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On a class of nearly singular optimal control problems 

by 

J. Grasman 

·ABSTRACT 

For a class of linear singular optimal control problems with a non

unique singular arc, the solution of the corresponding nearly singular 

problem is analyzed and a limit solution based on formal singular pertur

bations is derived. The result is verified by using an asymptotic power 

series expansion satisfying the Riccati equation of the nearly singuiar 

problem. 
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1. INTRODUCTION 

We consider the class of linear, time-invariant, n-dimensional dynamic

al, systems 

(1. lab) X =Ax+ Bv, x(O) = x0 

with performance index 

00 

( 1. le) J = I 2 x'Qx + E v'RV dt, 0 < E << 1, 

0 

where Q is a symmetric positive semi-definite matrix and R is symmetric 

and positive definite. We denote then-dimensional state space by X. The 

control vector takes its values in the linear n-dimensional space U and 

v ( •) : JR+ -+ U is assumed to be a piece-wise continuous mapping. In tl;tis 

paper we analyze the problem of perfect regulation for a class of cheap 

optimal control problems of the type (1.1). For E = 0 (1.1) reduces to a 

singular optimal control problem, which, as it is shown in [3], may have 

a family of solutions. As E-+ 0 the solution of (1.1) will tend to one of 

these solutions. In order to'formulate such a class of singular problems 

in terms of A,B and Q we introduce some concepts of geometric system theory 

in section 2. For a more extensive exposition we refer to WONHAM [10]. In 

section 3 we specify the class of problems (1.1) to which our investiga

tions apply and carry out some transformations in order to bring the sys

tem in its most suitable form. In section 4, a formal method for selecting 

the appropriate singular solution is presented, while in the sections 5 

and 6 we prove the correctness of the result by perturbing the solution of 

(1.1) with respect to E. It is remarked that the convergence of x satis

fying (1.1) for E-+ 0 can also be proved by analyzing its Laplace trans

form see FRANCIS [1,2]. 

2. SOME CONCEPTS OF GEOMETRIC SYSTEM THEORY 

Before giving a definition of controllability subspaces we introduce 
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the concept of (A,B)-invariant subspaces. 

DEFINITION 2 .. 1. A subspace V c Xis called (A,B)-invariant if for any 
+ 

x 0 EV there exists a control u(•): JR ➔ U such that x(t) satisfying 

(i.1ab) remains in V fort> 0. 

Let B = ImB. It can be proved that (A,B)-invariant subspaces may be 

characterized by the property AV c V + B, or, equivalently, by the exis

tence of a family of feedbacks 

(2. 1) F(V) = {F: X ➔ UI (A+BF) V C V}, 

so that the closed loop system that starts V remains in V fort> O. The 

class of (A,B)-invariant subspaces contained in some subspace of Xis 

closed under addition and, thus, has a supremal element, see [10]. In the 

sequel we denote the supremal (A,B)-invariant subspace contained in K = KerQ 

* by VK. 

DEFINITION 2 .. 2. A subspace R c Xis called a controllability subspace if 
+ for any x 0 ,x1 E R there exists a T > 0 and a u(•): JR ➔ U such that x(t) 

given by (1.lab) satisfies x(T) = x 1 and x(t) E R for O < t < T. 

Clearly,. a controllability subspace is also (A,B)-invariant. Given a 

subspace B0 c: X and a mapping AF: X ➔ X, we define the subspace R0 c X by 

(2.2) 

It can be shown that Risa controllability subspace if and only if 

(2. 3) J~ = <A+BFIB n R> for FE F(R). 

Furthermore, the class of controllability subspaces contained in some sub

space of Xis closed under addition and, thus, has a supremal element. The 

* supremal controllability subspace contained in K = KerQ we denote by RK. 
It can be proved that 



(2.4) 

3. THE NEARLY SINGULAR OPTIMAL CONTROL PROBLEM 

For the class of problems (1.1) we assume that 

( 3. 1) X = K + B. 

* Furthermore, it is supposed that RK ~ 0 as this property characterizes the 

class of problems we are aiming at, while condition (3 .1) is meant as a 

restriction to focus our attention to a representive subclass for which 

the limit problem has a non-unique solution. The present study can be seen 
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as the counterpart of the 

* 
work by O'Malley and Jameson [8,9], where implicit

ly RK = 0. Since AK c X = K + B, we * have that VK = K (see section 2). Let 

K = dim K. We assume that the state space Xis the span of n basis vectors 

e 1, ••• ,en chosen in such a way that K is the span of last K of them. 'The 

control space U is the span of m basis vectors d 1, ••• ,dm chosen in such way 
-1 -1 

that B e 1 , ••• ,B e has the same span as the first n-K basis vectors d., 
n-K i 

so 

(3.2a) K = {xix EX, x1 = = X = 0} 
n-K 

and 

(3.2b) 

where B-l denotes the functional inverse of B, see [10, p.6]. By regular 

mappings H: X + X and G: U + U any system (A,B,Q,R) can be transformed 

into a system (H- 1AH, H- 1BG, H'QH, G'RG) of the required form. Note that 

H'QH and G'RG are symmetric and positive (semi-)definite. 

Consequently, we may restrict ourselves to systems (1.1) of the form 

(3.3) 

satisfying (3.2). It is noted that because of (3.1) Bs is one to one. 
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For the control vector we write 

(3. 4) 

so that (1.1) becomes 

(3. Sab) 

with performance index 

(3. Sc) 

00 . (Q 
J = f (x' x') s · s' k 

0 0 

. (0 
2(x' s') 

s' k 
NO 

-1 -1 -1 -1 
where M. = (B A k) 'R B A k, Nk = - (B A ) 'R' and -N = (B A ) 'R • 

k s s s s s s sk ks ks s sk s 
In the sequel we denote by A,B,Q,M,N and R the mappings of (3.5). About 

these mappings we make the following hypotheses. Let G, ck and Dk be such 

that GG' = Q, eke~= R~1 and DkD~ =Mk.Then 

(H3. 1) the pair (A,B) is stabilizable 

(H3.2) the pair (G,A) is detectable 

(H3.3) the pair (~-Bk~1Nk,Bkek) is stabilizable 

(H3.4) the pair (Dk-ekNk,~-Bk~1Nk) is detectable. 

It is known that under the assumptions (H3.1) and (H3.2), (3.5) has an opti

mal solution with 

(3. 6a) 
-2 -1 2 u = -E R (B'P +E N')x € , 



where P is the unique positive semi-definite symmetric solution of the 
E 

algebraic Riccati equation 

(3.6b) 

4. THE FORMAL LIMIT SOLUTION 

Since the cost of control is small, it is expected that by some ap

propriately chosen initial pulse the solution will tend rapidly to the sub

space K. In order to analyze this behaviour we carry out the following 

transformations 

( 4. 1) 
A 

U = U/E, t = TE and J 
A = Je:. 

Substituting (4.1) into (3.5) and formally letting E + 0 we obtain 

(4.2a) 
A A 

dx/dT = Bu 

(4.2b) 
A A 

+ u'Ru dT. 

We consider the feedback 

(4.3a) 
A -1 AA 
u = R B'Px 

A 
with P satisfying 

(4.3b) 
A -1 A 
PBR B'P = Q. 

Partitioning the inverse of Ras 

(4. 4) 

we write the unique positive semidefinite solution of (4.3b) as 
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(4.5a) 

with PsO > 0 satisfying 

(4.5b) P BT B'P = Q. 
s0 s s s s0 s 

The corresponding closed loop system reads 

(4.6) 

Integration yields 

(4.7a) 
I\ 
X (T) 

s 

(
-B T B'P 0 

s s s s 

-BT B'P 
k ks s s0 

-BT B'P o' s s s s 
= e xsO' 

T 

(4.7b) ~k(-r) = xkO - I BkTksB~PsO~s(T)dT. 

0 

It is noted that BT B'P 
/\ /\s s s s0 

-1 = PsOQs is positive definite. Consequently, as 

, ➔ oo xs + 0 and xk ➔ xkO - ska with 

(4. 8) 

Letting£ ➔ O, we observe that at the initial point the solution jumps from 

(xsO'xkO) to (0,xk0-sk0 ). Once the solution is in the subspace Kit remains 

there as K is A invariant for (3.5). The performance index will be zero as 

£ ➔ 0 for any feedback uk = Fkxk. For the purpose of selecting the ap

propriate feeidback we consider the optimal control problem for ~ given by 

(3.5ac) with x = 0 fort> 0: 
s 

. 
(4.9ab) 

- - -
xk(O) ~ = ~xk + Bkuk, = xkO - skO 

00 

(4.9c) 
- I ik~xk + + ~1\;:ikdt. J = 2~Nk~ 

0 



From (H3.2) and (H3.3) it follows that an optimal solution exists with 

(4.10) 

-where Pk is the unique positive semi-definite solution of the algebraic 

Riccati equation 

(4. lOb) 

V 
see KUCERA [4]. Thus, the optimal solution reads 

(4.11) 

REMARK. It is not obvious that xk(t,£) + ~(t) fort~ o > 0 a~d £ + 0, 

as xk follows from the order O(e2) terms of the performance index. Since 
2 

x = 0(£), x is also present with terms of order 0(£ ), so before hand 
s s 

it is not clear that the system can be decomposed in the above way. 

5. ASYMPTOTIC SOLUTION OF THE RICCATI EQUATION 

-7 

Let us assume that the positive semi-definite solution of the algebraic 

Riccati equation (3.6b) can be expanded as 

(5 .1) 
00 

p = £ I 
£ j=O 

p P' 
P(j) _ { sj ksj\ 

- \Pksj pkj). 

Substitution of (5.1) into (3.6b) yields, by setting£= 0, P(O) =~with 

~ given by (4.5). Equating the coefficients of the terms to£ we obtain 

(5.2) P QA +A'P O - P lB T B'P O - P OB T B'P l = 0 s s s s s s s s s s s s s s 

and 

(5. 3) -P OB T Nk' - P OB T kNk' - P OB T B'Pk' l - P OB T kBk'Pkl = O. s s s s s s s s s s s s s s s 

Since P 0B > 0 (5.3) is equivalent to 
s s 
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(5. 4) 'I~ N' +T N' +T B'P' +T B'P = 0. 
s ks sk k s s ksl sk k kl 

Equating the terms of O(e2 ) we obtain the equation 

(5.5) 

-·N T B'P -NT' B'P' +a'P -N T' B'P -NkTkBk'Pkl ks s s ksl k ks s ksl k kl ks ks k kl 

-·P B T BI p I - p B T . B p - p B T BI p I - p B T BI p 
ksl s s s ksl ksl s sk k kl kl k ks s ksl kl k k k kl 

From (4.4) we derive that 

(5.6) 
-1 -1 

F~_ = T - T T T' 
K k ks s ks 

Using (5.4) and (5.6) we reduce equation (5.5) to 

(5.7) P [a -B R- 1N 1 ] + [a -B R- 1N 1 ]'P + 
kl k k k k k k k k kl 

-·P B R-lB'P +M_ -N R-lN' = 0 
kl k k k kl k k k k ' 

-
which has a unique positive semi-definite solution Pkl = Pk see (4.10b). 

This iteration process can be continued to yield uniquely determined coef-
. . ( j) . 

ficients P , J = 2,3, .... 

6. THE SINGULARLY PERTURBED CLOSED LOOP SYSTEM 

Substitution of (3.6a) and (5.1) into (3.5ab) gives the closed loop 

system 

(6. lab) 



with 

e:-lc (e:) = 
ss 

-2 -2 
A - e: BT B'P - e: B T B'P , 

s s s s se: s sk k kse: 

-1 
e: cks (e:) 

-2 -2 
= A. -e: BT B'P -e: BT B'P , 

ks k ks s se: k k k kse: 

=-e:-2BTB'P -BTN' -e:-2BT B'P -BT N', 
s s s kse: s s ks s sk k ke: s sk k 

.9 

Ckk(e:) = A. -e:-2B T B'P' -BT N' -e:-2B T B'P -BT N'. 
k k ks s kse: k ks ks k k k ke: k k k 

THEOREM 6.1 .. Let (x9 (t),xk(t)) be the solution of (6.1ab), then 

(6. 2) 

A A 
fort 2: 0 w:.[th xs' xk, xk and i;kO given by (4.7)-(4.11). 

PROOF. Since all eigenvalues of (6.1a) have negative real parts, see 

KWAKERNAAK and SIVAN [5, p.233], lx9 1 and lxkl have upperbounds of order 

0(1). Integration of the equation for x yields 
s 

(6. 3) 

or 

X (t) 
s 

= e 

-1 
e: C (e:)t 

ss 
t -1 I e: C (e:) (t-T) 

ss 
e csk(e:)xk(T)dT 

0 

(6.4) X (t) = e 
s 

e:- 1c (0)t 
ss 

xsO + 0 ( e:) . 

We now introduce the dependent variable 

(6. 5) 
-1 

X = xk - ck (e:)C (e:)x. r s ss s 

From (6.1a) we derive the corresponding differential equation 
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From (6.3) it follows that xs is of the order 0(€) in the L1 norm, so that 

(6.6) X (t) 
r 

Substitution of (6.3) and (6.6) into (6.5) yields 

(6. 7) 

It is noted that 

(6.8) Ck (O)C- 1 (0) 
s ss 

so that 

(6.9) 

-1 -1 
= BkTk T B , s s s 

According to (6.4) and (6.7) xs and xk satisfy (6.2), which completes 

the proof. D 

7. AN EXAMPLE 

As an illustration of the method of approximating the solution of a 

nearly singular system we present the following example 

(7. la) 
. 

Ax + Bv, x(O) X = = XO, 

00 

(7.lb) J = I x'Qx 2 + € v'Rv dt 

0 

with 

(7.1c) A= 
ro 

1), B = 
/1 ) Q = C 0) and R = ( :) \1 \0 0 0 0 0 
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Putt:i:ng (7.1) in the required form (3.5) we obtain 

(7. 2a) x1 = u1, x 1 (0) = x10' 

(7.2b) x2 = x1+u2, x2 (0) = x20' 

00 

(7.3c) J 
2 2 2 2 2 

J = x 1 + e: (x2-2x2u 1+u1+u2)dt. 

0 

In the limit e: + 0 the system jumps initially from (x 10 ,x20 ) to (O,x20), 

see (4.7) and (4.8). In order to analyze the limit solution in the subspace 

x 1 = 0 fort> O, we consider the optimal control problem (4.9) for the 

system (7.2), so 

. 
(7.4a) -

x2 co> x2 = uo' = x20' 

00 

(7. 4b) J 
-2 -2 dt. J = x2 + u2 

0 

The optimal solution satisfies u 2 = -x2 , see (4.10). For the problem (7.1) 

the algebraic Riccati equatiqn reads 

(7.5) 
2 -1 

Q + P A' + A' P - e: P BR B' P = 0 , 
e: e: e: e: 

which has the positive definite solution 

(7.6) 

Since u 
e: 

(7.7a) 

(7. 7b) 

-2 -1 = -e: R B'P x, the closed loop system reads 
e: e: 

xe:2 = -x e:2, 
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Consequently, the solution converges to the given limit solution as E + 0. 

ACKNOWLEDGEMENTS 

The author is grateful to Prof. J.C. Willems for some useful remarks 

and to Dr. J.H. van Schuppen for the clarifying discussions during the pre

paration of this report. 

REFERENCES 

[1] FRANCIS, B.A., On totally singular linear-quadratic optimal control, 

Report R-77-7 Dept. Electr. Engin. McGill Univ. (1977). 

[2] FRANCIS, B.A., Singularly perturbed linear initial value problems with 

an application to singular optimal controls, (prep~int). 

[3] GRASMAN, J., Non-uniqueness in singular optimal control, Int. Symp. on 

Math. Theory of Networks and Systems vol.3 (1979), p.415-420. 

[4] 
V 

KUCERA, v., A contribution to matrix quadratic equations, IEEE Trans. 

on Aut. Control vol. AC-17 (1972), p.344-347. 

[5] KWAKERNAAK, H. & R. SIVAN, Linear optimal control systems, Wiley

Interscience, New York (1972). 

[6] 
0 • 

MARTENSSON, K., On the matrix Riccati equation, Information Sci. 3 

(1971), p.17-49. 

[7] MOYLAN, P.J. & J.B. MOORE, Generalizations of singular optimal control 

theory, Automatica ']_ (1971), p.591-598. 

[8] O'MALLEY, R.E. & A. JAMESON, Singular perturbations and sipgular arcs, 

part I, IEEE Trans. on Aut. Control, vol. AC-20 (1975), p.218-226. 

[9] O'MALLEY, R.E. & A. JAMESON, Singular perturbations and singular arcs, 

part II, IEEE Trans. on Aut. Control, vol. AC-22 (1977), p.328-

337. 

[10] WONHAM, W.M., Linear multivariable control: A geometric approach, 

Lecture Notes in Econ. and Math. Systems vol.101 (1974). 


