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Rules for building statistical models*) 

by 

J. Hemelrijk 

SUMMARY 

One of the fundamental questions in statistical model building is when 

to use the same model for different situations or experiments. Axioms, how

ever useful mathematically, say nothing about this. The author therefore 

proposes to introduce rules for the choice of a statistical model which 

have the character of instructions for use of the statistical toolkit. One 

of the basis rules proposed is the "principle of equivalence". Two repeat

able experiments are called statistically equivalent if they cannot be dis

tinguished from one another by means of sequences of outcomes of arbitrary 

length. This principle is elaborated and illustrated by means of an example. 

If experiments are (deemed to be) statistically equivalent the use of the 

same statistical model for all of them is justified. This principle is then 

used for the introduction of conditional probabilities and composite models, 

with symmetric probability spaces as models for randomizers as a starting

point. 

KEY WORDS & PHRASES: foundations of statistics, statistical models, 

statistical equivalence 
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"Statistics uses the empirical hypothesis that apparatus ('lotteries') 

exist, admitting random choices of one among any given number of elements. 

Such apparatus do not exist in absolute perfection and their degree of 

perfection can only be defined after development of their theory. Their 

role is analogous to that of rigid bodies in euclidean geometry and of 

perfect clocks in dynamics. Empirical interpretation of probability state

ments is only possible with reference to such random apparatus or to natu

ral phenomena empirically found to behave statistically sufficiently like 

these". 

D. van Dantzig (1957) 

1. INTRODUCTION 

The use of mathematical models is widespread and of an old date, 

but the general recognition of this fact is comparatively new. The question 

of how to choose a statistical mathematical model has led to considerable 

confusion and controversy, and still does. Mathematical statisticians wise

ly save their skins by using the axiomatic approach, leaving the controver

sy to others and the confusion to the users of their theory. For axioms, 

however useful, say nothing about their application. It seems to the author 

that the time has come to formulate rules for the choice .. of statistical 

models. In this paper a number of such rules are proposed. They will 
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certainly not please everybody, if only because they are formulated from 

the classical, objectivistic, point of view. They may, however, strengthen 

and clarify this point of view and help the user of statistical theory in 

its correct use and interpretation. 

The subject is an extensive one, which can only be touched upon in 

a short paper. Therefore many details have to be taken for granted, the 

history of the subject is left aside and the controversy between objectiv

ists and subjectivists is ignored. 

In general a mathematical model is a simplification and an exacti

fication of a part of reality. The simplification is necessary because of 

the extreme complexity of reality and the exactification because of its 

vagueness. Reality is always a bit out of focus: equality, for instance, 

is usually approximate equality and therefore not strictly transitive. In 

a mathematical model transitivity of equality and other desirable proper

ties hold exactly and this makes it possible to develop extensive theories. 

But one ·should keep reality and model strictly apart. Confusing the two 

leads to baffling paradoxes - some of them well known - which can only be 

solved by disentangling reality and model. 

Statistical models are concerned with parts of reality which are 

subject to uncertainty and which we will call (statistical) experiments. 

The possible outcomes of a statistical experiment are usually known, but 

the actual results are in a higher or lesser degree unpredictable. Causal

ity does not seem adequate for analysing such experiments; instead the prob

abilistic approach is used. 

In the following sections rules for using this approach are formula

ted step by step. These rules are not part of mathematics. They are not 

theorems nor are they laws of nature. They may be seen as directions for 

use of statistical models. They are certainly not perfect (nothing is) and 

their use cannot be enforced. But they are useful as a guide for sensible 

application of statistical methods. 

2. RANDOMIZERS 

Pure unpredictability in a statistical sense is found in a lottery, 

or randomizer. Everybody knows what a lottery is, but nevertheless it is 

suprisingly difficult to give a satisfactory description of its properties. 

A separate paper would be needed to this end. Let us just point out some 
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the probability of an event is equal to the ratio of the number of possible 

outcomes favorable for the event to the total number of possible outcomes. 

More precisely, if we call the activation of an N-randomizer: 

"drawing at random from O, ••. ,N-1", then the model for one random drawing 

consist of three elements: 

1) The space of (elementary) events: *) 
Q = {O, ... ,N-1}. 

2) Composite events: all subsets of Q. 

3) The Laplace-definition assigning a probability to every event: 

with N(Q') = the number of element of Q'. 

The basic threefold structure of this model holds for all statistical 

models, though usually in a more complicated form. It is also completely 

in harmony with the axiomatic set-up. We call this model a finite symmetric 

probability space and our first rule is: 

Rule 1. For one random drawing we use a finite symmetric probability 

space as mathematical model. 

Now consider a sequence of n random drawings, resulting in an n-vector 

of numbers from Q. According to property c) of section 2 this composite 

experiment is the same as one random drawing from the Nn possible n-vectors. 

Thus rule 1 also gives us the model for this sequence of drawings. If one 

works this out the result is the product probability space of n finite 

symmetric probability spaces, one for each of then random drawings. 

We omit the details; they are well-known to every statistician and we 

want to hurry on to more important points. But we do remark that the 

reasoning also holds for a sequence of random drawings from different 

randomizers and that we arrive thus at our second rule: 

Rule 2. For a sequence of n random drawings we use as a model the product 

probability space of then symmetric probability spaces of the 

separate drawings. 

Remark that the term "independent" need not yet be introduced at this stage; 

it is implicit in property b) and emerges explicitly in a natural way when 

later on conditional probabilities are introduced. At the present stage one 

"(possible) result", "(possible) outcome" and "elementary event" are 
used as synomyms. 



might say that a randomizer is independent of everything: it walks, 

like a cat, by itself. 

4. THE PRINCIPLE OF EQUIVALENCE 

5 

The transition from rule 1 to rule 2 has been accomplished by 

stating that - according to property b) - n random drawings from 0, ... ,N-1 
n 

"are the same as" one random drawing from O, ... ,N -1 (after numbering the 

n-vectors in an arbitrary order). This expression "the same as" is not very 

accurate; the two experiments compared are not the same, but they both have 

the properties of a randomizer. In a certain sense they are equivalent with 

respect to their statistical properties. It is worth while to elaborate on 

this point because it leads us to one of the key-points of our set-up. 

Consider two repeatable experiments E' and E" with the same possible 

outcomes W' = Q") but otherwise possibly very different. Let the follow

ing information be supplied: 

1) an accurate description of E'and E", 

2) two sequences of results A and B from these experiments, however with

out identification; this means that it is not known whether A and E' 

(and B and E") belong together or the other way around. 

Additional information is supplied on request: 

3) further details about E' and E", 

4) extensions of the sequences A and B (again without identification), 

5) sequences C' from E' and C" from E". 

If in this situation there is no conceivable method of identifying the 

sequences A and B, then E' and E" are called (statistically) equivalent. 

Their statistical behaviour with respect to the possible outcomes consi

dered, is the same. The generalization to more than two experiments is 

straightforward and we can now formulate: 

The principle of equivalence. If experiments are equivalent in the sense 

described above, then the use of the same model for all of them is justi

fied. 

External reasons like practical importance and cost of time and money may 

lead to the use of different models when, statistically speaking, the use 

of the same model would be desirable. In this paper, however, we will 
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strictly adhere to the principle of using the same model for equivalent 

experiments. 

A lot more can be said about the concept of equivalence, but a 

practical example may at this point be more clarifying. Five experiments 

have, to this, end, each been excecuted 221 times. They are 

*) 
E 1: recording the last digit of the hodometer 6f the authors car when . 

he left the car for more than half an hour. 

E2 : recording at the same moments, the last digit of the sub-hodometer, 

which records the same distance in units of 100 m (mod 10 000). 

E 3 : recording the last digit of the hodometers of cars in public parking 

lots. 

E4 : throwing a blue tensided die carrying the numbers 0, ... ,9. 

ES: throwing a red tensided die with the same numbers. 

For every experiment the results of 221 excecutions were recorded in the 

order of their observation. The dice were well made and they were thrown in 

such a way that E4 and ES may be considered to be 10-randomizers. For these 

two experiments equivalence is clear: from property b) of section 2 it 

follows that all N-randomizers are equivalent (for any fixed N). It is not 

very plausible that E1 and E2 are equivalent to E4 and ES, but E3 might 

well be. For although E3 is much more complicated then E4 and ES it is 

difficult to imagine why it would be possible to find two systems of pre

dicting the next outcome of E3 ohe of which is better than the other. This 

might well be possible for E1 and E2 • 

It is clear that speculations of this kind are not a sufficient basis 

for deciding about equivalence. The observations themselves, however, may 

help. And one of the tasks of statistical theory is to provide methods to 

test equivalence of experiments and the goodness of fit of models to experi

ments. These methods are indeed available and one of them can be used in 

our case. In order to confuse the reader the five sequences have been 

assigned labels A, B, C, D, Eat random. Table 1 contains the observations 

in their original form. It is difficult to draw any conclusions directly 

from these date. They have been completely recorded in Table 1 in order 

to enable the reader to play around with them himself. A first step in 

getting a better survey of the data is to arrange them in a frequency table. 

·*) The hodometer aumulatively counts the distance covered by the car in km 
(mod 100 000). 
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This has been done in table 2, where two columns have been added, one for 

h 11 k . t· 2 d t ewe - nown test statis ic X an one for the right-hand tail-probability 

P. Extreme values of P indicate deviations from randomness; the number of 

degrees of freedom is 9, the hypothesis tested: randomness. 

Table 1. Five sequences of observations 

9 0 4 9 3 3 6 1 8 7 7 5 9 5 3 8 1 8 5 3 9 9 7 9 2 3 5 2 7 0 0 6 
4 6 5 5 1 9 4 5 4 7 0 4 2 5 1 7 8 5 6 3 1 4 6 1 3 3 4 7 3 1 9 3 
8 9 8 0 6 0 6 5 6 6 4 3 9 0 0 3 8 9 9 0 8 5 3 4 2 5 5 4 7 2 5 2 
0 8 7 3 7 0 6 9 6 4 9 1 3 2 3 9 7 0 3 2 6 6 2 8 9 6 8 8 :2 8 1 0 

A 
8 5 3 3 8 8 0 5 7 7 2 4 7 1 0 6 6 0 5 5 6 6 4 4 9 9 0 7 8 3 7 4 
5 2 ') 

..) 1 3 7 9 4 9 8 4 0 4 6 4 1 3 7 9 3 3 0 8 4 3 8 7 4 4 4 7 9 
3 8 8 7 9 1 2 7 4 6 1 8 2 7 7 8 8 7 8 3 3 4 7 8 9 3 2 2 ., 

l 

7 1 2 8 8 1 8 9 5 4 0 6 0 0 0 1 1 6 7 4 7 5 2 8 3 1 3 5 4 6 7 7 
2 9 4 9 9 9 1 2 4 7 3 1 6 4 9 7 6 3 8 8 3 6 8 9 6 9 5 9 3 8 5 1 
7 9 1 7 3 6 8 1 8 8 2 1 3 0 2 3 0 4 5 0 7 8 0 5 2 9 3 4 3 4 5 1 

B 8 6 1 3 8 5 3 2 0 1 3 9 6 7 9 2 4 6 4 0 4 6 3 9 5 7 8 4 1 6 1 2 
2 7 3 9 4 2 6 5 1 9 6 2 8 7 2 8 6 4 5 5 0 7 0 0 4 9 5 1 5 8 7 9 
4 8 3 9 3 2 3 2 6 6 8 5 1 5 2 9 8 2 7 7 5 2 0 2 0 6 1 9 5 1 7 4 
0 1 7 4 4 2 1 4 0 6 3 6 0 9 8 2 2 5 1 1 8 5 1 6 0 8 7 9 8 

4 5 7 9 0 2 7 3 7 3 0 1 1 0 9 5 5 4 0 9 2 3 4 1 9 8 8 8 6 0 6 3 
5 0 6 3 6 4 3 0 9 6 4 0 1 6 1 5 0 2 3 8 9 7 6 8 7 8 9 6 2 6 0 2 
5 5 8 8 3 9 3 2 2 0 5 2 1 2 7 1 0 1 7 8 9 2 0 1 3 8 2 1 1 3 6 1 

C 5 0 4 4 8 3 5 6 7 5 5 9 8 5 7 7 2 3 8 8 1 7 8 0 0 0 0 7 8 4 9 9 
9 5 0 1 6 7 1 5 8 2 9 2 3 6 4 9 6 5 5 5 9 1 9 2 6 5 6 1 7 9 7 3 
0 4 0 8 2 4 3 2 3 5 7 0 7 0 7 8 3 0 6 7 2 7 1 9 4 9 9 9 9 4 1 9 
7 6 9 2 1 5 8 3 7 1 0 2 0 6 6 4 1 2 1 0 0 9 0 6 2 7 1 5 1 

5 6 6 0 8 2 6 5 3 9 2 6 5 5 4 5 4 8 2 9 5 6 7 7 2 9 9 8 7 3 0 3 
5 9 2 9 3 2 2 4 1 5 9 6 2 8 5 1 1 4 7 9 3 3 4 6 4 8 4 7 4 0 4 8 
1 5 0 3 7 7 3 1 4 3 6 5 9 3 2 3 9 8 4 8 1 1 4 3 9 2 3 4 3 9 5 9 
2 9 6 4 5 9 5 7 3 8 3 6 0 6 2 3 4 5 4 1 6 0 4 7 1 7 3 7 1 2 4 4 

D 4 7 1 5 0 1 3 2 5 9 1 7 0 4 8 7 9 8 3 3 7 0 2 8 7 6 5 9 2 5 1 0 
1 9 3 6 5 6 8 8 4 9 2 8 1 9 3 6 5 1 4 2 6 0 3 3 2 7 7 0 4 8 1 5 
2 2 5 9 8 2 4 6 1 0 4 7 5 7 5 3 3 7 1 0 5 9 3 6 9 9 8 7 6 

7 3 9 5 9 5 1 3 4 7 0 0 0 9 5 1 9 6 5 9 0 1 9 6 9 4 4 1 6 3 7 0 
0 4 9 0 7 8 6 7 3 3 1 0 8 7 3 2 5 i 9 7 9 1 0 4 7 9 6 2 1 4 2 2' 

2 9 9 3 5 9 6 2 1 8 1 0 1 9 4 1 0 3 7 6 3 4 3 1 8 8 9 8 8 8 0 5 
1 6 5 1 3 8 0 5 8 6 8 2 5 7 6 5 8 2 9 3 0 9 7 5 5 9 3 1 9 4 2 4 

E 4 3 5 5 3 8 9 7 0 1 4 6 2 5 3 4 7 0 1 0 5 9 4 4 4 6 3 0 0 9 4 9 
1 3 6 4 8 4 5 8 2 2 3 5 8 8 2 6 8 3 5 9 7 3 8 4 7 0 3 4 7 9 2 3 
7 3 3 8 8 7 9 9 2 5 4 1 9 2 1 4 9 2 1 6 0 3 4 6 6 5 3 4 0 



8 

Table 2. Frequencies of 0, .•. ,9 in the five sequences 

0 1 2 3 4 I 5 6 ! 7 I 8 9 I p 
I X 

I 

2 

I I 
A 19 14 16 30 25 ' 19 20 27 27 24 11.26 0.26 

I 

B 19 26 23 20 21 I 21 ! 22 21 25 23 1.94 0.992 I I 
' 

' C 29 25 22 ' 19 14 22 21 23 20 26 6.92 0.65 

D 14 20 22 28 26 26 20 I 22 18 i 25 7.46 0.59 

22 22 17 27 25 22 j 17 18 I 
I 

E 21 1 30 7.46 0.59 

I 

None of the frequencies in table 2 deviates extremely from its mean 22.1. 

None of the values Pis very small. One, however, pertaining to sequence 

B, is very close to 1, indicating some source of regularity which cannot 

be expected in a randomizer. Thus B may well stem from E1 or E2 . But the 

result is still very undecisive. Therefore we go one more step in our 

analysis, aiming straightly at a point where E 1 and E2 may well be very 

different from E3 , E4 and E5 . For every pair of consecutive results, x 1 

and x 2 say, we form the difference x 2-x 1 (mod 10). ThLs gives us five new 

sequences of 220 results each. We need not give a table of these in the 

form of table 1, because the reader can easily write this down himself. 

The new sequence A would start with: 1 4 5 4 0 ... This operation applied 

to successive results of a 10-randomizer gives again a 10-randomizer. This 

can easily be proved by means of the model implied by rules 1 and 2. It 

can also be viewed as a property like c) and d) of section 2; the reader 

can easily verify this by some thinking. On the other hand it is very 

plausible that this does not hold at all for E 1 and E2 because the author 

often travels the distance from home to work by car. 

Table 3. Frequencies of 0, ... ,9 in differencies-ruod 10 

! 3 
I I 

0 1 2 4 i 5 6 I 7 8 9 x2 p 

A 28 26 22 21 18 I 24 20 29 24 18 4.82 0.89 

B 17 20 I 23 12 19 28 ! 37 28 
I 18 18 21. 27 0.012 

[ 29 I I 22 C 24 18 I 16 25 28 18 16 24 9.36 0.40 
' I -9 

D 18 15 14 ' 35 49 10 26 11 11 31 68.64 2.6x10 
I ! 

E 23 19 22 j 31 I 22 20 19 16 I 23 25 6.82 0.66 I 

I I i i I ' 



The frequencies of the five new series are given in table 3. Now the 

situation is completely changed. In D the differences 3 and 4 are very 

predominant and in B the same holds, but less strongly, for 5, 6 and 7. 

9 

The value of Pis very small for D and small for B; there is little doubt 

that D and B stem from E1 and E2 , possibly even in this order. Additional 

information of the types 4) and 5) mentioned above would most probably lead 

to a decision in this question. Thus our conclusion is that E4 , E5 and E6 

may well be considered equivalent, but E1 and E2 certainly are not equiva

lent, neither to each other nor to the other three. If the reader would 

wish to try to identify E3 among A, C and E, he can provide additional 

observations of E3 himself. 

Anticipating an objection to the principle of equivalence we may 

concede that it will never be possible to prove conclusively that two exper

iments are equivalent. But then, absolute certainly about such things is 

not part of this life. If experiments are deemed equivalent for suffi

ciently sensible reasons and if observations in sufficient numbers do not 

contradict this, then the principle can be used. For on the other hand non

equivalence can be proved experimentally to a reasonable degree of certain

ty, as the example illustrates. 

5. PROBABILITY SPACES WITH UNEQUAL PROBABILITIES 

To arrive at probability spaces with unequal probabilities for the 

elementary events, the space of events~ of a symmetric probability space 

is partitioned into a set of non-overlapping subsets. These, together with 

their probabilities form a new probability space. The addition law .for 

exclusive even.ts, which in the symmetric probability space follows from 

the Laplace-definition, is carried over to the new probability space and 

this leads us to finite discrete probability spaces. The principle of equi

valence then justifies the use of such a space as a model for experiments 

where a lack of symmetry does not suggest the use of equal probabilities 

at all. A simple example: let experiment E' be throwing a loaded six-sided 

die, E" using an N-randomizer with sufficiently big N with r2 = { O, ••. ,N-1} 

partitioned into six subsets with unequal numbers of elements n 1 , ... ,n6 , 

carrying the numbers 1, ... ,6. The contention is that for suitably chosen 

N and n 1 , ... ,n6 the two experiments are equivalent, thus justifying the 

use of a discrete probability field for E'. Of course a suitable choice 
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of n 1 , ••• ,n6 (and N) would have to depend on observations of E' but that 

only emphasizes the need of testing the goodness of fit of a model which 

has been chosen on the basis of rules and practical considerations. We 

thus arrive at: 

Rule 3. If an experiment is equivalent to a suitably chosen partitioned 

randomizer then we use a discrete probability space as mathemati

cal model. 

6. STATISTICAL INDEPENDENCE 

At the end of section 3 it was remarked that the independence of 

successive uses of randomizers is implicit in the properties of a randomizer. 

It is expressed in property b) by means of the fact that the past does not 

help to predict the future. This concept must be generalized and more for

mally expressed: 

DEFINITION. Consider n experiments E1 , •.• ,En' each of which separately 

is adequately described by a completely specified probability space; if 

knowledge of the results of any part of these experiments (after they have 

been performed) does not influence the predictability of the results of 

any of the others, then the experiments are called statistically indepen

dent. 

This, again, is a practical concept of considerable vagueness, which needs 

exactification by means of a mathematical model. It is clear from the defi

nition and the previously formulated rules that the whole sequence (E 1, ••• ,En) 

is equivalent ton random drawings from suitably chosen partitioned random

izers and thus rule 2 indicates the use of the product-space: 

Rule 4. If n statistically independent experiments are each described by 

a probability space the combined experiment (E1 , ••• ,En) is des

cribed by the product of these probability spaces. 

Omitting, in this rule, the term "completely specified", which figures in 

the above definition, only means a slight generalization. The term cannot 

be omitted from the definition: if there are unknown parameters involved 

previous experiments -- independent or not - may supply information about 

these parameters and thus influence the predictability of the other expe

riments. This would for instance occur in a sequence of throws of the 
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loaded die used as an example in section 5, where nevertheless successive 

throws would be independent. 

7. CONDITIONAL PROBABILITIES AND COMPOSITE MODELS 

From independence. to dependence is only one step but a very important 

one. An example of statistical dependence is found in repetitions of E 1 of 

section 4; line D of table 3 (which does in fact pertain to E 1 ) clearly indi

cates that adding 4 to the previous result (mod 10) is certainly·· superior 

as a method of prediction to adding 5. To build models for dependent expe

riments we need conditional probabilities. 

Usually conditional probabilities are introduced in the model by 

means of a definition. Let ri 1 and ri2 be subsets of the space of events SJ 

then the conditional probability of finding an element of n2 under the con

dition that an element of ri 1 occurs is 

where P(SJ 1 ) must be positive. This definition in itself says nothing about 

the way it should be used in applications. We therefore present a justifi

cation of (2) based on our rules, which also leads to a new rule giving 

insight in the way it should be used for model-building. 

Consider the following two experiments. 

E': drawing one element at random from n1 (using an N(SJ 1 )-randomizer for 

the purpose), 

E": drawing elements at random from Q (by means of an NW) -randomizer) 

until for the first time an element from n1 is obtained and considering 

this element as the outcome of the composite experiment. 

According to property d) of section 2 E' and E" are equivalent and thus we 

ought to use the same model for both of them. But according to rule 1 the 

model for E' is a symmetric probability space with ri 1 as space of events 

and with the Laplace-definition. This means that we should also use this 

model for E" and this is exactly what happens. The notation "ISJ 1 11 is used 

to indicate the conditioning on ri 1 in either of the two ways indicated by 

E' or E". The Laplace-definition applied to E' now leads straight to (2), 

for according to this definition we have 
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where the unconditional probabilities pertain to one random drawing from 

Q. Note that neither E' nor E" can be performed if NW 1 ) = O; thus the 

reasoning only holds if P(s-2 1 ) > 0. 

The equivalence of E' and E" seems rather evident but the following 
*) anecdote shows that this does not hold for everybody • An advertising 

agency organized a quiz in order to promote some product. The quiz consisted 

of some simple questions and the response was overwhelming. Thousands of 

answers were received and, of course, the prizes had to be awarded at random 

among the correct solutions. To this end the agency hired a number of work

ing students in order to sift out the wrong answers (which were comparati

vely few). This took several weeks time and when this work was completed 

the winners were drawn at random from the correct solutions. This procedure 

corresponds to E' and it is perfectly correct. How much more simple and less 

time-consuming it would have been, however, to use procedure E"! 

The generalization of (2) to partitioned probability spaces is 

straightforward. We will skip it. It is also clear that from (2) the gener

al multiplication law and the theorem on composite probabilities follow 

and that statistical independence means that conditional probabilities are 

equal to the corresponding unconditional ones. 

After these preparations we want to formally introduce the use of 

conditional 

Let E(l) be 

probabilities in building up models for stepwise experiments. 

an experiment with Q(l) as its space of events and P(l) as its 

probability function on Q(l), all according to previous rules. Let E( 2 ) be 
( 2) 

a second experiment with space of events Q , but depending on the result 
(1) (1) (1) . (2) 

of E in the following sense: for every w E Q an experiment E (1) 
(2) (2) 'w 

is given which has a probability function P (l) (on Q ), depending on 

w(l), again in accordance with previous rule~. The composite experiment 
(1) (2) . (1) (2) (1) . 

E = (E ,E ) is composed of E and E w(l), where w is the event 

realized in E(l). In these circumtances E(2) is called statistically depen

dent on E(l) and Eis called a stepwise composed experiment. By induction 

*) H. Piller, personal communication. 
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we get any finite number of steps. 

The model for E must be in accordance with previous model-rules and 

to find such a model we again consider two equivalent experiments: 

E': one realisation of E( 2 ~1) for given w(l); the probability for obtaining 

w(2 ) E n< 2 > is then w 

P (~ )(1) (w (2) ) • 

E ll • ·1 (1)' (l) dl k" h <2 > : repeating E unti E gives w an oo ing at t e result of E in 

h . 1 h" . ' h . ' (1) ., tat tria. Tis means:imposing t e condition w on E, and thus the 

model for E must be such that the probability for obtaining w( 2) E n< 2 > is 

P(w (2) lw (1)). 

The equivalence of E' and E" now leads to 

(3) p(2) (w(2)) 
w(l) 

and together with the multiplication law, which must also hold in the model 
. (1) (2) 

for E, we find that we have to build up this model on n x n by means 

of 

This is the only possibility if we want to obey our previous rules and the 

principle of equivalence. This result can be summarized as follows. 

Rule 5. For stepwise experiments where for every step previous rules lead 

to a probability space depending on the results of previous steps, 

a model is built up by means of conditional probability spaces for 

the steps and by means of the multiplication law for simultaneous 

probabilities. 

8. CONDITIONAL PROBABILITIES AND INFORMATION 

Although some details were glossed over in section 7 the treatment of 

a seemingly obvious method may seem rather extensive to some readers. But 

one must be careful as the following example is meant to show. A player 

throws a good six-sided die and you are to guess the result. This is the 

situation of section 2: your guess does not really matter as long as it is 





15 

Lack of knowledge about the information-policy can be incorporated 

adequately in the model by introducing an unknown partitioning of Q, i.e. 

unknown conditions for the conditional probabilities. In our example with 

the die this would, in case "it is not 6 11 , lead to five possible outcomes 

with unknown probabilities, which can have only a finite number of different 

values because there are only a finite number of possible partitionings. 

Further knowledge about.the actual values but also about the actual infor

mation-policy could then be gathered by observing repeated independent 

trials of the same experiment. On the other hand it may be remarked that 

one may remedy the situation by randomizing ones guess among the numbers 

1, ••• ,5. Then at least the probability of a right guess is 1/5. Thus per

haps, one should never read a newspaper without a die or a coin at hand. 

9. FINAL REMARKS 

Although up till this point we only have finitely many rational 

probabilities in a probability space the generalization to infinitely many 

real ones and to continuous probability spaces is of a less fundamental 

nature. It is all passing to the limit and approximating discrete situa

tions by means of continuous ones for the sake of mathematical convenience 

and greater generality. So we need not be sorry that the scope of this paper 

does not allow us to go over all that. It is a pity that the space allotted 

is too small to talk about some other things like: the interpretation of 

probabilities in order to go back from the model to reality after the anal

ysis in the model. is completed and to the phenomenon that statisticians 

do not only seek to predict the future, but also the past: the example in 

section 7 is of that character just as e.g. the method of confidence inter

vals for unknown parameters. These things are interesting but they will 

have to wait. 
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