
Theoretical Computer Science 104 (1992) 3-28
Elsevier

Generalizing completeness results
for loop checks in logic
programming*

Roland N. Bol
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam,
The Netherlands

Abstract

Bo!, R.N ., Generalizing completeness results for loop checks in logic programming, Theoretical
Computer Science 104 (1992) 3-28.

Loop checking is a mechanism for pruning infinite SLD-derivations. In (Bo!, Apt and Klop, J 991)
simple loop checks were introduced and their soundness, completeness and relative strength was
studied. Since no sound and complete simple loop check exists even in the absence of function
symbols, subclasses of programs were determined for which the (sound) loop checks introduced
by Bo! et al. are complete.

In this paper, the Generalization Theorem is proved. This theorem presents a method to extend
(under certain conditions) a class of programs for which a given loop check is complete to a
larger class, for which the loop check is still complete. Then this theorem is applied to the result;
of Bo! et al., giving rise to stronger completeness theorems.

It appears that unnecessary complications in the proof of the theorem can be a voided by
introducing a normal form for SLD-derivations, allowing only certain most general unifiers. This
normal form might have other applications than those in the area of loop checking.

1. Introduction

Logic programming is advocated as a formalism for wntmg executable
specifications. However, even when such specifications are correct in the logical
sense, their execution by means of a PROLOG interpreter may lead to divergence.
This problem motivated the study of loop checking mechanisms which are used to
stop loops in SLD-derivations (see [3, 6, 7, 8, 13, 14, 16, 17]).

The loop checking mechanisms studied in this paper are the simple loop checks
introduced by Apt, Bo! and Klop [2]. Simple loop checks have the following
properties:

Correspondence to: R.N. Bo!, Department of Computer and Information Science, University of Linki.iping,
S-58183 Linki:iping, Sweden. Email: rolbdaJida.liu.se.

* This research was partly supported by Esprit BRA-project 3020 Integration.

0304-3975/92/$05.00 © 1992-Elsevier Science Publishers B.Y. All rights reserved

4 R.N. Bo/

- the search space is reduced by pruning goals; pruning a goal means that all its

descendants are removed;
- whether a goal is pruned depends only on the derivation leading to that goal (i.e.,

not on other parts of the search space, and not on the program).
This excludes more complicated techniques such as tabulation, which are studied
in [16, 17].

To study simple loop checks in a rigorous way, Apt, Bo! and Klop introduced a
number of natural concepts like soundness (no answers are lost), completeness (the
resulting search space is finite) and relative strength of loop checks. It is obvious
that a sound loop check cannot be complete for all logic programs. It was even
shown that a sound simple loop check cannot be complete for all programs without
function symbols.

A number of natural simple loop checks was introduced in [5]. These loop checks
were proven to be sound, but only complete for certain classes of function-free
programs. For each of these loop checks, one or more such classes were determined.

Here, the problem of finding classes of programs for which a simple loop check
is complete is addressed in more generality. The main theorem of this paper is called
the Generalization Theorem, since it allows us to generalize certain completeness
results: given that a loop check L is complete for a class of programs <fi, we may
conclude that L is also complete (w.r.t. the leftmost selection rule) for a class of
programs extending ce, provided that L and <fi satisfy some natural conditions.

Basically, the theorem is only applicable to a class of programs ce if <'.(f ={PI every
clause in program P satisfies Pr}, for some property Pr of clauses that is "local"
to clauses (that is, whether a clause satisfies Pr is independent of the rest of the
program). We say that <g is the class of Pr-programs. By allowing the addition of
atoms in clauses that cannot give rise to recursive calls to the head of the clause
(so called nonrecursive atoms), the class of nr-extended Pr-programs is obtained.

The Generalization Theorem states that if the loop check L is complete for
Pr-programs, then L is also complete for function-free nr-extended Pr-programs,
provided that the nonrecursive atoms are resolved before other atoms are selected.
For simplicity, this is achieved by using the leftmost selection rule, and putting the
nonrecursive atoms to the left of the other atoms in the clause. Notice that the
property of being a nonrecursive atom is not local to clauses; therefore the theorem
cannot be applied repeatedly.

In the proof of the Generalization Theorem, we make use of certain properties
of SLD-derivations that are in a normal form, tentatively called normal SLD­
derivations. In normal SLD-derivations, only certain mgu's may be used. This normal
form may well have other applications than those in the area of loop checking.

Once the proof of the Generalization Theorem is given, it is applied to several
completeness results presented in [5] concerning two loop checks that indeed satisfy
the conditions of the Generalization Theorem. The extension of some of these
completeness results is straightforward, whereas for others a more elaborate analysis
is needed.

Generalizing completeness results for loop checks

2. Basic notions

In this section we recall the basic notions concerning loop checking, as presented
in [5]. Throughout this paper we assume familiarity with the concepts and notations
of logic programming as described in [9]. For two substitutions a and 7, we write
u ~ 7 when a is more general than r and for two expressions E and F, we write
E ~ F if F is an instance of E. An SLD-derivation step from a goal G, using a
clause C and an mgu 6, to a goal H is denoted as G ~c,o H. By an SLD-derivation
we mean an SLD-derivation in the sense of [9] or an initial segment of it. For a
program P, Lp denotes the language of P.

2.1. Loop checks

The purpose of a loop check is to prune every infinite SLD-tree to a subtree of
it containing the root. We define a loop check as a set of SLD-derivations: the
derivations that are pruned exactly at their last node. Such a set of SLD-derivations
L can be extended in a canonical way to a function fL from SLD-trees to SLD-trees
by pruning in an SLD-tree T the nodes in { G !the SLD-derivation from the root of
T to G is in L}. We shall usually make this conversion implicitly.

Definition 2.1. Let L be a set of SLD-derivations.

RemSub(L)={DE LIL does not contain a proper subderivation of D}.

Lis subderivation free if L = RemSub(L).

In order to render the intuitive meaning of a loop check L: "every derivation
DEL is pruned exactly at its last node", we need that Lis subderivation free. Note
that RemSub(RemSub(L)) = RemSub(L).

In the following definition, by a variant of a derivation D we mean a derivation
D' in which in every derivation step, atoms in the same positions are selected and
the same program clauses are used. D' may differ from D in the renaming that is
applied to these program clauses for reasons of standardizing apart and in the mgu
used. It has been shown that in this case every goal in D' is a variant of the
corresponding goal in D (see [10]). Thus any variant of an SLD-refutation is also
an SLD-refutation and yields the same computed answer substitution up to a
renaming.

Definition 2.2. A simple loop check is a computable set L of finite SLD-derivations
such that L is closed under variants and subderivation free.

In [2], loop checks are treated in a more general way. There nonsimple loop
checks occur: their behaviour may depend on the program the interpreter is confron­
ted with. In this paper, we shall only consider simple loop checks. Therefore we
shall usually omit the qualification "simple".

6 R.N. Bo/

Definition 2.3. Let L be a loop check. An SLD-derivation D of Pu { G} is pruned
by L if L contains a subderivation D' of D.

2.2. Soundness and completeness

Using a loop check should definitely not result in a loss of success. Even losing
individual solutions is usually undesirable. On the other hand, the purpose of a
loop check is to reduce the search space for top-down interpreters. We would like
to end up with a finite search space. This is the case when every infinite derivation
is pruned. This leads to the following definitions.

Definition 2.4 (Soundness). (i) A loop check Lis weakly sound if for every program
P, goal G, and SLD-tree T of Pu { G} we have: if T contains a successful branch,
then ft (T) contains a successful branch.

(ii) A loop check L is sound if for every program P, goal G, and SLD-tree T of
Pu { G} we have: if T contains a successful branch with a computed answer Ga,
then fL (T) contains a successful branch with a computed answer Ga'"" Go-.

Definition 2.5 (Completeness). A loop check L is complete w.r. t. a selection rule R
for a class of programs 'f{, if for every program PE Cft and goal G in Lp, every infinite
SLD-derivation of Pu { G} via R is pruned by L.

In general, comparing loop checks is difficult. The following relation comparing
loop checks is not very general: most loop checks will be incomparable with respect
to it. Nevertheless it turns out to be very useful.

Definition 2.6. Let Li and L 2 be loop checks. Li is stronger than L 2 if every
SLD-derivation D 2 E L 2 contains a subderivation Di E Li.

In other words, Li is stronger than L 2 if every S LO-derivation that is pruned by
L 2 is also pruned by Li. Notice that the definition implies that every loop check is
stronger than itself. The following theorem enables us to obtain soundness and
completeness results for loop checks which are related by the "stronger than"
relation by proving soundness and completeness for only one of them.

Theorem 2.7 (Relative strength). Let Li and L 2 be loop checks, and let Li be stronger
than L 2 •

(i) If Li is weakly sound, then L 2 is weakly sound.
(ii) If L2 is complete (w.r. t. a selection rule R for a class of programs 'f)), then Li

is complete (w.r.t. R for the class of programs (€).

Proof. Straightforward. 0

Generalizing completeness results for loop checks 7

The undecidability of the halting problem implies that there cannot be a weakly
sound and complete loop check for logic programs in general, as logic programming
has the full power of recursion theory. So our first step is to rule out programs that
compute over an infinite domain. We shall do so by restricting our attention to
programs without function symbols, so called function-free programs, for which the
Herbrand Universe is finite. However, it appears that even with this restriction,
there is no weakly sound and complete loop check.

Theorem 2.8. There is no weakly sound and complete simple loop check for function-free
programs.

Proof. See [2]. See also [6, Theorem 4.7]. 0

It was shown in [2] that weakly sound and complete nonsimple loop checks exist
for function-free programs, but that nonsimple loop checks are in general too
powerful. A loop check that depends only on "syntactical properties" of the program
could be useful, but this restriction is hard to formalize. So a nonsimple loop check
could be based on (for example) the set of correct answers of the program (as the
program is function-free, this set is finite modulo variants). Once this set is computed
by the loop check in some way, there is no point in reconstructing it by building
an SLD-tree pruned by this loop check.

Therefore, it is more useful to develop some simple loop checks, and to find
classes of programs for which these loop checks are complete.

2.3. Some simple loop checks

In this section we introduce three groups of weakly sound simple loop checks.
How we arrived at these loop checks and why we thought them to be interesting
was discussed in [5]. Here we restrict ourselves to giving the definitions and basic
theorems (without proofs).

The first group of loop checks we consider consists of the so-called "equality
checks". In fact, each equality check should be defined separately. This would yield
almost identical definitions. Therefore we compress them into two definitions,
trusting that the reader is willing to understand our notation. The equality relation
between goals (regarded as lists) is denoted by = / . (In [5], also variants of these
loop checks are considered, regarding goals as multisets.)

Definition 2.9 (Equality checks based on goals). The Equals Variant/ Instance of
Goalu" check is the set of SLD-derivations

EVG/ EI G 1 = RemSub({DI D = (Go =:,,c, ,11 1 G, ==':,> • • • ==':,> Ok - 1 =:,,c,,11, Gd
such that for some i, 0,,,:; i < k, there is a renam­
ing/ substitution r such that G, = L G;r}).

8 R.N. Bo/

Definition 2.10 (Equality checks based on resultants). The Equals Variant/ Instance

of Resultantusr check is the set of SLD-derivations

EVR/EIRL = RemSub{{Di D = (G0 =?c.,o, G1 =? · · · =?Gk-1 =?c,,e, Gk)
such that for some i, 0,,;;; i < k, there is a renam­
ing/ substitution T such that Ok = L GjT and
0081 ... 8k = 0081 ... 8jT}).

Theorem 2.11 (Equality soundness). The equality checks are weakly sound loop checks.

Moreover, the equality checks based on resultants are sound.

Proof. See [2]. D

We now define a class of programs for which the equality checks are complete
in the absence of function symbols (as was shown in [2]). This class of programs
is closely related to the class of programs discussed in [15]. For a formal definition,
we use the notion of the dependency graph DP of a program P.

Definition 2.12. The dependency graph Dp of a program Pisa directed graph whose
nodes are the predicate symbols appearing in P and (p, q) EDP iff there is a clause
in P using p in its head and q in its body.

vi is the reflexive, transitive closure of Dp. When (p, q) E Dt, we say that p
depends on q in P. For a predicate symbol p, the class of p is the set of predicate
symbols p "mutually depends" on:

cip(p) ={q i{p, q) E Dt and (q, p) E Dn

Definition 2.13. Given an atom A, let rel(A) denote its predicate symbol. Let
P be a program. In a clause H ~A 1 , ••• , An (n ~ 0) of P, an atom Ai (1 ,,;;; i,,;;; n) is
called recursive if rel(A;) depends on rel(H) in P. Otherwise, the atom is called
nonrecursive.

A clause H ~ A1 , ••• , A., is restricted w.r.t. P if A1 , ••• , An-I are nonrecursive.
A program P is called restricted if every clause in P is restricted w.r.t. P.

Theorem 2.14 (Equality completeness). All equality checks are complete w.r.t. the
leftmost selection rule for function-free restricted programs.

Proof. See [2]. D

The second group of loop checks we consider consists of the so-called "subsump­
tion checks". Again, we define them by means of two parametrized definitions. The
inclusion relation between goals regarded as lists is denoted by c:;;; L· Note: L1 c:;;; L L 2

if all elements of L1 occur in the same order in L2 ; they do not need to occur on
adjacent positions. For example, (a, c) c:;;;L (a, b, c).

Generalizing completeness results for loop checks 9

Definition 2.15 (Subsumption checks based on goals). The Subsumes Variant/ Instance
of Goalu.,1 check is the set of SLD-derivations

SVG/SIGL = RemSub({DID= (Go=}c,,a, G 1 ::::::} · · · ::::=}Qk-1 =}c.,11" Ok)

such that for some i, 0 ~ i < k, there is a renam­
ing/ substitution r with Ok 2L G;r}).

Definition 2.16 (Subsumption checks based on resultants). The Subsumes Variant/ In­
stance of Resultantu.1 check is the set of SLD-derivations

SVR/SIRL = RemSub({DID= (0 0 ::::=}c,,a, G 1 ::::::} • • ·::::::} Gk-1 ::::=}c,,(h Ok)

such that for some i, 0 ~ i < k, there is a renam­
ing/ substitution r with Ok 2L G;r and
Go81 ... 8k = Go81 ... 8;r}).

Theorem 2.17 (Subsumption soundness). The subsumption checks are weakly sound
loop checks. Moreover, the subsumption checks based on resultants are sound.

Proof. See [5]. 0

We now show three classes of programs for which the subsumption checks are
complete in the absence of function symbols. Since the subsumption checks
are stronger than the "corresponding" equality checks, the first result follows
immediately.

Theorem 2.18 (Subsumption completeness 1). All subsumption checks are complete
w.r.t. the leftmost selection rule for function-free restricted programs.

Proof. By the Relative Strength Theorem 2.7 and the Equality Completeness
Theorem 2.14. 0

The remaining two classes of programs for which the subsumption checks are
complete in the absence of function symbols are the following.

Definition 2.19. A clause C is nonvariable introducing (in short nvi) if every variable
that appears in the body of C also appears in the head of C. A program P is nvi
if every clause in P is nvi.

Definition 2.20. A clause C has the single variable occurrence property (in short is
svo) if in the body of C, no variable occurs more than once. A program P is svo if
every clause in P is svo.

10 R.N. Bo/

Theorem 2.21 (Subsumption completeness 2). All subsumption checks are complete
for function-free nvi programs.

Proof. See [5]. D

Theorem 2.22 (Subsumption completeness 3). All subsumption checks are complete
for function-free svo programs.

Proof. See [5]. D

The third group of loop checks we consider are based on a loop check introduced
by Besnard [3]. They are called "context checks" in [5]. Again we have weakly
sound versions based on goals and sound versions based on resultants.

Definition 2.23 (Context checks based on goals). The Variant/ Instance Context check
based on Goals is the set of SLD-derivations

CVG/CIG = RemSub({D[D = (00 =}c,.8, G, =} · · · =} Gk-1 =}c«.o, Ok)
such that for some i and j, 0 ~ i ~ j < k, there is
a renaming/ substitution r such that for some
atom A in G;: Ar appears in Ok as the result
of an attempt to resolve All;+ 1 ••• ei, the further
instantiated version of A in Gi and for every
variable x that occurs both inside and outside
of A in G;, x8;+1 ... 8k=xr}).

Definition 2.24 (Context checks based on resultants). The Variant/ Instance Context
check based on Resultants is the set of SLD-derivations

CVR/CIR= RemSub({D [D = (0 0=}c,,e, G, =} · · · =} Gk-t =}c,,11, Gd
such that for some i and j, 0 ~ i ~j < k, there is
a renaming/ substitution r such that 0 0 81 ••• 81, =
G 0 e1 ••• 8;r and for some atom A in G;: Ar
appears in G, as the result of an attempt to
resolve AO,+ 1 ••• ei, the further instantiated ver­
sion of A in G, and for every variable x that
occurs both inside and outside of A in G,,
x8;+ 1 ••• 8k=xr}).

Theorem 2.25 (Context soundness). The context checks are weakly sound loop checks.
Moreover, the context checks based on resultants are sound.

Proof. See [5]. D

For the context checks the same completeness results have been proven as for
the subsumption checks.

Generalizing completeness results ji1r loop checks 11

Theorem 2.26 (Context completeness). All context checks are complete for function­
free restricted programs, nvi programs and svo programs.

Proof. See [5]. D

3. The choice of most general unifiers

We now divert for a moment from the subject of loop checking. It appears that,
in order to prove the Generalization Theorem in Section 4, we need some auxiliary
results regarding SLD-derivations. These results can be obtained by putting extra
requirements on the most general unifiers in those derivations. In this section we
introduce these requirements and show why we consider them to be justifiable.
Finally we prove the lemmas needed in Section 4.

3.1. Relevant and idempotent mgu·s

The general feeling is that, in order to obtain mathematical elegancy, the definition
of an SLD-derivation must leave the choice of variables as free as possible. However,
during the evolution of this definition, the allowable freedom was continuously
overestimated. For example, in the first edition of [9], the input clause was only
standardized apart from the current goal, and not from the goals and clauses
preceding it. Thereby, the undesirable derivation of Fig. 1 was allowed. In the
second edition of [9], this has been corrected. However, yet another anomalous
derivation is shown in Fig. 2.

It is not clear whether or not this derivation is allowed in [9] (does z appear in
the derivation before the goal <- r ?), but in [1] it definitely is, although later on in
[l] it is assumed that all mgu's are relevant (a unifier of A and B is relevant if it

<- p(x)

1 p(y)<-q(a)
{x/y)

<- q(a)

1 q(y)<­
{y/ a)

u

Fig. I.

<- p(x)

lp(y)<-q
{x/ y)

<- q

l q<-r
{y/z,z/y}

<- r

i:<-s(z)

<- s(z)

ls(a)<­
{ z/ a}

Fig.2.

12 R.N. Bo/

acts only on variables in A and B) and idempotent. It appears that the requirement
that the mgu is relevant is redundant, as idempotent mgu's are always relevant. First
of all, from now on we assume that only idempotent mgu's are used. Under this
assumption we prove some properties of SLD-derivations. The first property we
prove is that a variable cannot occur somewhere in the derivation, disappear and
later reappear. (For an SLD-derivation D, jDj denotes its length, i.e. the number
of goals in it.)

Lemma 3.1. Let D = (0 0 =>c,, 111 0 1 => · · · => G; =>c,,."u'+' GH 1:::::;. • • ·) be an SLD­
derivation and let 0 ~ i < k (<I Dj). If x E var(C1+1) u var(G1) and x E var(Gd, then
for all j, i <j ~ k, x E var(Gj) and xej = x.

Proof. We use induction on j from k down to i. x E var(Ok) is given. Now assume
that i ~j < k and x E var(q+ 1). We prove that x8;+ 1 = x and that if j > i, x E var(G;).
Let G; = ~cs 1 , A, S2), where A is the selected atom in Gj. Let C;+i = H ~ S3 • (S1 ,

S2 and S3 are possibly empty sequences of atoms.) Then Bj+i is an idempotent mgu
of A and H and 0 1+ 1 = <e- (S1 , S3 , S2) 8;+ 1 • Sox E var(S" 53 , S2) BJ+i, hence for some
y E var(S 1, 53 , S2), x E var(yfi1+ 1). Two cases arise.
• x = y. Thus x8;+ 1 = x. Also, if j > i, x ~ var(S3) since x E var(C+ 1) u var(0 1) and

S3 is standardized apart. So x E var(S1 , 52) £ var(G;).
• x?"y. Then xEvar(ran(B;+ 1)), and since 8;+ 1 is idempotent, xEdom(8; 11), so

xB;+ 1 =x. Also, since Bp 1 is relevant, xEvar(A,H). If j>i, x?Evar(H) since
xEvar(C;+ 1)uvar(G1) and His standardized apart. So xEvar(A)£var(G;).

So in both cases we have x8;+ 1 = x and if j > i also x E var(GJ. D

The following definition captures the notion that two variables in a goal are
related, i.e. that they might be unified in an attempt to refute the goal. (This notion
can be compared with the notion of connected (sets of) predicate instances in [12].)
We then prove that when two variables occur unrelated in a certain goal, they cannot
be related in any goal later in the derivation.

Definition 3.2. Let S be a set of atoms. We define the relation - 8 on variables as:

x - 8 y if there is an atom A in S such that x, y E var(A).

Obviously, - 8 is a symmetrical relation. Now we define the relation ""s to be the
transitive and reflexive closure of - s· Then ""s is an equivalence relation.

An equivalence class of =5 is called a chain (in S). For x E var(S), the chain of
x is denoted by C8 (x), or C(x) whenever Sis clear from the context.

Lemma 3.3. Let D = 0 0 =>c,,o, 0 1 :::::;. • • ·:::::;. 0 1 .. 1 =>c,, 11 , 0 1 :::::;. • • • be an 5LD-deriva­
tion and let 0 < i (<I Dj). If x = c, y and x, y E var(0 1 _ 1), then x = G, _, y.

Proof. Let G;-- 1 =._(A, R), where A is the selected atom in G1_ 1 • Let C; = H <e- S
and let 81 be an mgu of A and H. Then G1 = <e-(S, R)81• Assume x ?" y (for x = y

Generalizing completeness results for loop checks 13

the claim is trivial). Since x =a, y, there is a sequence of variables x =
W1 , W2, ••• , W2n = y in G; such that w2i-I =so, w1i for 1 ~ j ~ n and w2, - Re, W2i+ 1 for
1 ~j< n.

For 1<j<2n, every variable wi E var(RfJ;), so we can choose for it a corresponding
variable z, E var(R) £ var(G;_ 1) such that W; E var(zA). Since O; is idempotent, and
x, y E var(G;- 1) n var(G;), we can choose z1 = w1 = x = xfJ; and z2 " = w2n = y = y8;.

Now let 1~j<2n.

We prove that z, =0 ,_, zJ+i ·Two cases arise.
• j is even, sow, -Re, wi+I ·Then there is an atom Bin R such that wJ, w,+ 1 E var(BO;).

So we have variables V;, vi+t E var(B) such that w; E var(v;8;) and wi+I E var(V;+ 18;).
So vJ - 8 V;+ 1 , and hence V; - R V;+i ·For V; (and analogously for V;+ 1) two subcases
arise.

- vJ = zJ. Then vJ =A zJ.

- V; ;C z,. Then, since W; E var(v;8;) n var(z;8;) and 8; is relevant, we have v,,

z; E var(A). Hence v; =A z;.

Therefore z; =AV; - R V;+ 1 =A Z;+ 1, so Z; =c,_ 1 Z;1- 1.
• j is odd, so w; = stt, W;+ 1. If W; = W;+ i. then z; = Z;+ 1, so z; =a, 1 z;+ 1. Otherwise,

we can prove that z; E var(A) (and analogously z;+i E var(A)). Again two subcases
arise.
- z;8;;Cz;. Then Z;Evar(A): 8; is relevant and z;Evar(G;_ 1), so z,evar(H).
- zJO;=zJ. Then wi=z;Evar(SO;), say V;Evar(S) such that Z;Evar(v;O;). Then

v;O; ;C vJ, since v; E var(S), z; E var(G;_ 1) and Sis standardized apart. Therefore
V; E var(H), and hence Z; E var(A).

Now z;-AZ;+ 1, so z; =c;,, Z;+1·
Therefore we have x = z1 =c;, , z2 =a,_, z3 = 0 ,_, ···=a, .. , Z2n = y. D

3.2. Normal SLD-derivations

In fact, it appears to be convenient to restrict the choice of the mgu even more
by disallowing the "needless renaming of variables in a derivation". We explain
this now. When we have a variable x in the selected atom of the goal which is to
be unified with a variable y in the input clause, then two idempotent mgu's are
available: {x/y} and {y/x}.

When {x/ y} is chosen, it is likely that the variable y occurs further on in the
derivation as a substitute for x, whereas x itself does not occur any more. On the
other hand, if {y/x} is chosen, the variable x is retained and the variable y will not
occur in any goal of the derivation. Therefore the renaming from x toy is considered
to be a needless renaming. So we choose {y/x}, thereby retaining the "older"
variables x and adjusting the "newer" variable y.

A more indirect instance of the same principle is shown in the derivation

~ A(x) =?Alx'J-lllx',yJ,lx'/x} ~ B(x, y) =?111:.:l-.{y/<.:/x} u.

In the first step {x' / x} is chosen for the reason described above. In the second step,
the choice of {x/ z, y/ z} is out of the question for the same reason. However, this

14 R.N. Bo/

still leaves the choice between {x/y, z/y} and {y/x, z/x}. Although x and y occur
both in B(x, y), x appears earlier in the derivation than y. Therefore we choose
{y / x, z/ x}, thereby again retaining the older variables x and adjusting the newer
variable y.

It is important to note two things. Firstly, Lemma 3.1 says that a variable cannot
be introduced, disappear, and reappear later on in the derivation, which would
complicate the decision criterion given above. Secondly, the choice of the mgu is
still nondeterministic, as is shown in the derivation

~A ==?A~Blx,y).• ~ B(x, y) ==?a1z.z1~.fy/x.=/'I O,

Here the choice between {y/x, z/x} and {x/y, z/y} is arbitrary.
We now formalize these intuitions.

Definition 3.4. Let D = (G0 ==?c,,11, G,:::::? · · ·:::::? G;- 1 ==?c;JI; G;:::::? · · ·) be an SLD­
derivation. For every variable x occurring in D, we define

() {O if x E var(Go),
tag x = .

i tf x E var(C;).

Dis a normal SLD-derivation if for every i>O (and i<\D\ when Dis finite),
- 8; is idempotent and
- for every variable xEvar(G;_ 1): if xe; is a variable, then tag(x)~tag(xe;).

Intuitively, the lower the tag of a variable is, the "older" it is. The following
lemma shows that we may restrict our attention to normal SLD-derivations.

Lemma 3.5. Every SLD-derivation has a normal variant.

Proof. We introduce a slightly changed version of the unification algorithm of
Martelli and Montanari [11]. Using this algorithm for computing the mgu yields a
normal SLD-derivation.

When p(s,, ... , s11) and p(t1 , ••• , tn) are to be unified, first the set of equations
{s 1 = t1 , ... , Sn= t11 } is constructed. This set is then transformed according to the
following six rules:

(a)

(b)

(cl)

(c2)

(d 1)

Eu{t=x} =:;:. Eu{x=t} if t.EVAR or tag(t)<tag(x),

E u {x = x} :::::? E,

E u {f(s,, ... , Sn)= f(ti, ... , tn)} :::::? E u{s, = t,, ... , Sn= tn}

E u {f(s 1, ••• , s11) = g(t 1 , ••• , t"J} :::::? failure ifj,Pg,

Eu{x=t} =:;:. E{x/t}u{x=t} if x .E var(t) and var(E),

(d2) Eu{x=t} =:;:.failure if x,P t and xEvar(t),

(n~O),

until none of these rules is applicable. (Here u denotes the disjoint union.) Now
we take e = {x/ t I (x = t) E £}.

Generalizing completeness results for loop checks 15

The change w.r.t. the original algorithm is in rule (a), where now tags are taken
into account. Whenever xe = y ¥ x, we have that (x = y) E E and no rules are
applicable on E, hence tag(x) ~ tag(y) (otherwise rule (a) would be applicable).
Showing that the algorithm terminates and that a resulting substitution is indeed
an idempotent mgu of p(s 1 , • •• , s11) and p(t 1 , ••• , t,,) is straightforward. 0

3.3. Properties of normal SLD-derivations

In this section we prove some properties of normal SLD-derivations that appear
to be needed in the next section. The reader who is not interested in such technical
details is encouraged to skip this section.

Lemma 3.6. Let D = G0 =?c,. 11 , G 1 =? · · · =? G;- 1 =?c,. 11 , G; =? · · · be a normal SLD­
derivation and let 0 ~ j < k (<[Df). Let C be a chain in G,. Then Cek ii VAR s; C.

Proof. Let x EC and assume that xek is a variable. We prove that xek E C.
If x(:}k = x then clearly xek E C.
Otherwise, x E var(Gk _1) (x E var(Cd since (:}k is relevant and by standardizing

apart, Dis normal, xEvar(Gk-il and x(:}k is a variable, so tag(x)~tag(xOd. Hence
xek it var(Ck). xek ¥ x and e,, is relevant, so since (:}k is relevant and by standardizing
apart xOk E var(Gk_ 1). Thus x and xOk occur both in the selected atom of Gk-l.
Therefore x =G,_, xOk.

Also tag(xOd~tag(x)~j, thus by Lemma 3.1, for every i such thatj~i<k,
x E var(G;) and xOk E var(G;). Applying Lemma 3.3 k -1 - j times yields that
x =G, xOk. Hence xek E c. 0

Corollary 3.7. Let D = G 11 =?c,.o, G 1 =? · · · =? G; 1 =?c,, 11 , G; =? · · · be a normal SLD­
derivation of a function-free program P and G0 and let 0 ~ j < k (<ID[). Then
var(GiOk) s; var(G;).

Proof. Let x E var(G;Od. P is function-free, so for some y E var(G;), x = yOk. Now
by Lemma 3.6, x = yOk E Cc;1(y)Ok ii VAR s; Cc;1 (y) s var(G;). 0

Corollary 3.8. Let D = G0 =?c,.o, G 1 =? · · · =? G; 1 =?c,. 11, G; =? · · · be a normal SLD­
derivation of a function-free program P and G0 and let O~j<k (<[D[). Then
var(GA+ 1 ••• Ok) s var(G;).

Proof. Repeatedly using Corollary 3.7, we have var((GA+ 1) 0;+ 2 ••• fh) s
var(Gi0;+ 2 ••. Ok) s; · · · s var(G;Od s var(G;). 0

Corollary 3.9. Let D = G0 =?c,. 11 , G 1 =? · · · =? G; 1 =?c,,a, G, =? · · · be a normal SLD­
derivation and let O~j < k (<[D[). Let C be a chain in G;. Then CO;+ 10k 11 VARs CO;, 1

and CO;+ 1 ••. Ok ii v AR s; CO;+ I.

16 R.N. Bo/

Proof. If j + l = k, then the claim is trivial. So assume j + l < k.
Let x E Ce;+i and assume that xek is a variable. We prove that xfh E C8;+1 · By

Lemma 3.6, x E cej+l n VAR implies x E c. Therefore, again by Lemma 3.6, xek E

cek n V AR c:; C. Two cases arise .
• xeke1+l = xek. Then xek E c implies xek = xekej+l E cej+l.
• x8k8;+i 7" xek. Then xek E var(G;+ 1), since 8j+i is idempotent. As we have x8k EC S

var(G;), xek E var(Gk_ 1) by Lemma 3.1 and xek E var(Ck) by standardizing apart.

Thus x8k = X E C8j+1 ·
Now ((C81+1)8;d ... ek (\VARS (cej+l) ej+3 .•. Bd (\ VAR c:; ... s (CB1+1)ek n
VARc:;C81+1· D

In order to formulate the final property of normal derivations we prove in this
section, we need the following definition.

Definition 3.10. (This definition is equivalent to the definition of local selection
functions in [17).) A selection rule R is local if every SLD-derivation D =
(G0 ~c\.o, G1 ~ • • ·)via R satisfies the following property. If in a goal G;, an atom
A is selected and in a goal Gj (j > i) the further instantiated version BfJ;+i · .. B; of
the atom B in G; is selected, then A is resolved completely between G; and G;.

It is easy to see that the leftmost selection rule and the rightmost selection rule
are examples of local selection rules.

Corollary 3.11. Let D=Go~c., 11,G 1 ~···~G;-i~c,.o,G;~··· be a normal
SLD-derivation of a function-free program P and G0 and let O~j < k (<IDI). Let A
be the selected atom in G;. Suppose a local selection rule is used between 0 1 and Gk
and A is not completely resolved before Gk. Then var(AfJk) s var(A) and
var(A01+i · .. fJd c:; var(A).

Proof. Let x E var(A) and assume that xfJk is a variable. We prove that xOk E var(A).
Let G; =(A, R) and consider the derivation~ A= HJ- ~c H H1·+ l ~ ... ~c· n Hk

/+!, /+! J..·,V}.;

(hence for j ~ i ~ k, G; = (H;, Re;+ 1 ... fJ;)). Note that this derivation exists, since a
local selection rule is used and A is not completely resolved before Gk, and note
that the derivation is normal. Now x E var(A) =var(Hj) implies xek E var(H1) =
var(A) by Corollary 3.7. Hence, var((Aej+1) 8;+ 2 .•. Ok) s var(A01+2 ... eds · · · s
var(AOd <;;;; var(A). D

4. Generalizing completeness results

The rest of this paper discusses the completeness of loop checks. Therefore we
assume from now on the absence of function symbols. In this section we shall prepare,
formulate and prove the Generalization Theorem, the main theorem of this paper.

Generalizing completeness results for loop checks 17

This theorem states that, given a loop check, and given a class of programs for
which this loop check is complete, the loop check is (under certain conditions) also
complete w.r.t. the leftmost selection rule for a larger class of programs.

4.1. Preparation

The formulation of the Generalization Theorem requires the formalization of the
classes of programs for which it is applicable. Roughly, these classes of programs
are characterized by the condition that all clauses in the program satisfy some
(preferably decidable) property. We do not go into details about these properties;
we assume that the notion "a clause C satisfies a property Pr" is given.

Definition 4.1. Let Pr be a property of clauses. A program P satisfies Pr (P is a
Pr-program) if every clause in P satisfies Pr.

Definition 4.2. A property of clauses Pr is closed under instantiation if for every
clause C that satisfies Pr and for every substitution er, Ccr satisfies Pr.

Note that Ccr is not necessarily a ground instance of C. The Generalization
Theorem is only valid for properties that are closed under instantiation. However,
in the next section, where we shall give some examples of the use of the Generaliz­
ation Theorem, we shall also consider a property that is not closed under instanti­
ation. A detailed inspection of the proof of the Generalization Theorem enables us
to derive useful results for this property as well.

The Generalization Theorem is only valid for loop checks satisfying certain
conditions. These conditions are formalized here. The first condition is that the loop
check is "safe for goal extension". Informally, this means that when we have a
derivation that is pruned by the loop check, adding some atoms to the initial goal
that are never selected (before the derivation is pruned), yields again a pruned
derivation.

Definition 4.3. A loop check L is safe for goal extension if for every SLD-deri vation
D of Pu { ~ G0 } that is pruned by L, an SLD-derivation of Pu { .,._ (G 0 , H 0)} which
selects the same atoms, and uses the same input clauses and mgu's as D is also
pruned by L.

The second condition is that the loop check is "safe for initialization". Informally,
this means that when we have a derivation that is pruned by the loop check, adding
some derivation steps in front of it ("initialization steps"), yields again a pruned
derivation.

Definition 4.4. A loop check L is safe for initialization if for every SLD-derivation
D = (G; ~c,, i.H.+i G;+ 1 ~c,,,,&;+o G;, 2 ~···)that is pruned by L (i > 0), every deri­
vation (G0 ~c,_ 01 0 1 ~ • • • ~ G; ~cd 1,11,, 1 G;+ 1 ~c,, ,,&;" 0;+ 2 ~ • • ·) in which in
G;, G;+ 1 , ••• the same atoms are selected as in D, is pruned by L.

18 R.N. Bo/

The third condition is that the loop check is ''safe for detailing". Informally, this
means that when we have a derivation that is pruned by the loop check, replacing
every derivation step by one or more steps giving the same computed answer
("showing the details of one step in several steps"), yields again a pruned derivation.

Definition 4.5. A loop check L is safe for detailing if for every SLD-derivation
D = (G0 ~c,,o, G 1 ~ • • ·) that is pruned by L, every derivation of the form

with for every i > 0:

and in which in G0 , G 1 , ••• the same atoms are selected as in D, is pruned by L.

Finally, for a certain property Pr, we describe the larger class of programs for
which the loop check is complete according to the Generalization Theorem (so-called
nr-extended Pr-programs), given that the loop check is complete for Pr-programs.
In Section 5 it will appear that the resemblance between the following definition
and Definition 2.13 is not a coincidence.

Definition 4.6. Let P be a program. A clause C = (H ~ N R, R) is nr-extended Pr
w.r.t. P if the clause H ~ R satisfies Pr and for every atom A in NR, rel(A) does
not depend on rel(H) in P. NR is called the nonrecursive part of C and R is called
the Pr-part.

A program P is nr-extended Pr if every clause in P is nr-extended Pr w.r.t. P.

4.2. The Generalization Theorem

We can now formulate the Generalization Theorem.

Theorem 4.7 (Generalization Theorem). Let Pr be a property of clauses that is closed
under instantiation. Let L be a loop check such that
- L is complete for Pr-programs,

- L is safe for goal extension,

- L is safe for initialization,

- L is safe for detailing.

Then L is complete w.r.t. the leftmost selection rule for nr-extended Pr programs.

In the rest of this section, we shall assume that Pr is a property and L is a loop
check satisfying the above conditions. In order to prove this theorem, we use the
following lemma.

Generalizing completeness results for loop checks 19

Lemma 4.8. Let P be a nr-extended Pr-program and G 0 a goal in Lp. Let D be an
infinite SLD-derivation of Pu { G0 } via the leftmost selection rule. Suppose that

for no goal G; = (G, H) in D (i:;;, 0), the derivation of Pu { G} (using the
same input clauses, mgu's and selection rule as D) is pruned by L. (*)

Then D is pruned by L.

Before proving this lemma, we show that the Generalization Theorem is an
immediate consequence of it.

Proof of the Generalization Theorem. Let P be an nr-extended Pr-program, G 0 a
goal in Lp and Dan infinite SLD-derivation of Pu { G 0}. Two cases arise.

(i) For no goal (G, H) in D, the derivation of G (using the same input clauses,
mgu's and selection rule as DJ is pruned by L. Then by Lemma 4.8, D is pruned
by L.

(ii) Otherwise, there is a goal (G, H) in D for which the derivation of G (using
the same input clauses, mgu 's and selection rule as D) is pruned by L. Then the
tail of D starting at this goal (G, H) is pruned, since L is safe for goal extension.
So D is pruned by L too, since L is also safe for initialization. D

Proof of Lemma 4.8. The dependency graph DP defines a (well founded) partial
ordering ~ of the set {cip(p) IP is a predicate symbol in Lp}. Therefore we may
assume as induction hypothesis (by a complete induction on ~), that this lemma
has been proved for every derivation of Pu { G} where G contains only strict
~-smaller predicate symbols than the ~-largest predicate symbol in G0 •

Claim 1. D is of the form

for some derivation D' = (0 0 ~c,,H, G 1 ~c,,1i, 0 2 ~ • • •), with for every i > 0:

and where C 1 , C2 , ••• all sati.~fy Pr. Moreover, in the goals G0 , G 1 ,,,. the same atoms
are selected in D and D'.

The lemma follows from Claim 1: D' is a derivation of {G0 , C 1 , C 2 , ••• },

{ C 1 , C2 , ••• } is a Pr-program, and L is complete for Pr-programs, therefore D' is
pruned by L. Hence D is pruned by L, since L is safe for detailing.

Proof of Claim 1. We prove the claim by induction. Suppose we have constructed
D' and proved the claim up to the goal G;. (Up to G 0 , the claim is trivial.)

20 R.N. Bo/

·+1 i+I s h Let G; =~Ai' ... ' An, let c = c; =(A~ NR, R) and let T = 71 • uppose t at
NR is the nonrecursive part of the body of C and that R is the Pr-part. The next
step in D is G; ~c .• ~ (NR, R, Ai, . .. , A 11)7. Let D 1 be the SLD-derivation of
Pu { ~ NRT} that uses the same input clauses, mgu's and selection rule as the tail
of D starting at ~ (NR, R, Ai, ... , A11)7. Four cases arise.

(i) NR is empty. This is a special case of case (iv): Pu { ~ NR7} is immediately
successfully refuted. (If 0 0 is ,..-minimal, then this is the only possible case, since
then rel(A 1) = rel(A) is :::;.minimal and by definition every predicate symbol in NR
is strict :::;.smaller than rel(A).)

(ii) D 1 is failed. Then D is failed too, which contradicts the assumption that D

is infinite.
(iii) D 1 is infinite. By definition, every predicate symbol in NR is strictly ,..-smaller

than rel(A 1), which is =::;-smaller than the ,..-largest predicate symbol in G; (hence
in 0 0), so we may assume that Lemma 4.8 holds for D = D 1 • Now it follows that
the Generalization Theorem can be applied on D = D 1 • Hence D 1 should be pruned
by L However, this contradicts the assumption (*), for G = NR7 and H =

(R, A2 , ••• , A.)7.
(iv) D 1 is successful, yielding a computed answer substitution u (if NR is empty

then u = e).
Case (iv) is the only remaining case. In this case we have in D the goal G;+ 1 =

~ (R, A 2 , ••• , A11)7u, immediately after NR is completely resolved.

Claim 2. The sequence of resolution steps between G; and Gi+ 1 in D can be mimiced

by one resolution step G; ~c,+i.O.+i 0;+ 1 in D', where C;+i is an instance of A~ Rand

7CTlvar(Go,G 1, .. .,G1) = lii+1lvar(Go,G 1, .. .,G,l•

Claim 1 follows from Claim 2: since Pr is closed under instantiation, C;+ 1 satisfies
Pr. So we have constructed D' and proved Claim I up to the goal 0;+ 1 •

Now the construction of the resolution step G; ~c,+,.H,. 1 G;+ 1 remains.

Proof of Claim 2. First, we define C;+ 1 and li;+ 1 , then we prove that G; ~c,.,, 11,. 1 G;+ 1

is indeed a derivation step. Finally, we check the other requirements on C;+ 1 and
li;+i • By Lemma 3.5 we may assume that D is normal.

For every chain C in NR, we fix a substitution Pc such that for every x E Cr,
xpc E C and XPc7 = x. Moreover, if x E (var(R) n C) 7, then XPc E var(R). For every
chain, such a substitution exists: if x E C7, then {y E C I yr= x} ~ 0. If {y E var(R) n
Cjyr=x},.,0, then xpc must be chosen from the latter set, otherwise any element
of the former set will do.

Now we can define lfJ by:

x!/J={x ifx~var(NR),
X7CTPC(x) if x E C <;;;; var(NR).

Generalizing completeness results for loop checks 21

Notice that X7UE C(x)1uc:;; C(x)T by Corollary 3.9, since Dis normal. Finally, we
define C;+ 1 =(A~R)lf; and 8;+ 1 =TulvarlA,,A~,l· Now we must prove that
G; ~c,+,A+i G;+ 1 is indeed a resolution step. That is:

Claim 3. (A~ R)lf; is properly standardized apart.

Claim 4. 8;+ 1 is an idempotent mgu of Alf; and A 1 •

In the proofs of these claims, we take C(x) = CNR(x).

Proof of Claim 3. We prove that var((A~R)r/t)svar(A~NR,R). Let xE
var(A ~ R). Then: if xrjt = x, then xif; E var(A ~ R); if xrjt 7'" x, then x E C(x) c:;;
var(NR), so xif1 = xwpci, 1 E C(x) c:;; var(NR). D

Before proving Claim 4, we prove an additional claim.

Claim 6. t{t is idempotent.

Proof. Let x be a variable. If xij; = x, then xij;tjJ = xij;. Otherwise, xtjJl/J = X7apc1, 1t/I =
(since X'TUPcix> E C(x) s var(NR)) = XTUPnx 1TUPcixi = xruupc1x 1 =(as u is idem­
potent)= XTUPc1x1 = xr/t- 0

Proof of Claim 4. We prove that for every unifier 7J of A 1 and AtjJ: 7J = 8;+ 11). Let
7J be a unifier of A 1 and Ai}!: A 17J = At/11).

By standardizing apart, var(A 1) n var(NR) = 0, so we have A 1 = A 1rjt. Therefore,
rft7J is a unifier of A 1 and A. Since 7 is an idempotent mgu of A 1 and A, we have
r/11) = TW = TTW = Tr/11) (T ~ r/11), so for some w: TW = r/11)).

Let x be a variable. If x.Evar(A 1 ,Alf;), then x=x81+ 1 , so X7J=X8;+ 1 1). If xE
var(A 1), then at the corresponding position in A, we find a term (constant or variable)
t such that X1) = tr/11) and xr = t'T. Two cases arise .
• XT = XTU. Then X1) = tif;1) = tTt/11) = X'Tt/11) b XT1) = XTU1) = xe; 11 7)· b : XT ,E var(NR)'

since either xr is ground, or X'T E var(A 1 T) s var(A 1) (the latter in cl us ion by
Corollary 3.11, since D is normal).

• xT.,t.xTu. Then X7EVar(NR7), so for some vEvar(NR): VT=XT and vlf;=

VTUPci ,». Now X1J = fr/t7J = trrft7J = XTi/tYJ = VTi/tYJ = Vi/tYJ = (by Claim 6) = vi/tt/11) =
b: XTu,Evar(NR),

since either XTfJ' is ground, or X'Tu E var(A 1 TU) s var(A 1). (the latter inclusion by
Corollary 3 .11, since D is normal).

If x E var(Aif;), then for some y E var(A) we have yijt = x. At the corresponding
position in A 1 , we find a term t such that X1) = l7J and yT = t'T. Again two cases arise.

22 R.N. Bo/

• ye var(NR). Then yif; = y and yru =yr. Therefore we have XYJ = YiflYJ = yri/JYJ b
yrYJ = ynrYJ = yif;r<rry = xr<rYJ = x8;+ 1 Y/· :ff.: yr e var(NR), since either yr is ground,
or yrEvar(Ar)=var(A 1r)<;var(Ai).

• yEvar(NR). Then yif;=yrupC(,» so (see Claim 6), yij;=yif;t/f=yij;rupci,."'J=

xrupc(xl· Therefore we have XYJ = YiflYJ =(by Claim 6) yifli/JYJ = yij;riflYJ =
xr<rPC\xiTt/!YJ = xruif;Y} ~ XTUYJ = x8;+ 1 YJ. b: again, xru E var(NR). 0

Proof of Claim 5. If x E var(A;) (2 .s i .s n), then
- if x e var(A 1) then xB;+ 1 = x = xru;
- if x E var(A 1) then by definition xBi+ 1 = xru.

If x E var(R), then two cases arise.
• xlf; E var(Aif;). Then

xlf;B;+ 1 = xlj;ra = {
XTU

XT<JPCix)ru = xrau = XTU

if xevar(NR),

if x E var(NR).

• xlf; e var(Aif;). Then either xlj; is ground or for no y E var(A): yifl = xlj;. If xij; is
ground, then xru is ground, so xlj; = xr<rpc1, 1 = xru. If for no y E var(A): yij; = xij;,
then in particular, x E var(A), so xr = x. Then if x e var(NR), then xij; = x = xr =
xra; if x E var(NR), then xlj; = xrapc 1, 1• Also, xrrr E C(x)ru <; C(x)r (by Corol­
lary 3.9, since D is normal), so for some z E C(x): zr = xr<r (and C(z) = C(x)).

Then zra=xruu=xra, so zij;=xlf;. Hence zevar(A), so zr=z=zpc 1 : 1T, so z=

ZPci :J = ZPnxi. Therefore xrupc ·1, 1 = zrp< ·1" = ZPc 1, 1 = z = ZT = xnr. 0

Obviously, C+i is an instrance of A~ R. Also,

by Corollary 3.11, since Dis normal and a local selection rule is used. This concludes
the proof of Claim 2 and thereby the proof of Lemma 4.8. 0

5. Applications of the Generalization Theorem

A simple example of the application of the Generalization Theorem 1s the
following.

Corollary 5.1. If P is a function}ree hierarchical program, then every SLD-derivation
of Pu { G} via the leftmost selection rule is finite.

Proof. We prove an equivalent proposition, namely that the empty loop check is
complete w.r.t. the leftmost selection rule for function-free hierarchical programs.
This follows from the Generalization Theorem and the following observations.

Generalizing mmpleteness results for loop checks 23

- The empty loop check is complete for "unit-programs", programs that consist
solely of unit clauses.

- The "unit" property is closed under instantiation.
- The empty loop check is safe for goal extension, initialization and detailing.
- Nr-extended unit-programs are known as hierarchical programs. D

Of course, this result is well known, even for arbitrary selection rules and programs
with function symbols. More interesting results can be obtained by using the
Generalization Theorem to extend the completeness results presented in Section 2.
The first result presented there is the completeness of equality checks for function­
free restricted programs w.r.t. the leftmost selection rule. The Generalization
Theorem cannot be applied on this proposition. In contrast, the Generalization
Theorem provides an alternative proof for this proposition, based on the lemma
"the equality checks are complete for function-free programs in which the body of
each clause contains at most one atom".

The other results of Section 2 are only valid for the subsumption and context
checks. Therefore we shall now prove that the weakest of those checks, the SVRL
check and the CYR check, satisfy the conditions of the Generalization Theorem,
i.e. that they are safe for goal extension, initialization and detailing.

Lemma 5.2. The SVRL check and the CVR check are safe for goal extension.

Proof. Let D be an S LD-derivation of Pu { +- G0}. Let D' be an SLD-derivation of
Pu{+-(G0 , H0)}, in which the same atoms are selected and the same input cluases
and mgu's are used as in D. Thus D cannot contain any variable occurring in H 0

but not in G 0 • Denote by e,, the mgu used in the nth resolution step of D and D'
(n :_;,, 1).

If D is pruned by the SVRL check resp. the CVR check, then we have for some
renaming r two goals G; and Gk in D with G 0 e 1 ••• ek = Goe1 ... e;r and Gk 2 L G;r
resp. (A in G; "produces" Ar in Gk and T and e;+i· . . ek agree on var(G;)nvar(A)).
Assuming that T acts only on the variables in D, we have that e, ... ek and el ... e;T
coincide on all variables of H0 . So (G0 ,H0)e 1 ... ek=(Go,Ho)e1···e;T and
(G"H0 e 1 ... ed2i(G;,H0 e1 ... e,)r, resp. T and e; 11 ... ek agree also
var(H 0 e1 ••• e;) n var(A). This means that D' is pruned by SYR1., respectively CYR,
as well. D

Notice that it is essential to consider loop checks based on resultants here. It is
easy to see that the loop checks based on goals are not safe for goal extension.

Lemma 5.3. The SVR1, check and the CVR check are safe for initialization.

Proof. Let D' = (G 0 ~c,.o, G 1 ~c,,o, G2 ~ • • ·)be an SLD-derivation. Suppose that
for some i > 0 the derivation D = (G; ~c, ".o,, 1 G; t 1 ~c, ,,.o,., G; +2 ~ • · ·) is pruned

24
R.N. Bo/

by SVR res . CVR. Clearly for some j, k >j and renaming r (acting only on
variable~ in ~): 7 "proves" that G; and Ok are "sufficiently similar" for SVRL,

CVR and Ge ek = G;O;+i ... 8;7. So it remains to prove that 0 0 01 .•• ek = resp. , ' ;+1 · · · .

0081 ... 8,7.
Let x E var(Oo8i ... 8;). Two cases arise.
(i) x £' var(o,). Then x does not occur in D, hence x8;+ 1 ••• ek = xei+ 1 ••• B;r = x.

(ii) x Evar(G;). Then G;O;+J · .. ek = GA~1· .. 8;7 yields x8;+1 · .. ek = x8;+1 ... 8;7.

Hence D' is pruned by SVRL, respectively CVR, as well. 0

Lemma 5.4. The SVRL check and the CVR check are safe for detailing.

Proof. Let D = (0 0 =?c,.o, 0 1 =? · · ·) be an SLD-derivation that is pruned by SVRL
resp. CVR and let D' be an SLD-derivation of the form

(G ___,,_ 1 •H 1 ____._· ··=?H 1 =?c·' 1 G1 1J-7'('1,T1 I--/!" »1-l nl'T"I

with for every i > 0:

7 1 7 1 I c = B·I ·c· c c 1 1 · · · n1 var100 ,G 1, ... , i-1) t vur(.10, 11, ... , '1--1

in which in G0 , 0 1 , ••• the same atoms are selected as in D. Since D is pruned by
SVR1_ resp. CVR, we have for some j, k > j and renaming r: r "proves" that G;
and Gk are "sufficiently similar" for SVRL, resp. CVR and G0 e1 ••• ek = G0 8 1 •.• B;r.
For CVR this proof includes that "for every variable x that occurs both inside and
outside of A in G;, XO;+ I· .. ek = xr". It follows immediately that

G I I 2 2 k k -G I I 2 2 j j
nTt .. . Tt11Tl·· .Tn'.!· .. Ti ... TnJ.. - 0'T1 .. . Tn1T1 ... Tn2· .. TI ... Tn1'T'

and for CVR that "for every variable x that occurs both inside and outside of A in
G i+l itJ k k "

;, X'T1 ... T,,, .•. 7 1 •.• 7 "k = XT •

Hence D' is pruned by SVRL, respectively CVR, as well. 0

Now we can use the Generalization Theorem together with the fact that the
subsumption and context checks are complete for function-free nvi programs.

Corollary 5.5. The subsumption and context checks are complete w. r. t. the leftmost
selection rule for .function-free nr-extended nvi programs.

Proof. The nvi property is obviously closed under instantiation. Therefore by Sub­
sumption Completeness Theorem 2.21 respectively Context Completeness Theorem
2.26, the Generalization Theorem, and Lemmas 5.2, 5.3 and 5.4, the SVRL check
and the CVR check are complete w.r.t. the leftmost selection rule for function-free
nr-extended nvi programs. Since the SVRL check is the weakest of the subsumption

Generalizing completeness results for loop checks 25

checks and the CVR check is the weakest of the context checks, by the Relative
Strength Theorem 2.7, the same holds for the other subsumption and context
checks. D

Finally, in Section 2 it was mentioned that the subsumption and context checks
are also complete for function-free svo programs. However, the property "svo" is
not closed under instantiation, so we cannot immediately use the Generalization
Theorem. In fact, this should not come as a surprise, since every program can be
converted into a "computationally equivalent" nr-extended svo program. This can
be done by replacing the k > 1 occurrences of a variable x in the body of a clause
by x1 , ••• , xk and adding the nonrecursive atoms eq(x, x 1), ••• , eq(x, xk) in the body
of the clause. Finally the clause eq(x, x) is added to the program (assuming that eq
is a new predicate symbol in P).

In the proof of Lemma 4.8, we need that the clause C; +i =(A <E-- R) t/f satisfies the
property of clauses considered, given that the clause A <E-- R satisfies the property.
Up till now, this was derived immediately from the assumption that the property
should be closed under instantiation. Since for the svo property this is not true, we
shall derive conditions that ensure directly that C;+ 1 satisfies the svo property, i.e.
that every variable in Rt/! occurs only once (provided that every variable in R occurs
only once).

Formally, let x, y E var(R) such that x rf y and xifl, y!{I E VAR. We shall derive
conditions on the program ensuring that x!{I of. yl/J.

If xevar(NR), then xl/J=x. Then,
- if ye var(NR), y!{I = y rf x, and
- if y E var(NR), y!{I = yrupC(y\ E C(y) s;; var(NR), so y!{I of. x.

The same argument holds if ye (NR). So a problem can only arise in the case that
x, y E var(NR). Then we have x!{I = XTO'Pcix> £ C(x) and y!{I = yrupci,·> s;; C(y).

One solution is demanding that for every pair of distinct variables x, y E var(R) n
var(NR), C(x) rf C(y). Then C(x) n C(y) = 0, so x!{I rf y!{I. This disallows the addi­
tion of the eq-atoms in the construction above.

Another solution is to avoid that different variables in a (sub)goal are unified
while the (sub)goal is refuted. (That is: to ensure that for every x in a goal, and
for every unifier u in the derivation, either xu = x or xu is a constant.) This condition
can be met (for normal derivations) by the demand that variables do not occur
more than once in the head of a clause. This disallows the addition of the clause
eq(x,x)<E--.

In this case such a condition yields x!{I = XTPcix> (xru cannot be a constant, since
xl/J is a variable). Then xr = XTPnxJT = x!{lr. Using the condition again (but now
w.r.t. r), we obtain x = x!{I (still, xr cannot be a constant). Similarly we obtain

y = y!{I, so x!{I rf y!{I.
These two solutions give rise to two classes of programs for which the subsumption

checks are complete w.r.t. the leftmost selection rule (in the absence of function

symbols).

26 R.N. Bo/

Definition 5.6. Let P be a program. A clause C =(A~ NR, R) is chain-restricted svo
w.r.t. P if C is nr-extended svo w.r.t. P, where NR is the nonrecursive part and R
is the svo-part of C, and for every pair of distinct variables x, y E var(R), CNR(x) ?""
C1,m (.v). A program P is chain-restricted svo if every clause in P is chain-restricted

svo
w.r.t. P.

Definition 5.7. Let P be a program. A clause C is head-restricted svo w. r. t. P if C
is nr-extended svo w.r.t. P and in the head of C, no variable occurs more than once.
A program P is head-restricted svo if every clause in P is head-restricted svo
w.r.t. P.

Corollary 5.8. The subsumption and context checks are complete w.r.t. the lefimost
selection rule for function-free chain-restricted svo programs.

Proof. By Subsumption Completeness Theorem 2.22 respectively Context Complete­
ness Theorem 2.26, the Generalization Theorem, Lemmas 5.2, 5.3 and 5.4 and the
considerations above, the SVRL check and the CVR check are complete w.r.t. the
leftmost selection rule for function-free chain-restricted svo programs. Since the
SVRL check is the weakest of the subsumption checks and the CVR check is the
weakest of the context checks, by the Relative Strength Theorem 2.7, the same holds
for the other subsumption and context checks. D

Corollary 5.9. The subsumption and context checks are complete w.r.t. the lefimost
selection rule for function-free head-restricted svo programs.

Proof. By Subsumption Completeness Theorem 2.22 respectively Context Complete­
ness Theorem 2.26, the Generalization Theorem, Lemma 5.2, 5.3 and 5.4 and the
considerations above, the SVRL check and the CVR check are complete w.r.t. the
leftmost selection rule for function-free head-restricted svo programs. Since the
SVRL check is the weakest of the subsumption checks and the CVR check is the
weakest of the context checks, by the Relative Strength Theorem 2. 7, the same holds
for the other subsumption and context checks. D

Finally, we give an example of a function-free head-restricted svo program that
does not fall into any other class of programs discussed so far.

Example 5.10. Given a logic program P, it can be interesting that some predicates
are defined without the use of recursion. The program NONREC characterizes
these predicates. First we need an adequate representation of DP (see Definition
2.12) in NONREC (the predicates of P are constants in NONREC). We cannot
use a representation of the form {dep(p, q) ~.I (p, q) E Dp}, because it fails to express
(without the use of negation) that (p, q)E DP for some p and q.

Generalizing completeness results for loop checks 27

Instead we assume that {p 1, ••• , Pn} is the set of predicates that occur in P and
that for every i (1::::;; i::::;; n), there is only one ground clause dep(p;, q1 , ••• , q") +- in
NONREC such that for some m (O::s;;m::s;;n): {(p;,q 1), ••• ,(p;,qm)}~Dp and
qm+i = · · · = qn =nil (nil is a constant in NONREC that is different from p 1 , ••• , Pn).

Now we add to NONREC the following two clauses:

nonrec(niI) +-.

nonrec(x) +- dep(x, x1 , ••• , Xn), nonrec(x i), ... , nonrec(x,,).

Without loop checking, this program goes into an infinite loop if and only if the
predicate p is defined in P by means of recursion. As the program is head-restricted
svo and function-free, the subsumption and context checks prune all its infinite
loops, thus making the program work properly.

Of course, it is easier to write a restricted program (using the representation
{ dep(p, q) +-.I (p, q) EDP} and the transitive closure of dep) that succeeds on predi­
cates defined using recursion and fails otherwise. But using this program to define
the predicates that do not use recursion would require the use of negation again.

The combination of loop checking with negation, as suggested above, is a delicate
matter, which is studied in [4].

References

[l] K.R. Apt, Logic programming, in: J. van Leeuwen, ed., Handbook of Theoretical Computer Science,
Vol. B (Elsevier, Amsterdam, 1990) 493-574.

[2] K.R. Apt, R.N. Bo! and J.W. Klop, On the safe termination of PROLOG programs, in: G. Levi
and M. Martelli, eds., Proc. 6th Internal. Conf on Logic Programming (MIT Press, Cambridge, MA,
1989) 353-368.

[3] Ph. Besnard, On infinite loops in logic programming, Internal Report 488, 1 RISA, Rennes, 1989.
[4] R.N. Bol, Loop checking and negation, Technical Report CS-R9075, Centre for Mathematics and

Computer Science, Amsterdam, 1990. Extended abstract in: J. van Eijck, ed., Logics in Al, Lecture
Notes in Computer Science, Vol. 478 (Springer, Berlin, 1991) 121-138, to appear in J. Logic
Programming.

[5] R.N. Bol, K.R. Apt and J.W. Klop, An analysis of loop checking mechanisms for logic programs,
Theoret. Comput. Sci. 86 (1991) 35-79.

[6] D.R. Brough and A. Walker, Some practical properties of logic programming interpreters, in: Proc.
Internal. Conf on 5th Generation Computer Systems (1984) 149-156.

[7] M.A. Covington, Eliminating unwanted loops in PROLOG, SIGPLAN Notices 20 (1985) 20-26.
[8] A. van Gelder, Efficient loop detection in PROLOG using the tortoise-and-hare technique, J. Logic

Programming 4 (1987) 23-32.
[9] J.W. Lloyd, Foundations of Logic Programming (Springer, Berlin, 2nd edn., 1987).

[JO] J. W. Lloyd and J.C. Shepherdson, Partial evaluation in logic programming, Technical Report
CS-87-09, Dept. of Computer Science, University of Bristol, 1987.

[II] A. Martelli and U. Montanari, An efficient unification algorithm, ACM Trans. Programming
Languages and Systems 4 (1982) 258-282.

[12] J.F. Naughton, One-sided recursion, in: Proc. 6th ACM Symposium on Principles of Database Systems
(ACM, New York, 1987) 340-348.

[13] D. Poole and R. Goebel, On eliminating loops in PROLOG, SIGPLAN Notices 20 (1985) 38-40.
[14] D.E. Smith, M.R. Genesereth and M.L. Ginsberg, Controlling recursive inference, Artificial Intel­

ligence 30 (1986) 343-389.

28 R.N. Bo/

[15) 0. Stepankova and P. Stepanek, A complete class of restricted logic programs, in: F.R. Drake and
J.K. Truss, eds., Logic Colloquium '86 (North-Holland, Amsterdam, 1988) 319-324.

[16) H. Tamaki and T. Sato, OLD resolution with tabulation, in: G. Goos and J. Hartmanis, eds., Proc.
3rd Internal. Conf on Logic Programming, Lecture Notes in Computer Science, Vol. 225 (Springer,
Berlin, 186) 84-98.

[17] L. Vieille, Recursive query processing: the power of logic, Theoret. Comput. Sci. 69 (1989) 1-53.

