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On a class of nearly singular optimal control problems 

by 

J. Grasman 

·ABSTRACT 

For a class of linear singular optimal control problems with a non­

unique singular arc, the solution of the corresponding nearly singular 

problem is analyzed and a limit solution based on formal singular pertur­

bations is derived. The result is verified by using an asymptotic power 

series expansion satisfying the Riccati equation of the nearly singuiar 

problem. 
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1. INTRODUCTION 

We consider the class of linear, time-invariant, n-dimensional dynamic­

al, systems 

(1. lab) X =Ax+ Bv, x(O) = x0 

with performance index 

00 

( 1. le) J = I 2 x'Qx + E v'RV dt, 0 < E << 1, 

0 

where Q is a symmetric positive semi-definite matrix and R is symmetric 

and positive definite. We denote then-dimensional state space by X. The 

control vector takes its values in the linear n-dimensional space U and 

v ( •) : JR+ -+ U is assumed to be a piece-wise continuous mapping. In tl;tis 

paper we analyze the problem of perfect regulation for a class of cheap 

optimal control problems of the type (1.1). For E = 0 (1.1) reduces to a 

singular optimal control problem, which, as it is shown in [3], may have 

a family of solutions. As E-+ 0 the solution of (1.1) will tend to one of 

these solutions. In order to'formulate such a class of singular problems 

in terms of A,B and Q we introduce some concepts of geometric system theory 

in section 2. For a more extensive exposition we refer to WONHAM [10]. In 

section 3 we specify the class of problems (1.1) to which our investiga­

tions apply and carry out some transformations in order to bring the sys­

tem in its most suitable form. In section 4, a formal method for selecting 

the appropriate singular solution is presented, while in the sections 5 

and 6 we prove the correctness of the result by perturbing the solution of 

(1.1) with respect to E. It is remarked that the convergence of x satis­

fying (1.1) for E-+ 0 can also be proved by analyzing its Laplace trans­

form see FRANCIS [1,2]. 

2. SOME CONCEPTS OF GEOMETRIC SYSTEM THEORY 

Before giving a definition of controllability subspaces we introduce 
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the concept of (A,B)-invariant subspaces. 

DEFINITION 2 .. 1. A subspace V c Xis called (A,B)-invariant if for any 
+ 

x 0 EV there exists a control u(•): JR ➔ U such that x(t) satisfying 

(i.1ab) remains in V fort> 0. 

Let B = ImB. It can be proved that (A,B)-invariant subspaces may be 

characterized by the property AV c V + B, or, equivalently, by the exis­

tence of a family of feedbacks 

(2. 1) F(V) = {F: X ➔ UI (A+BF) V C V}, 

so that the closed loop system that starts V remains in V fort> O. The 

class of (A,B)-invariant subspaces contained in some subspace of Xis 

closed under addition and, thus, has a supremal element, see [10]. In the 

sequel we denote the supremal (A,B)-invariant subspace contained in K = KerQ 

* by VK. 

DEFINITION 2 .. 2. A subspace R c Xis called a controllability subspace if 
+ for any x 0 ,x1 E R there exists a T > 0 and a u(•): JR ➔ U such that x(t) 

given by (1.lab) satisfies x(T) = x 1 and x(t) E R for O < t < T. 

Clearly,. a controllability subspace is also (A,B)-invariant. Given a 

subspace B0 c: X and a mapping AF: X ➔ X, we define the subspace R0 c X by 

(2.2) 

It can be shown that Risa controllability subspace if and only if 

(2. 3) J~ = <A+BFIB n R> for FE F(R). 

Furthermore, the class of controllability subspaces contained in some sub­

space of Xis closed under addition and, thus, has a supremal element. The 

* supremal controllability subspace contained in K = KerQ we denote by RK. 
It can be proved that 



(2.4) 

3. THE NEARLY SINGULAR OPTIMAL CONTROL PROBLEM 

For the class of problems (1.1) we assume that 

( 3. 1) X = K + B. 

* Furthermore, it is supposed that RK ~ 0 as this property characterizes the 

class of problems we are aiming at, while condition (3 .1) is meant as a 

restriction to focus our attention to a representive subclass for which 

the limit problem has a non-unique solution. The present study can be seen 
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as the counterpart of the 

* 
work by O'Malley and Jameson [8,9], where implicit­

ly RK = 0. Since AK c X = K + B, we * have that VK = K (see section 2). Let 

K = dim K. We assume that the state space Xis the span of n basis vectors 

e 1, ••• ,en chosen in such a way that K is the span of last K of them. 'The 

control space U is the span of m basis vectors d 1, ••• ,dm chosen in such way 
-1 -1 

that B e 1 , ••• ,B e has the same span as the first n-K basis vectors d., 
n-K i 

so 

(3.2a) K = {xix EX, x1 = = X = 0} 
n-K 

and 

(3.2b) 

where B-l denotes the functional inverse of B, see [10, p.6]. By regular 

mappings H: X + X and G: U + U any system (A,B,Q,R) can be transformed 

into a system (H- 1AH, H- 1BG, H'QH, G'RG) of the required form. Note that 

H'QH and G'RG are symmetric and positive (semi-)definite. 

Consequently, we may restrict ourselves to systems (1.1) of the form 

(3.3) 

satisfying (3.2). It is noted that because of (3.1) Bs is one to one. 
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For the control vector we write 

(3. 4) 

so that (1.1) becomes 

(3. Sab) 

with performance index 

(3. Sc) 

00 . (Q 
J = f (x' x') s · s' k 

0 0 

. (0 
2(x' s') 

s' k 
NO 

-1 -1 -1 -1 
where M. = (B A k) 'R B A k, Nk = - (B A ) 'R' and -N = (B A ) 'R • 

k s s s s s s sk ks ks s sk s 
In the sequel we denote by A,B,Q,M,N and R the mappings of (3.5). About 

these mappings we make the following hypotheses. Let G, ck and Dk be such 

that GG' = Q, eke~= R~1 and DkD~ =Mk.Then 

(H3. 1) the pair (A,B) is stabilizable 

(H3.2) the pair (G,A) is detectable 

(H3.3) the pair (~-Bk~1Nk,Bkek) is stabilizable 

(H3.4) the pair (Dk-ekNk,~-Bk~1Nk) is detectable. 

It is known that under the assumptions (H3.1) and (H3.2), (3.5) has an opti­

mal solution with 

(3. 6a) 
-2 -1 2 u = -E R (B'P +E N')x € , 



where P is the unique positive semi-definite symmetric solution of the 
E 

algebraic Riccati equation 

(3.6b) 

4. THE FORMAL LIMIT SOLUTION 

Since the cost of control is small, it is expected that by some ap­

propriately chosen initial pulse the solution will tend rapidly to the sub­

space K. In order to analyze this behaviour we carry out the following 

transformations 

( 4. 1) 
A 

U = U/E, t = TE and J 
A = Je:. 

Substituting (4.1) into (3.5) and formally letting E + 0 we obtain 

(4.2a) 
A A 

dx/dT = Bu 

(4.2b) 
A A 

+ u'Ru dT. 

We consider the feedback 

(4.3a) 
A -1 AA 
u = R B'Px 

A 
with P satisfying 

(4.3b) 
A -1 A 
PBR B'P = Q. 

Partitioning the inverse of Ras 

(4. 4) 

we write the unique positive semidefinite solution of (4.3b) as 
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(4.5a) 

with PsO > 0 satisfying 

(4.5b) P BT B'P = Q. 
s0 s s s s0 s 

The corresponding closed loop system reads 

(4.6) 

Integration yields 

(4.7a) 
I\ 
X (T) 

s 

(
-B T B'P 0 

s s s s 

-BT B'P 
k ks s s0 

-BT B'P o' s s s s 
= e xsO' 

T 

(4.7b) ~k(-r) = xkO - I BkTksB~PsO~s(T)dT. 

0 

It is noted that BT B'P 
/\ /\s s s s0 

-1 = PsOQs is positive definite. Consequently, as 

, ➔ oo xs + 0 and xk ➔ xkO - ska with 

(4. 8) 

Letting£ ➔ O, we observe that at the initial point the solution jumps from 

(xsO'xkO) to (0,xk0-sk0 ). Once the solution is in the subspace Kit remains 

there as K is A invariant for (3.5). The performance index will be zero as 

£ ➔ 0 for any feedback uk = Fkxk. For the purpose of selecting the ap­

propriate feeidback we consider the optimal control problem for ~ given by 

(3.5ac) with x = 0 fort> 0: 
s 

. 
(4.9ab) 

- - -
xk(O) ~ = ~xk + Bkuk, = xkO - skO 

00 

(4.9c) 
- I ik~xk + + ~1\;:ikdt. J = 2~Nk~ 

0 



From (H3.2) and (H3.3) it follows that an optimal solution exists with 

(4.10) 

-where Pk is the unique positive semi-definite solution of the algebraic 

Riccati equation 

(4. lOb) 

V 
see KUCERA [4]. Thus, the optimal solution reads 

(4.11) 

REMARK. It is not obvious that xk(t,£) + ~(t) fort~ o > 0 a~d £ + 0, 

as xk follows from the order O(e2) terms of the performance index. Since 
2 

x = 0(£), x is also present with terms of order 0(£ ), so before hand 
s s 

it is not clear that the system can be decomposed in the above way. 

5. ASYMPTOTIC SOLUTION OF THE RICCATI EQUATION 

-7 

Let us assume that the positive semi-definite solution of the algebraic 

Riccati equation (3.6b) can be expanded as 

(5 .1) 
00 

p = £ I 
£ j=O 

p P' 
P(j) _ { sj ksj\ 

- \Pksj pkj). 

Substitution of (5.1) into (3.6b) yields, by setting£= 0, P(O) =~with 

~ given by (4.5). Equating the coefficients of the terms to£ we obtain 

(5.2) P QA +A'P O - P lB T B'P O - P OB T B'P l = 0 s s s s s s s s s s s s s s 

and 

(5. 3) -P OB T Nk' - P OB T kNk' - P OB T B'Pk' l - P OB T kBk'Pkl = O. s s s s s s s s s s s s s s s 

Since P 0B > 0 (5.3) is equivalent to 
s s 
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(5. 4) 'I~ N' +T N' +T B'P' +T B'P = 0. 
s ks sk k s s ksl sk k kl 

Equating the terms of O(e2 ) we obtain the equation 

(5.5) 

-·N T B'P -NT' B'P' +a'P -N T' B'P -NkTkBk'Pkl ks s s ksl k ks s ksl k kl ks ks k kl 

-·P B T BI p I - p B T . B p - p B T BI p I - p B T BI p 
ksl s s s ksl ksl s sk k kl kl k ks s ksl kl k k k kl 

From (4.4) we derive that 

(5.6) 
-1 -1 

F~_ = T - T T T' 
K k ks s ks 

Using (5.4) and (5.6) we reduce equation (5.5) to 

(5.7) P [a -B R- 1N 1 ] + [a -B R- 1N 1 ]'P + 
kl k k k k k k k k kl 

-·P B R-lB'P +M_ -N R-lN' = 0 
kl k k k kl k k k k ' 

-
which has a unique positive semi-definite solution Pkl = Pk see (4.10b). 

This iteration process can be continued to yield uniquely determined coef-
. . ( j) . 

ficients P , J = 2,3, .... 

6. THE SINGULARLY PERTURBED CLOSED LOOP SYSTEM 

Substitution of (3.6a) and (5.1) into (3.5ab) gives the closed loop 

system 

(6. lab) 



with 

e:-lc (e:) = 
ss 

-2 -2 
A - e: BT B'P - e: B T B'P , 

s s s s se: s sk k kse: 

-1 
e: cks (e:) 

-2 -2 
= A. -e: BT B'P -e: BT B'P , 

ks k ks s se: k k k kse: 

=-e:-2BTB'P -BTN' -e:-2BT B'P -BT N', 
s s s kse: s s ks s sk k ke: s sk k 

.9 

Ckk(e:) = A. -e:-2B T B'P' -BT N' -e:-2B T B'P -BT N'. 
k k ks s kse: k ks ks k k k ke: k k k 

THEOREM 6.1 .. Let (x9 (t),xk(t)) be the solution of (6.1ab), then 

(6. 2) 

A A 
fort 2: 0 w:.[th xs' xk, xk and i;kO given by (4.7)-(4.11). 

PROOF. Since all eigenvalues of (6.1a) have negative real parts, see 

KWAKERNAAK and SIVAN [5, p.233], lx9 1 and lxkl have upperbounds of order 

0(1). Integration of the equation for x yields 
s 

(6. 3) 

or 

X (t) 
s 

= e 

-1 
e: C (e:)t 

ss 
t -1 I e: C (e:) (t-T) 

ss 
e csk(e:)xk(T)dT 

0 

(6.4) X (t) = e 
s 

e:- 1c (0)t 
ss 

xsO + 0 ( e:) . 

We now introduce the dependent variable 

(6. 5) 
-1 

X = xk - ck (e:)C (e:)x. r s ss s 

From (6.1a) we derive the corresponding differential equation 
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From (6.3) it follows that xs is of the order 0(€) in the L1 norm, so that 

(6.6) X (t) 
r 

Substitution of (6.3) and (6.6) into (6.5) yields 

(6. 7) 

It is noted that 

(6.8) Ck (O)C- 1 (0) 
s ss 

so that 

(6.9) 

-1 -1 
= BkTk T B , s s s 

According to (6.4) and (6.7) xs and xk satisfy (6.2), which completes 

the proof. D 

7. AN EXAMPLE 

As an illustration of the method of approximating the solution of a 

nearly singular system we present the following example 

(7. la) 
. 

Ax + Bv, x(O) X = = XO, 

00 

(7.lb) J = I x'Qx 2 + € v'Rv dt 

0 

with 

(7.1c) A= 
ro 

1), B = 
/1 ) Q = C 0) and R = ( :) \1 \0 0 0 0 0 
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Putt:i:ng (7.1) in the required form (3.5) we obtain 

(7. 2a) x1 = u1, x 1 (0) = x10' 

(7.2b) x2 = x1+u2, x2 (0) = x20' 

00 

(7.3c) J 
2 2 2 2 2 

J = x 1 + e: (x2-2x2u 1+u1+u2)dt. 

0 

In the limit e: + 0 the system jumps initially from (x 10 ,x20 ) to (O,x20), 

see (4.7) and (4.8). In order to analyze the limit solution in the subspace 

x 1 = 0 fort> O, we consider the optimal control problem (4.9) for the 

system (7.2), so 

. 
(7.4a) -

x2 co> x2 = uo' = x20' 

00 

(7. 4b) J 
-2 -2 dt. J = x2 + u2 

0 

The optimal solution satisfies u 2 = -x2 , see (4.10). For the problem (7.1) 

the algebraic Riccati equatiqn reads 

(7.5) 
2 -1 

Q + P A' + A' P - e: P BR B' P = 0 , 
e: e: e: e: 

which has the positive definite solution 

(7.6) 

Since u 
e: 

(7.7a) 

(7. 7b) 

-2 -1 = -e: R B'P x, the closed loop system reads 
e: e: 

xe:2 = -x e:2, 
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Consequently, the solution converges to the given limit solution as E + 0. 
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