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On a class of nearly singular optimal control problems
by

J. Grasman

- ABSTRACT

For a class of linear singular optimal control problems with a non-
unique singular arc, the solution of the corresponding nearly singular
problem is analyzed and a limit solution based on formal singular pertur-
bations is derived. The result is verified by using an asymptotic power
series expansion satisfying the Riccati equation of the nearly singular

problem.
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1. INTRODUCTION

We consider the class of linear, time-invariant, n-dimensional dynamic-

al systems

(1.1ab) X = AX + Bv, x(0) = X

with performance index

o]
(1.1c) J = J X'Ox + 82V'RV dt, 0 <eg <<,
0

where Q is a symmetric positive semi-definite matrix and R is symmetric
and positive definite. We denote the n-dimensional state space by X. The
control vector.takes its values in the linear n-dimensional space U and
v(e): ]ik + U is assumed to be a piece-wise continuous mapping. In this
paper we analyze the problem of perfect regulation for a class of cheap
optimal control problems of the type (1.1). For € = 0 (1.1) reduces to a
singular optimal control problem, which, as it is shown in [3], may have

a family of solutions. As € + 0 the solution of (1.1) will tend to one of
these solutions. In order to formulate such a class of singular problems
in terms of A,B and Q we introduce some concepts of geometric system theory
in section 2. For a more extensive exposition we refer to WONHAM [10]. In
section 3 we specify the class of problems (1.1) to which our investiga-
tions apply and carry out some transformations in order to bring the sys-
tem in its most suitable form. In section 4, a formal method for selecting
the appropriate singular solution is presented, while in the sections 5
and 6 we prove the correctness of the result by perturbing the solution of
(1.1) with respect to e€. It is remarked that the convergence of x satis-
fying (1.1) for € -+ 0 can also be proved by analyzing its Laplace trans-

form see FRANCIs [1,2].
2. SOME CONCEPTS OF GEOMETRIC SYSTEM THEORY

Before giving a definition of controllability subspaces we introduce



the concept of (A,B)-invariant subspaces.

DEFINITION 2.1. A subspace V/ ¢ X is called (A,B)-invariant if for any

+
X € V there exists a control u(s): R - U such that x(t) satisfying

(1.1ab) remains in V for t > 0.

Let B = ImB. It can be proved that (A,B)-invariant subspaces may be
characterized by the property AV < V + B, or, equivalently, by the exis-

tence of a family of feedbacks
(2.1) F(V) = {F: X > U] (a+BF) V < V},

so that the closed loop system that starts V remains in V for t > 0. The

class of (A,B)-invariant subspaces contained in some subspace of X is

closed under addition and, thus, has a supremal element, see [10]. In the

sequel we denote the supremal (A,B)-invariant subspace contained in K= KerQ
. v

by V..

Y 'k

DEFINITION 2.2. A subspace R ¢ X is called a controllability subspace if

+
for any x,_,x, € R there exists a T > 0 and a u(*): R - U such that x(t)

01

given by (l.lab) satisfies x(T) = X, and x(t) ¢ R for 0 < t < T.

Clearly, a controllability subspace is also (A,B)-invariant. Given a
subspace BO c X and a mapping AL X + X, we define the subspace RO c X by
n—1B

(2.2) RO = <AF|BO> = BO + AFBO toot AL

0

It can be shown that R is a controllability subspace if and only if
(2.3) R = <a+BF|B n R> for F € F(R).

Furthermore, the class of controllability subspaces contained in some sub-

space of X is closed under addition and, thus, has a supremal element. The
*

supremal controllability subspace contained in K = KerQ we denote by RK'

It can be proved that



(2.4) R;;: <A+BF|B n V’;<> for F € g(VZ).
3. THE NEARLY SINGULAR OPTIMAL CONTROL PROBLEM

For the class of problems (1.1) we assume that
(3.1) X =K+ B.

*

Furthermore, it is supposed that RK # 0 as this property characterizes the
‘class of problems we are aiming at, while condition (3.1) is meant as a
restriction to focus our attention to a representive subclass for which

the limit problem has a non-unique solution. The present study can be seen

as the counterpart of the work by O'Malley and Jameson [8,9], where implicit-

* *
ly RK = 0. Since 8K ¢ X = K + B, we have that VK = K (see section 2). Let

k = dim K. We assume that the state space X is the span of n basis vectors

el,...,en chosen in such a way that K is the span of last k of them. The
control space U is the span of m basis vectors dl""'dm chosen in such way
that B_lel,...,B—len_K has the same span as the first n-«k basis vectors di,
so
(3.2a) K={x[xeX x =...=x =0}
and
(3.2Db) B—lK N {vlv el, v, =...= v = 0},

: R | n-K

where B_1 denotes the functional inverse of B, see [10, p.6]. By regular
mappings H: X - X and G: U+ U any system (A,B,Q,R) can be transformed

1

into a system (H_lAH, H BG, H'QH, G'RG) of the required form. Note that

H'QH and G'RG are symmetric and positive (semi-)definite.

Consequently, we may restrict ourselves to systems (1.1) of the form

oo (G060

satisfying (3.2). It is noted that because of (3.1) Bs is one to one.



For the control vector we write

()-C () ()

k

(3.4)

so that (1.1) becomes

‘is As 0 X Bs 0
(3.5ab) < >+< >< >+ >
| Xk Brs B M 0 By

u
<\s
4
with performance index

(3.5¢)

‘xs(O)

‘> st
x AN

xk(O)

kO

' 0 0 u R R' u
v 1 S ' ' S us S
2(Xs,sk) < < ) + (uS'uk) >< dtl
No N Ui Rks Rk Ui

— -1 ' -1 = _ -1 int .
where Mk = (BS Ask) RSBS Ask’ Nk (Bs Ask) Rks and Nks

-1
A ' .
(Bs sk) Rs

In the sequel we denote by A,B,Q,M,N and R the mappings of (3.5). About

these mappings we make the following hypotheses. Let G, Ck

1

t GG' = c.c' =R dDD'=M.Th
tha Q, <k . an 2Pk L en
(H3.1) the pair (A,B) is stabilizable
(H3.2) the pair (G,A) is detectable
. -1, . ca s
(H3.3) the pair (Ak BkRk Nk’BkCE) is stabilizable
: VP INY - ] :
(H3.4) the pair (Dk Cka,Ak BkRk Nk) is detectable.

It is known that under the assumptions (H3.1) and (H3.2),

mal solution with

-2 2N')x,

(3.6a) u = -¢ R—l(B'P€+e

and Dk be such

(3.5) has an opti-



where Pe is the unique positive semi-definite symmetric solution of the

algebraic Riccati equation

1 1 2 1 1

(3.6b) P (A-BR 'N')+ (A-BR N') 'Pe—e— PeBR_ B'P€+Q+€2(M—NR— N') = 0.

4. THE FORMAL LIMIT SOLUTION

Since the cost of control is small, it is expected that by some ap-
propriately chosen initial pulse the solution will tend rapidly to the sub-
‘space K. In order to analyze this behaviour we carry out the following

transformations
A A
(4.1) u = u/e, t = Te and J = Je.

Substituting (4.1) into (3.5) and formally letting € - 0 we obtain

A A
(4.2a) dx/dt = Bu
(o]
A A A A A
(4.2b) J = J x'0x + u'Ru dr.
0

We consider the feedback

A -1_ AA
(4.3a) u =R B'Px
A . .
with P satisfying
A__— A
(4.3b) PBR 1B'P = Q.

T T'
(4.4) Rl=rp-= ( s Tks) ,

we write the unique positive semidefinite solution of (4.3b) as



- /P 0 0
(4.5a) P = ( S )
" M0 0
with Pso > 0 satisfying
' =
(4.5Db) PsOBsTsBsPso Qs.

The corresponding closed loop system reads
A
dx_/dart -B T B'P 0\ /%
(4.6) s _ s s s s0 s
A T\ . AT
dxk/dT BkasBSPsO 0 X,

Integration yields

-BTB'P T

A _ s s's s0
(4.7a) xS(T) = e S0’
T
(4.7b) % (1) = - | BT B'P % (Dat
) 0T X0 k ks s sOs /9T
0
- 1 S
. T B'P = p . ‘s inite.
It is ?oted that BS sBs S0 sOQs is positive definite. Consequently, as
T > ® xs -+ 0 and xk - X0 T Eko with
(4.8) E. =BT il

kO k ks s s sO

Letting € - 0, we observe that at the initial point the solution jumps from

(%507 %0 %0~ k0’ -
there as K is A invariant for (3.5). The performance index will be zero as

) to (0,x Once the solution is in the subspace K it remains

€ > 0 for any feedback uk = Fkxk. For the purpose of selecting the ap-

propriate feedback we consider the optimal control problem for X given by

(3.5ac) with xs =0 for t > 0O:

= Akxk + Bkuk’ xk(O) = xko - &

i

(4.9ab) X0

[=<]

(4.9c) J = J xikak + 2x]'<Nkuk + uiRkukdt.

0



From (H3.2) and (H3.3) it follows that an optimal solution exists with

____1| '
(4.10) uk = Rk (BkPk+Nk)Xk

where Ek is the unique positive semi-definite solution of the algebraic

Riccati equation

= -1, _ -1 -1 _
(4.10Db) Pk(Ak—BkRk Nk) + (Ak Bk . N )! Pk K k k B P + (Mk kpk Nk) = 0,

v
"see KUCERA [4]. Thus, the optimal solution reads

-1
(B, -B R “BIP -B RNy Nt

(4.11) Xk(t) = e (xko"gko)‘

REMARK. It is not obvious that xk(t,e) > xk(t) fort 26 >0 and € +'O,

as ;k follows from the order 0(82) terms of the perfo;mance index. Since
X, = 0(g), X is also present with terms of order O(e ), so before hand

it is not clear that the system can be decomposed in the above way.

5. ASYMPTOTIC SOLUTION OF THE RICCATI EQUATION

Let us assume that the positive semi-definite solution of the algebraic

Riccati equation (3.6b) can be expanded as

© iy . P, P' |
(5.1) Pg - e 2 P(J)ej, P(J) _ (PSJ PkSJ> ]
j=0 ksj "kj “
. . . . . (0) A
Substitution of (5.1) into (3.6b) yields, by setting € = 0, P = P with

A
P given by (4.5). Equating the coefficients of the terms to € we obtain

. +A'P =P P - T =

(5.2) PsOAs As s0 slBsTsBs s0 PsOBs sBsPsl 0

and

(5.3) -P BTN' - BT -P BTBP' -P BT B'P = 0.

s0 s ks sO s sk k sO s ksl sO s sk k ki

Since PsOBs > 0 (5.3) is equivalent to



1 i 1 ipe 1 =
(5.4) 'ISNkS+T ka+T B Pksl +TskBkPk1 0.

Equating the terms of 0(62) we obtain the equation

— 1 ] []
(5.5) Prs1BsTsMks ~ Prs1BsTsk™k T Pk1Pk ~ Px1BkTksMks T Pk Bk Tk Nk

T P ! 'p! +A'P ' P P
NesTsPePrs1 "Nk ksPeTkst T ATkt T MksTkeTkTk1 T Mk kPk k1

- T 'p! -P P -P 'p’ -P T 'P
PkslBs sBs ksi kslBsTskBk k1 lekasBs ksl lek kBk k1

+ N T -N T N'-NT N' -NTN'=0.
Mk ks ks sk k k ks ks k k k 0

From (4.4) we derive that
-1 -1

= - v
(5.6) Rk Tk Tk T TkS

Using (5.4) and (5.6) we reduce equation (5.5) to

(5.7) Pkl[Ak BkRk Nk] + [Ak BkRk N']! Pyt
- P B SN RN =0
k1 kRk Ko T M T NGBy My = O
which has a unique positive semi-definite solution Pk1 = ﬁk see (4.10b).

This iteration process can be continued to yield uniquely determined coef-

.. (3) .
ficients P , J=2,3,... .
6. THE SINGULARLY PERTURBED CLOSED LOOP SYSTEM

Substitution of (3.6a) and (5.1) into (3.5ab) gives the closed loop

system

: -1
(6.1ab) <Xs>=<€_1css(e’ Cex (&) <xs>' <xs(0)> _ <st>
b e C S(e) Ckk(s) X, xk(o) %

k0



with

-1 -2 -2
C = A - T B'P - T _B'P

€ ss(s) s € BgTBFPge € Bs sk k kse’

e lc. () = e BT B'P -e °B.T B'P
ks Brs K ks s se % k°k kse’
C.(e) =-e®BTB'P, -BTN' -¢2BT.B'P. -BT.N',

sk s s s kse s s ks s sk k ke s sk k
C,.(e) = -E—ZB T B'P! -B.T N' -e-zB T B'P, -B T N'
By k ks s kse k ks ks Kk k ke "k k Kk

kk

THEOREM 6.1. Let (xs(t),xk(t)) be the solution of (6.l1ab), then

| 7x (t) (t/¢€) 0 0
(6.2) < S ‘> -{ ® -\ + < >
xk(t) k(t/e) Xk(t) xko—EkO

, A A = ,
for £t 2 0 w1th,xs, Xr X and gko given by (4.7)-(4.11).

= 0(g)

K> K>

PROOF. Since all eigenvalues of (6.la) have negative real parts, see
KWAKERNAAK and SIVAN [5, p.233], lxsl and kal have upperbounds of order
0(1). Integration of the equation for x vyields

S
e lc (o)t el (o) we-m)
SSs sSsS
+Je
0

(6.3) xs(t) = e X0 Csk(e)xk(r)dr
or
-1
. € CSS(O)t
(6.4) xs(t) = e st + 0(e).

We now introduce the dependent variable

_ _ -1
(6.5) x, = xk Cks(e)Css(e)xS.

From (6.l1a) we derive the corresponding differential equation

_ -1 -1
x = [Ckk(e)-CkS(s) Css(e)csk(s)]{xr+Cks(s)Css(e)xs}.
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From (6.3) it follows that xs is of the order 0(e) in the L1 norm, so that

-1
[c, . (e)-C, (e)C “(e)C . (e)]t
_ kk ks ss sk a -1
(6.6) xr(t) =e {xko Cks(e)css(e)xso}-+0(e).
Substitution of (6.3) and (6.6) into (6.5) yields
-1
[c . (0)y-Cc, (0)c “(0)c . (0) 1t
_ kk ks ss sk _ -1
(6.7) xk(t) =e {xko CkS(O)CSS(O)st} +
-1 e—lcss(O)t
- Cks(O)Css(O)e st + 0(e).
It is noted that
-1 _ -1_-1
(6.8) cks(O)css(O) = BkaSTS Bs ,
so that
(6.9) C.. (0) -C_ (0)c_(0)c . (0) = A -B R 'B'B -B RN
: kk “ks ss sk = By "B Ry BiPr T B Ry Ny

According to (6.4) and (6.7) X and Xy satisfy (6.2), which completes

the proof. 0
7. AN EXAMPLE

As an illustration of the method of approximating the solution of a

nearly singular system we present the following example

(7.1a) X = Ax + Bv, x(0) = xo,
J 2
(7.1b) J = x'0x + € v'Rv 4t
0
with
0 1 1 0 1 0 1 0
(7.1c) A = ( ), B = ( ), Q= ( ) and R = ( ) .
1 0 0 1 0O O 0o 1
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» Putting (7.1) in the required form (3.5) we obtain

(7.2a) x1 = ul, xl(O) = X10'
(7.2b) X, = x1+u2, x2(0) = x20'
[}
2 2, 2 2 2
(7.3c) J = [ x1-+e (x2—2x2u1+u1+u2)dt.
0
In the limit € > 0 the system jumps initially from (x10'x20) to (O,xzo);

see (4.7) and (4.8). In order to analyze the limit solution in the subspace
X, = 0 for t > 0, we consider the optimal control problem (4.9) for the
system (7.2), so

(7.4a) X. = u

2 = Yy %0 = x50
©o
-2 =2
(7.4Db) J = J X, + u, dat.
0
The optimal solution satisfies 52 = —22, see (4.10). For the problem (7.1)

the algebraic Riccati equation reads

2 -
(7.5) Q+ PA' +A'P - £ P BR 1B'P =0,
€ € € €

which has the positive definite solution

/12 &2

(7.6) P = .
€ 2 2
€ >
. -2 _-1_,
Since us = - R B Pexe’ the closed loop system reads
(7.7a) X, = —€—1V1+€2 X .
el el
(7.7b) X ., = -X

e2 g2’
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Consequently, the solution converges to the given limit solution as € = O.
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