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An inequality for the classical polynomials 

Richard Askey ( 1 ) 

In the last twenty years a number of inequalities for determinants 

of orthogonal polynomials have been found. The earliest such inequality 

is much older and follows from the Christoffel-Darboux formula. It is 

p (x) 
n Pn+1(x) 

( 1 ) C (x) 
n 

= > 0, -CO < x < co' 
p I (x) 

n P~+ 1 (x) 

where the orthogonal polynomials p (x) are standardized by p (x) = k xn+ ... , 
n n n 

k > 0. In the 1940's Turan found a new inequality for determinants of 
n 

Legendre polynomials which is more sensitive than (1). He proved that 

p (x) P ~1 (x) n n . 
( 2) D (x) = < 0, -1 < X < 1. n 

pn+1 (x) pn+2(x) 

D (x) is a more sensitive function since it distinguished between 
n 

-1 < X < 2 . . ( ) 2 and x > 1, This is because D x > O, x > 1. There are now 
n 

many proofs and extensions of (2). The most elaborate treatment is given 

in the important paper of Karlin and Szego [2] , where even k x k deter

minants are treated. 

Our aim is much more modest. We would like to find an inequality 

like (1) which is sensitive to the spectral interval of the orthogonal 

polynomialB, There is no hope of finding such an inequality for general 

orthogonal polynomials, but it should be possible to find one for the 

classical polynomials. These inequalities are given in Therems 1 and 2. 

( 1 ) 
Supported in part by a fellowship from the John Simon Guggenheim 

Memorial Foundation, in part by the Office of Naval Research under 

Contract N00014-6T-A-0128-0012, and in part by the Stichting 

Mathema.tisch Centrum, Amsterdam. 
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Let P(a,S)(x) be the Jacobi polynomial and La(x) the Laguerre poly-
n n 

nomial with the usual normalizations. See Szego [3]. We set Df(x) = f'(x). 

Theorem 1. For a, S > -1 define A (x,a,B) = A (x) by 
n n 

p(a,S\x) 
n p~:1 S) (x) 

P(a,B\ 1) P(a,B\ 1) 

( 3) A (x) n n+1 
= n 

DP(a, B) (x) DP(a, B) (x) 
n n+1 

DP(a,B)(1) 
n 

DP(a,S)(1) 
n+1 

Then 
> 0 -1 < X < 1 

A (x) is 0 2 1 = X = n 2 
< 0 X > 1. 

Theorem 2. Let a> -1 and define A (x,a) = A (x) by n n 

La(x) 
n 1:+1 (x) 

La(O) 
n L:+ 1 ( 0) 

A (x) = n 

DLa(x) a 
DLn+1 (x) n . 

DLa(O) 
n DL:+1(0) 

Then 
> 0 X > 0 

A (x) l.S = 0 X = 0 n 
< 0 X < o. 

The proofs of Theorems and 2 are similar so we will only prove 

Theorem 1 . Recall that 

(4) ( 1-x2 )y' 1 = [a-B + (a+S+2)~[y' - n(n+a+B+1 )y, y = P~a,S) (x), 

( 5) (n+a) = r(n+a+l) 
n r(a+1)r(n+1) ' 



(6) 

3 

= n+a;s+1 p(a+1,$+1)(x). 
n-1 

See Szego [3, Chapter rv] . 
If we differentiate A (x) we get 

n 

A ' ( x) = DP ( a ' S \ x) DP ( a ' S ) ( x) [ 1 
n n n+1 p(a,$)(1)DP(a,$)(1) 

n n+1 

Then using (4), (5), and (6) we see that 

- 2 
(7) ( 1_x2)A'(x) - r a+1) r n)r n+2) (l-x2)P(a+1,8+1)(x) P(a+1,8+1)(x) 

n = f(n+a+1)f(n+a+2 n-1 n 

+ [a-8+(a+8+2)x] A (x) = 
n 

+ f{a-S) + (x+S+2)x] A (x). n 

The solution to (7) is 

= kn r 11-ula+1 l1+ule+1 p~~~1,8+1)(u) p~a+1,$+1\u)du, 

X 

For x > 1 we have P(a,S)(x) > O, and so A (x) < 0 follows immediately 
n ( $) n 

from (8). For x < -1 we have (-1)nP a, (x) > O, so A (x) < 0 also 
n n 

follows from (8). For -1 < x < 1 we either differentiate (8) or partially 

solve (7) to get 
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= -k ( 1-x)o+1 ( 1+x)l3+1 p(o+1,13+1 \x) p(o+1 ,13+1) (x). 
n n-1 n 

o+1 13+1·· 
Thus the extrema of (1-x) (1+x) •~ (x) occur at x = + 1 and at the 

(o+1 13+1) (o+1 13+1) n -
zeros of P _1 ' (x) and P ' (x). For x = 1, ~ (1) = O, and a n~ n n 
simple calculation using P(o,l3)(-x) = (-1)n P(o,l3)(x) shows that 

n 2 n 
~ (-1) = O. Also~ (x) > 0 for x < if xis close enough to x = 1, n n 
. . o+1,13+1 1 1 o+1,13+1 h o+1,13+1 i.e. either x1 < x < or - < x < x , were x. are 

n( ) n,n i,n 
Of 'p o+1,13+1 (u) then zeros ordered by -1 < x < ••• < x1 < 1. 

This follows fro: (8). At a zero of either P(oit~l3+1)(x) or pfo+11, 13+1)(x) 
n n-

we have 

for some positive an, and so ~n(x) > 0 by (1). This completes the proof 

of Theorem 1 • 

It is interesting to observe that these theorems are more sensitive 

about the spectrum than Turan type inequalities. For Jacobi polynomials 

with o # 13 and for L0 (x) Turan type inequalities off the spectrum do 
n 

not take the simple form that these inequalities do. I was surprised 

to see the inequality for the integral 

J1 (1-u)o+1 (1+u)13+1 p(o+1,13+1)(u) p(o+1,13+1)(u) du> O, -1 < x < 1. 
n-1 n · 

X 

This integral, among others, arose in work of Hirschman f1] on the problem 

dual to mean convergence. It is easy to see that most of the other integrals 

Hirschman obtained do not keep the same sign for all x, -1 < x < 1. 

Once you start considering other normalizations of orthogonal poly

nomials a further inequality suggests itself. This is 

(9) 

p (x) 
n 

p (a) 
n 

p I (x) 
n 

p I (a) 
n 

p, (x) 
n 

p I (a) 
n 

p" (x) 
n 

p"(a) 
n 

< O, x in the spectral interval, 
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where a= 1 for the ultraspherical (or Jacobi) polynomials and a= O 

for Laguerre polynomials. This inequality fails for Laguerre polynomials 

for x large and this suggests that a different normalization might lead 

to an inequality like (9), The appropriate normalization is probably 

La(x) = xn + • For the ultraspherical polynomials I have been unable 
n 

to prove (9). In fact, I cannot even prove it in the case that has 

always before been trivial, that of Tchebycheff polynomials of the first 

kind. Without the normalization, inequalities like (9) are mentioned by 

Karlin and Szego [2], but they have not been able to give them the same 

exhaustive treatment that they gave Turan type inequalities. 

[1] I. I. Hirschman, Jr. , Projections associated with Jacobi polynomials, 

Proc. Amer. Math. Soc. 8 (1957), 286-290, 

[2] S. Karlin and G. Szego, On certain determinants whose elements are 

orthogonal polynomials, Journal d 'Analyse Mathematique, 8 ( 1961 ) , 

1-157, 
,, 

G. Szegc5, Orthogonal polynomials, American Mathematical Society 

Colloquium Publications, vol. 23, New York, 1959. 





Linearization of the product of orthogonal polynomials II 

Richard Askey ( 1) 

In a recent issue of the Australian Journal of Statistics Eagleson 

[2] has defined the concept of positive definite sequences with respect 

to Krawtchouk polynomials, the orthogonal polynomials associated with 

the binomial distribution. The essential fact about these polynomials 

that allows him to characterize positive definite sequences is that 

you can write the product of two polynomials as a linear combination 

with nonnegative coefficients of these polynomials. 

Recently there have been a number of theorems of this type proven for 

other polynomials, [1], [3], [4]. In particular in [1] a general theorem 

was given which gave this result for two other discrete polynomials, 

the polynomials of Charlier and Meixner. Krawtchouk polynomials are 

closely related to Meixner polynomials so a natural question to ask is 

whether or not we can obtain Eagleson's result from a general theorem. 

We will show how to modify the proof given in [1] to obtain a new 

general theorem for orthogonal polynomials on a finite set which implies 

Eagleson's result for Krawtchouk polynomials. 

Krawtchouk polynomials can be defined by 

(x) = 
(-N) pn 

n 
n! 

F' 
2 1 

They have the generating function 

X )N-x (1+qz) (1-pz = 

1 (-n -x·-N·-) 
' ' 'p 

N 

I 
n=O 

n 
k (x)z , 

n 

which Eagleiwn used. Generating functions are known for very few 

orthogonal polynomials, so we will use the recurrence formula instead .. 

( 1) Supported in part by a fellowship from the John Simon Guggenheim 

Memorial Foundation, in part by the Office of Naval Research under 

Contract N00014-67-A-0128-0012, and in part by the Stichting 

Mathematisch Centrwn, Amsterdam. 
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For Krawtchouk polynomials it is given by 

where we have renormalized these polynomials so that now 

K (x) 
n 

n 
= X + ••• 

K1(x) = x - pN. 

Here O < p < 1, p + q = 1 and N is a fixed positive integer. k (x) are 
n 

orthogonal on [0,1, ... ,~7 with respect to the weight function 

. ( ) (N) x N-x J X = X p q , x = 0, 1 , ••• ,N. 

We will consider orthogonal polynomials whose recurrence formula is 

To obtain polynomials orthogonal on a finite set we assume that 

S0 = SN+ 1 = 0, Sn> O, n = 1,2, ..• ,N. 

For the Krawtchouk polynomials the essential properties of a and S 
n n 

are 

(i) an+1 >an~ O, n = 1, •.. ,N, if q ~ p, a0 = o, 

(ii) n = 0 , 1 , ... , [N; 1] 

(iii) 

We will show that if we have contions (i), (ii), and (iii) for a 
n 

and Sn then we have 

( 1 ) p (x) p (x) = n m 

n+m 
l a(k,m,n) pk(x), 

k=ln-ml 
a(k,m,n) ~ O, n + m ~ N. 

Instead of proving (1) directly we will prove a maximal principle for 

a hyperbolic difference equation and then show how this implies (1). 
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I have found that it is easier for most people to follow the ensuing 

argument if it is stated for difference equations rather than for 

orthogonal polynomials. 

For k(n) a sequence defined on O, 1, ... ,n, ••• we define 

~ k(n) = k(n+1) + a k(n) + S k(n-1), n = 1,2, •••• n n n 

Theorem 1, Let a(n,m) satisfy the difference equation 

(2) ~ a(n,m) = ~ a(n,m) • n m 

Then if s0 = 

(a) 0 < a < a 
~~ n = n+1' aN+1-n ~ an, n = 1,2, .. •, [N;1] 

( s) 0 < Q < Q 

""n = ""n+1' 

and if a(n,O) = a(O,n) .;;;_ O, a(-1,n) = a(n,-1) = O, n = 0,1, ••• ,N, then 

(3) a(n,m),;;;. O, n,m = 1,2, ••• , n + m ~ N. 

The proof is by induction on m. Assume we have proven (3) for 

0,1, ..• ,m and consider a(n,m+1). From (2) we have 

a(n,m+1) + a a(n,m) + S a(n,m-1) = a(n+1,m) + a a(n,m) + S a(n-1 ,m) 
m m n n 

so 

a(n,m+1) = a(n+1,m) +(a-a ) a(n,m) + (S -S) a(n-1,m) 
n m n m 

+ sm[a(n-1,m) - a(n,m-1 )l . 

Since a(n,m) = a(m,n) we may assume that m + 1 ~norm< n. Also we 

have m + n .::_ N so m < N + 1 - n. Thus from (a) we have 

a -a. >O if n m = 

and 

[N+21] a - a > a - a > 0 if _< n _< N, since m < N+1-n. n m = N+1-n m = 
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Similarly Sn - Sm~ 0, Also we can estimate a(n-1,m) - a(n,m-1) by 

recurrence; for 

a(n,m+1) - a(n+1,m) ~ Sm[a(n-1,m) - a(n,m-1 )] 

~ S S 1 1a(n-2,m-1) - a(n-1,m-2fl - mm- ~ -

Thus a(n,m) > 0 for n,m = 1,2, ••• , n + m ~ N. 

To obtain the theorem for orthogonal polynomials we observe that 

if 

then 

(4) 

n+m 
p (x) p (x) = 

n m I a(k,m,n) pk(x) 
k=ln-ml 

I p (x) p (x) pk(x) da(x) 
, n m 

a(k,m,n) = ------------I p!(x) da(x) 

for a nonnegative measure da(x). In our case the measure is a finite 

number of point masses but that is not necessary for this result. 

Corollary 1. Let a and S satisfy the conditions of Theorem 1 and 
n n 

define a(k,m,n) by (4). Then a(k,m,n) ~ O, n,m = 0,1, ••• , n+m < N. 

We need only show that 

( 5) ~ a(k,m,n) = ~ a(k,m,n) n m 

and that 

(6) a(k,O,n) = a(k,n,O) ~ O, 

(7) a(k,-1,n) = a(k,n,-1) = 0. 
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(5) follows from the recurrence formula for 

f pn(x) pm(x) pk(x) p1(x) da(x) 

f p!(x) da(x) 

Also 

f pn(x) pk(x) da(x) 

a(k,n,O) = a(k,O,n) = = 

f p!(x) da(x) 

r 
i 
' l 

= l:i. a(k,m,n). 
m 

0 n 'F k 

1 n = k. 

If p_1(x) is defined to be zero then the recurrence formula holds so 

we have a(k,-1,n) = a(k,n,-1) = O. 

It is of some interest to compare Theorem 1 with the corresponding 

Theorem in [1]. There we assumed that an~ an+1 and an< an+ 1 for all n. 

If we let N ➔ 00 in Theorem 1 we formally recover our previous theorem. 

Eagleson's theorem for q ~pis an immediate consequence of 

Corollary 1. For p ~ q he also proves a similar result, but now his 

polynomials are normalized to be positive at x = O. This also follows 

from our work if we make the appropriate changes. 

A natural question to ask is whether this theorem contains anything 

for the other classical discrete polynomials. The- answer is no, for the 

theorem fails for all of the Hahn polynomials, and these are the only 

other classical discrete polynomials. 

[1] R. Askey, Linearization of the product of orthogonal polynomials, 

to appear in volume dedicated to S. Bochner, Princeton Univ. Press. 

[2] G.K. Eagleson, A characterization theorem for positive definite 

sequences on the Krawtchouk polynomials, Australian Jour. of 

Statistics, 11 (1969), 29-38. 

[3] G. Gasper, Linearization of the product of Jacobi polynomials, I, 

to appear in Can. Jour. Math. 

[4] G. Gasper, Linearization of the product of Jacobi polynomials, II, 

to appear in Can. Jour. Math. 





Orthogonal expansions with positive coefficients, II 

Richard Askey( 1) 

In a number of problems that have recently been considered, ranging 

from differential geometry [1] to numerical analysis [5], the essential 

problem reduced to when one set of orthogonal polynomials could be 

written as a linear combination of a different set of orthogonal poly

nomials with non negative coefficients. For the classical polynomials 

we have a fairly good understanding of this problem and many of the 

known results are summarized in [:[]. However for other orthogonal poly

nomials our knowledge is very slight. We will show how to obtain a general 

theorem using only the recurrence formulas satisfied by the orthogonal 

polynomial:s. Then we will show how to use this result to obtain new 

results for some interesting classes of polynomials. 

Theorem I. Let p (x) and g (x) satisfy 
n n 

( l) X p (x) = Pn+/x) + a p (x) + S p 1 ( x), n = o, 1 ' ... , 
n n n n n-

(2) x g (x) = g +/x) + y g (x) + o g /x), n = o, 1 , ... , 
n n n m n n-

p_ 1(x) = g __ /x) = s0 = o0 = O, p0 (x) = g0 (x) = 1. To insure that 

P (x) and g (x) are orthogonal we assume that a 1 ; y 1 are real and 
n n n- n-

S > o, o > o, n = 1, 2, ... 
n n 

n 
Let g (x) •- I a(k,n) pk(x). Then a(k,n) ,; 0 if we assume 

n k=O 
(3) 

(4) 

ak > yn' 

Sk ~ on' 

Proof. We have 

k=O, 1, ... ,n, n=O, 1, 

k = 1, 2, 
n+1 

gn+1 (x) = l 
k=O 

... , n, n = 1, 2, 

a(k, n+1) pk (x) 

(1) Supported in part by a fellowship from the John Simon Guggenheim 

Memorial Foundation, in part by the Office of Naval Research under 

Contract N 00014-67-A-0128-0012, and in part by the Stichting Mathe

matisch Centrum, Amsterdam. 
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Also 

g 1 (x) = x g (x) - y g (x) - o g 1 (x) 
n+ n n n n n-

n n n-1 
== x I a(k,n)pk(x) - yn I a(k,n)pk(x) - o I a(k,n-1)pk(x) 

k=O k=O n k=O 

n-1 

n 
- 8 l a(k,n-1)pk(x) 

n k=O 

+ l [a(k-·1,n) + (ak-yn) a(k,n) + Sk+ 1 a(k+1,n) - on a(k,n-1[] pk(x) 
k=1 

Thus we have 

(5) a(n+1, n+1) == 1 

(6) a(n,n+1) = a(n-1,n) + (a -y) 
n n ' 

+ 8 ra(k+1,n) - a(k,n-1 )] , k ,,;, 1, ... , n-1, n L:. 

If we adopt the convention that a(n+1,n) = a(-1,n) = 0, then (6) and 

(8) are just (7) fork= n and k = O. 

We will show that a(k,n) ,; 0 by an induction on n. Assume that 

we have shown that a(k,m) ~ O, k;; m, m; n and consider a(k,n+1). 

If k = n+1, then a(n+1,n+1) = 1 > 0. 

a(n-1,n) + (a -y ) and so a(n,n+1) = 
n n 

+ (a -y) > 0 since a. > y .. 
0 0 = J J 

If k = n then a(n,n+1) = 

(an-yn) + (an-1-yn-1) + + 
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If k ~ n-1 then 

a(k,n+1) = a(k-1,n) + (ak-yn) a(k,n) + (Sk+ 1-on) a(k+1,n) 

+ on ~(k+1 ,n) - a(k ,n-1 )J 

Each of the terms on the right hand side is nonnegative except for 

possibly the last term, a(k+1,n) - a(k,n-1). Using (8) again we see 

that 

+ o ~(k+1 ,n) - a(k,n-1.I] 
n 

> on~(k+1 ,n) - a(k,n-12] > > o o 1 ... o . 'a(k+j+1,n-j )-n n- n-J L"' 

- a(k+j ,n-j-1IJ. 

It is now sufficient to choose j so tha~ 2j > n-k-1, for then 

k+j+1 > n-j and k+j > n-j-1 and the last term vanishes. Thus 

a(k+1,n) - a(k,n-1) > 0 and so we have shown that a(k,n+1) > O, 

k = 0 , 1 , ••• , n+ 1 • 

This proof is very similar to the proof in [2] which gives 

(9) p (x) p (x) = I a(k,m.n) pk(x), n m a(k,m.n > O, 

under certain conditions on the coefficients in (1). 



that 

but 

4 

Both this proof and the proof of (9) have the strange defect 
> they prove too much. In this case we not only prove that a(k,n) 0 

. > 
we have shown that a(k,n) = a(k-1,n-1). 

One appliciation concerns Pollaczek polynomials. 

A special case of these interesting polynomials, which generaljze the 

ultraspherical polynomials, satisfy 

" Rn+ 1 (x,a) + 
n(n+211.-1) 

4(n+11.+a)(n+11.+a-1) 
" Rn_ 1(x,a) 

and for a= 0 reduce to the ultrasperical polynomials. 

In [{I we proved that 

IR"(x,a) I n 
< " < < =R(1,a), -1=x=1, for n 

> 
a = O, 

> a= <11.-l)1< 1+11.), > 2 11. > 0. The restruction a= (11.-11. )/(1+11.) 

is artificial and we show how to remove it. 

For a= O, 0 < 11. < 1 we have that 

= _n_(.._n_+_2_11.-_1_.) ___ _ 

4(n+11. )(n+11.-1) 

is a decreasing sequence. Thus 

n(n+211.-1) _ 

4(n+11.+a)(n+11.+a-1) 

for a > O. 

From Theorem 1 we then have 

11. n 11. 
R (x,a) = l a(k,n) ~(x,O) 

n k=O 

with a(k,n) ~ 0 if O < 11. < 1, a> 0. Then 

(10) 
n 11. 11. l a(k,n)IR::(x,O)I~ R (1,a) 

k=O -1t n 

since l~(x,o)I < " Rk(1,0) is a well known result. 
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One other interesting application isto the associated polynomials. 

If p (x) satisfies 
n 

x pn(x) = Pn+1(x) + an pn(x) + Sn pn_1(x) 

we define p (x,v) by 
n 

( 1 1 ) x p (x,v) = Pn+l(x,v) + an+v p (x,v) + /3 p 1(x,v), 
n n n+v n-

r .(x,v) = o, -p (x,v) = 1 . For general orthogonal polynomials we 
. I - C 

must have V = -1 ' 2, 
' 

but for some of the classical polynomials ( 11 ) 

makes sense for v > O, or even some v < O. While we can prove some 

results for associated polynomials some general orthogonal polynomials 

we restrict ourself to ultraspherical polynomials. These polynomials 

Sv(x,µ) satisfy 
n 

We have s;~ < ¾ if v > 1 and S~ = ¾ if v = 1 . Then from Theorem 1 we 

have 
n 

( 12) I a(k,n) 
k=O 

with a(k,n) ~ 0 for v > µ > ··1. 

Sv(x, 00 ) = S(l)(x,O) = S(l)(x,11) 
n n n 

n 

If we let µ ➔ 00 

so (12) ~s 

( 13) VI ) = I a(k,n) S~(x,oo), S 1,x,µ 
n k=O 

in oµ we see that 
n 

a(k,n) 
> 1 < 1 
= 0 for v > 1. Since I sk (x 'µ) I Sk ( 1, µ) we have 

I V I< V S (x,µ) = S (1,µ), 
n n 

V > 1 , -1 
< < 

X = 1, )l > -1. 

For O < v < 1 we can prove a more general result than (13). It now 

becomes 
n 

( 14) I a(k,n) 
k=O 
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• ( ) > > 1 with a k,n = 0 for O < v < 1, µ>A= 0. For X = O, v = 2 the 

coefficient:s a(k,n) were calculated by Barrucand and Dickinson [~j 
and a moments reflection on their expression for a(k,n) (the product 

of 14 gamma functions) shows that these numbers are nonnegative. It 

was this result that started me thinking of the possibility of proving 

a general theorem of the type of Theorem 1. If we can find a stronger 
> theorem, then I suspect that we could show that a(k,n) = 0 in (13) 

. < for v > 1 if O =µ<A, 

From (14) we also have lsv(x,µ)I; Sv(1,µ), 
n n 

< < 
-1 X 1, µ > 0 , 

0 < v < 1, since this holds forµ= 0. 
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