induction and 
~ . ~ 

a(sk --+ ydE --+p0 ® p,, we can denve a(sk-+ ydE-+p0 and a(yk)E T(E0 ). 

As a consequence of this inductive proof, it holds for all positive premises <P of r that 

a(i/J)E--+p0 • For a negative premise u 1 ~, we assume, in order to generate a contradic

tion that :lu/eT(E0 ), a(u1 ~ ul)E--+p0 • As a(u1 !:.!. ul) is in a strictly lower stratum 
h 

than t ~ t' in S 0, it follows, by induction, that a(u1 ~ u[ )E --+p. This contradicts 

a(uiJE.r+. 

As --+p0 agrees with P0 and all premises of a(r) hold in -+p0 , it follows that a(u ~ u') 

also holds in --+p0 • As for all variables in Var(r), a(r)E T(.E 0 ), it also holds that 
a(u' )e T(.E 0 ). 

<=: This case has the same structure as the proof of =>. Take as an intermediate 
induction hypothesis 

t ~ t' E -+p0 => t ~ t' E --+p. 

We skip the details but we remark that induction on nvoo is not necessary. From the 
induction hypothesis it follows that 

After the combination of this result with => the outermost induction step is proved. 
From this the theorem follows immediately. 0 

In the remainder of this section we study how we can combine stratifications of two 
stratifiable TSSs P0 and Pi to a stratification of P0 Ee Pi. The following examples 
show that, in general, the sum of two stratifiable TSSs is not stratifiable. 
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Example 5.6. This example shows that, under certain circumstances, it can even be 
dangerous to extend the signature of a TSS. Let P0 be a TSS with unary function name 
f, a label a and a rule 

.f(x):!/+ 

f(x) .!!+ f (x) 

This TSS is stratifiable as there are no ground instances of literals. Adding a TSS P 1 

that only contains the single constant c already leads to an inconsistency. If --+ is 

a relation that agrees with P0 EB P 1 then -+l=f(c) ~ f(c) iff -+pf(c):!/+. 

Example 5.7. This is a less trivial example that shows a problem that can occur when 
stratifying the sum of stratifiable TSSs. Let P0 consist of a unary function name g, 

a constant c5, labels a, b and a rule 

h x+ 
g(x) .!!+ f> 

P1 consists of unary function names g and f, constant c5, labels a, b and a rule 

g(f(x))~ y 
b . 

.f (x)--+ o 

Both P0 and P 1 have an associated transition relation. P0 EB P1 , however, makes it 
possible to show thatf(f>) ~ c5 ifff(c5)__/fr for any transition relation--+ agreeing with 

P0 EB P 1 • In Fig. 5 the dependency graph of P0 EB P1 is drawn. The negative edge 
comes from P0 and the positive edge from P 1, together constituting a cycle with 

a negative edge. 
Checking the stratifiability of the sum of two stratifiable TSSs can be done by giving 

a stratification for P0 EB P 1 . Sometimes the following theorem is helpful. 

a 
g(/(6)) -+ 6 

p l rn 
b 

!(6) -+ 6 

Fig. 5. The LDG belonging to Example 5.7. 
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Theorem 5.8. Let L0 =(F0 ,F0 ) and l" 1 =(F1 ,Fi) be signatures such that for 
some constants a0 ,a 1 : a0 EF0 and a 1 EF1 . Let P0 =(L0 ,A0 ,R0 ), P1 =(L 1 ,Ai,Ri} be 
stratifiable TSSs. Let E0 EB l" 1 he defined. If, for all ground substitutions a0 and a1 and 
rules r0 ER 0 and r1 ER 1 , 

- <P is the conclusion of r 1 , 

- t/I is a positive premise of r0 , or t/I = t.::.,. t' and t.!fr is a negative premise of r0 and 

- u0 (l/I) ~ai(</J), 
then P0 EB P 1 is a stratifiable TSS. 

Proof. Assume that P0 has stratification S 0 : Tr(E 0 , A0 )-+a0 and that P 1 has stratifica
tion S 1 : Tr(E 1 , A il-+cc 1 • Construct a stratification S for P0 EB P1 as follows: define 
U <;;;, Tr(l" 0 EBl" 1 , A0 uAi) as the set of all literals that fit a premise of a rule r0 ER0 • If 
literal </JE U then construct a literal (i) be replacing all subterms f (u), for f E F 1 , in </J by 
a0 . As the label of <P is in A 0 , cPETr(l"0 ,A0 ) and, thus, (ii occurs in a stratum f3 in s 0 • 

Define S(</1)=(3. 
Assume <P<t U. If the label of <P is not in A 1 then S(c/>) = cc 0 . If the label of cp is in A 1 

then construct (i) from <P by replacing every subtermf(u) in </J, withjE=E0 , by a 1 . Now 
cPETr(l" 1 ,Ai). So, it must hold that (ii is in a stratum (3 in S 1. Define S(cp)=rt.0 +(3. 
Now every literal </JE Tr(E 0 EB l" i. A 0 uA il has a place in S. 

We now check that S is a stratification of P0 EB P1 . Take a rule rER 0 EB R 1 • 

Suppose a is a ground substitution and l/J is the conclusion, 1> a positive premise (if 

present in a(r)) and tf a negative premise (also if present) of a(r). We proceed by case 

analysis. 

• l/JE U. By the condition in this theorem, l/J is not an instance of a conclusion in a rule 

R1 and, thus, rER 0 . Hence, for all t'ET(.2:0 EBEi): cp,t .!!.,.t'EU. </J,I/; and r.::.. t' are 

related in S in the same way as (f, ijl and t .::.,. t' are related in s0. As (ii, tfi and t .::.,. t' 
are also instances of r for some a', they satisfy the conditions for a proper 

stratification in S0 and, therefore, </J, l/J and t .!!.,. t' satisfy these conditions in S. 

• t/l<tU. 
- If t/; has a label a<tA 1 then r cannot be a rule of R 1 and, so, rER 0 • As <f; and t.::.,. t' 

(for all t') are elements of U, I/; is in a strictly higher stratum than all its premises. 
Hence, r satisfies the stratification condition in this case. 

- If I/; has a label in A 1 then l/;ES~o+P if tfi is in stratum SJ. If </;EU then <P is in 

a strictly lower stratum than t/I and if t .::.,. t' EU then t .!!.,. t' is in a strictly lower 

stratum than t/f. If <f; ~ U and f ES}, then S(<f;) = cc0 + y as the label of <P comes from 

A 1 . If t.::.,.t'~U and t.!!.,.t'ES)~• then S(t.!!.,.t')=cc0 +y,. because aEA 1 . Now, as 

ijl, (i) and t .!!.,. t' are all instances of r for some substitution 11', y:;;;: f3 and y,. < (3. 

Hence, I/; is in an equal or higher stratum than cf; in S and t .!!.,. t' is in a strictly 

lower stratum than I/;. This shows that also in the last case the stratifiability 
condition for r is satisfied. D 
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6. The trace congruence generated by the nt}jt/ntyxt format 

In this section we show that if we define operators using the pure ntyfi/ntyxt format, 

then for image-finite processes the trace congruence generated by this format is 

exactly (strong) bisimulation equivalence. First we give the definition of a trace 

congruence generated by a format and the definition of image-finite processes. In 
Fig. 6 we show how we will then prove our result. The arrows denote set inclusion and 

'"IF" indicates that we need image finiteness. 

Definition 6.1. Let P =(I, A, R) be a stratifiable TSS and let -"p be the transition 

relation associated with P. Let tET(I). A sequence a 1 * ... * a11 EA *is a (?-)trace from 
U1 01 ll 11 , 

t iffthere are terms t 1 , ... ,t11 ET(1') for some nEN such that t -+pt 1 -=.P ... -+pt,,. Tr(t) 1s 

the set of all ?-traces from t. Two process terms t, t 'E T(L,') are trace-equivalent with 

respect to P iff Tr(t)=Tr(t'). This is also denoted as t='fat'. 

Note that if two terms t and r' are bisimilar, then they are also trace-equivalent. 

Definition 6.2. Let.~ be some format of TSS rules. Let P=(I, A, R) be a stratifiable 

TSS in Y' format. Two terms t, t' E T(I) are trace-congruent with respect to ] rules, 

notation t=}t', ifffor every TSS P'=(I',A',R') in§ format which can be added 

conservatively to P and for every I© I' context CD: C [t] ='fa® P' C [t']. 

Definition 6.3. Let P = (1', A, R) be a stratifiable TSS. Let -+p be the transition relation 

associated with P. -+p is called image-finite iff, for all tE T(l') and aEA, the set 

[ u It _'.'.,.Pu} is finite. 

Definition 6.4. Let P = (1', A, R) be a stratifiable TSS with associated transition rela

tion -"r· The relations <;;;;:;'? <:::;; T(I) x T(I) for nE N are inductively defined by 
e <;;;;;~=T(l')x T(1'), 
• <;;;;:;/,+ 1 ={(t,u)i 

t _'.'.,. t' = 3u' s.t. u _.:!; 11' and t'<;;;;;'P u' 
ll I ::J I £1 I d ' } u -+ u = :it s.t. t ___, t an t <;;;;;p u' . 

-T 
=pure ntyft / ntyxt tip 

IF 

'r<:;tp 

Fig. 6. Inclusions among several process equivalences. 
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Two process expressions t, t' E T(I:) are 11-bounded bisimilar (for P) iff tt::::t'P t'. Two 
terms t, t' E T(I:) are bounded bisimilar for P, notation tt::;p t', iff, for all nE l\J, tt:::'P t'. 

The following lemma gives a condition under which bounded bisimilar states are 
bisimilar. 

Lemma 6.5. Let P =(I:, A, R) be a stratifiable TSS such that ~P is image-finite. Let 
t, uE T(l:). Then 

(<;:;fpU ~ t~pU. 

Proof. <= is trivial. See [14] for ::.. D 

We now give the basic definitions and lemmas to prove that = !ure ni.vftfntyxt £ <;:;fp. 

The main component is the following test system. We show that this test system is 
stratifiable and that it can test equality between 11-bounded bisimilar processes. 

Definition 6.6. Let P = (2:, A, R) be a TSS. The bisimulation tester of P, 

Pr=(I:r,Ar,Rr), is a TSS with signature Lr=(Fr,rr) containing binary function 
names Bn and Q~ for all 11el\J, aeA and a constant b. The labels of Pr are 
Ar= Au{ ok, yes, no}. The rules in Rr are given in Table 2. 

The rules in Table 2 are based on the following meaning of the transitions 
res no d ok 

---+, _.,. an ---+ : 

- B"(x,y)~b if x and y are 11-bounded bisimilar. 

- B"(x, y) ~ b (n > 0) if x can perform a step that cannot be done by y such that the 

results are (11 - 1 )-bounded bisimilar. 

- Q~(x,y)~b (11>0) means that y can perform an a-step such that the result is 

(n - 1 )-bounded bisimilar with x. 

Table 2 
A bisimulation tester 

B"(x,y)~i) (I) 

y.'.!.y' B"-'(x',y')~: 

Q;;tx',y)~i5 
for n>O, aeA (2) 

ok 
Q:tx'.yJT 

for n>O, aeA (3) 

/Ill no 
B•(x,y)T 

B"(x,y)~J 

B"(y,x)T 
for n >0 (4) 
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The rules in Table 2 just encode n-bounded bisimilarity. The negative premises 

model the universal quantifiers in Definition 6.4. 

Remark 6.7. The test system PT is able to test equivalences between terms t, uE T(I ). 

However, it cannot test processes over T(I EB IT). The reason for this is that in rules 

2 and 3 of Table 2 a-:/= ok, yes, no. If a would be allowed range over Au { ok, yes, no}, 

then it is impossible to give a stratification, as done in this paper. 

Lemma 6.8. Let P =(I, A, R) he a TSS. Let PT be the bisimulation tester 4 P. PT is 

stratifiahle. 

Proof. It is enough to show that P has a stratification. Construct a mappmg 

S: Tr(I"T,A 1 )--+w such that 

e for all aEA and t,t'ET(I1 ), S(t~t')=l, 

• for IJE N and t, u, VE T(IT ), S(B"(t, u) ~ v) = 2n + 1, 
ok 

• for nE N - {O}, a EAT and t, u, vE T(Ir ), S(Q~(t, u)___,. v) = 2n- 1, 

• for nE N - {O} and t, u, vE T(I"r ), S(B"(t, u) ~ v) = 2n. 

It is straightforward to check that S is a stratification for PT· D 

Lemma 6.9. Let P =(I, A, R) he a strat(fiahle TSS in pure ntyft/ntyxtformat containing 

at least one constant in its siynature. Furthermore, A does not contain the labels 

ok,no,yes, and I does not contain function names B" and Q~for all aEA, nEN. Let 

t, u E T(I ); then 

Proof. As yes, no, ok~A, conclusions of rules in Rr never fit a premise of rules in R. 

Furthermore, P and Pr are stratifiable and contain at least one constant in their 

signatures. Hence, by Theorem 5.8, P EB PT is stratifiable. So, P EB PT has an associated 

transition relation --+p EB PT. As a consequence of Theorem 5.5, P EB Pr is a conservative 

extension of P. 
= Use induction on n. 
Base case. For n =0, tt::::'P u for any t, uE T(I ). Hence, the theorem holds in this case. 

Induction. We have to show that (I) if B"+ 1 (t,u)~b E --+p<3JpT and t ~ t' E -+p 

then 3 u' s.t. u ~ u' E -+p and t' t::::'P u', and vice versa, (2) if u ~ u' E -+p then 3 t' s.t. t ~ t' 

E -+p and t't::::'Pu'. As B"+ 1 (t,u)~b E -+PEBPT and ->P<3JPT agrees with PEBPr, it 
1w no 

must be the case that, using rule 4, B"+ 1(t,u)+ and B"+ 1(u,t)+ hold in -+PEBPT· 

Therefore, it cannot be the case that the premises of rule 3 all hold with a(x) = t, 
a(y)=u. But we know that t~ t' E ->p and, by conservativity, also t ~ t' E -+PEBPT· 

Hence, for some v, Q~+ 1 (t', u) ~ v E ->p EB Pr· But then the premises of rule 2 must be 
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true with cJ(y)=u and a(x')=t'. Hence, for some u', u.!!..u' E ->PEBPr and 

B"(t', u') ~ 6 E -+p Ell PT· By conservativity, u .!!.. u' E ->p. With the induction hypo

thesis, t'<;;;;!?u'. We can show (2) in the same way. Hence, if B"+ 1 (t,u)~b 
E -> P EB Pr then t<;;;jp+ 1 u. 

<= Again, we use induction on n. 

Base case. If n = 0, the theorem is trivial as B 0 (t, u) ~ i5 E ->p,,, Pr for all t, UE TCE ). 

Induction. Suppose t<z'V 1 u. We will show that B"+ 1 (t, u) ~ E -+p $Pr· By rule 4, 
no no 

it is sufficient to show that B"+ 1(t,u)+ and B"+ 1(u,t)+ hold in ->P$Pr· This 

means that we have to show that rule 3 can never be applied, i.e. either (3) t ~ t' or 
~ a ~ 

Q~ + 1 (t', u) ~ nor (4) u-+ u' or Q~ + 1 (u', t) + for any aEA holds in ->p,,, Pr- Suppose, 

for some a EA, t!f; holds in ->p EB Pr· Then (3) trivially does not hold. Now suppose 

t ..'.!... t' E ->p Ell PT for some t'. As PT extends P conservatively, t ~ t' E -+p. Then, using 

t<:::±'V 1 u, :Ju'ET(E) u .!!.. u' E -+p and t'd?u'. By conservativity, u .!!.. u' E ->pEIJ Pr· Using 

the induction hypothesis, B"(t',u')~6 E ->PEBPr· Applying rule 2 yields 
" + 1 ' ok ~ . ri + 1 , ok . Qa (t, u)--+ o E ->p Ell hand, hence, Qa (t, u) +does not hold m ->p $ h· We can 

prove (4) in the same way. D 

The following theorem relates all notions. 

Theorem 6.10. Let P = (L:, A, R) be a strat(fiable TSS in pure nt;ft/ntyxt format contain
in{f at least one constant in its signature. Furthermore, ->p is image-finite, A does not 
contain labels ok, no, yes and E does not containfimction names B", Q~for all aE A, n EN: 

1 =~ure ntyft/ntyxt U -= l<;;;jp ll -= l<:::±p ll. 

Proof. Suppose t<:::±p u. Let P' =(l", A', R') be a TSS in pure nty.ft/ntyxt format such 
that P EB P' is a conservative extension of P. Then t<:::±p,,, P' u. By the congruence 
theorem, for any L: EB L'' context C, C [t }:::7p Ell P' C [u]. Hence, t =~ure ntyJr/m.vxr u. 

Suppose t<;;;:tp u. This means that, for some nE N, t<;j:!? u. Construct the context 
B"(t,[ ]). Now, by Lemma 6.9, B"(t,u).Ej-. holds in ->pffiPr while B"(t,t)~b 

E ->p $PT. Hence, t of. ~ure ntyft/llt}'Xf u or, in other words, t =~ure ntyjt/ntyxt u => t<;;;:tp u. 
The last case t<;;;:tp u => t'=!p u follows directly from Lemma 6.5. 0 

The condition that ok, no, yes~ A and B", Q~ are not in L: is not a real restriction. It 
can be circumvented by simply renaming labels and function names. The requirement 
that L: contains at least one constant is also natural: without such a constant there are 
no terms tE T(E) and, hence, a bisimulation tester would not be useful. 

The bisimulation tester uses an infinite number of function names. For every nEN 
and aEA, there are binary operators B" and Q~. It is natural to ask whether a test 
system with a finite number of binary operators can be formulated. Here such a test 
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system is given. This test system has an additional property that if the number of 

labels in a tested system is finite, then there are only a finite number of rules necessary. 

Definition 6.11. Let P = (J:, A, R) be a TSS with a countable set of labels A. Assume 

that there is a function n: A_, N that gives a unique number for each label, satisfying 

that if, for aE A, n(a) = m > 0 then 3 bE A s.t. n(b) = m - 1. The finite bisimulation tester 

Pn=(J:FT,AFT,RFT) contains constants 0, 1 and b, unary function names Sand S0 , 

a ternary function name B and a quaternary function name Q. The labels in PFT are 

given by AFT=AuAu{ok,yes,no,O, l}. Here A={a\aEA}. The definition of n is 

extended to A by n(a) = n(a). The rules in Rn are given in Table 3. Here 

I, I', n, n', x, x', y, y' are variables. a ranges over A, and b, c range over A. S0(" 1(1) is an 

abbreviation for n(a) applications of S0 to 1. 
The main difference between Py and PFT is that labels and numbers do not occur 

any more as subscripts and superscripts at Q and B, but they are coded by zeroes and 

successor functions and included in the list of arguments. We have the same results for 

Table 3 
A finite bisimulation tester 

(l) 

S(x)-'.. x (2) 

1 ! cl for n(h)=O (3) 

x .!:.,· 
So(X) C.:. i) 

if n(c)=n(h)+ 1 (4) 

n ~n' 

B (II, X, y) ..Ei:_. ,\ 
(5) 

J~l' y~y' B(n,x',y1)~: 

Q(n, I, x', y) 0;. i) 
for aEA (6) 

n-.!+ n' x~x' 

B(n,x,y) ~,\ 
for n>O, aEA (7) 

no /JU 

B(n, x, y)-f-'> B(n,y, x)-f-'> 
for 11 >0 (8) 

B(n, x. y l ..E':... o 
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PFT as for PT. We only give here the main lemmas and we omit the proofs. With these 
results, it can be shown in exactly the same way as in the proof of Theorem 6.10 that 
PFT is also powerful enough to distinguish between nonbisimilar processes. 

Lemma 6.12. Let P = (J:', A, R) be a TSS with a countable set of labels A. The finite 
bisimulation tester PFT of P is stratifiable. 

Lemma 6.13. Let P = (J:', A, R) be a stratifiable TSS in pure ntyft/ntyxt format with 
a countable set of labels A not containing labels yes, no, ok, 0, I and at least one constant 
in L. Function names O,S, l,S0 ,B,Q must not occur in L. Let t,uET(L). sn(O) is an 
abbreviation for n applications of S on 0. Then 

B(s"(O) ) res ,, 11 ,f,U ~PEflPFTU ~ f~pU. 

Remark 6.14. There are two other bisimulation testers proposed in the literature 
[1, 11]. Both testers have an operational definition using "global testing", a feature to 
explore all possible outgoing transitions of a term. The definitions of these testers do 
not exploit lookahead, and negative premises are used only in a nonessential way. 

It is not surprising that the distinguishing power of the ntyft/ntyxt format is as 
strong as global testing. With "lookahead" we can model existential quantification. 
For instance, the premise of rule 2 in Table 4 can be read as: there exists a y' reachable 
via an a-step such that y' is (n - 1 )-bounded bisimilar to x'. By also using negation, via 
the negative premises, universal quantification, i.e. global testing, can be modelled. 

There is a second major difference. In [1, 11] Hennessy-Milner formulas (HM
formulas, [ 16]) are used as an auxiliary device to construct the bisimulation testers. 
The following elementary fact about Hennessy-Milner logic is used [16]: 

Table 4 

.ff {for all HM-formulas fj>, 
t~pU 1 

tl= c/; ~ ul= f/>. 

A Hennessy-Milner formula tester 

x .:!. x' T.p(x') ~ y 

T<" 1 ,µ(x) ~ ,) 

ok 
T1 (x)--f+ 

1/.:. ok 
T,p,(X) '-+ y, Tq,,(X)--> Y2 

T--,,µ(x)~Ci Tcpi/\<1> 1 (x)~6 

(2) 
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Slightly simplifying the results in [1, 11] one can say that a tester Tq, is defined, with 
cfl an HM-formula, such that 

where a 1 ... a. is a particular sequence of actions. If two terms t, u are not bounded 
bisimilar, then, by (2), there is some HM-formula cjJ such that 

Ut Un Ut Un 

Hence, Tq,(t) ~ ... ~.but not Tq,(u) ~ ... ~.and, thus, t and u are not (completed) 

trace-congruent. Using the ntyft/ntyxt format, it is easy to define such an HM-tester 

PHM (see Table 4 for its rules). The tester Tq, has the property that Tq,(t) ~ b iff tl= cfl. In 

the same way as the bisimulation tester PT is added to a stratified TSS, PHM can be 
added also. So, PHM can also be used to distinguish between nonbisimilar processes. It 
may be worth noting that the HM-tester PHM contains infinitely many function 
symbols. It is rather standard to reduce these to a finite number (see e.g. [11, 15] and 
the finite bisimulation tester in Table 3) and we leave this to the reader. In the 
bisimulation testers in [I, 11] there is no rule for negation, which cannot easily be 
dealt with in that setting, but, instead, rules are given for F, V and [a]. Testing an 
HM-formula [a] cjJ is, of course, done by global testing. As is well known, the 
HM-formula [a] ef> can be expressed using negation and <a> as follows: 

It is illustrative to see how 1 <a)1 <jJ is tested using the following instantiations of the 
rules of our HM-formula tester: 

ok 
T,p(x)+ 

T,q,(x) ~b' 

a ok 
x~ T,q,(x)~y 

ok 
T<a>-iq,(x) ~ b 

Or, in other words, a term t satisfies [a] <jJ iff it is not the case that t can do an a-step, 
or, for every t' reachable via an a-step from t, <jJ does (not not) hold in t'. 
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7. An overview of trace and completed-trace congruences 

There are nowadays several different formats of rules for describing a Plotkin-style 
operational semantics. All these formats induce their own trace and completed-trace 
congruences. In Table 5 we give an overview of the main results. We will not explicitly 
define all equivalence notions, but we will confine ourselves to giving references. The 
first column describes the different formats for the rules. The pure ntyft/ntyxt format is 
the most extensive. All other formats are restricted versions of the pure nty.ft/ntyxt 
format. The pure tyjt/tyxt format [15] can be obtained from the pure ntyft/ntyxt 
format by not allowing negative premises in the rules. The GSOS format [10] has 
been defined in Example 3.1. It is a simplification of the pure ntyft format in the sense 
that rules in the GSOS format only have conclusions of the form f(x 1 , ... , Xr(fl) ~ t 
and premises of the form X; ~ x; for 1 ~i~r(f) and xi~ for I ~j~r(f). In Example 
3.1 it has been shown that a TSS in GSOS format has a unique associated transition 
relation. 

The positive GSOS format [15] is almost equal to the GSOS format, the only 
difference being that rules in the positive GSOS format do not have negative premises. 
A typical example of a rule in the positive GSOS format is 

h ' 
X-> Xz 

One can clearly see that variables may be used more than once in the source of the 
premises or the target of the conclusion. This is called copying [I]. The positive GSOS 
format is not only more restricted than the GSOS format, but also every rule 
satisfying the positive GSOS format is in the pure tyft/tyxt format (see Fig. 1). 

The oldest format is the de Simone format [30]. It is equal to the positive GSOS 
format except that it does not allow copying. Every variable on the left-hand side of 
the conclusion may only occur once on the right-hand side of the conclusion or on the 
left-hand side of a premise. Every variable on the right-hand side of a premise may 
appear only once on the right-hand side of the conclusion. 

Table 5 
An overview of (completed) trace congruences 

de Simone format 
Positive GSOS format 
GSOS format 
Pure tyfi/tyxt format 
Pure ntyfi/ntyxt format 

Trace congruence 

Trace equivalence 
Simulation equivalence 
2/3 Bisimulation 
Simulation equivalence 
Bisimulation 

Completed-trace congruence 

Failure equivalence 
2/3 Bisimulation 
2/3 Bisimulation 
2-Nested simulation equivalence 
Bisimu!ation 
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The second and third columns of Table 5 give the trace and completed-trace 

congruences belonging to these formats. The notion of completed-trace congruences 

was not yet defined. 

Definition 7.1. Let P=(I,A,R) be a TSS with associated transition relation --.p. Let 

tE T(I ). t is a deadlocked process, notation t+, iff there are no uE(I) and aE A with 

t .!!+Pu. A sequence a 1 * · ·· * a11 EA * is a completed trace oft iff there are process terms 
a1 th a,, 

t 1 , ... , t,,E T(I:) such that t-+p t 1 ~P · · · -+p t11+ CT(t) is the set of all completed traces 

of t. Two process terms t, uE T(I) are completed-trace-equii1alent for P if 

CT(t)= CT(u). This is denoted as t=~T u. 

The notion of completed-trace-congruence can be obtained by replacing "trace" by 

"completed trace", =J: by =7 and ="fa by =~r in Definition 6.2. 
The trace and completed-trace congruences for the de Simone format follow 

directly from an important result of R. de Simone [30]: All operators definable in the 

de Simone format can also be defined using architectural expressions over 

MEIJE-SCCS. It is a well-known result that trace equivalence is a congruence in 

MEIJE-SCCS. From this it follows immediately that the trace congruence is trace 

equivalence. Furthermore, an established result is that the completed-trace congru

ence is failure trace equivalence. For all other results, we refer to [ 15], where all 

completed-trace congruences, except for the pure ntyft/ntyxt format, are given. The 

notion of 2/3-bisimulation was first mentioned in [19] and simulation equivalence 

and 2-nested simulation equivalence are defined in [15]. The trace congruences for 

positive GSOS and GSOS are not published anywhere. However, with the help of the 

lemmas in [15] one can prove the results. In [ 15] it is shown that the trace congruence 

for the pure tyjt/tyxt format is simulation equivalence. 
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