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Generalized ultrametric spaces are a common generalization of preorders and ordinary ultra
metric spaces, as was observed by Lawvere ( 1973 ). Guided by his enriched-categorical view 
on (ultra)metric spaces, we generalize the standard notions of Cauchy sequence and limit in an 
(ultra)metric space, and of adjoint pair between preorders. This leads to a solution method for 
recursive domain equations that combines and extends the standard order-theoretic (Smyth and 
Plotkin, 1982) and metric (America and Rutten, 1989) approaches. 

1. Introduction 

A generalized ultrametric space is a set X supplied with a distance function X(-, - ) : 
X x X -+ [O, I], satisfying for all x,y,z: X(x,x) = 0 and X(x,z)~max{X(x,y), 
X(y, z)}. This notion generalizes ordinary ultrametric spaces in that the distance need 
not be symmetric, and different elements may have distance 0. Generalized ultrametric 
spaces provide a common generalization of both preordered spaces and ordinary ul
trametric spaces, as has been observed by Lawvere [ 14]. Therefore they are of some 
importance to the domain-theoretic approach to programming language semantics, in 
which preorders and ordinary ultrametric spaces are the most popular structures. A 
more direct connection with the world of semantics is provided by the observation 
that transition systems can be naturally endowed with a generalized ultrametric that 
captures their operational behaviour in terms of simulations (see Example 2.1 below). 

The present paper introduces first some basic concepts such as Cauchy sequence and 
limit, next introduces so-called metric adjoint pairs, and then describes how these can 
be used to solve recursive domain equations. The latter can be seen as its main con
tribution. The paper concludes with some miscellaneous observations on the following 
topics: algebraicity; an ultrametric generalization of the category of SFP objects called 
SFU; the category of generalized ultrametric spaces seen as a large ultrametric space; 
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and an equivalent, purely enriched-categorical definition of metric limit, using so-called 
weighted colimits [6]. 

The present paper does not deal with admittedly fundamental aspects of domain 
theory such as completion and topology: for these, the reader is referred to [4]. 

Our main source of inspiration has been the aforementioned paper by Lawvere, in 
which he applies insights from enriched-category theory [11] to (ultra)metric spaces. 
One way of summarizing the relevance of this view is the fact that many properties of 
generalized ultrametric spaces are determined by the (categorical) structure [O, 1 ]. No
tably the definition of limit of a Cauchy sequence in an arbitrary generalized ultrametric 
space will be phrased in terms of limits in [O, l], which are introduced first. 

The above theory for generalized ultrametric spaces is developed, extending [14], 
along the lines of a combination of [21] and [3], which deal with the solutions of 
domain equations in categories of ordered and metric spaces, respectively. This it has 
in common with the work of Flagg and Kopperman [9] on continuity spaces, and of 
Wagner [22] on abstract preorders, who aim at a reconciliation of ordered and metric 
domain theory as well. Furthermore it has similarly been inspired by some of Smyth' 
results on quasimetric spaces [18]. Unlike [9, 22], we do not aim at generality. The 
category of generalized ultrametric spaces seems rather to be the smallest category 
(of sets with structure) that contains both the categories of preorders and ordinary 
ultrametrics. What seems to be new, amongst others, is: two fixed point theorems on 
generalized ultrametric spaces, generalizing the least and unique fixed point theorems of 
Tarski and Banach, respectively; the definition and characterizations of metric adjoint 
pairs; two categorical counterparts of the aforementioned fixed point theorems, based on 
the use of metric adjoint pairs, and generalizing the ones of [21] and [3]; the definition 
and characterization of the subcategory SFU of bifinite spaces; and the purely enriched
categorical definition of metric limit in terms of weighted colimits. 

2. Generalized ultrametric spaces 

Generalized ultrametric spaces are introduced and shown to be [O, !]-categories in the 
sense of Lawvere. In order to see this, a brief recapitulation of Lawvere's enriched
categorical view of metric spaces is presented. For us, one of the main benefits of 
Lawvere' s approach is the insight that many properties of generalized ultrametric spaces 
are determined by the unit interval of real numbers [O, 1]. The section concludes with 
a brief discussion of the category of all generalized ultrametric spaces, and a few basic 
definitions. (The subsection on [O, 1 ]-categories can be skipped at first reading, except 
for the very basic Proposition 2.2, which will be used time and again.) 

A generalized ultrametric space (gum for short) is a set X together with a function 

X(-, - ) : X x X-+ [O, 1] 

which satisfies, for all x, y, and z in X, 
1. X(x,x) = 0, and 
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2. X(x,z)~max{X(x,y),X(y,z)}, 
where 2 is the so-called strong triangle inequality ("strong" because we have max 
instead of + ). The real number X (x, y) will be called the distance from x to y. A 
generalized ultrametric space generally does not satisfy 

3. if X(x,y) = 0 and X(y,x) = 0 then x = y, 
4. X(x,y) =X(y,x), 

which are the additional conditions that hold for an ordinary ultrametric space. There
fore it is sometimes called a pseudo-quasi ultrametric space. A quasi ultrametric space 
is a gum which satisfies axioms 1, 2, and 3. A gum satisfying l, 2, and 4 is called a 
pseudo ultrametric space. 

Examples 2.1. 1. Pseudo, quasi, and ordinary ultrametric spaces are generalized ultra
metric spaces. 

2. Any preorder (P, ~) (where ~ is a reflexive and transitive binary relation on P) 
can be viewed as a generalized ultrametric space, by defining a distance, for p and q 
in P, 

P( ) = { 0 if p ~ q, 
p, q 1 "f .r 

I p ~ q. 

By a slight abuse of language, any gum stemming from a preorder in this way will 
itself be called a preorder. 

3. The set A= of finite and infinite words over some given set A with distance 
function, for v and w in A 00 , 

A=(v, w) = { 0 _ if v is .a prefix of w, 
2 n otherwise, 

where n is the length of the longest common prefix of v and w. 
4. The set [O, l] with distance, for r and s in [O, l], 

[O, l](r,s) = { 0 ~fr ~s, 
S If r < S. 

Note that [O, l] is a quasi ultrametric space. 
5. The set w = {O, 1, ... } U { w }, with distance, for x and y in w, 

- { 0 if x ~ y, 
w(x, y) = 2-y .f 

l x > y. 

6. A transition system is a pair (S,---+) consisting of a set S of states and a transition 
relation ---+ \:;; S x S. Let ( ~ n )n be a sequence of relations on S inductively defined 
by ~ 0 = S x S and 

~n+t = { (.s, t) ES x SI Vs' ES s.t. s---+s' 3t' ES s.t. t---+t' and s' ~n t'}. 

For s and t in S, S(s,t) = inf {2-n I s~nt} defines a generalized ultrametric on S, 
which measures the extent to which the transition steps from s can be simulated by 
steps from t. 
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2.1. Generalized ultrametric spaces are [O, l]-categories 

We briefly review Lawvere's [14] conception of metric spaces as '/!·-categories 
[ 18, 11]. Then we shall follow and further elaborate his approach for the special case of 
generalized ultrametric spaces, which will be shown to be [O, !]-categories. The main 
point is that, in general, many properties of 'Y"-categories derive from the structure on 
the underlying category f. 

The starting point is a category ,,~ together with a functor 

which is symmetric and associative, and has a unit object k (up to isomorphism). This 
defines a so-called symmetric monoidal structure on 'f". The category f · is required 
to be complete and cocomplete (i.e., all limits and colimits in "//. should exist), and 
its monoidal structure should be closed: that is, there exists an internal horn functor 

such that for all a in ·'f/ , the functor Hom( a, - ) (mapping b in "f/~ to Hom( a, b)) is right 
adjoint to the functor a@- (which maps bin Y to aQ!Jb). A ·'f/·-category, or a category 
enriched in ·r, is any set (more generally, class) X together with the assignment of 
an object X(x,y) of "f/ to every pair of elements (x,y) in X; the assignment of a 
f/'-morphism 

X(x,y) @X(y,z)-+ X(x,z) 

to every triple (x,y,z) of elements in X; and the assignment of a f/·-morphism 

k-+ X(x,x) 

to every element x in X, satisfying a number of naturality conditions (omitted here 
since they are trivial in the particular case we are interested in; see [14, 5]. 

For instance, the category of all sets is a (complete and cocomplete) symmetric 
monoidal closed category (where @ is given by the Cartesian product, and any one 
element set is a unit). The corresponding 'f''-categories are just ordinary categories: 
X (x, y) is given by the homset of all morphisms between two objects x and y in a 
category X, and the r·-morphisms that are required to exist are just functions defining 
the composition of morphisms, and giving identity morphisms. 

Generalized ultrametric spaces can now be seen to be [O, 1 ]-enriched categories as 
follows. First of all, [O, l] is shown to be a complete and cocomplete symmetric 
monoidal closed category. It is a category because it is a preorder (objects are the 
real numbers between 0 and 1; and for r and s in [O, l] there is a morphism from r 
to s if and only if r ~s ). It is complete and cocomplete: equalizers and coequalizers 
are trivial (because there is at most one arrow between any two elements of [O, l]), 
the product r x s of two elements r and s in [O, l] is given by max {r,s}, and their 
coproduct r+s by min{r,s}. More generally, products are given by sup, and coproducts 
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are given by inf. The monoidal structure on [O, l] is given by 

max : [O, l] x [O, l] -> [O, l], 

assigning to two real numbers their maximum, which is symmetric and associative, and 
for which 0 is the unit element. (Note that in this particular case the monoidal product 
is identical to the categorical product.) Consider the following internal horn functor 

[0, 1 ]( - , - ) : [0, l ]0 P x [0, l] -> [0, l ], 

defined (as in Example 2.1) by, for r and s in [O, l], 

[O, l](r,s) = { 0 ~fr ;:::os, 
S If r < S. 

The following fundamental equivalence states that [O, l](r, - ) is right adjoint to 
max {r, - }, for any r in [O, l]: 

Proposition 2.2. For all r, s, and t in [O, 1), 

max{r,t};::::s if and only ift;:::o[O,I](r,s). 

As a consequence, [O, 1) is a (complete and cocomplete symmetric) monoidal closed 
category. (In fact, since the monoidal structure is given by the categorical product on 
[O, I], it is even Cartesian closed.) 

Now [O, 1 ]-categories are precisely the generalized ultrametric spaces introduced at 
the beginning of this section: sets X together with a function assigning to x and y in 
X an object, i.e., a real number X(x, y) in [O, 1). The existence of a [O, I)-morphism 
from X(x,y) @X(y,z) = max {X(x,y),X(y,z)} to X(x,z) gives the second, and the 
existence of a morphism from k = 0 to X(x,x) gives the first of the axioms for 
generalized ultrametric spaces. 

2.2. The category of generalized u/trametric spaces 

As mentioned above, many constructions and properties of generalized ultrametric 
spaces are determined by the category [O, I]. Important examples are the definitions of 
limit and completeness, presented in Section 3. Also the category of all gum's, which 
is introduced next, inherits much of the structure of [O, 1 ]. 

Let Gum be the category with generalized ultrametric spaces as objects, and non
expansive functions as arrows: i.e., functions f : X -> Y such that for all x and x' in 
x, 

Y(f(x), f(x')) ::;;X(x,x'). 

(Non-expansive functions are precisely the [O, I)-functors between [O, I)-categories.) 
A function f is isometric if for all x and x' in X, 

Y(f(x),f(x')) = X(x,x'). 
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Two spaces X and Y are called isometric (isomorphic) if there exists an isometric 
bijection between them. The product X x Y of two gum's X and Y is defined as the 
Cartesian product of their underlying sets, together with distance, for (x, y) and (x', y') 
in X x Y, 

X x Y((x,y), (x',y')) = max{X(x,x'), Y(y,y')}. 

Note that this definition uses the product (max) of [O, l]. The exponent of X and Y 
is defined by 

yx = {f : X -> Y I f is non-expansive } , 

with distance, for f and g in yx, 

y·'<(f,g) = sup{Y(f(x),g(x)) Ix EX}. 

The fact that the category [O, 1] is monoidal (Cartesian) closed implies that the category 
Gum is monoidal (Cartesian) closed as well: i.e., for all gum's X, Y, and Z, 

In the category Gum, all limits and colimits exist. Moreover, they are constructed at 
the level of their underlying sets. Formally: 

Theorem 2.3. Let U : Gum -+ Set he the functor that maps a gum to its under
lying set ("forgetting" its metric structure). The functor U creates all limits and all 
co limits. 

Proof. Limits are easy but colimits are less trivial. They involve the use of the so-
called "least-cost" [ 14] or "shortest-path" [20] distance. For details see [ 16]. D 

2.3. A few basic definitions 

This section is concluded by a number of constructions and definitions for generalized 
ultrametric spaces that will be used in the sequel. 

The opposite X 0P of a gum X is the set X with distance 

X 0 P(x,x') =X(x',x). 

With this definition, the distance function X(-, - ) can be described as a function 

X(-,-): X 0P x X-> [O, 1]. 

Using Proposition 2.2 one can easily show that X( -, - ) is non-expansive, i.e., a mor
phism in the category Gum. 

We saw that any preorder P induces a gum. (Note that a partial order induces a 
quasi ultrarnetric and that the non-expansive functions between preorders are precisely 
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the monotone functions.) Conversely, any gum X gives rise to a preorder (X, ::;;x ), 
where ::;;x, called the underlying ordering of X, is given, for x and y in X, by 

x::;;xy if and only if X(x,y) = 0. 

Any (pseudo or quasi) ultrametric space is a fortiori a gum. Conversely, any gum X 
induces a pseudo ultrametric space xs, the symmetrization of X, with distance 

X 8(x,y) = max {X(x,y),X0P(x,y)}. 

For instance, the ordering that underlies A 00 is the usual prefix ordering, and (A 00 )s 
is the standard ultrametric on words. The generalized ultrametric on [O, 1] induces the 
reverse of the usual ordering: for r and s in [O, 1], 

r::;;[o, 11s if and only if s::;;r; 

and the symmetric version of [O, 1] is defined by 

s { 0 if r = s, 
[O, l] (r,s) = { } .f -'-max r,s l r 1 s. 

Any gum X induces a quasi ultrametric space [X] as follows. Let ,....., be the equivalence 
relation on X defined, for x and y in X, by 

x,...., y iff (X(x,y) = 0 and X(y,x) = 0). 

Let [x] denote the equivalence class of x with respect to "'• and [X] the collection of all 
equivalence classes. Defining [X]([x],[y]) =X(x,y) turns [X] into a quasi ultrametric 
space. It has the following universal property: for any non-expansive function f : X -+ 

Y from X to a quasi ultrametric space Y there exists a unique non-expansive function 
f' : [X]-+ Y with f'([x]) = f(x), for x EX. 

The above constructions give rise to various adjoint functors between the categories 
involved; cf. [16]. 

3. Cauchy sequences, limits, and completeness 

The notions of forward- and backward-Cauchy sequences are introduced. It is ex
plained what such sequences look like in [O, l], and how to define in [O, 1] the notion 
of metric limit. This will give rise to a definition of metric limit for arbitrary gener
alized ultrametric spaces. Furthermore the notion of completeness is introduced. Two 
fixed point theorems for functions on complete quasi ultrametric spaces are given, 
generalizing those of K.naster-Tarski and of Banach. 

A sequence (xn )n in a generalized ultrametric space X is forward-Cauchy if 

'Ve> 0 3N \;/n?;N, X(xn,Xn+1)::;;e. 

Note that this is equivalent to the more familiar condition: 

'Ve> 0 3N \;/n?;m~N, X(xm,Xn)::;;e, 
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because of the strong triangle inequality. Since our metrics need not be symmetric, the 
following variation exists: a sequence (xn )n is backward-Cauchy if 

If X is an ordinary ultrametric space then forward-Cauchy and backward-Cauchy both 
mean Cauchy in the usual sense. If X is a preorder then forward-Cauchy sequences 
are eventually increasing: there exists an N such that for all n ~N, Xn :;:;;xn+I · (In
creasing sequences in a preorder are also called OJ-chains.) Similarly backward-Cauchy 
sequences are eventually decreasing. 

Cauchy sequences in [O, 1 ], with the generalized ultrametric of Section 2, are par
ticularly simple: every forward-Cauchy sequence either converges to 0 or is eventually 
decreasing; dually, every backward-Cauchy sequence either converges to 0 or is even
tually increasing. 

Proposition 3.1. A sequence (rn)n in [O, l] is forward-Cauchy if and only if 

either:\Je>03N\Jn?-N, rn:;:;;e, or: 3N\Jn~N, rn?-rn+I· 

Dually, it is backward-Cauchy if and only if 

Proof. We prove only the first statement, the second being dual. Sequences that con
verge to 0 or that are eventually decreasing are easily seen to be forward-Cauchy. 
Conversely, let (rn)n be forward-Cauchy in [O, l]. Suppose there exists e > 0 such that 

\JN 3n~N, rn >e. 

We claim that there exists an N such that for all n ?-N, rn > <.; for suppose not: 

\JN 3n ?-N, rn:;:;; e. 

Because (rn)n is forward-Cauchy, there exists M such that for all m ~M, [O, l] 
(rm,rm+I ):;:;e. Consider n1 ?-M with rn, :;:;;e, and consider n1 ~n 1 with rn2 > t:. Then 

= [O, IJ(rn,,rn2 ) [definition of the distance on [0,1]] 

a contradiction. Therefore let N be such that for all n ~N, rn > e. Let M ~N such 
that for all m?-M, [O, l](rm,rm+I ):;:;;e, which is equivalent to rm+l:;:;; max {e,rm} by 
Proposition 2 .2. Because r m > e, for all m ~ M, this implies r m+ 1 :;:;; r nz. D 

Because Cauchy sequences in [O, l] are that simple, the following definitions are 
easy as well: the forward-limit of a forward-Cauchy sequence (rn )n in [O, 1] is given 
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by 

limrn =sup inf rk. 
-+ n k ~n 

Similarly, the backward-limit of a backward-Cauchy sequence (rn)n in [O, l] is 

lim rn = sup inf rk . 
......___ n k~n 

The following proposition shows how forward-limits and backward-limits m [O, 1] 
are related ( cf. [23]. 

Proposition 3.2. For a forward-Cauchy sequence (rn )n in [O, I], and r in [O, l], 

For a backward-Cauchy sequence (r")n in [O, l], and r in [O, l], 

A proof follows easily from the following elementary facts: 

Lemma 3.3. For all V i;;;[O, 1] and r in [O, 1), 
1. [O, l](inf V,r) = sup,,Ev[O, l](v,r); 
2. [O, l](r, sup V) = sup,,Ev[O, l](r, v). 

Forward-limits and backward-limits in an arbitrary generalized ultrametric space X 
can now be defined in terms of backward-limits in [O, l]: 

Definition 3.4. Let X be a generalized ultrametric space. An element x in X is a 
forward-limit of a forward-Cauchy sequence (xn )n in X, 

x = Iimxn iff l;Jy EX, X(x,y) = limX(xn,y). ..... ~ 

Dually, an element x in X is a backward-limit of a backward-Cauchy sequence (xn )n 
in X, 

x = l~xn iff l;Jy EX, X(y,x) = l~X(y,xn). 

In Section 11, an alternative, equivalent definition of forward-limit and backward
limit will be given, which is, from an enriched-categorical point of view, more attrac
tive. It will be based on the notions of weighted colimit and weighted limit 

Definition 3.4 makes use of the following. 

Proposition 3.5. Let (x11 )n be a sequence in X and y in X. If (xn )n is forward
Cauchy in X then the sequence (X (xn, y))n is backward-Cauchy in [O, l]. If (xn)n is 
backward-Cauchy in X then the sequence (X (y,xn) )11 is backward-Cauchy in [O, 1 ]. 
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Note that it follows from Proposition 3.2 that our earlier definitions of forward-limit 
and backward-limit in [O, 1] are consistent with Definition 3.4. 

For an ordinary ultrametric space X, the above definitions of forward- and backward
limit are the same and coincide with the usual notion of limit: 

x = limxn = limxn if and only if Ve> 0 3N 'Vn~N, X(xn,X) <c. 
~ ~ 

The implication from left to right is straightforward. For the converse, note that it 
follows from Proposition 3.1 that for y in X, the sequence (X(xn, y) )n, which is both 
forward- and backward-Cauchy, either converges to 0 or eventually becomes constant. 
In both cases, 

If X is a partial order and (xn )n is a chain in X then 

x = l~Xn if and only if Vy EX, x ~xY ~\In ~O, Xn ~x y, 

i.e., x = LJxn, the least upperbound of the chain (xn)n. Similarly, backward-limits of 
backward-chains correspond to greatest lowerbounds. 

Since the rest of this paper mostly deals with forward-Cauchy sequences and forward
limits, we shall simply write Cauchy for forward-Cauchy, and 

limxn rather than limxn. 
~ 

Note that subsequences of a Cauchy sequence are Cauchy again. If a Cauchy se
quence has a limit x, then all its subsequences have limit x as well. Cauchy sequences 
may have more than one limit. All limits have distance 0, however. As a consequence, 
limits are unique in quasi ultrametric spaces. 

A function f: X ---+ Y between gum's X and Y is continuous if it preserves limits: 
if x = limxn in X then f(x) = lim/(xn) in Y. For ordinary ultrametric spaces, this is 
the usual definition. For partial orders, it means preservation of least upperbounds of 
w-chains. 

In dealing with generalized ultrametric spaces, one should be prepared to reconsider 
some basic intuitions about ordinary ultrametric spaces. For instance, any non-expansive 
function between ordinary ultrametric spaces is continuous. But: 

Remark 3.6. The notions of "non-expansive" and "continuous" function between gen
eralized ultrametric spaces are incomparable. 

An example of a function that is continuous but not non-expansive is f : w ---+ o) 

defined, for x in lV, by 

if x = 0, 
if 0 < X < W, 

if x = w, 



J.J.M.M. Rutten/Theoretical Computer Science 170 (1996) 349-381 359 

where w is supplied with the generalized ultrametric as defined in Example 2.1. For 
instance, w(/(2),f(l)) = w(l,O) = 1 '!:. 2- 1 =w(2,1). Any function between partial 
orders that is monotone but not continuous (i.e., least-upperbound preserving) yields 
an example of the converse. 

A generalized ultrametric space X is complete if every Cauchy sequence in X has a 
limit. For instance, [O, l] is complete. If X is a partial order completeness means that X 
is an w-complete partial order, or cpo for short: all w-chains have a least upperbound. 
For ordinary ultrametric spaces, the above definition of completeness is the usual one. 

Limits are unique in complete quasi ultrametric spaces, which therefore are well 
suited for the construction of fixed points. There are at least two ways: 

Theorem 3.7. Let X be a complete quasi ultrametric space and f : X --+ X non
expansive. 

1. lf f is continuous and if there is x in X with x~xf(x) (i.e., X(x,f(x)) = 0), 
then f has a fixed point, which is the least (with respect to ~x) fixed point above 
x. 

2. If f is continuous and contractive: 

3e < 1 'r:/x,y EX, X(f(x),f(y))~e ·X(x,y), 

and if, moreover, X is non-empty, then f has a unique fixed point. (Note that con
tractiveness does not imply continuity; for an example see below.) 

Proof. I. Suppose f is continuous and let x be such that X(x,f(x)) = 0. The sequence 

(x,f(x),J2(x),. .. ) 

is trivially Cauchy because f is non-expansive. Since X is complete this sequence has 
a limit y. By continuity off, f(y) = limf(r(x)) = limr(x). In quasi ultrametric 
spaces, limits are unique, thus y = f(y). If x~xz and f(z) = z, for z in X, then it 
follows that y ~xz. 

2. Suppose that f is both continuous and contractive. Let x be any element in X and 
consider again the sequence (x, f (x ), f 2(x ),. .. ). Because f is contractive this sequence 
is Cauchy: for all n~O, X(f"(x),r+ 1 (x))~en ·X(x,f(x)). As in 1, a fixed pointy 
is obtained by completeness of X and continuity of f. Suppose z is another one. 
Then X(y,x) = X(f(y),f(z))~e ·X(y,z) whence X(y,z) = 0. Similarly X(z, y) = 0. 
Because X is a quasi ultrametric space this implies y = z. D 

Part I generalizes the theorem of Knaster-Tarski that continuous functions on an w
complete partial order with a least element, have a least fixed point. Part 2 generalizes 
Banach's contraction theorem. Both part 1 and part 2 above are special instances of a 
slightly more general theorem (on quasi metric spaces) in [ 18]. 

Consider the set w of the natural numbers with infinity with the distance induced 
by the usual ordering, but for the value of w(l, 0 ), which is ~ rather than 1. Let 
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f : (U ~ 6i map any n ~ 0 to 0, and w to 1. Then f is contractive but not continuous 
since Jim n = w, whereas Jim f (n) =/= f( w ). 

In order to prove that a function f : P ~ Q between partial orders is continuous 
(that is, preserves least upperbounds ), one usually establishes first that f is monotone, 
from which then half of the proof follows: if x = LJxn and f is monotone, then Xn ,;;;px 
implies f(x,,),;;;Qf(x) whence LJf(xn),;;;Qf(x). Similarly (and more generally), non
expansiveness of a function between generalized ultrametric spaces implies "half of its 
continuity"; more precisely: 

Proposition 3.8. Let X and Y be generalized ultrametric spaces, f : X ........, Y a non
expansive function, and (xn )n a Cauchy sequence in X with lim Xn = x in X. For all 
yin Y, 

l!_ii1 Y(f(xn),y):;;;Y(f(x),y). 

Proof. Because .f is non-expansive and (xn )n is Cauchy, the sequence (f(xn) )n is 
again Cauchy. By Proposition 3.5, the sequence (Y(f(xn),y))n is backward-Cauchy in 
[O, 1 ], for any y in Y, and hence has a backward-limit. The inequality follows from 

[O, I]( Y(f (x ), y ), l~ Y(f(xn ), y)) 

= l~[O, l](Y(f(x),y), Y(f(x,,),y)) [Proposition 3.2] 

,;:;; Jim Y(f(xn)J(x)) [Y(-,y): Y0P........, [O, l] is non-expansive] 

:::::; l~X(xn,x) [f is non-expansive] 

= X(limxn,x) [definition of limit] 

= X(x,x) 

=0, 

and the definition of the metric on [O, 1] (Example 2.1 ). D 

Proposition 3.8 comes in handy in the following. 

Proposition 3.9. Let X and Y be generalized ultrametric spaces. 
1. (/ Y is complete then yx is complete. 
2. Let [X ~ Y] = {f : X --> Y I .f is both non-expansive and continuous}, with 

distance as in yx. This defines a generalized ultrametric space, which is complete 
whenever Y is. 

Proof. The proof combines, as it were, both the proofs (of the same statements) for 
partial orders and ordinary ultrametric spaces, and is somewhat more complicated than 
both proofs individually. We list the main steps: consider a Cauchy sequence (.fn)n in 
xr. We have to show: there is f in xr with lim .fn = f; and if all of the j~ are 
moreover continuous then so is f. 
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1. Definition: for any x in X, the sequence (fn(x) )n is Cauchy in y. It has a limit, 
to be called f (x ), because Y is complete. This defines a function l : X __.,, y. 

2. A useful observation: Ve > 0 3N 'in~ N 'ix E X, Y(fn(x )./(.~)) < t:. 
3. From 2, it follows that f = Jim .fn. 
4. Using 3, one can prove that f is non-expansive. This proves part 1 of the theorem. 
5. It remains to be shown that f is continuous if all of the f,, are. Let limxn = x 

be a converging sequence in X, and let y be in Y. By Proposition 3.8 and 4, 

I~ Y(f(xn),y) ~ Y(f(x),y). 

6. Using 2 and the fact that the functions fn are continuous, one can also prove the 
converse: 

Y(f(x),y)~ I~ Y(f(xn),y). 

From this and 5, it follows that Jim f(xn) = f(x ). Thus f is continuous. D 

The following fact will be useful later. 

Lemma 3.10. The composition of functions, viewed as a function o : [Y --+ Z] x [X --+ 

Y] --+ [X --+ Z], for generalized ultrametric spaces X, Y, and Z, is non-expansive and 
continuous. 

4. Distance and order 

Generalized ultrametric spaces have been introduced as generalizations of ordinary 
ultrametric spaces. Their definition has been guided by enriched-categorical motivations. 
In this subsection, we shall briefly show that, alternatively, generalized ultrametric 
spaces can be presented as generalized preorders. A strong argument in favour of the 
original metric definition is the applicability of various insights from enriched category 
theory (see [4] for more examples). Still the presentation of a generalized ultrametric 
space as a generalized preorder can be useful, because it allows in certain cases a 
translation of familiar notions from the theory of ordered spaces into a metric variant 
thereof. An example will be the notion of e-adjoint pair in Section 5. 

A generalized ultrametric space X induces a family 

{ ~" ~ X x X I e E [O, 1]} 

of preorders on X defined, for e E [O, I] and x and y in X, by 

x~"y <====> X(x,y)~e. 

Note that this generalizes the definition in Section 2 of underlying ordering. The above 
set of relations inherits from the set of all relations on X the structure of a complete 
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lattice. Because of the strong triangle inequality, we have for all e and b in [O, 1 ], 

where on the left the composition of relations is taken. 
As an illustration of a possible interest of the above representation of a generalized 

ultrametric space X, it is shown how both the notions of Cauchy sequence and of 
forward-limit can be expressed in terms of the e-preorders: 

1. A sequence (xn )11 in X is (eventually) an r,-chain if 

3N'Vn;?:N, x,,~"xn+I· 

Clearly a sequence (x,, ),, is Cauchy if and only if it is for every e > 0 eventually an 
e-chain. 

2. Consider a Cauchy sequence (x11 ) 11 and an element x in X. Define 

and call x an £-minimal upperbound of (x11 ) 11 • Then 

limx11 = x ~ 'Ve > 0, x = LJx,,. 

5. Metric adjoint pairs 

An adjoin! pair between preorders is shown to be a special case of a more general 
metric notion of e-adjoint pair. As we shall see in Sections 6 and 7, e-adjoint pairs 
play a central role in the solution of recursive domain equations. Moreover, they will 
be used in Section 10 to tum the category of generalized ultrametric spaces itself into 
a large generalized ultrametric space. 

A pair of non-expansive functions f : X --+ Y and g : Y --+ X between two preorders 
X and Y is adjoint (and f is left adjoint to g), denoted by f -1 g, if 

'Vx EX 'Vy E Y, f(x)~ yY ~ x~xg(y). 

As is well known, this is equivalent to 

lx~xxgof and f og~yrly, 

where Ix and ly are the identities on X and Y. 
The approach of Section 4 gives rise, for any real number e with 0 ~ e ~ 1, to the 

following definition. A pair of non-expansive functions f : X --+ Y and g : Y --+ X 
between two generalized ultrametric spaces X and Y is e-adjoint, denoted by f -1, g, 
if 

'Vx EX 'Vy E Y, f(x)~yy ~ x~1'g(y), 
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or, equivalently, 

Ix ~'xx go f and f o g~~r ly. 

By definition of the e-preorders, the latter is equivalent to 

max{Xx (Ix,g of), Yy(f o g, I y)} ~B. 

363 

As a consequence, any pair of non-expansive functions f : X -+ Y and g : Y -+ X is 
e-adjoint for e defined as 

fJ(f,g) =max{Xx(lx,gof), YY(fog,ly)}. 

This number can be seen as a measure for the extent to which f and g are properly 
adjoint ("the smaller the better"). It will be often used in the following sections. If f 
and g are 0-adjoint, then (J,g) is called a proper adjoint pair, denoted by f -lg. In 
that case, f and g are adjoint viewed as monotone functions between the preorders 
underlying X and Y. Note that for ordinary ultrametric spaces X and Y it follows that 

f -l g ~ (Ix = g o f and f o g = 1 r ), 

i.e., f is an isomorphism with inverse g. 

The next theorem, which will be used throughout the rest of the paper, character
izes e-adjoint pairs in various ways. It uses the following definition: for a generalized 
ultrametric space X, x and yin X, and e~O, 

x ~x y ~ (x~xY and Y~xx). 

Theorem 5.1. Let f : X -+ Y and g : Y -+ X be non-expansive functions between 
generalized ultrametric spaces. Let e be a real number with 0 ~ e ~ I. The following 

are equivalent: 

1. f -le g. 
2. For all x EX and y E Y: f(x) ~}y ~ x~xg(y). 

3. fJ(j,g) ~e. 
4. For all x EX and y E Y: Y(f(x),y) ~[o,11 X(x,g(y)). 

Proof. The equivalence of 1, 2, and 3 has been discussed above. By Proposition 2.2, 
we have for x in X and y in Y, 

Y(f(x), y) ~ max {X(x,g(y)), e} ~ X(x,g(y))~[o,IJY(f(x), y) 

and 

X(x,g(y))~ max {Y(f(x),y), e} ~ Y(f(x),y)~[o,l]X(x,g(y)). 

As a consequence, 3 implies 4 because 

Y(f(x),y) ~ max {Y(f(x),f(g(y))), Y(f(g(y)), y)} 

~ max{X(x,g(y)), e}, 
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and, similarly, X(x,g(y)):::; max{Y(f(x),y), e}. Conversely, 4 implies 3 by applying 
the above two equivalences to g(y) and y, and x and f(x), respectively. D 

The following lemma will be used in Section 6. 

Lemma 5.2. Let f : X --+ Y and g : Y --+ X be non-expansive functions between 

generalized ultrametric spaces, with f -1" g. Then 

This section is concluded with an example of a proper adjoint pair. Consider the 
space A')Q with distance as defined in Example 2.1. Let L1 : A00 --+ (A 00 x A00 ) map 
v in Ax to (v, v), and let A : (ADO x A00 ) --+Ace map (v, w) to the longest common 
prefix of the words v and w. Then L1 is left adjoint to /\: for all (v, w) in ADO x Aoc 
and u in A"°, 

Ax x AXJ(LJ(u), (v, w)) = max {A 00 (u,v), A00 (u, w)} = A00 (u,v Aw). 

(This defines a - [O, !]-enriched - product on A00 .) 

The definition of adjoint pair between 1·-categories is standard (see [14] for the 
case of generalized metric spaces). The definition and characterizations of £-adjoint 
pairs seem to be new. 

6. The category of complete quasi ultrametric spaces 

Theorem 3. 7 shows that complete quasi ultrametric spaces are suitable for finding 
fixed points of (continuous and contractive) non-expansive functions. The category of 
complete quasi ultrametric spaces turns out to be equally suitable for finding fixed 
points of functors (to be discussed in Section 7). As usual, such fixed points are ob
tained as co limits of certain sequences (chains) of spaces. This section gives a gener
alization of the standard constructions for partial orders [21] and ordinary (ultra )metric 
spaces [3] to complete quasi ultrametric spaces. In [22], a similar generalization is car
ried out using embedding-projection pairs. Interestingly, it can be carried out here using 
(metric) ad joint pairs rather than embedding-projection pairs. Although this is well
known for the special case of ordered spaces, it is new for ordinary (ultra)metric spaces. 

As in the case of ordered spaces, the use of adjoint pairs instead of embedding
pairs will not lead to "more" fixed points of functors. Nevertheless adjoint pairs seem 
preferable, both because they have all properties that are needed and because their use 
will lead to a number of additional observations, in Section 10, on the family of all 
(complete) generalized ultrametric spaces, viewed itself as a large gum. 

We shall consider the category Cqum•, which is defined as follows: objects are 
complete quasi ultrametric spaces (cqum's for short); and arrows are pairs 

(f,g) : x--+ y 
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consisting of non-expansive and continuous functions f : X --> Y and g Y --> X. 

We know from Section 5 that any such pair is an i;-adjoint pair, for B = !J(f,g). This 
accounts for the superscript a in Cquma. 

Lemma 6.1. The composition of two arrows (f,g) : X--> Y and (h,i) Y--> Z in 
Cquma, defined as (h, i) o (!, g) = (ho f, go i), satisfies 

fJ((h,i) o (f,g))~ max{fJ(f,g), fJ(h,i)}. 

A chain in Cquma is a sequence 

v (fo,go) X (fi.g1) 
AQ ---> I ---> ''' 

of cqum's and arrows between them. It will be called Cauchy whenever 

Ye> 0 3N Yn~N. fn -1" gn 

or, equivalently, 

In the special case of w-complete partial orders, the arrows in a Cauchy chain (even
tually) are (the standard) adjoint pairs. 

We shall see that any Cauchy chain in Cquma has a (categorical) colimit. The proof 
makes use of two lemmas, in which the following notation will be of help: for k and 
I with O~k < I, define 

gk, : x, - xk, gk1 = gk o gk+r o · · · o 91-1. 

(Note that !k.k+I = fk and 9k,k+l = 9k·) 

Lemma 6.2. Consider a Cauchy chain ( (fk, gk) : Xk --> Xk+I )k. For each fixed k ~ 0, 
the sequence (gk1 o Jk1 )1>k is Cauchy in [Xk --> Xk]: 

(Consequently, it has a limit since [Xk -+ Xk] is complete by Theorem 3. 9.) More 

generally: for every k and I with O::s;k <!,the sequence (g1m o f!...,,,)m>l is Cauchy in 

[Xk --> X1J. and the sequence (gkm o ftm)m>I is Cauchy in [X1-+ Xk]. 

Proof. We prove only the first statement (the other ones not being more difficult). It 
is an immediate consequence of the Cauchy condition on the chain and the fact that, 
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for all k and I with 0 ~k < !, 

= sup{X1(Jk1(x), Yt o fi(Jic1(x)))} 
xEXk 

~ sup{X1(y, g, o .fi(y))} 
yEX1 

The following lemma states that colimits of Cauchy chains are locally determined. 

Lemma 6.3. Consider a Cauchy chain L1 = ((fk,gk) :Xk --+Xk+1)k and let ((C!.k,fJk): 
Xk--+ X)k be a cone from L1 to X: for all k?;::-0, (ak.fJk) = (ak+i.f3k+1J o (fk,gk)· If 

I. lim ak o fJk = Ix and 2. Vk?: 0, fh o iXk = limt>k gkt o fk1 

then X is a colimiting cone. 

Proof. The proof of this lemma combines the proof of the same statement for 
w-complete partial orders ( cf. [21, l]) with the proof of a similar lemma (but for 
embedding-projection pairs) for ordinary (ultra)metric spaces in [3]. We have to show 
that for an arbitrary cone 

from L1 to Y, there exists a unique arrow (f,g) : X--+ Y such that (.f,g) o (ak,fM = 
(5.b Pk), for all k? 0: 

k1 

g, l 

J\I 
• 1 
11 
11 

g1 1! 
11 

• 1 :v 
y 
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The Cauchy condition on Ll implies that the sequence ( rik o f3dk is Cauchy in [X -+ 

Y], since for any k?: 0, 

[X -+ Y](rik 0 f3k, rik+I 0 f3k+I) 

= sup{Y(rik o fJk(x), rik+1 o fJk+1(x))} 
xEX 

,,:;: sup { Y(&k+I o fi o 9k(x), iik+1(x))} 
xEXk+I 

,,:;: sup {Xk+1Uk o 9k(x), x)} 
xEXk+ 1 

By Theorem 3.9, [X -+ Y] is complete so we can define f = Jim &k o {h. Similarly 

g : Y -+ X is defined as g = lim o:k o fi k. Next we show, for k?: 0, one half of 

(f,g) 0 (o:k,{Jk) = (&k,tk): 

=limo:/of31 oo:k [Lemma 3.10] 
I 

= lim a/ o {31 o a1 o .fk1 
i>k 

= lim ri1 o (Jim g Im o Jim) o fit [by assumption 2.] 
i>k m>I 

= lim(lim o:/ o 9Jm o Jim) o .fk1 [Lemma 3.1 O] 
i>k m>I 

= lim(lim &m o Jim o 9/m o Jim) o .fkf. 
i>k m>I 

For s > 0 and l and m (with l < m) "big enough'', we have Jim --1" 9Jm, which implies 

[X1 -+ Xm]Uim o 9tm o fim, fim) ,,;:s, and [X1 -+ Xm](fim, fim o 9tm o fim) ,,;:s, 

by Lemma 5.2. It follows that the above sequence of equalities can be continued with 

lim(lim rim o Jim o g /m o Jim) o fit 
l>k m>l 

= lim(lim rim o fim) o .fk1 
i>k m>l 

= lim( lim ri1) o fkt 
l>k m>l 

= lim ri1 o fi1 
i>k 

= lim&k 
l>k 
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Similarly one proves f3k o g = [Jk. This shows that (f, g) is a mediating arrow. Fur
thermore it is unique: if (p, q) : X ____. Y is another mediating arrow then 

p= po Ix 

=po (lim 'Xk o f3k) [by assumption 1] 

=Jim po 'Xk o f3k [Lemma 3.1 OJ 

=Jim &k o /3k 

=J, 

and similarly q =g. D 

Lemma 6.3 plays a crucial role in the proof of the following theorem. 

Theorem 6.4. Any Cauchy chain in Cqum" has a colimit. 

Proof. Let 

A _ x; (/o,Yo) X (fi,gi) 
LJ-Q__, \____., ... 

be Cauchy. The colimit we are looking for is given, as usual, by the inverse limit: 

X = { (xk )k I Vk '?: 0, xk E Xk and 9k(xk+d = xk}. 

On X a distance is defined, for (xk )k. (Yk )k in X, by 

X((xk )ko(yk)k) = supXk(Xt, yk). 

It is a nice little exercise on generalized ultrametrics - left to the reader - to prove that 
X is a complete quasi ultrametric space, in which limits are determined elementwise: 
that is, for any Cauchy sequence (xk)k in X, with xk = (x~,xT, ... ), 

I. k (l' k 1· k ) 1mx = ImXo, 1mx1, .... 

Next X is turned into a cone by defining, for every k?: 0, an arrow (xb f3k) : Xk -'> X 
as follows: for x in xk, 

xk(x) = (lim 90,1 o Jk1(x), lim 91,1 o .fk1(x),. .. , lim 9kl o Jk1(x), 
l>k l>k l>k 

lim 9k+ 1 1 o fk1(x ), ... ), 
l>k+1 , 

and for (xa,x 1,. • • ) EX, 

fik((xo,xi, . .. )) = Xk. 

The limits in the definition of r:xk exist by Lemma 6.2 and r:xk maps indeed into X. 
Also ak and fik are non-expansive and continuous, and (xk+i,f3k+i)o(/b9k) = (abfik). 
Furthermore, 

Ve > 0 3N Vk?: N, ak -le fib 
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which is an immediate consequence of 
1. Vs > 03NVk?;N, [X ->X](cxk o /h, lx) < e, and 
2. Vr. > 03NVk?;N, [Xk -+Xk](lxk' f3k o'Y.k) < r.. 

We prove only the former statement (the latter is easy): for k?;O and (xn)n in X, 

by definition of the metric on X. Because for all m > k, 

=Jim Xm(gml o Jk1(xk), Xm) [cf. Definition 3.4] 
+- l>m 

= lim Xm(gml o f/,1 o Yk1(x1 ), Ym1(x1)) [(x11 )n is an element of X] 
.,___ l>m 

statement 1 follows from the fact that our chain is Cauchy. 
The proof of the present theorem is concluded by the verification of the conditions 

of Lemma 6.3, from which it follows that 

is a colimiting cone. Firstly, for all k-:;:; 0, 

f3k 0 CXk = ~~ Ykt 0 Jk1, 

by definition of cxk and f3k· Secondly, we show lim ak o f3k = Ix. Because for all r. > 0 
there exists a natural number K such that ak -10 fJk, for all k?; K, it follows that for 
all x and i in X, 

This implies 

X(x,i) = supXk(/3k(x),/3k(i)) 

= l~X(cxk o /Jk(x),i), 

which proves x = lim cxk o fJk(x ). D 

It can be deduced from the proof above that the converse of Lemma 6.3 holds as 
well. Thus: 

Theorem 6.5. Consider a Cauchy chain 

A X. (fo,yo) X Ui.Y1) LJ=o--+ 1--+··· 
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and let ( (ak, /h) : Xk ___, X)k be a cone from A to X. Then X is a colimit if and only if 
1. Jim Ci.k o fh = lx and 2. t/k ~ 0, /h oak = lim1>k gkl o fki. 

Corollary 6.6. Let A and ( (ak, f3k) : Xk---> X)k be as in Theorem 6.5. IfX is a colimit 
then 

The converse does not hold: take for A the constant chain consisting of the ordered 
space { 0, I} with 0 :( 1, and for X the space {I}. 

7. Fixed points of functors 

Two theorems will be formulated on the existence of fixed points of functors, which 
can be seen as categorical versions of parts 1 and 2 of Theorem 3.7. These theorems 
generalize the standard order-theoretic and (ultra )metric solutions (of [21] and [3, 17], 
respectively). 

As usual, we shall concentrate on functors with so-called local properties ( cf. [21]: 
returning for a moment to the category Gum of all generalized ultrametric spaces, a 
functor F : Gum ___, Gum is locally non-expansive if, for all gum's X and Y, the 
function 

which maps f : X ---> Y to P(f) : P(X) ---> F( Y), is non-expansive. Similarly one 
defines the notions of locally continuous and locally contractive. (In the formulation 
of the latter, one should be careful with the order of the quantification: there should 
exist e < 1 such that for all X and Y, P xr is contractive "with factor s".) 

As announced in Section 6, fixed points of functors will be constructed using com
plete quasi ultrametric spaces. Recall that Cquma is the category of such spaces to
gether with pairs of non-expansive and continuous functions between them. We shall 
concentrate on functors pa : Cquma ___, Cquma that are "stemming from" functors 
P : Cqum ___, Cqum, where Cqum is the category of complete quasi ultrametric spaces 
with (single) non-expansive and continuous functions as arrows. More precisely, any 
functor F : Cqum ---> Cqum defines a functor pa : Cquma ---> Cquma which acts on 
objects as P does, and maps an arrow (f,g) :X---> Y to F•((f,g)) = (P(f),F(g)): 
P(X) ___, F(Y). We shall use the following lemma, which can be readily verified. 

Lemma 7.1. Consider a functor P : Cqum ---> Cqum and an arrow (f, g) : X ---> Y in 
Cquma. 

1. If Fis locally non-expansive then o(P(f),P(g)) :(D(/,g). 
2. If F is locally contractive with factor e then b(P(f),F(g)) :(s · !J(f,g). D 
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Note that it follows for a locally non-expansive functor F that f -10 g implies 
F(f) -1, F(g). 

We are ready for the first fixed point theorem, which is the categorical version of 
part 1 of Theorem 3.7. 

Theorem 7.2. Let F : Cqum-+ Cqum be locally non-expansive. If F is locally con
tinuous and if there exists X and (!, g) : X -+ F(X) such that f -1 g, then F has a 
fixed point. 

Proof. Consider the following chain in Cquma, 

A v Uo.Yo) X U1,g1) 
LJ = AO ---+ I --+ ... , 

which is inductively defined by Xo = X, Xn+I = P(Xn) = F(Xn), (fo,go) = <f,g), 
and 

Because F is locally non-expansive, the chain is trivially Cauchy by Lemma 7.1: for 
all n;?;O, f,, -1 gn. By (the proof of) Theorem 6.4, it has a colimit 

satisfying 

1. lim a,n o f3n = Ix, and 2. Vk;?;O, fh oak= liml>k gkl o fk1. 
Because F is locally continuous, this implies 

1. limF(o:n) o F(f3n) = limF(an o /3n) 

= F(lim CJ.no f3n) 

=F(Ix) 

= IF(X), 

and, for all k;?: 0, 

2. F(f3k) o F(ak) = F(/3k o r:t.k) 

= F(lim gk1 o fi1) 
l>k 

= lim F(gkt o fii) 
l>k 

= lim F(gk1) o F(fk1) 
l>k 

=Iimgk+ll+I ofk+1,/+I· 
l>k , 

By Lemma 6.3, it follows that 
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which is equal to 

is a colimit of 

P(LI) = X, (~) X2 (~) · · ·. 

Since LI and P(LI) are the same but for the first element, the fact that both X and 
F(X) are colimits implies that they are isomorphic. D 

A simple example is the following. Let ( - h : Cqum ---> Cqum be defined, for any 
cqum X, as follows: (X).L is the disjoint union of { 1-} and X, with distance, for a 

and bin (X).L, 

(X)J.(a,b) = { ~ 
X(a,b) 

if a =..L, 
if a E X and b =1-, 
if a EX and b EX. 

On arrows ( - h is defined as one would expect. This defines a functor that is both 
locally non-expansive and locally continuous, and applying Theorem 7.2 with X = {1-} 
yields a fixed point, which is actually a complete partial order: it is (isomorphic to) 
w, the set of natural numbers plus infinity, with the usual ordering. 

If X is a partial order then (X).L is the usual "lifting" of X. It is a special case of 
what could be called "e-lifting", which is defined as follows. For e with 0 < e::::; I, let 
the set (X)J_ be as before but now with distance, for a and b in (X)J_, 

(X)J.(a,b) = { ~ 
e ·X(a,b) 

if a =..L, 
if a E X and b =..L, 
if a E X and b E X. 

Again Theorem 7.2 applies. For X = {..L} and e = 1/2, the resulting fixed point is 
again w but now with metric as in Example 2.1. 

The second fixed point theorem is the categorical version of part 2 of Theorem 3.7. 

Theorem 7 .3. If F : Cqum ---> Cqum is locally contractive and locally continuous then 
F has a fixed point, which is unique (up to isomorphism). This fixed point is (both 
an initial F-algebra and) a final F-coalgebra. 

Proof. Let Xo be an arbitrary complete quasi ultrametric space, and let (f o, go) : Xo ---> 

F(X0 ) be an arbitrary arrow. As in the proof of Theorem 7.2, we can inductively define 
a chain LI = ( ([,,, Bn) : Xn ---> Xn+ i)n. Part 2 of Lemma 7.1 implies that it is Cauchy. 
As before this leads to the existence of a fixed point. Suppose there are two such fixed 
points, X and Y with isomorphisms k : X ---> F(X) and l : Y -+ F( Y). It follows from 
the local properties of F that 

<P: (X --+Y)---> (X--+Y), 
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defined, for h in X--+Y, by <l>(h) = 1- 1 o F(h) o k, is continuous and contractive. 
Therefore it has by Theorem 3.7 a unique fixed point n:: X--+ Y with n: = z- 1oF(n:)ok, 

or, equivalently, /on:= F(n:)ok. Similarly one can prove that there is a unique function 
p : Y --+ X such that k op = F(p) o l; that Ix is the unique function in X --+X such 
that k o Ix = F( Ix) o k; and that 1 y is the unique function in Y --+ Y such that 
I o I r = F(l y) o l. Because also k o (po n:) = F(p on:) o k and lo (n: op)= F(n: op) o l, 

it follows that lx = po n and lr = no p. Thus X 9:! Y. Alternatively, uniqueness 
follows from the fact that any fixed point is a final F-coalgebra, which can be proved 
by a similar argument, and the fact that any two final F -coalgebras are isomorphic ( cf. 
[17,7]). D 

An example: let 1 be a one element set and e such that 0 < e < I. Consider the 
functor that maps a cqum X to I + ( e · X ), where e · X is like X but with all distances 
multiplied by e. This functor is both locally continuous and locally contractive. For 
e = l /2, its unique fixed point is again the set w, now with the (ordinary) ultrametric, 
for x and y in w, 

w(x,y) = { ~-min{x,y} if x = y, 
if x =f y. 

Note that this is the symmetric version of the distance on w in Example 2.1. 

8. Algebraicity 

We briefly discuss the notions of finiteness and algebraicity. Though they will not 
be used in the present paper, they are of crucial importance in the study of completion 
and topology of generalized ultrametric spaces [4]. 

An element a of a generalized ultrametric space X is finite if the function 

X(a, -) : X--+ [O, l], x f-)o X(a,x) 

is continuous. The name "finite" is justified because for a preorder X, it means that 
for any chain (xn )n in X, 

or, equivalently, 

which is the usual definition of finiteness for ordered spaces. If X is an ordinary 
ultrametric space then X(a, - ) is continuous for any a in X, hence all elements are 
finite. 

The latter fact is at first sight somewhat disappointing and might suggest that the 
above notion of finiteness is not what it should be. In particular, one might expect that 
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for ordinary ultrametric spaces, an element is finite if and only if it is isolated. Here 
we shall not argue any further in favour of the definition above. Rather we refer to 
[ 4 ], where the above definition of finiteness and the notion of algebraicity (introduced 
below) play a convincing role in the treatment of completion and topology. 

A basis for a generalized ultrametric space X is a subset B ~ X consisting of finite 
elements such that every element x in X is the limit x = Jim an of a Cauchy sequence 
(an)n of elements in B. A gum X is algebraic if there exists a basis for X. For 
ordered spaces this is the usual definition. Note that any ordinary ultrametric space 
is algebraic. If X is algebraic then the collection Bx of all finite elements of X is 
the largest basis. Further note that algebraicity does not imply completeness. (Take 
any ordinary ultrametric space which is not complete.) If there exists a countable basis 
then X is OJ-algebraic. For instance, the generalized ultrametric space A00 from Section 
2 is algebraic with basis A*, the set of all finite words over A. If A is countable then A00 

is OJ-algebraic. Note that any ordinary ultrametric space is algebraic but not necessarily 
w-algebraic. Examples of the latter are compact ultrametric spaces (cf. Section 9). 

The categorical structure of the collection of all algebraic generalized ultrametric 
spaces and, more specifically, of all algebraic complete quasi ultrametric spaces remains 
to be further investigated. In particular, there is the question whether the latter collection 
is closed under the formation of colimits of Cauchy chains. 

9. SFU: sequences of finite ultrametric spaces 

A complete quasi ultrametric space is called SFU if it is the colimit in the category 
Cquma of a Cauchy "Sequence of Finite quasi Ultrametrics". (Another name could be 
"bifinite".) Clearly this definition is in analogy to Plotkin's definition of SFP objects as 
colimits of sequences of finite partial orders [15]. It is a little different in that (metric) 
adjoint pairs are used instead of embedding-projection pairs (one can show that both 
definitions would be equivalent). Moreover the finite quasi ultrametric spaces are not 
required to be pointed, which amounts to having a least element in the case of partial 
orders. It is straightforward to show that a complete quasi ultrametric space is SFU if 
and only if it is SFP (see [10] for a description of SFP objects without least element). 
Somewhat less trivial is the following theorem. It uses the well-known fact that an 
ordinary (ultra)metric space X is compact if and only if it is complete and totally 
bounded: for all e > 0 there exists a finite subset E <;;;X such that 

'r:/x EX ::le EE, X(e,x)~e. 

Note that by defining Be(e) = {x EX I X(e,x)~e}, the condition on E is equivalent 
to 

X = LJ B8 (e). 
eEE 
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Therefore such a set E is called a finite e-cover for X. It is called minimal if for any 
e and e' in E, X(e,e')::::;;e implies e = e'. 

The theorem below will also make use of the following well-known property of 
ordinary ultrametric spaces. 

Lemma 9.1. For an ordinary ultrametric space X, x and y in X, and e > 0, 

Theorem 9.2. If X is a complete ordinary ultrametric space then 

X is SFU if! X is compact. 

Proof. Let X be a complete ordinary ultrametric space, and suppose X is SFU: Con
sider a Cauchy chain ((fn,gn) :Xn -Xn+!)n in Cquma, withXn finite for all n~O. and 
arrows ( ( O:n, /3n) : Xn - X )n in Cquma such that X is a co limit of LI. We show that X 
is totally bounded. Let e > 0. Let N be such that iXN -le f3N· Define E = { iXN(a) EX I 
a E XN }. Let x be any element of X. Then iXN o f3N(x) EE and 

This proves that E is a finite e-cover for X. Thus X is totally bounded and since it is 
complete by assumption, it is compact. 

Conversely, suppose that X is compact, and hence totally bounded. Let (en )n be a 
decreasing sequence of real numbers with lim en = 0. Because X is totally bounded 
there are finite subsets (Xn )n of X such that, for every n;;:::: 0, Xn is a minimal en-cover 
for X. Every Xn is a finite complete ultrametric space with ultrametric inherited from 
X. The sets Xn can be chosen such that for all n ~ 0, 

because of Lemma 9.1. By ultrametricity, the collection 

Pn = {B0.(b) I b E Xn} 

is a partitioning of X, for every n;;:::O, and Pn is refined by Pn+I· Let in : Xn ~ Xn+I 
be the inclusion, for n ;;:::O. In the other direction, let gn : Xn+1 ~ Xn map an element b 
of Xn+I to the (uniquely determined) element a in Xn with b E Be.(a). The function gn 
is non-expansive (and hence continuous): For any x and yin Xn+! with gn(x) :/:- gn(y), 

En < X (gn(X ), gn(Y)) 

~ max {X(gn(x),x), X(x,y), X(y,gn(Y))} 

= X(x,y) [since X(gn(x),x)=:::::en and X(y,gn(Y))::::;;En.] 

Moreover in -le. gn, since gn o fn = Ix. and Xn+1--+Xn+1 (in o gn, Ix.+1 ):::::; En. Thus 
we have defined a chain ((in, gn) : Xn - Xn+I )n in Cquma. It is Cauchy because 
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lim Bn = 0. The space X can be turned into a colimiting cone of this chain as follows. 
For n:;:;: 0 let !Y.n : Xn -+ X be the inclusion. In the other direction, let fln map x in X 
to the (uniquely determined) element a in Xn with x E B1:,,(a). The function f3n can 
been seen to be non-expansive by the same argument used above for gn. This defines 

a cone ( (rt.n.fln) : Xn -+ X)n in Cqum". It is colimiting because lim !Y.n o fln = Ix and 
fln o !Y.n = Ix,,, for every n :;:;:O. This proves that X is SFU. D 

The last part of the proof above refines a similar topological fact stating that any 
compact ordinary ultrametric space is the inverse limit of a sequence of finite discrete 

spaces (see, e.g., [20]). 
One can show (cf. [16]) that generalized ultrametric spaces that are SFU are w

algebraic: a countable basis is obtained by taking the union of the images of all the 

elements in the chain of which it is a colimit. 
Although we feel that the category of SFU spaces is important from a computational 

point of view, its further study is left for another occasion. One of the questions to 
be addressed is, for instance, whether this category is closed under the formation of 
colimits of Cauchy chains. 

10. A large generalized ultrametric space 

We shall see that the class ~g of all generalized ultrametric spaces, which can be 
obtained from the category Gum by "forgetting" the arrows, can be turned into a large 
generalized ultrametric space. A number of categorical definitions and facts of the pre
vious sections will be rephrased in terms of this ultrametric. For the special case of 
the class of compact ordinary ultrametric spaces, this will lead to a non-categorical 
fixed point theorem. The latter result, which has been independently obtained by 
F. Alessi, P. Baldan and G. Belle, is only mentioned here. A proof can be found 
in [2]. 

A generalized ultrametric on ':§ is defined, for gum's X and Y, by 

~(X,Y) = inf{f: j 3(.f,g) :X-+ Y, f-1,, g}. 

(As in Section 6, (f,g) is here a pair of non-expansive and continuous functions 
f : X -+ Y and g : Y -+ X.) The proof that this defines a generalized ultrametric 
is not difficult and therefore omitted. The ultrametric structure on t'§ gives rise to the 
following observations: 

1. Cauchy chains (as in the category Cqum") are simply Cauchy sequences in f§. 

2. A locally non-expansive functor on the category Gum is a non-expansive function 
on ~- Similarly, a locally contractive functor is a contractive function on ':§. 

It remains to be seen whether the subclass CfJ of ':§ consisting of all complete quasi 
ultrametric spaces, with distance inherited from ':§, is complete (in the metric sense of 
the word, that is). Nor do we have an answer to the following question: are locally 
continuous functors on the category Cqum" continuous functions on Cfl? 
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For complete ordinary ultrametric spaces, the answer to both questions is affirmative. 
Completeness follows from the observation that for any Cauchy sequence of complete 
ordinary ultrametric spaces, a (categorical) co limit can be constructed as in Theorem 
6.4, which is then readily seen to be a (metric) limit. For the subclass.% of compact 
ordinary ultrametric spaces, this leads to a non-categorical fixed point theorem: any 
contractive mapping - which need not be functorial - from x· to itself has a fixed 
point which is unique up to isomorphism. This follows from the fact that .if' itself is a 
large complete pseudo ultrametric space, with the additional property: if two compact 
spaces have distance 0 then they are isomorphic. Hence Banach's theorem can be 
applied as usual. For a full proof see [2]. 

The idea of viewing the category of quasi metric spaces as a (large) quasi metric 
space is already present in [ 12], though the ultrametric above, based on c:-adjoint pairs, 
is new. The subcategory of cpo's has been described as a large cpo in [13]. 

11. Metric limits are weighted colimits 

The definition of forward-limit and backward-limit in Section 3 is given in terms of 
backward-limits of backward-Cauchy sequences (rn )n in [O, I], which are defined as 

Jim rn = sup inf rk. 
~ n k~n 

From an (enriched- )categorical point of view, the latter definition is not entirely satis
factory because of the use of inf k ;;,.n, which cannot immediately be seen as a categorical 
construction. Below we briefly explain how forward-limits be defined, alternatively and 
equivalently, by means of the enriched-categorical notion of weighted colimit [6, 5]. 
Dually, backward-limits can be phrased in terms of weighted limits. 

Consider a non-expansive function f : D -> X between generalized ultrametric 
spaces, and a non-expansive function g : D _, [O, I]. An element x in X is a [O, 1]
limit off wei?Jhted by g if it satisfies, for all y E X, 

X(y,x) = [0, l]D (g, X(y,f)) 

(where X(y,f) : D _, [O, l] maps d in D to X(y,f(d))). In that case, we write 
x = limyf'. Dually, for non-expansive functions f : D -> X and y : D0 P -> [O, l], an 
element x in X is a [O, l]-colimit off weighted by g if it satisfies, for all y EX, 

X(x,y) = [0, If"r (g, X(f,y)) 

(where X(f,y) : D0 P _, [O, 1] maps d in D to X(f(d),y)). In that case, we write 

x = colirnqf. 
The above definition of weighted limit ( colimit) is a special instance of the enriched

categorical notion of the t'-limit (t~·-colimit) of a functor F weighted by a functor G 

(see Ch. 6.6 of [5)). 
It will be shown next that metric limits of forward-Cauchy sequences, as defined in 

Definition 3.4, are weighted colimits (leaving the case of backward-Cauchy sequences, 
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which is dual, to the reader). Consider a generalized ultrametric space X. A sequence 
in X can be represented by a function f : ..#' ~ X, where ..#' is the collection of 
natural numbers with the discrete ultrametric. As usual, we shall write Xn for f(n). 
Note that because of the discrete ultrametric on%, any such function is non-expansive, 
and ..;V0P = ..#'. One can easily verify that the sequence (xn)n is forward-Cauchy if 
and only if there exists a (non-expansive) function 

g: ..#' ~ [O, 1], 

called a weight function for (xn )n. satisfying: 
1. Vn?;m?:-0, g(n)~g(m); 
2. inf g(n) = O; 
3. Vn?;m?:-0, X(xm,Xn)~g(m). 

The function g gives for any m E ..#' the extent to which the sequence (xm+k )k is 
Cauchy: with the definition of e-chain from Section 4, the last condition on g is equiv
alent to 

Vm ?:- 0, (xm+dk is a g(m )-chain. 

Note that there exist many different weight functions for one and the same Cauchy 
sequence, and that by the definition above, an element x in X is a [O, l]-colimit of 
(xn )n weighted by g if it satisfies, for all y E X, 

X(x,y) =sup [O, l](g(n), X(xn,y)). 
n 

Theorem 11.1. Let X be a generalized ultrametric space and (xn)n a Cauchy sequence 
in X. Let g be a weight function for (xn )n. For all x in X, 

x = colimgXn ~ x = limxn. 

Proof. It is sufficient to prove, for all y in X, 

sup [O, 1 ](g(n ), X(xn, y)) = sup inf X(xk. y ). 
n n k-,,,n 

Let y be in X. We distinguish between the following two cases: 
1. Vn E..#', g(n)?:-X(xn,y): It follows from the definition of the distance on [0,1] 

that 

sup [O, l](g(n), X(xn,y)) = 0. 
n 

Furthermore, 

sup inf X(xk.y) ~sup inf g(k) 
n k -,,,n n k-,,,n 

= 0 [because for all n?:-0, infk-,,,n g(k) = O.] 
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2. 3n E .¥, g(n) < X(xn, y ): Let no be the smallest natural number n such that 
g(n) < X(xn,y). For all n?;n0, 

[O, I](X(xn,y), X(xn0 ,y))::;;;X(Xn0 ,Xn)::;;;g(no), 

which is equivalent (by Proposition 2.2) to 

X(Xno• y)::;;; max {g(no ),X(xn, y )}. 

It follows, for all n -;?:; n0 , 

g(n)::;;; g(no) 

< X(xno•Y) 

::;;; max {g(no),X(xn, y)} 

= X(xn,Y) [because g(no) < X(xn0 ,y).] 

Thus g(n) <X(xn,y) andX(xn0 ,y)~X(xn,y). Moreover, for all n?;n0 , it follows from 
g(n) < X(xn, y) by the same argument that 

X(xn,y) ~X(xn+I• y). 

Therefore, 

sup [O, l](g(n), X(xn,y)) 
n 

= sup [O, l](g(n), X(xn,y)) [below n0 , all these numbers are O] 
n~no 

= sup X(xn, y) [since g(n) < X(xn, y )] 
n~no 

= sup inf X(xk.y) [(X(xn0+1,y))1 is increasing] 
n~no k~n 

=sup inf X(xk,y) [(infk;;.nX(xk.y))n is increasing.] 
n k;;>n 

In both cases, 

sup [O, l](g(n), X(xn,y)) =sup inf X(xk,y). D 
n n k;;>n 

Note that it follows from the theorem above that if both g and h are weight functions 
for (xn)n, then 

x = colimgxn ~ x = colimhXn· 

The above characterization of forward-limit could have been taken as the definition to 
begin with. (Backward-limits could be defined similarly, using weighted limits.) Then 
our original Definition 3.4, as well as Proposition 3.2, would be consequences of the 
new definition. Also it would be interesting to prove some of the other results of this 
paper, such as Proposition 3.9, starting from the definition of limit in terms of weighted 
co limit. 

But, this has to be dealt with elsewhere. 
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