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Orthogonal Polynomials and Positivity 

1. Introduction. 

by 

*) Richard Askey 

The literature of special functions is full of explicit formulas, some 

extremely useful and some of no value at all. While much of the rest 

of mathematics is no longer as constructive as it was in the eighteenth 

century, this is not true in the theory of special functions. 

Even the extremely interesting recent work on Lie theory has been 

primarily concerned with specific formulas and has concentrated on 

general methods to obtain these formulas. I have no quarrel with 

this general tendency, since it is usually possible to prove more if a 

specific formula is obtained than if nothing more than an existence 

theorem is proven. However, there are times when the specific formulas 

obtained are not useful for certain problems, while a general property, 

say the positivity of some kernel, is the essential fact that is needed. 

We will give some instances of this, at times when we can not find a 

specific formula at all and other examples when a specific formula 

can be found but the positivity must be obtained by a different 

argument. 

2. Linearization. 

We start with a problem that has examples of both of these features. 

Recall that 

cos ne cos me = 2 [cos(n+m)e + cos(n-m)e]. 

Since T (cos 8) = cos ne we have 
n 

( 2. 1 ) 
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T (x) are orthogonal polynomials and we can ask if there is a genera­
n 

lization, of(2.1) to a wide class of orthogonal polynomials. In one sense 

we can generalize (2.1) to all orthogonal polynomials {p (x)} for 
m 

(2.2) p (x)p (x) = 
n m 

m+m 
I 

k= n-m 

However, for certain problem it is essential that ak ~ 0 as it is 

in (2.1). One example is the following. Let {p (x)} be orthogonal 
n 

on [-1,1] with respect to a measure da(x), assume that they are 

normalized by pn(1)=1, and that ak > 0 in (2.2). Then if 

P(x) = sup IP (x)I and M = sup P(x) we have P2(x) < M, since 
n n=0,1,.. -1<x<1 

l ak = l I ak I = 1. 

Thus~< M so M = 1, or = 

(2.3) -1 < X < 1. 
== = 

(2.3) is a property of many of the classical polynomials, for example 

the Jacobi polynomials P~a,B)(x), a> B, a>-~, where now 

a B r -da(x) = (1-x) (1+x) ,a,B > -1. See L40,(7,32,2)j • 

The proof Szego,gives uses the differential equation satisfied 

by P(a,S)(x). This proof will not extend to other orthogonal polynomials 
n 

since it is well known that orthogon~l polynomials in general do not 

satisfy a differential equation that is simple enough to deal with. 

In fact, essentially the only orthogonal polynomials that satisfy a 

reasonable differential equation are the classical polynomials, 

Jacobi polynomials and their limiting cases, Laguerre and Hermite 

polynomials, Q 'fl . However, there are a number of other special 

orthogonal polynomials which are of interest and the inequality (2.3) 

is a useful inequality to have. If we can obtain (2.2) for a fairly 

general class of polynomials we will have some new instances of (2.3). 

There are a number of other applications of (2.2) with ak ~ O. 

After we state and prove a theorem which implies ak ~ 0 in (2.2) we 

will mention some of these applications. 

For the time being we will normalize our polynomials by 



p (x) 
n 

(2.4) 

n 
= X + • • • 
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Then if m = 1, (2.2) becomes 

p 1(x)pn(x) = p 1(x) + a p (x) + a p 1(x). n+ n n n n-

Favard [1 ~ and Shohat [)fl have shown that a necessary and sufficient 

condition that {p (x)} are a set of orthogonal polynomials is that 
n 

p 1(x) = x + c, c real, a real, and a > 0. If (2.2) is to hold with 
n n 

non-negative coefficients we must have an> 0, The following theorem 

gives a sufficient condition. 

Theorem 1. Let p0(x) = 1, p1(x) = x + c, c real, 

p 1(x)pn(x) = Pn+ 1(x) + anpn(x) + Snpn_ 1(x). Then if an> 0, Sn+ 1 > o, 
~n+ 1 > an, 6n+2 > Sn+ 1, n = 0,1, ..• , we have 

(2,5) 

with ak ~ 0. ,m,n -

p (x)p (x) = n m 

n+m 
I 

k= n-m 
ak pk(x) ,m,n 

There is a more general theorem for difference equations which implies 

Theorem 1. 

Theorem 2, Define b. by b. k(n) = k(n+1) + a. k(n) + a k(n-1). n n n n 

Let a(n,m) satisfy the equation 

with 

then 

b. a(n,m) = b. a(n,m), 
n m 

a(n,0) = a(0,n) = a(n), 

a(n,-1) = a(-1,n) ~ 0. 

a(n,m) > 0, n,m = 0,1, ••. , 
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Theorem 1 follows from Theorem 2 when a(-1,n) = O, 8n+ 1 > 0 and 

an> O,n = 0,1, ••• , The proof of Theorem 2 is identical with the proof 

of Theorem 1 that was given in [4] , but it is so simple and the 

method is useful in other problems so we repeat it here. 

By synunetry it is sufficient to prove a(m,n) > 0 form< n. We 

assume that a(k,n) ~ 0 fork= 0,1, .•• ,m and consider a(m+1,n). By 

(2.4) we have a(m+1,n)+a a(m,n)+S a(m-1,n)=a(m,n+1)+a. a(m,n)+S a(m,n-1), 
m m n n 

so 

(2.6) a(m+1,n)=a(m,n+1 )+(a. -a. )a(m,n)+(B -B )a(m,n-1 )+S [ a(m,n-1 )-a(m-1,nTI. 
n m n m m 

If we can show that a(m,n-1)-a(m-1,n) ~ 0 we are done, since all the 

terms on the right are then non-negative. But (2.6) is equivalent to 

a(m+1,n)-a(m,n+1 )=(a. -a. )a(m,n)+(S -B )a(m,n-1 )+S [a(m,n-1 )-a(m-1 ,nD, 
n m n m m 

and the assumptions a(O,k) ~ 0, a(-1,k) ~ 0 show that 

(2,7) a(m+1,n) > a(m,n+1) > •.• > a(O,n+m+1) > O. 

This completes the proof of Theorem 2 and also shows why this theorem 

is not able to give us all the results that are known for the classical 

polynomials. Not only have we shown that a(m,n) ~ 0 but we have shown 

that a(m,n) has a type of monotonicity given by (2,7). This property is not 

not always satisfied for the classical polynomials. It would be of 

real interest to find a theorem which would give us the conclusion 

of Theorem 1 for all the classical polynomials or even the conclusion 

in the easier case a. =O. One possible method is to normalize the 
n 

polynomials differently so that a different equation is satisfied 

by the coefficients. Then these differently normalized coefficients 

may be monotone and a theorem of the sort we just proved may be 

possible. One other possible theorem is a comparison type theorem, 
• 0 1 0 1 23 T'. since we know the theorem when µ1 = 2 ; µn = 4, n = , , ••. his is 

1-n case p (x) = 2 T (x). There may be a maximum theorem for equations 
n n 

that are in some sense between this equation and those of Theorem 2. 

the 

A number of examples of Theorem 1 for specific polynomial sets are given 

given in [JJ. These include Jacobi, Laguerre, Hermite, Charlier, and 

Meixner polynomials. In all of these cases except Jacobi polynomials 
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we obtain non-negativity of the coefficients for all possible values 

of the parameter. In the case of Jacobi polynomials Theorem 1 applies 

to a wide class but it does not tell the whole story. Gasper, [2fil ,@:TI, 
has proven the following result. 

Theorem 3, Let P (a,S)(x) be 
n 

the Jacobi polynomial, i.e. the 

respect to (1-x)a(1+x) 8 ,normalized by orthogonal polynomials with 

P(a,S)(1) 0 Th > • en 
n n+m ) 

, p(a ,8 (x) 
l .. ak m n k 

k= Ln-ml ' ' 

with ak ~ 0 if a ~ 8 >-1 and ,m,n -

(a+8+1)(a+S+6)(a+8+4) 2 ~ [1a+8+1) 2 -7 (a+8+1) -1±] (a-8) 2 , 

and some ak < 0 if this condition fails to hold. For a< 8 there 
,m,n ( ) 

is a similar result if the polynomials are normalized by P a,S (-1) > O. 
n 

The region in Theorem 3 includes a> B,a + 8 + 1 ~ O, while in 

Theorem 1 it only implies this result for a region slightly larger 

rhan a+ 8 - 1 ~ 0, In particular for a= 8 Theorem 1 does not imply 

the classical result for·-½< a< f. A necessary condition for Theorem 

1 to hold if ak = 0 is easily seen to be 

(2.8) ·e + e 1 + n n+ + 8 - 8 -n+m 1 - 8 > o. m= 

This is obtained by computing the coefficient of p + 2(x) in (2.5), nm-
However (2.8) is far from sufficient. If 

1 1 1 81 = 2 -€.-; 82 = 4 +€-;Sn= 4, n = 3,4, •.• , 

1 then the coefficient of pn(x) in p4(x)pn(x) is negative for O < € < 2. 
The interest in this example is that it has a large number of positive 

successive differences. For P~a,a), - ½<a < f, Sn has positive successive 

differences of all orders and so is a moment sequence on [0,1) , 

1 
(2.9) 8 = J tndµ ( t), dµ > 0, n = 1 ,2,. • • • 

n 0 
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I know of no examples of B given by (2.9) for which the necessary n 
condition (2.8) holds and yet the conclusion of Theorem 1 fails. This 

suggests that polynomials w~th an= O, Bn given by (2,9) are worth 

some serious study. They remind us of Fejer's generalized Legendre 

polynomials. A summary of his work on them and other results of Szego 

is given in Szego [4tfl". 

We give one more polynomial set that satisfies the assumptions 

of Theorem 1. In a series of short notes Pollaczek has defined a number 

of very interesting classes of orthogonal polynomials which generalize 

the classical polynomials and have very singular behavior, [1 fl , [_4q}. 

The easiest generalization of the ultraspherical polynomials of this 

type is given by 

A A (n+2A-1)n A 
x Rn (x;a) = Rn+1 (x;a) + 4(n+Ha) (n+A+a-1) Rn-1 (x;a) ' 

which reduces to the ultraspherical polynomials when a= O. We have 

B > o, n = 1,2, n ... ' for A > 0, A + a > 0; a = 0, A > -~; or 

-~<A < 0,-1 <a+ A< 0, An easy computation shows that 

Bn+1 ~ Bn if a~ O, a~ (A-A2 )/(1+A), Thus we have 

(2.10) 
A < A < < > > 2 

IR (x;a)I= R (1;a), - 1 = x = 1, a O, a= (A-A )/(1+A), 
n n 

A> a. 

A > 
(2.10) also holds for Rn(x;a) for O <A< 1, a= 0 as will be shown 

in [5] using a theorem that we will state in the next section. 

We mentioned before stating Theorem 1 that there is sometimes a 

specific formula connected with this problem. For the classical poly­

nomials this is true. In particular, for Jacobi polynomials the 

coefficients are Appell generalized hypergeometric functions of two 

variables evaluated at x = y = 1, [3:fl. Unfortunately it seems to be 

impossible to use this formula to prove the positivity. However there 

are a number of cases where we have not obtained explicit formulas, 

for instance for Charlier, Meixner, and Pollaczek polynomials. 

This should be possible at least in the Charlier case, 
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The most interesting application of Theorem 1 is to the construction 

of new Banach algebras and then the applications that can be made of 

this Banach algebra structure. We get a Banach algebra structure if 

our polynomials are orthogonal on a compact set, which it is if and 

only if la I ~A, 0 < S ~ B. If we also assume monotonicity as we 
n n 

did in Theorem 1 then this set is a finite interval [~.;fil, See IJ 5]. 
We have p (b)>O since all the zeros of p (x) lie in (a,b) and 

n n 
p (x) = r1 + ••• is positive for x large. Let r (x) be these polynomials 

n n 
renormalized by r (b) = 1, Define the Fourier coefficient c by 

n n 

en = j f(x) rn (x)da(x) , 
a 

where da(x) is the measure for which r (x) are orthogonal. Then n 

f(x) .-v I c h r (x) n n n 

where 
1 fb 2 h~ = [rn (x)] da(x) 

a 

Define the generalized translate of c by n 

rb 

cn,m = j a f(x) r (x) r (x) da(x) 
n m 

Then c 0 n, = c and c n n,m 
> 

0 if C 
n 

00 

> 1 
0, Define the 1 norm by 

and the convolution by 

Then 
00 

II dn II 1 
< I h 

n=O n 

where ak = 0 if k ,m,n 
00 

< I 

d = 
n 

00 

\ 
l 

m=O 

.,, m + 

= I 
n=O 

le lh n n 

00 

I 
m=O 

c b h , n,m m m 

00 

lb lh I 
m m k=O ak I cklhk ,m,n 

n, m > n + k, or n > m + k, 

00 00 

\ lb ih L a h l I I dn II 1 
k=O 

lcklhk 
m=O m m n=O k,m,n n 

since 
> 

a = o. k,m,n 

Then 
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Also 

00 

rk(x) r ( x) = I a h r (x) 
m n=O 

k,m,n n n 

so 
00 

I a h = 
n=O 

k,m,n n 

Thus 

lldnJl 1 < 
II en 11 1 llbnl 1 1 

Similarly we can show 

II dn 11 00 

< 
II en 11 00 I lb 11 1 = n 

where 

II dn 11 00 
= sup Id I , n 

Then we not only have a Banach algebra, but a convolution algebra in the 

sense of O'Neil [3'.[] when we define 1 
00 -

I I dn 11 P = [nio I dn IP hJ P 

See LJE~ and [8] for an application to Toeplitz determinants. 

A stochastie application of this result for ultraspherical polynomials 

is given by Kennedy @~ . This can be extended to Jacobi polynomials 

using Gasper's result mentioned above. 

One lafit remark is to repeat a remark made in Q+J • The assumptions 

in Theorem ·1 are implied by the following condition on birth and death 

processes. ~~he probability of a transition to the right at the stage 

n + 1 is at least as great as the probability of a transition to the 

right at stage n and the same for movement to the left. This is a very 

natural assumption to make on a birth and death process, i.e. the larger 

the population the more chance of a single birth or death, and it 

would be interesting to see if the conclusion has any probabilistic 

meaning. See [2ff, [2~ for other very interesting positivity properties 

connected with orthogonal polynomials that were inspired by probalistic 

consideraticms. 
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3. Other positive coefficient expansions. The previous problem can be 

thoughtof as trying to find interesting functions in the cone 
00 

I a p (x), a ~ O. There is another problem that can be thought of 
n=O n n n 

in this way. If {g (x)} and {p (x)} are two sequences of orthogonal 
n n 

polynomials we want to know when 
n 

(3,1) g (x) = I a pk(x), a ~ O. 
n k=O k,n k,n 

There are many instances of this, both for the classical polynomials 

and for some non-classical polypomials, but there are no really 

satisfactory answers to the general question. 

For the classical polynomials the following are known. 

( 3,2) 

( 3, 3) 

(3,4) 

(3,5) 

(3.6) 

g (x) p (x) 
n n 

La+µ (x) 
n 

La(x) 
n j.l > o, 

p(a+µ,a+µ\x) 
n 

p(a,a\x) 
n 

j.l > o, 

p(a+µ,S)(x) 
n 

p{a, S \x) 
n j.l > o, 

p(a,S,.1 \x) 
n 

p(a,S)(x) 
n a> -1, 

p(a,S)(x) T (x) = P(-L-;) (x) 
n n n 

> > 
a = s 

a> -1, 

a > -1, 

a,S > -1, 

s > o, 

-;; > , 
a = S+1 ,-2>S> 

For J.l = 1, 2, •.. , (3,2), (3,3), (3,4) are special cases of a 

theorem for general polynomials [2]. The following conjecture was 

given in [2] and we are still no closer to having a proof or a counter 

example. 

Conjecture. Let w(x) be a measure on ~,fil, a finite, {p (x)} n 
polynomials orthogonal with respect to w(x) on ~,fl normalized by 

p (a)> o. Let pJ.l(x) be the polynomials orthogonal with respect to 
n n 

(x-a)J.l w(x) on [a,~ normalized by pJ.l(a) > O. Then 
n n 

pJ.l(x) = 2 ak pk(x), ak ~ 0 • 
n k=O ,n ,n 

-1. 
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Forµ= 1, 2, ... , this follows from two results of 

Christoffel [4o]. To add one more piece of evidence to the plausibility 

of the conjecture we remark that forµ= 1, the a are not only k,n 
positive but are totally positive. This follows since they are just 

• < 
en<\ ekn with ekn = 1, k = n, ekn = O, k > n, and such sequences 

are totally positive [?6]. As Karlin has remarked [25] often kernels 

connected with orthogonal polynomials are sign regular of order at 

most two, but for the classical polynomials they can be sign regular 

of a much higher order. Hopefully a similar phenomenon is at work 

here. For Laguerre polynomials the coefficients a.. are sign regular 
K,n 

of some positive order and forµ= 1 and general orthogonal polynomials 

we have total positivity. Hopefully for generalµ> 0 and general 

orthogonal polynomials we still have positivity. It may be possible 
1 to solve the problem whenµ= 2 , but the general case seems to be 

very hard. 

Outside of actually computing ak the only other published result ,n 
that I know that gives the nonnegativity of ak is Ill, where we ,n 
observed that Jacobi polynomial expansions with non-negative coefficients 

are closely tied up with the question of when one projective space can 

be isometrically imbedded in a different projective space. For example 

it was shown that 

(3,7) p( 2a+1 ,O) (x) = 
n 

I a Pk(a,-~{x) ' 
k,n k=O 

> 
a = O, k,n 

a = 0, ; , 1 , For other examples see [3] . There was a 

very plausible conjecture set forth in [3] about when 

(3.8) > 
a O. k,n 

The conjecture was o ~ a and (y+1)/(c+1) ~ (a+1)/(S+1). 

For y + 1 < (a+1)(c+1)/(B+1) it was shown that a0 , 1 < o. Unfortunately 

the conjecture is false and needs to be modified in the following 
> 

we;y. We must also assume y = c + 2a - 2S. This follows from an asymptotic 

formula for 3 F2(-n, n+a, b; c,d; 1) of Fields [2.i] and the expression 

for ak found by Feldheim 0~, DII. We omit the calculation since ,n 
it adds nothing to our understanding of the problem. 
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Even if this new conjecture is true we are still a long way from 

understanding the complete problem (3,8). This is because of the 

isolated results (3.5). If (y,o) = (a, S-µ) andµ is an integer we 
> 

have ak O, but ifµ is not an integer it is easy to check that ,n 
some ak < 0. Thus if the conjecture is true then there are also some ,n 
positive results for o < s. I don't begin to understand the complete 

answer for o < S, and the best conjecture I can put forth is to add 

the points (y,o) with o <Sand (y,o) to the right of the line through 

(a,S) with slope minus the slope of the line through (a,S) and (-1,-1). 

But I don't have enough faith in this to conjecture it. What ever the 

answer turns out to be it will have interesting implicatations for 

isometric imbeddings of projective spaces. Details will be supplied 

when some results have been obtained. 

There are a number of unpublished results which I would like to 

mention and refer the reader to the forthcoming papers for the details. 

For Jacobi polynomials G. Gasper has shown (3.8) holds if S ~ a 
> < < 

and (y,o) lies in the region y = a, S + a - y = o = S + y - a. 

If the above conjectures are true then the correct region is larger 

that this. 

M. W. Wilson has proven the following theorem ~9 . 
Theorem 4 . Let g (x) be orthogonal on E with respect to dS(x) and 

n 
p (x) with respect to da(x). If 

n 

IE pn(x) p (x) dS(x) 
< 

m 

then n 
g (x) \ ak,n pk(x) = l n k=O 

o, n + m, 

> 
a = o. , 
k,n 

It is surprising that a result of this type can be used for anything, 

but Wilson has used it very effectively to investigate a new set of 

discrete polynomials which approximate to Legendre polynomials both 

quantitatively and qualitatively better than the classical discrete 

Tchebycheff polynomials ~!TI . 
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These new polynomials seem to be very interesting objects and are 

worth a good deal more investigation. The same is true of the Pollaczek 

polynomials. Much of the time spent on obtaining new but useless formules 

for many special functions could be better spent exploring some 

of the interesting special functions that have not been throughly in­

vestigated, primarily because they do not lend themselves to simple 

explicit formulas. As an example, the dual convolution structure that 

was discussed in section 2 needs to be proven for all of the Pollaczek 

polynomials for which it is true, as well as for the associated poly­

nomials which we will discuss next. 

We close this section with a theorem which comes from the 

recurrence formulas. 

Theorem 5. Let P (x) and 6n (x) satisfy 

X 6n(x) 

X p (x) n 

Then if 

( 3 .9) 

we have 

= 

= 

n 

gn+1(x) 

Pn+1(x) 

a , 
n 

n 

+ y 
n 

g (x) + o 
n n 

+ a P (x) n n 

< 
0k+1 = 

+ B n 

gn_,(x), 00 = o, 

pn-1(x), Bo = o, 

k=0,1, ••• ,n, 

> 
g (x) = l ak,n pk(x), a 0 k,n n k=O 

0 > o, n 

B > n o, 

n = 1,2, 

n = 1 ,2, 

See [?] for the proof and a few applications. There are a few 

classical results contained in this theorem (but not as many as I would 

like) but there are a few results that follow from it that I can not 

prove in any other way. We give one typical application. 

Consider the associated polynomials to the Legendre polynomials. 

They are usually written P (v,x). They satisfy 
n 

(n + v + 1) Pn+ 1(v,x) - (2n + 2v + 1)x Pn(v,x) + (n+v)Pn_1(v,x) = O, 

P_ 1(v,x) = O, P0(v,x) = 1. Normalizing as above we have 

x R (v,x) 
n 

(n+v)2 
= Rn+1(v,x) + 2 

(2n+2v) -1 

... ' 
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By the theorem of Favard and Shohat these polynomials are orthogonal 

for v >-~.When v ➔ 00 we have 

R (v,x) = c U (x) = k P (~,~)(x) 
n n n n n lim 

for some c , k. The functions P (1,x) are classical and the formula 
n n n 

n 
P (1,x) = I ak,n Pk(x), ak some simple function, 

n k=O ,n 

is due to Christoffel. See Hobson [21±]. Recently Barrucand and Dickinson 

[1 o] calculated the coefficients in 

(3.10) P (v,x) = 
n 

We spare the reader the explicit representation for ak since it involves ,n 
the product of 14 gamma functions which are functions of k and n. In the 

> 
cases v = 1 and v = 00 it was known that ak = 0 and a short calculation ,n 
from their formula shows this is true 1'or v > O. This raises the natural 

question of the coefficients in 

n 
P (v,x) = l a Pk(µ,x). 
n k=O k,n 

> 
Theorem 5 gives us ak = 0 for v > µ > In addition to other 

,n 2 . . 
results of this type given in [5] there are some c_onJectures given there 

that do not follow from Theorem 5. 
One possible generalization of Theorem 5 was suggested to me in a 

recent letter from Barrucand. In the special case a = y = 0 it 
> n n 

should be sufficient to assume S = o • Unfortunately this conjecture 
n n 

is false. However the conditions (3,9) are clearly too strong and it 

should be possible to replace them by some weaker condition, possibly 

on Bn = s1 + .•• +Sn' Dn = o1 + ••• + on. Again this theorem proves 
> 

too much, since not only is a = 0 proven, but again a type of monotonicity k,n 
is proven.What is needed is a new method that will prove that numbers 

are positive without proving that they start out positive and stay positive 

since they increase. 
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In addition to the applications to projective spaces given in [3], 
theorems of this type can be applied in other fields as well. Rivlin 

and Wilson give an application to numerical analysis [36_]. They invest­

igate to what extent the numerical analyst's faith that Tchebycheff 

polynomials give the most rapidly convergent series is a fact and to 

what extent it is a myth. It is not true in general (even if it is a 

useful myth) but they use theorems of the above sort to show that it is 

true in a large class of Jacobi polynomials for a fairly wide class of 

functions. 

This question can also be asked for the classical discrete orthogonal 

polynomials. Charlier, Meixner, Hahn, and also for the q polynomials 

of Hahn. For the Charlier polynomials the formula is well known and 

some formulas for the Meixner polynomials have been obtained by P.A. Lee 

in his so far unpublished Ph.D. disseration at Monash. 

His results imply that 

m (x; S, c) 
n 

• > if S =a> 0 and O < b 

m (x; S,c) • 
n 

= 
n 
I a 

k=O 
< = C < 

~(x; a ,b) 
> 

' a 0 k,n k,n 

1. See [1i1 for the definition of 

I know of no results for the q polynomials but it probably isn't 

too hard to obtain some. In a letter that I have just received Gasper 

gives a new recurrence relation for a 3 F2 and uses this to prove the 
> > conjecture given above for Jacobi polynomials for y + o = O, a= s. 

The most interesting problem of this sort now seems to be to find a 

better theorem than Theorem 5, 
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4. Integral representations. Any harmonic analyst learns to look for 

the dual of any problem he considers. Both of the above problems can 

be dualized for the classical polynomials and are both quite old. There 

are probably not extensions to general polynomials, but there are 

generalizations to solutions of Sturm-Liouville equations. We will 

not go into this very interesting aspect of the problem. 

The second problem dualizes to 

( 4. 1 ) g ( X) = J p ( X) dµ ( y) 
n n x 

with some normalization of p (x) and g (x) and dµ (y) a non-negative n n x 
measure on the spectrum of p (x). In particular Dirichlet proved that n 

p(O,O\x) 

C 
p(-~,-~)(y) 

> (4.2) n n 
dµx(y) ' dµx(y) 

p(O,O)(1) 
= 

P(-L-~)(1) 
o, 

n n 

and Mehler changed it to give 

p(0,0)(x) 

=C 
p~-~,~)(y) 

(4.3) n 
dµx(y) dµx{y) > 

p(O,0\1) p(-L~)(1) ' = o. 
n n 

Mehler's formula is usually given as 

(4.4) 
, r,2-1 J e •./ 

P (cos0) = '-
n ~ 0 

cos(n+~~ 
1 

(cos<j>-cos0) 2 

and Dirichlet's result is seen to be of the form (4.2) only in 

retrospect. Bateman seems to have been the first to find a simple 

general theorem. 

(4.5) 

which is 

P(a.+v, S-v) (x) 
n = r(a.+v+1) 

r ( a.+ 1 ) r ( v ) 

\) > o, 

v-1 
(y-x) dy, 

(4.6) > 
0 , v > 0, 13 - v > -1 
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See [7] for this, as well as a number of other integrals, some of 

which we will mention again. Also some applications are given there. 

Somewhat earlier Gegenbauer found an integral for P (a,a)(x) which 
n 

can be used to prove that 

p(a,a)(x) 

( 
p(-~,-~)(y) 

> (4.7) n n dµx(y) dµx(y) 
p(a,a) (a) 

= ( i 1 ) = O,a > 
p -2,-2 (1) 

, 
n n 

See Feldheim @q}. Feldheim was the first to realize the importance 

-~ 

of Gegenbauer's integral and he found an interesting generalization 

of it. Unfortunately he was killed in the war before he could publish 

it, or before he found a better formula which does not suffer from the 

defects of his formula. Feldheim's formula was finally published l}q], 
but in the mean while Vilenkin rediscovered it ~ 1]. This formula 

is very useful since it can be used to prove 

(4.8) 
1 p(a,a\ ) 
f n y 

= ---- dµ (y), _1 p(a,a)( 1) x 
n 

\) > o. 

Feldheim gives two equivalent forms of his formula. One is far too 

complicated and the other has a singularity in the measure when 

y = 0 (or~= n/2) in his notation). Now there is nothing special about 

y = 0 for P~a,a)(y) [the distinguished points are y-= + D so there 

must be another formula that implies the Feldheim-Vilenkin formula 

which does not have these defects. This formula is given in [7] and is 

(4.9) 

(4.10) 

( 1-x)a+µ 

( 1+x)n+a+1 
2 

implies 

p(a+v,8~x) 
n 

p(a+v,8~ 1) 
n 

P(a+µ,B)(x) r(a+µ+1) 1 P(a,B) _n_~-=-- f ~n,__(_) _______ _ 
P(a+µ,B)(1) r(a+1)r(µ) x P(a,B 1) 
n n 

C 
p(a,8)(y) 

> n dµx(y) , dµ (y) = 0, v > o. = 
p(a,8)( 1) X 

n 

This was not pointed out in [7] because I was unable to prove it then. 

. 
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Since then Gasper has called m:y attention to a paper of Bailey O iJ in 

which he calculates the Poisson kernel for Jacobi series. Here is an 

instance where an explicit formula is very useful, since the positivity 

of the Poisson kernel is obvious from his formula. Using this and an 

argument that is the same as in Corollary 1 in [f] we get ( 4. 10) from 

(4,9) • 

Combining (4.10) and (4.6) gives 

(4.11) 

p(a+v,B-µ)(x) r1 

p(a+v,B-µ)(,) = J_, 
n 

Since there is the result (4.8) going up the diagonal a= B there is 

probably a result withµ< 0 in (4.11). By analogy with the dual 

case I would conjecture it is the same region that I conjectured in 

[fj. Integrals seem to be more regular than series so this conjecture 

probably does not need the modification we give in section 3, Unfortuna­

tely the measuredµ (y) now has a series representation rather than 
X 

an integral representation and it seems rather hard to settle any of 

these cases. The only case I have worked out is 

B =a+ 1 , o = y + 1. This is proven using (4.8) and 

(4.11) 

The result is 
P(y ,y+1) (x) 

(4.12) _n;;;......-~-
p(y ,y+1) ( 1) 

n 
=C 

(2n+a+B+2) (1+x) P(a,B+ 1 )(x) 
= ------- _,;;;;;n ____ _ 

2(6+1) p ( a , a+ 1 ) ( -1 ) 
n 

dµ (y) ~ 0, 
X 

Y > a. 

Using the same type of formula to go in the other direction, 

p(a,B\x) p(a,B)(x) (2n+a+B+2) ( 1-x) P(a+1,B)(x) 

(4.13) n n+1 n 
p(a,B)(,) p(a,B)(,) 

= 
P ( a+ 1 , B ) ( 1 ) 2( a+1) 

n n+1 n 

gives some evidence that 
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(4.14) 

p(a+1,a)( ) 
n y 

p(a+1~a) 
n ( 1) 

y > a 

fails, but I have not verified this yet. The easiest case to do should 

be a= -i, y = i. 

The result for Laguerre polynomials is well known 

(4.15) 
La+µ(x) 

xa+µ .....:;;.n___ r(a+µ+1) 
La+µ ( 0 ) = r ( a+ 1 ) r ( µ ) 

n 

and this is clearly 

(4.16) 
La( ) 

foo n y 

o La(o) 
n 

X f (x-y) µ-1 
0 

a L~(y)dy 
y --- , µ > o. 

> 

La(O) 
n 

o, µ > o. 
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5. Convolution structures. The analogue of the first problem is even 

more interesting, being an integrated form of the addition formula 

in the uJLtraspherical case, an open problem which has interesting 

consequences in the Jacobi case, and containing a recent theorem of 

Sarmanov and Bratoeva in the Hermite case. 

This last result is probably the most striking so we start with a 

statement of it. An old classical result of Mehler is the positivity 

of the Poisson kernel for Hermite series 

n H (x) H (y) 00 r 
I n n 

2n I n=O n. 

O. V. Sarmanov asked the question 

( 5. 1 ) 

Clearly if 

(5.2) 

00 

I 
C H (x) H (y) 

n n n 

n=O 

C = ( 1 
tndµ(t), 

n J_1 

> 
= o, -oo < x, y < oo, -1 < r < 1. 

of when 

> o, -oo "- x, y < 00 

dµ(t) ,; O, 

then (5.1) holds. He showed that conversely if (5,1) holds for 

- 00 < x, y < 00 and I c2 < 00 then 
n n=O 

r 1 
C = J tn dµ(t). 
n -1 

We will show how this is a natural result to suspect by recalling 

the same result for some other orthogonal expansions. Then we give a new 

proof the corresponding result for Laguerre series and show how the 

Jacobi problem can be attacked. And we close with a weak type of 

convolution structure for some Laguerre series. 

The easiest result is for cosine series. Let 

(5.3) 
00 

where I 
n=O 

f(e,cp) 

2 
C n 

< 00 

C oo 

= _Q + 1 C COS n8 COS ncj> 2 l n 
n=l 

Assume f(e,cp) 
> < 

0 for 0 cp 'e 
< 

TT • Then 



f(e) = f(e,o) 

(5.4) C n 

> 

C co 

= / + I 
n=l 

1 r f(8) = -
1T 

0 

20 

C 
n 

cos n 8 

cos n 8 d 

> where f(e) = o. Conversely if f(e) = 

by (5.4) then 

= f(e+p) + f(e-p) 
2 

> 

e 

o, 

0 and so 

2 is defined f ~ L ( 0 ,rr ) and C n 

00 

I 
n=l 

> 
c cos n8 cos n ~ = 0. n 

There is a difference in the conditions (5.2) and (5,4) and it is a 

natural que:stion to see if a result can be found which connects them. 

We give a result for ultraspherical series which formally reduces to 

the cosine result when A ➔ 0 and to the Hermite series result when 

A ➔ co, 

For ultraspherical series, and in particular for cosine series, we 

can remove the L2 condition if we work with distributions. Since it 

takes very little more work and may be of some interest, we give this 

slightly more general theorem. 

Let CA(x) be defined by 
n 

00 

(1 - 2xr+r2 )-A = l 
n=O 

CA(x) 
n 

These polynomials satisfy 

and 
A( _ r(n+2A) 

Cn 1) - f(2A) f(n+1) 

n r , A > 0. 

21- 2A 1r r(n+2A) 

(r(A)) 2 (n+A) r(n+1) 

If f 1 2 A 1 I f(x) I ( 1-x ) - 2 dx < 00 we define 

where 

-1 

a = I 1 
n -1 

CA(x) 
f(x) _n __ 

CA(1) 
n 

d \\ (x) 

0 
nm 



Then 
00 

f(x) - I 
n=O 

a 
n 

21 

(nH) 
A 

dt, 

A 
C ( x). 

n 

CA satisfies the differential equation 
n 

d [(1-x2 )A+~ £.... CA(x)] +n(n+2A) CA(x)( 1-x2 /'-~ = 0. 
dx dx n n 

If f(x) is infinitely differentiable and f(k)(±. 1) = 0 for all k then 

a standard argument (integrating by parts) gives 

-k 
a = O(n ) , 

n 
k=1,2, ... 

Parseval's theorem for ultraspherical series is 

where 

r 1 

J f(x) g(x) 
-1 

'1 

bn = L, g(x) 

00 

\ 
l 

n=O 

a b (n+A) r(n+2A)n 
n n 

22A-1 l}'(A+1 )]2 r(n+l) 

Following Bochner [1 i.) we define 

1 r l , r-2 ,--2 2 A-1 
f(x,;y) = --- J f(x y+ \J1-x \J 1·-y z)(l-z) · dz. 

c, _1 _., 
/\ 2 . 

It is clear that f(x;y) .:::._ 0 if f(z) .:::._ O, -1 .::::._ z ::._ 1. Also from the 

addition theorem for ultraspherical polynomials 

= 

A 
C ( X ;y) 

n =---
c,_ , 

/\ 2 
(, 
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Thus 
00 

f(x;y) ~ L' a (n+A) c\x) c>-( )/C).(1). n ). n n Y n 
n=O 

We define a distribtuion T as a linear functional on the space 

of C00 functions f(x) with f(k)(+1) = O, k = O, 1, ••• by Parseval's 

theorem. If bn is a sequence of real numbers satisfying I bn] ~ A nk 

for some A and k then define 

00 

Tf = l 
n=O 

a b (n+A) r(n+2).) TI 
n n 

This series converges since a = O(n-j) for every j. 
n 

We call a distribution non-negative if Tf .:::._ 0 for all f6-~, 

f(x) ~ O, -1 .::_ x ~ 1. We define the generalized translation T of T y 
as the distribution defined by 

00 a b (n+).) r(n+2>.)TI 
'i' n n T f = l 

Y n=O 22).- 1 [r().+1 )] 2 r(n+1) 
= Tf(. ;y). 

Then it is clear from the above that T > O, -1 < y < 1, if and only 
y- - -

if T 1 = T > O. 

If the distribution T comes from a measure, i.e. 

then T > 0 

sets E. 

Thus if 

(5.5) 

if and 

f(x,y) = 

,1 CA(.}l;) 
b 

j_1 
n dµ{x) = n CA( 1) ' 
n 

only if dµ > o, i.e. JE dµ(x) > 0 for all Borel 

00 

'i' a {n~).) c''(x) CA(y)/CA( 1) > O, -1 < x, Y < 1 
l nl\ n n n - -n=O 

then a are the Fourier-ultraspherical coefficients of a non-negative 
n 

function. If other assumptions are made on a then there is a non­
n 

negative function f which gives the a by n 



(5.6) a = 
n 

23 

f 1 CA(x) 

-1 C~( 1) 
n 

f(x) dv(x). 

If we let A ➔ 0 in (5.5) and (5.6) we obtain the cosine result. This 

follows from 

CA(cose) 
(5.7) lim n = cos ne 

A➔O CA(1) 
n 

and 

(5.8) lim n+A CA(cos e) = t ~ cos n 1 , 2, A , n = ... 
A➔O 

n o. n = 

If we let A ➔ 00 and use 
C;\(x) 

n (5.9) lim n = X 
;\➔00 CA(1) 

n 

and n 
- 1 

(5.10) lim A 2 GA ( XA - 2 ) = H (x)/n! 
A➔00 

n n 

we formally obtain the Sarmanov and Bratoeva result. 

Now consider the corresponding problem for Laguerre series. The 

L:(x) are defined by 

(5.11) 

They satisfy 

00 

l L0 (x) rn = (1-r)-a- 1 exp(-xr/(1-r)), a> -1. 
n=O n 

J00 

L0 (x) L0 (x) a -x dx = r{n+a+1) 
0 X e r(n+1) 0 n m n,m 

Theorem 6. Let 

{5.12) f(x,y) 

Also assume 

(5.13) 

00 a 
I n = 

n=O 

00 

I a2 < 00. 

n n=O 

L0 (x) L0 ( ) r(n+1) n n Y 
.:. 0, 0 < x,y < 00 r(n+a+1) = 



Then 

(5.14) a = 
n 

24 

dµ(t) 

where dµ is a positive measure with no mass at t = 1. Conversely if an 

is given by (5.14) then (5.12) holds. 

Some remarks are in order about the condition (5.13). We will 

assume it so that we can work in L2 for simplicity. It is possible to 

replace it with some weaker assumptions at the expense of making the 

proof harder. The extra material that is needed is in ]]1IJ • If we 

define a by (5.14) and want to have (5.13) satisfied it is necessary n 
and sufficient that 

For this and related R.p theorems see [~ • 

The sufficiency follows from the Hille-Hardy formula 

00 

I 
n=O 

x(n+1) 
r(n+a.+1) 

n 
z = 

-a./2 ;\r:=': 
( x y z ) I ( 2 v xyz) ex 1_ z ( x+y), 

a 1-z PL 1-z ::,J 
1-z 

See f:!!o, ( 5. 1 • 15 [I . I ( z) is a Bessel function of imaginary argument 
ct 

which is given by 
00 (z/2)a.+2k > 

I (z) = I k! r(k+a.+1) 'z o. 
a k=O 

For the necessity of (5.12) we need 

(5. 15) 1 
n! 

ct 

e-ttn+2 = I: e-y Ya./2 L~(y) Ja.(2(yt)1/2)dy. 

'This is the inverse Hankel transform of 

(5. 16) e-xxa./2 La.(x) = ~ f00 e-t tn+a./2 J (2(xt) 112 )dt, 
n n. 0 a 

which is given in [}o, ( 5. 4. 1 D . Or it can be proven from the special 

case n = O of (5.16) by means of the generating function (5,11). 



Finally we need 

(5, 17) 

25 

Lct(x) (-1 )n 
lim n = n n! ' ~o, ( 5. 1. a D . 
x➔oo 

Using (5.15) and the power series for J (u) we see 
ct 

that 
t 

- 00 

e x l 
n=O 

a tn Lct(x) __ n _________ n __ = 

r(n+ct+1) xn 

oo (- 1 )n tn f 00 n+ctf( ) -y , ........,___..___ y x,y e dy. 
l r(n+ct+1)n! 0 xn n=O 

If we fix t and let x ➔ 00 on the left hand side we get 

00 

I 
n=O r(n+ct+1 )n! 

On the right hand side we have I: un(xu)ct e-xu xf(x,ux) du which is 

Joo un d µ (u), where dµ (u) is a positive measure. Since the left 
· X X 
.. 0 
hand side converges for all n as x ➔ 00 so does the right hand side 

> ct -xu . > and we get convergence to dµ(u) = O, since (x u) e x f(x,ux) = 0 

for all x and u. 

Thus 

so 

00 

But the series I 
n=O 

00 (-1 ) a tn 

l r(n+ct+~)n! = 
n=O 

oo (- 1)n tn _ Ioo 
l r(n+ct+1)n! Oun dµ{u) 

n=O 

= I ooo a un dµ(u). 
n 

n L~(x) L~{y) 
n! u r(n+ct+1) 

I • > dosn t converge if u = 1 so 

a is given by{5. 14) where dµ{x) is a positive measure with no mass 

at X = 1, 

A more complicate proof of this result for Laguerre polynomials was 

given by I. 0. Sarmanov [37] . 
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The Sarmanov - Bratoeva theorem and Theorem 6 show 

that no convolution structure can exist for Hermite and 

Laguerre series which has the desirable ~eature or preserving 

positivity. Conside, for example, the series 

00 

(5.18) I 
n=O 

a H (x) H (y) H (z). 
n n n n 

If ( 5. 18) > is O for all x,y,z, then 

1 
2n n! a H (z) = J tn dµ (t) n n _ 1 z 

where dµ (t) is a positive measure. Then if n = 2 
z 

is positive unless dµz(t) only has mass at t = O 

the right hand side 

and the left hand 
00 

side changes sign unless a2 = O. Thus the series l a H (x) H {y) H (z) 
n=O n n n n 

> must change sign for some values of x,y,z unless a = 0 for n = 1. 
n 

In [i] Al-Salam and Carlitz show that (5.18) cannot be of a certain 

natural form for all x,y,z. The lack of positivity is an even more 

striking property. 

For Jacobi polynomials we need to consider 

K (x,y ,z) = r 

where 

I 
n=O 

[!t ( a ' e ~ - 1 = I 1 I}> ( a ' e ) ( X TI 2 ( 1-x ) a ( 1 +x ) e dx. 
n _ 1 n 

To have a convolution structure we need the have 

(5.19) C ' 
< O = r < 1, -1 < < x, y 1. 

For a~ e ~-~this was proven in [9]. If we knew that Kr(x,y,z) 

then we would have (5.19) trivially since 

J1 K (x,y,z)(1-z)a(1+z) 8dz = 1 
-1 r 

by orthogonality. 

> 
= 0 
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Using the differential equation satisfied by P(a, 8)(x) and 
n 

a maximum theorem for hyperbolic equations due to Weinberger, [4~, 
> < < it is possible to prove that K (x,y ,z) = 0 for-1 = z = 1, 

> > > r 
x + y = O, a= 8, a+ 8 + 1 = o. In the case a= 8 this was sufficient 

> < < to give K (x,y,z) 0 , -1 = x,y,z = 1, but for a> 8 this is not so. r 
A start toward proving the positivity for x + y < O can be made 

as follows • As we remarked before, Bailey [l '[] proved that 

K (x,y, 1) = I r a,8 > -1, 
n=O 

Using Bateman's integral, [7] , 

p(a-µ, 8+µ) {y) 
( 1 +y) 8+µ __,..n ___ ,--.._ 

p(a-µ,8+µ)(_ 1) 
n 

forµ= a - 8 we see that 
00 

o < I 
n=O 

00 

= I 
n=O 

rn h 
n 

= r( 8+µ+1) 
r( 8+1) r( µ) 

µ-1 (y-t) dt 

Unfortunately I have been able to use this to handle the other 

cases of x + y < O. Since we have the positivity of K (x,y,z) for 
> > r 

many values of x,y,z for a= 8, a+ 8 + 1 + = O, a reasonable 

conjecture is that there is a convolution structure for a+ 8 + 1 
> The assumption a= 8 is unnecessary for if 8 >awe define 

K (x,y ,z) = 
r I 

n=O 

> o. 

> 
and then everything we can prove for a= 8 can be extended to a< 8, 

And in both this case and the dual case a convolution structure without 

necessarily a positive kernel probably exists for max(a,8) ~ -i. 
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A stochastic application of the ultraspherical result is given 

by Lamperti [30]. Other applications are given in [9] and there are 

other applications that can be given once the positivity is proven 

for Jacobi polynomials. 

For Laguerre series a convolution can be defined in the following 

way. Watson [!i.~ proved that 

(5.20) 
n! La.(x) La.(y) 

n n 

r(n+a.+1) 

Recall that 

(5.21) 

and 

(5.22) 

·1 J
0
,r e- \~ cose = 'frr V xy 

a. 1 
L (x+y+2(xy) 2 cose)de, a.> -i. n 

La.(O) = r(n+a.+1 ~ 
n n ! r ( a.+ 1 ) 

I: [}a.( xj] 2 a. -x 
dx = r~n+a.+ 1) 

X e n! n 

If f(x) is integrable on each finite interval and does not grow too 

fast we can define its Fourier-tagnerre coefficient-by 

(5.23) Joo L a.(x) 
~ n a. -x r(n) = f(x) .....;:;;..._ x e dx. 

0 La.(O) 
n 

Then we have formally 
00 

r(x) ~ -- I 
r(a.+1) n=O 

~(n) La.(x). 
n 

Using (5.20) as a model we define the generalized translate of f(x) 

by 

, I1T (5.24) f(x;y) = Vi' 0 f(x+y+2'{xy cose) 

1 
( ) ~ 0 J ,((xy) 2 sine) 2 - xy cos a.-2 . a.e d e · , --.... , ----- sin e. 

({xy) 2 sine)a.-~ 
2 
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Then f(x;y) has the expansion 

00 

(5.25) f(x,y) - r(a+1) 2 f1(n) La(x) 
n=0 n 

Define the convolution of f(x) and g(x) by 

(5.26) h(x) = J: f(x;y) g(y) ya e-y dy. 

Then a simple calculation shows that 

(5.27) 'li(n) = 'f(n) ~(n). 

Formally this all makes sense, even defining f(x;y) by (5.25), provided 

that this series makes sense. McCully l)i] found a subspace of L 1 

for which this all makes sense in the special case a= 0 and the 

following theorem can be proven in the same way his Theorem 5 was 

proven. 

Theorem7.Let f(x), g(x) be integrable on each finite interval of 
> 

x = 0 and satisfy 

(5.28) f(x), g{x) =O(eax), 
, 

a< 2, X ➔ oo 

Then h(x) defined by (5.26) is also integrable oh each finite interval, 

h(x) =O(eax), a< L x ➔ 00 and (5.27) holds. 

The condition (5.28) can probably be weakened slightly but it 

cannot be weakened to O(ex12 ), since h(x) does not exist if 
X/2 f(x) = g(x) = e . This does not show that it is not possible by 

some other method to define the convolution of these two function, 

but it indicates that it is unlikely, 

There are still a couple of interesting questions raised by 

Watson's integral (5.20). The first is to find a substitute for 

a=-~, which is equivalent to the case of even Hermite polynomials, 

By analogy with the ultraspherical case there should be a convolution 

here also (it should correspond to the cosine case). The other question 

is not immediately evident, but occurs when we consider the case 

a= 0 in more detail. 
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In this case (5.20) is the integrated form of an addition formula of 

Bateman [i~. There is a simple proof of this addition formula due to 

Carlitz Qij. There should be a corresponding addition formula for 

La(x) which has (5.20) as its integrated form. 
n 
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