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§0. Introduction 

This report deals with the following problem: 

Let G be a finite Abelian group and a1, a2, ••• ,~a finite sequence 

of elements taken from G. We ask for a minimal value fork such that each 

sequence contains a non empty subsequence with sum zero. 

A conjecture of prof. P.C. Baayen states that for a group of the form 

Cd e Cd e Cd e ... e Cd with ~1~_ 1, ••• , d2 id1 this minimal value 

fof k is2equal 3to d1 + d2 * ... + ~ - k + 1. It was brought to the 

attention of the authors that Erdos stated the same conjecture for the 

special ease C 6l C where p is an arbitrary prime number. 
p p 

We prove the conjecture for the following cases: 

1 ) G = Cd for any d1 
2) G 

1 
d2 2k • 31 • 5m and d Id = cd1 6l Cd where = 2 1 

3) G= c3 e c3 ~ c3 
4) N G = (c2 ) for any N. 

In the proof of 2) we employ a induction method which gives us the 

following implication: 

"If the conjecture is true for each group C 6l C 6l C it is true for p p p 
h C "' Cd • II eac group d "<C1 

1 2 
Recently during the preparation of this report it came to our knowledge 

that H.B. Mann and J.E. Olson are working on the same problem. Their 

results (see [1]) for the case G = C 6l C imply that for the special 
p p 

case of a sequence consisting of different non zero elements of G the 

minimal value fork is equal to 2p - 2. For a probabilistic method 

applied to a related problem by P. Erdos and A. Renyi see [2]. 

§1. Conventions and notations 

A structure Sis a pair {V,µ} where Vis a non empty finite set andµ is 

a multiplicity-function which assigns to any element a of Va natural 

ntunber µ(a) which is called the multiplicity of a. 

A structure is represented by the usual notation; if for example 

S = {V,µ} where V = {a,b,c,d} and µ(a)= 2, µ(b) = 3, µ(c) = 1, µ(d) = 4 

we denote S = {a b a c db db d d}. In the latter symbol the letters 
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in between the accolades can be interchanged. 

The length of a structure S = {V,µ} is the sum of the multiplicities 

taken over V. It is exactly the nwnber of letters in between the 

accolades in the notation defined above. 

A structure S' = {V',µ'} is called a substructure of S = {V,µ} if 

V'cV and µ' (a) < µ(a) for any at=V'. Notation: S'cS. 

We use the usual language: 

The elements of V are called "the elements of the structure". The 

sentence "x appears 3 times in S" ·means µ(x) = 3. 

In the sequel {G,+,O} denotes a finite Abelian group with elements 

represented by {a,b,c, ••• ,x,y}. A structure over G is a structure 

S = {V,µ} where Vis a subset of G. The value of the structure is the 

swn of its elements taken in account of their multiplicities. 

Notation: Is I = l µ(a) • a. 
a~ 

An element x E G is called generated by the structure S if there exists 

a substructure S'c S with js 1 I= x. The structure Sis called a 

zero-structure if Isl= O. If O is generated by S we say "S contains a 

zero-structure". 

§2. Finite Abelian groups 

The main theorem on finite Abelian groups states that any such group 

consisting of at least two elements can uniquely be represented as: 

where 2,;. <it' dkl<it_1, ••• , d2 jd1 and Cd is the cyclic group of d 

elements. The nwnber k is called the dimension of the group G. 

If needed we represent the elements of this group by colwnns of k nwnbers: 

X = where O 2.. x1 < d, 0 2.. x2 < d, ••• , 0 ,;_ xk < d. 
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In this form we can perform addition coordina.tewise: 

x, Y1 z, x, + Y1 = z1 mod d1 

x2 Y2 z2 x2 + Y2 E. z2 mod d2 
+ = where . 

xk yk zk ~ + y k = zk mod ~ 

In the special case G = C 
\.P 

$ C $ C $ ••• 
p p 

k-times 

$ C , p prime it is 
P, 

known that G is a vectorspace over the finite field C, and the 
p 

notation defined above coincides with the usual one. For this case 

we can use the theory on vectorspaces. 

§3. Primitive structures and primitive zero structures 

Let G be a finite Abelian group and let S be a structure over G. 

. 

S is called a primitive structure if O is not generated by S. If S 

is a zerostructure and none of its proper substructures generates O, 

Sis called a primitive zero-structure. 

It is easy to see that a non primitive zero-structure contains at 

least two disjoint zero-structures. 

The length of a primitive structure can not be.chosen arbitrarily. 

Actually it can never exceed the order of the group. We have the 

following general theorem. 

Theorem 1. Any structure of length n over a finite group of order n 

contains a zero-structure. 

Proof: Let S be the structure {x,, x2, • • •, X } • Let ~ = x, + x2 + n . . . + Xk• If a . = a. for some l. < j then O = a. - ai = xi+1 + x. 2 + 
l. J· J i+ 

... 
. .. 

... + x .• If a. :/: a. for each pair i,j, i :/: j, then then elements of the J l. J 
group {a,' ... , an} are different, which implies that one of them 

is the zero element. 

It is easy to see that this theorem is also valid for non Abelian 

groups. 
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Let k be thie maximal length of a primitive structure over some Abelian 

group G and 1 be the maximal length of a primitive zerostructure over the 

same group G. Then we have the relation 1 = k + 1. For;, let S be a primitive 

structure of length k, then we construct a primitive zerostructure by 

adjoining the element -Isl. Conversely,let S' be a primitive zerostructure 

of length 1 then each substructure of S' of length 1 - 1 is a primitive 

structure. It follows that k + 1 < 1 and 1 - 1 < k which fact proves the 

relation. 

Solutions for the general problem to find a maximal length of a structure 

over a semigroup containing no structure consisting of successive elements 

with idempotent value, are given in [3], [4], [5]. 

§4. Cyclic groups 

The cyclic group of order n is an example of a group for which the maxi

mal length 1 of a primitive zerostructure 1s equal to the order of the 

group. For if a is a generator, then the structure S = {v,µ} with 

V = {a} and µ(a)= n is a primitive zerostructure, hence 1 > n. From 

theorem 1 it is immediate that 1 ,:_ n. Combining these two we have 1 = n. 

A converse of this statement is also valid. 

Theorem 2'. If the maximal length 1 of a primitive zerostructure over an 

Abelian group G is equal to the order n of the group, then the group 

is cyclic. 

Proof: Let S be a primitive zerostructure on G with length n. We shall 

first show that all the elements of S are equal. 

Assume the contrary, and let S = {x1, x2 , ••• , xn} with x 1 'f x2• As S 

is a primitive zerostructure the n-1 elements~ fork= 1, 3, 4, ••• , n 

defined by ·~ = x 1 + x3 + ••• + xk are not equal to zero and ai -:/: aj 

for i 'f j. 

The same holds for the elements bk= x2 + x3 + ••• + xk, k = 2, 3, •.. , n. 

The elements of both{~} and {bk} represent the set of non zero elements 

of G. 

As x2 'f O and x 1 # x2 we have x1 'f x 1 - x2 and x 1 - x2 'f O. Therefore 

there is a ,element ~ with k # 1 and ak = x 1 x2 • But now bk = ~ - x 1 + x2 = 

= 0 which gives the desired contradiction. 
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Now, if all the elements of a primitive zero-structure of length n are 

equal to some element x then this xis an element of order n. Conse

quently, our group is cyclic. 

From theorem 2' it follows: 

Theorem 2. The maximal length of a primitive zero-structure over a 

finite Abelian group equals the order of the group if and only if the 

group is cyclic. 

§5. A conjecture on non cyclic groups 

From theorem 2, it follows that for non cyclic groups the maximal length 

1 of a primitive zero-structure is less than the order of the group. 

The problem is to compute this length in case the structure of the 

group is given (if for example the numbers d1, ••• ,~in the represen

tation from §2 are known). 

Let G be the group G = Cd $ Cd $•••$Cd, where 2 .::_ ~, ~1~_1, ••• 
I 1 2 k 

••• , d 2 d 1 • 

It is easy to construct a primitive zero-structure of length d1 + d2 + ••• 

••• + ~ - k + 1. For example consider the structure consisting of the 

elements: 

1 

0 

0 

0 

d1-1 times, 

0 

0 

0 

d2-1 times, ••• , 

0 

0 

0 
~-1 times, and 

Prof. P.C. Baayen has raised the conjecture that this number d1 + d2 + ••• 

••• + ~ - k + 1 is also an upper limit for the length of a primitive 

zero-structure on G. 

Let us denote the statement: 

"The maximal length of a primitive zero-structure over the group 

Cd $ Cd $ • • • $ Cd equals d1 + d2 + • • • + ~ - k + 111 

1 2 k 
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by the symbol: (Cd e Cd $ ••• e Cd)! 
1 2 k 

Theorem 2 can now be restated as the validity of (C ) ! for any n~JN. n 

Other cases· for which the conjecture has been proved are: 

Theorem 3. 

Theorem 4. 

Theorem 5. 

) _ex Sy f ( C · e C· t is true for d2 - 2 3 5 and d2 d1 • d 1 d2 

(c3 e c3 e c3)! is true. 

((c2 )k)! is true for any k~lN. 

No counter example of the conjecture is known to the authors. 

§6. Other conjectures 

The proof of theorem 3 is carried out by using some induction principle. 

However, the conjecture stated above itself is not strong enough to use 

a same procedure. Stronger conjectures that work can be defined in two 

different wa;ys. We shall restrict ourselves to groups of dimension 2,. 2 

(generalisations of these conjectures in case of dimension 3 are not 

generally true ) • 

The strong-conjecture (Cd e Cd)!! says: 
1 2 

"Any structure of length kd1 + d2 - 1 contains k disjoint zero-structures 

for any k E. IN" • 

The strongest conjecture (Cd 
1 

(Cd e Cd)! is true. 
1 2 

II 

e Cd H t ! says: 
2 

Any structure of length 2d1 + d2 - 1 contains a zero-substructure 

of length 2,. d1". 

It is easy to prove the implications: 

41 C ) I I I 
w d • • • 

2 
==> ==> 

In the above conjectures the case d2 = 1 is not excluded, and is easily 

seen to be valid. 

We have also the following implication: 

Theorem 6. (C e c e c )! ==> (C e c )!!! n n n n n 
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Proof: First,let there be given a structure of length 2n-1 over 

( x2 · 1 ) 1 
•••, Y2:=1 • 

We "border" this structure as follows: 

n-1 times 

((C )3)! implies the existence of a zero-substructure which does not 
n 

contain one of the last n-1 elements (else the lowest coordinate of the 

value of this structure is unequal to zero). Hence this zero-substructure 

is contained in the original structure over (C )2 • n 
This proves (C $· C )! 

n n 

Secondly let there be given a structure of length 3n~2 over 

{ ( X ) ( X ) C $ C • 1 2 
n n· Y1 Y2 

... ( x3n-2)} 
Y3n-2 

Now we "border" this structure as follows: 

... ( 
x3n-2) 1 
Y3n-2 ) 
1 

From ((C )3 )! it follows that there exists a zero-substructure. This n 
substructure must have a length that is divisible by n. If the length 

is n we have found a zero-substructure of length n over C $ C and n n 
we are ready. But if the length is 2n we have found a zerostructure 

of length 2n over C $ C which can not be primitive; hence it contains 
n n 

two disjoint zero substructures one of which has a length~ n. From 

this the statement (C $ C )!!! follows. n n 
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§7 • .An induction procedure for groups of dimension 2 

is also true. 

Proof: Let a structure of length td1k + d2k - 1 be given over 

Ckd EB Ckd = G. There exists a subgroup A' which is isomorfic to 
1 21 

Cd EB Cd such that G/A' = Ck EB Ck. We denote the natural mapping from 
1 2 

G onto G/A' by~-

The mapping ~ transforms the given structure into a structure over 

ck EB ck with length ( td1 + d2 )k - 1. ( ck EB ck)~~ implies that it 

contains ta.1 + d2 - 1 disjoint zero-structures. 

It follows that the same substructures of the original structure have 

their values in the subgr0up A' • Now we interprete these td1 + d2 - 1 

values as the elements of a new structure over A' = Cd EB Cd. 

(Cd EB Cd)~~ implies the existence oft disjoint zero!subst~uctures. 
1 2 

This means that from the td + d - 1 disjoint substructures with values 
1 2 

in A' we can construct t disjoint combinations such that the combinated 

substructures have value zero in Cd k EB Cd k' So we find that the 
1 2 

original structure contains t disjoint zero structures which completes 

the proof. 

==> 

Theorem 7' is easily proved by the methods employed in the proof of 

theorem 7. 

As before the case d2 = 1 is not excluded; we have the implication: 

(Ck EB CkH~ ==> (Cnk E9 Ck)~~ for any nE'.lN, 

because of the fact that ( en EB C 1 ) ~ ~ is valid for any n~ lN. 

Let us define in general: 

EB Cd )U means: "A structure of length td1 + d2 + ••• 
n 

••• + d - n + 1 contains t disjoint zero-substructures". 
n 



9 

Then the statement: 

" ( (ck)nH t and (cd e cd e ••• e- Cd )! i ==> (ckd ti ckd ti ••• 
1 2 n 1 2 

••• tl Ckd )tl can be proved in the same way· as theorem 7. Again the 
n 

case that some of the d. are equal to 1 is not excluded. However this 
J 

generalisation of the strong conjecture does not hold: the statement 

((c2 )3 )ll is false. 

The structure { ( ~ ) • C ) . ( n . ( J . C ) . ( ~ ) ' 
does not contain two disjoint zero-substructures. 

§8. A proof of theorem 5 

Let S = {x1 , x2 , ••• , xk+ 1} be a structure of k+1 elements over (c2 )k. 

This group is the additive group of a vector space of dimension k over 

the ~ield c2 which contains the scalars O and 1. 

From the theory of vector spaces it follows that the k+1 elements of 

the structure are linearly dependent. Consequently there exists a 

relation.A 1x1 + ••• + Ak+ 1xk+1 = 0 in which not every Ai is zero. 

By erasing the terms with A. is zero we find a relation: 
1 

= 0 (1 ~ j 1 < j 2 < ••• < jn ~ k+1). So, there is x. + x. + ••• + x. 
J1 J2 Jn 

a zero-substructure. 

§9. An equivalent formulation of (c3)kl. Proof of (c~ 

The group (C )~ can be considered as the additive group of a vector 
p 

space over C. With respect to a given 
p 

unit-cell iJ as the set of vectors A1e 1 

With respect to the canonical base 

1 
0 
0 

0 

base e 1, ••• , ek we define the 

+ ••• + Akek where Ai= O, 1. 

0 0 
1 
0 

0 

, ... ' 0 
0 

the unit-cell contains exactly the vectors with O or 1 coordinates. 

A cell-structure is a structure the value of which is a vector from the 

unit-cell. 
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With these notions it is possible to reformulate the conjecture (c3 )k! 

Theorem 8. The following are equivalent: 

a) (c3 )k! is true. 

b) A structure: of length k+1 over (c3 )k contains a cetl-structure. 

c) A structure of length k+2 over (c3 )k with value (1
1

:.) is the union 

of two d.isjoint cell-structures. 

Proof: a) •· b). Suppose (c3 )k! is true and let S be a structure of 

length k+2 over (c3 )k with value 

~~: ') Is I = • Then we adjoin the set of k vectors 

1 . 

0 
2 
0 

0 

' ... ' !)1· 
The resulting structure is a zero-structure of length 2k+2, and therefore 

it is not a. primitive zero-structure. Hence it contains a proper zero-
:, 

structure U. 

Now U = (U/1S)U(U()T). It is clear that (U(\S) is a cell-structure. 

It is also true that (UA S) is a proper substructure 9f S, for suppose 

on the contrary that U () S = S, then we have I U fl S I = 1 which 
1 

implies I U f\T I = ( ~ ) and therefore U I) T = T, which contradicts the 

fact that U is a proper substructure of S VT. Thus S is the union of the 

two disjoint cell-structures S () U and S \ U. 

c) • b). Leit S be a structure of length k+1 k over (c3 ) • Now we adjoin the 
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element ( j ) - IS I • The resulting structure of length k+2 with value 

( j) is the disjoint union of two disjoint cell-structures one of which 

is contained in S. 

k b) ~ a). Let S be a structure of length 2k+1 over (c3 ) • We choose from 

Sa maximal set consisting of linear independent vectors {e1, e2 , ••• , en}. 

It is possible to choose a base for (c3 )k such that: 

2 
0 
0 

0 

0 
2 
0 

0 

• •. e = n 

0 
0 

th place • n 
2 

0 

As the other k + 1 + (k - n) vectors are linear combinations of 

h . 1 kth d" Th e 1, ••• , en t eir n+, ••• , coor inates are zero. e structure 

consisting of these vectors contains a cell-structure S' whose value 

h al "t 1 kth d" N . . . as so zero as is n+, ••• , coor inate. ow it is possible to 

complete S' with some of thee. 1 < j < n to form a zero-structure. 
J - -

Now we shall prove (c3 )3! by showing that any structure S over (c3 )3 

with length 5 and value C) contains a proper cell-substructure. 

We consider a 3 x 5 matrix with elements taken from c3 such that the 

sum of the elements of each row equals 1. 

I. If the third row contains three or more zeros we can extract three 

elements forming a structure over c3 $ c3 $ c3 of the form 

{ ( x~21 ) , ( Y~21 ) , ( ozz21 ) 1 • It is easy to show that such a structure 

always contains a cell-substructure. The same holds if one of the other 

rows contains three or more zeros. 
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II. The combination of two elements in the same row with sum 2 is 

called a C£njunction. If the number of conjunctions in the matrix is 

smaller than 10, then it is possible to find a pair of columns without 

a conjunction. This pair clearly forms a cell-structure. 

III. The possible structures of length 5 over c3 with value 1 and with 

at most 2 zeros are tabulated below, followed by the number of 

conjunctions that they contain. 

Structure Number of conjunctions 

p 1 , 1 ' 1 , 1 ' 0 6 

Q 2, 1 , 1 , o, 0 3 

R 2, 2, 2, 1 , 0 3 

s 2, 2, 1 ' 1 , 1 3 

T 2, 2, 2, 2, 2 0 

IV. From I it follows that we can restrict ourselves to 3 x 5 matrices 

in which each row has the form P, Q, R, S, or T. However, if the form P 

is not present we find at most 9 conjunctions, and the existence of a 

cell-substructure follows. Therefore we may suppose that the first row 

has the form P. 

V. Suppose that there are two rows present of the form P. If the last 

row is not of the form T there exists an element in the structure that 

is contained in the unit cell. But if the last row has the form T, then 

the vector (:) or ( ~) appears at least 3 times. Hence the structure 

contains a zero-structure. Therefore we may suppose that only the first 

row has the form P. 

VI. In the combinations [ n , u ] and [ n the number of 

conjunctions is equal to 9, and by II there exists a cell-substructure. 

In the combinations [i] , [n , m and [~] the number of 

elements equal 2 in the matrix is at most .equal 4. Hence the structure 

contains an element contained in the unit-cell. 
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Therefore we may restrict ourselves to the two remaining combinations: 

[ fl and u] 
VII. We may restrict ourselves to those matrices in which no unit-cell 

column is present. For both combinations [:] and [:] there exists 

,a unique form for which each column contains an element equal 2, that 

is given below. 
-

2 2 

1 2 2 [:] 2 

1 

2 1 

2 

For each of those 2 x 5 matrices it is possible to combine an arbitrary 

column with some other column such that their sum is contained in the 

unit-cell. From this it follows that the remaining combinations 

[ ! 1 and [ i ) alweys contain a cell-structure o~ length < 2. This 

completes the proof. 

§10. The group c~5 

The group c5 $ c5 is the additive group of the two dimensional vector

space over the field c5• A line in the group c5 I c5 will be a one

dimensional subspace of this vectorspace. There are six lines in 

C5 $ C5: 

(~) (~) 
( g) (~) 
(g) C) 
( g) (;) 

cg) c;) 
(g) (~) 

(~) 
(~) 
(~) 
(~) 
(~) 

(~) 

(~) 
(~) 

(~) 
(f) 

(~) 
(~) 

(~) 
(~) 
( t) 
(j) 

(~) 

(~) 
Each of these lines is a group isomorfic to c5• 
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It is clear that any structure over (c5 i c5) containing 5 or more 

elements taken from a single line contains a.zero-substructure of 

length.:_ 5. Therefore we exclude in the sequel the possibility that 

the structure we are considering contains a zero-structure formed by 

elements taken from a single line. This imposes a strong restriction 

on the possible structures. 

We enumerate the possible combinations of taking 4, 3, or 2 elements 

from a line. Combinations that can be transformed into each other by a 

linear transformation will be treated as being identical. 

4 elements: 

a) {1, 1, 1, 1} 

3 elements: 

b1) {1, 1, 1} 

b 2 ) { 1 , 1 , 2} 

2 elements: 

set of generated elements 

{1, 2, 3, 4} 

{1, 2, 3} 

{1, 2, 3, 4} 

{ 1 , 2} 

{1, 2, 3} 

c 1) {1, 1} 
c 2 ) { 1, 2} 

c3 ) { 1 , 3} can be transformed into c2 ) 

In the sequel we shall try to construct a structure of length 9 over 

c5 $ c5 which contains no zero-substructure, resp., a structure of 

length 14 over c5 $ c5 that contains no zero-substructure of length 

.:_ 5 in order to prove that such a construction is not possible. 

From the enumeration given above it follows that if Sis an arbitrary 

(resp. primitive) structure containing 2 or 3 elements within a single 

line, such that the combination b2 or c2 is realized, then there 

exists a structure S' containing 3 or 4 elements in the same line, 

such that the combination a or b1 is realized, and such that S1 

generates the same elements (resp. S' is primitive too), but has 

a greater length. Moreover, if S' contains a zero-substructure 

with length.:_ 5, then this is also true for S. Therefore, we can 

exclude the combinations b2 and c2• 
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For any given structure S there is a suitable canonical base for 

c5 e c5 such that the lines b 1 and b2 are exactly the lines in which 

the structure has "many" elements. Hence,. we may assume without loss 

of generality that the elements ( ~) and {~) appear in the 

structure with multiplicities greater than 1, and that the other 

elements of the structure are not contained in the lines b 1 and b2 • 

The argument given above makes it possible to transform any structure 

(that contains no zero-substructure consisting of elements taken from 

a single line) into an "equivalent" structure of which a number of 

elements a.re "known". These elements create a "forbidden region"; 

this is the collection of elements x of c5 e c5 such that-xis 

generated by the "known" elements, we call it "forbidden" because of 

the fact that if some element of it is generated by the "unknown" 

elements, then there exists a zero-structure. In the proof of 

(c5 e c5)!!! each element of the "forbidden region" possesses a 

"critical number"; this is the maximal number k with the property 

that if the element is generated by k or less "unknown" elements, 

then there exists a zero-substructure with length..::_ 5. 

For the sake of clearness we shall draw for each treated case, a 

diagram in which this forbidden region is marked. The meaning of the 

25 cells that appear in the diagrams is given in diagram 1. 

(~) (~) (~) (~) Ct) 
(~) (~) (~) (;) (~) 

(~) (~) (~) (~) (~) 

(~) C) (~) (f) (~) 

(~) (~) (~) (~) ( ~) 

Diagram 1. 

For the proof of (c5 e c5)! we use the following property Q of the group 

c5, the easy proof of which is omitted: 
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_s: Let V be the set { 1,2} c::c5. Then we have the following implications: 

I) If aEV, b and c are not equal to zero, and a+ b and a+ c are 

elements of V, then b = c. 

II) If a:/: O, band care elements of V, and a+ band a+ care elements 

of V, then b = c. 

§11. Proof of (C~~ 

Let S be a structure of length 9 over c5 ~ c5• Excluding the possibility 

that there exists a zero-structure formed by elements taken from a 

single line, there remain four cases after having choosen a suitable 

canonical base: 

A) The structure contains 4 times the element ( 6) . 
B) The structure contains 3 elements within b 1 and 3 elements within 

C) The structure contains 3 elements within b 1 and 2 elements within 

D) The structure contains 2 elements within b 1 and 2 elements within 

In each of these cases we may assume that the elements taken from the 

lines b 1 and b2 always are equal (6) and (~) , as has been shown 

in §10. 

Case A. There are at least 5 elements of the form (;} with y :/: O. 

b2. 

b2. 

b2. 

By looking at the second coordinate only, we conclude that the 

structure of these five elements generate an element of the 

form ( ~) • Now either z = 0 or the element t~) is 

generated by the "known" elements { ( 6) , ( 6 J , ( 6) , ( 6) } • 
This means that the complete structure does generate ( ~) • 

Case B. The structure contains (~) three times, ( ~) three times and 

three unknown elements. The "forbidden region" is shown in 

diagram 2. 

Diagram 2. 
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The three unknown elements have the form (:) or ( ~) with 

a,S-:/- O. There are essentially two possibilities (with respect 

tc, the symmetrical properties of case B). 

Case B1 .The three unknown elements are 

Nc,w either ( 2 ) a+S 

and (~) • 

( ~) and hence 

a= S = y = 3 or an element inside the forbidden region is 

geinerated. 

But if a = S = y = 3 then ( ~) is generated which is an 

element of the forbidden region. 

Case B2 .The three unknown elements are ( ~) and ( ~) 

Nc,w (1+y) 
1+S is generated which is an element of the forbidden 

region. 

Case C. The structure consists of ( ~) three times, ( ~) two times 

and four "unknown" elements. 

The forbidden region is shown in Diagram 3, 

Diagram 3, 

The four unknown elements must have the form (: ) , a -:/- 0, or 

( ~ ) where S -:/- 0 \ ~ { 1 ,2} = V. 

There are 5 subcases: 

Case C 1• The four unknown elements are: (:) ( ~) (:) and ( ~) 

where a, b, c, d-:/- O. Suppose no forbidden element is generated. 

Now we have a + b t.V, a + b + c l:::V, a + b + de V, b, c -:/- 0; 

hence QI (see §10) implies: c = d. In the same way we prove: 

a= b = c = d. But then the structure contains four identical 

elements; this situation was treated already in case A. 
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Case c2• The four unknown elements are (:) 

where a, b , c , d :/: 0 , A €:. V. 
(~) (~) (1)' 

In order to avoid the generation .of some forbidden element the 

conditions: A + a E: V, A + b c. V and A + c €:. V must be satisfied. 

As a, b, c :/: 0 and )..€;.V, property QII implies a= b = c; hence 

there are three identical elements. See case B. 

Case c3• The four unknown elements are: (a1 ) (~) (~) ci), 
where a, b, c, d :/: 0 and )..,µ~V. 

Now we find the following conditions: 

a+ A, b + A ~V: this implies a= b by QI 

a+ A, a + µ cV: this implies A=µ by QII 

a+ b~V. As a= bit follows that a= 1 or a= 3. However 

a = 3 is impossible by a + A e.v and ).. ~V; hence a = b = 1. 

From ).., a + A t:.V it follows that A = µ = 1. 

h ( 1 + 1 + C ) = (2 + C) Then we ave a+ b + A 3 ; hence c = 4. 

It follows similarly: c = d = 4. 
Now the four unknown elements together generate the element 

( ~ ) which is contained within the forbidden region. 

Case c4. The four unknown elements are: (a1) (~) (:) (~)' 
where a, b, c, d :/: 0, A, µ, v ~ V. 

Now we have: a + ).., a + µ, a + v, (:. V: this implies A = µ = v 

by QII. As it is impossible that).., a+).., a+ 2)..e_V it follows: 

1 + b + c = 1 + b + d = 1 + c + d = 1. Therefore b = c = d = O. 

Contradiction. 

( ~) (bµ) Case c5• The four unknown elements are: A 

where a, b,· c, d :/: 0 and).., µ, v, ~lV. 

Suppose A= 2 andµ= 1. Then a+ b = 1 and a+ b + c = 1 

follows; hence c = 0 and a contradiction arises. Therefore we 

may assume A=µ= v = ~ = 1 or)..=µ= v = ~ = 2. 

If A= 1 then a+ b + c =a+ b + c + d = 1; hence d = 0 and 

a contradiction arises. 

If A= 2 then a+ b =a+ c =a+ d = b + c = b + d = c + d = 1; 

hence a= b = c = d = 3. The structure contains four identical 

elements. See case A. 
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Case D. The structure consists of the elements ( ~) (~) (6) ( 6) 
and five other unknown elements. These other elements are all 

taken from 1 1 , 12 , 13 or 14. We may assume that at most two of 

them are taken from· the same line. This implies that at most 

one of the four lines 1 1 , 12 , 13 , 14 does not contain any 

element of the structure. 

We prove that if 12 contains an element of the structure, then 

some forbidden element is generated.by the unknown elements. 

For reasons of symmetry it follows that the structure also does 

not contain an element taken from 13 , and a contradiction arises. 

The diagrams 4, 5, 6, 7 show the forbidden region for a structure 

consisting of ( 6) ( 6) ( ~) (~) and 5 unknown elements, 

resp. a structure consisting of ( 6) ( 6) ( ~ ) ( ~ ) , one 

of the elements of 12 and.four unknown elements. 

The fourth element of 12 ( ~) is already "forbidden" by ( 6 ) 
( 6 ) ( ~ ) ( ~ ) alone • 

Diagram 6 

(6 )(6) [~ )(~)(~) 
Diagram 7 

(6)l6)fi)(~)e) 
Case D1 .The only "possible" e.l'.ements left-·are~C) (1) (~) (~) 

and ( ~) • However the element { ~) excludes all the other 

(2+x). . . {X) elements for 4 + y is forbidden for each possible(1) y • 

Hence the four unknown elements must ha;e the form a • 

But now some element of the form ( x + y + 2 ) is generated 

which is a forbidden element. 
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Case n2 • The only possible elements are 

( ~) and ( ~) 

(21 ) (~) (~) ( ~) (~) 
The following combinations are forbi.dden because of the fact that 

they generate forbidden·elements: 

( ~) and ( ~ ) for b = 1 , 2: 

( ; ) and ( ~ ) for any a, b 

( ; ) and ( ~ ) for any a, b 

( ~ ) , ( ~ ) and (; ) or ( ; ) for any a 

( ; ) , ( ~ ) and ( ~ ) for any a, b , and c • 

It is easy to see that it is impossible to choose four possible 

elements without creating a forbidden combination. 

The proof of case n3 is analogous to that of case n1• 

Summarizing we see that in each case our argument has resulted either 

in some contradiction or in the existence of a zero-structure. Hence 

it is impossible to construct a primitive structure of length 9 over 

c5 e c5• This proves (c5 i c5)! 

§12. Proof of (c~5)!!! 

Let S be a structure of length 14 over c5 i c5• We may assume that the 

structure contains no zero-substructure of elements taken from a 

single line as has been noticed in §10. Therefore we can assume that the· 

structure contains at most four elements within a single line. 

Dividing 14 elements over six lines no single line containing 5 or more 

elements, we have two possibilities: 

Case A. There are two lines each containing three or more elements. 

Case B. There is one line containing four elements, all other lines 

containing two elements. 

As has been noticed in §10 we may assume that elements contained in the 

same line are identical. After a suitable linear transform we may suppose 

that the structure contains a certain number of "known" elements. These 

known elements create a forbidden region in which each element possesses 

a critical number as has been described in §10. In the diagrams this 

number is marked down within the corresponding cell. 
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Case A. The structure consists of the elements ( 6) ( 6) ( 6 ) , 
( ~) ( ~) ( O)) and eight other_ elements. It will not be 

ex:cluded that (6 and ( ~) appear each fourth times, and 

therefore we suppose only the existence of six other elements. 

The forbidden region for case A is shown in diagram 8. 

4 1 2 3 

3 1 2 

2 1 

5 2 3 4 

Diagram 8 

Possible choices for the six other elements are: 

(;) or ( ~) , (~) 

, and ( ~ ) or ( ~ ) • 

C) , 
(~) 

or ( f) , (; ) , ( ~ ) or 

It is sufficient to prove the impossibility of chasing {i) , 
(;) , (;) and (~) . Then the elements (~) and (,) 

are excluded for reasons of symmetry, and the remaining elements 

are exactly the elements from 14 and it was excluded that six 

elements should be chosen from a single line. 

(01) (01) Case A1 .The structure contains the elements 

( ~ ) ( ~ ) ( ~ ) , and C ) . See diagram 9. 

( 6) , 

4 1 2 3 4 

3 1 2 3 

2 1 2 

1 

5 2 3 4 

Diagram 9. 



Now the following choices 

(~) three other times. 

or ( ~ ) but these 
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are possible: 

exclude each other G) 
(;) { ~ ) or (f ) but these exclude each other and all the 

other possible choices. 

It is impossible to choose 5 elements. Therefore C ) is 

ruled out. (In the diagrams .10, 11 and 12 related to the other 

subcases of case A the cell ( ~ ) is marked black to indicate 

the impossibility of choosing this element.) 

Case A2• The 

and 

4 

3 

2 

structure contains ( 6 ) 
(; ) • See diagram 10. 

1 2 3 4 

1 2 3 4 3 2 

1 2 3 2 1 

~ 1 2 ~ 
5 2 3 4 5 

(6) 

1 2 

3 4 

2 3 

1 2 

2 3 

Diagram 10 Diagram 11 

(~ ) , (~) (~) (~) 

3 4 1 2 3 

2 3 1 2 

1 2 1 2 3 4 

~ 1 2 3 

4 5 2 3 4 

Diagram 12 

( 1
1 ) Now the possible choices are ( already being excluded): 

(21 ) three other times possible 

( 21 ) one time possible 

(41 ) one time possible but this choice excludes (~) . 
(; ) (and It is impossible to choose 5 

also ( ~ ) ) is ruled out. 

The structure contains (6) 
and ( ~ ) • See diagram 11 • 

The only possible choices are 

elements. Therefore 

(6) , 

the elements 

(~) (~) 

(~) and ( ~) • 

l~) 

But these elements are contained within the line 14 and it was 

excluded that we choose five elements from a single line. 

Therefore ( ~ ) is ruled out. 
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Case A4• The structure contains ( 6 ) 
(~) • See diagram 12. 

( ~ ) (~) (~) 

Case B. 

Case B1. 

Case B2. 

Case B1. 

Case B2. 

and 

The possible choices are: 

(~) three times 

{~) two times but then 

( 23) one time but then 

(~ ) is excluded 

(~ ) is excluded. 
,,, 

It is impossible to choose 5 elements. Therefore 

also ( ~ ) ) is ruled out. 
(~) (and 

This completes the proof of case A. 

The structure consists of (6) (6 ) (6) (6) , (~) 
(~) and two elements in each of the lines 1 1, 12, 13 and 14• 

The forbidden region "generated" by the elements ( 6} (6) 
(6) (6) , ( ~) and ( ~ ) is shown in diagram 13. This 

diagram shows that the only possible choices of two elements 

within the line 11 are: 

The structure contains also C) and C ) J..diagram 14). 

The structure contains also l ~ ) and ( ~) (diagram 15). 

It is· impossible to choose two elements from 14. 

It is impossible to choose a single element from 12• 

This completes the proof of case Band therefore (c5 $ c5 H ! ! 
is proved. 

4 1 2 3 4 1 2 3 4 4 1 2 3 4 

3 1 2 3 1 2 3 3 3 2 3 4 3l 

1 2 2 1 2 3 3 2 

1 1 2 2 

5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 

Diagram 13 Diagram 14 Diagram 15 
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§13. Proof of Theorem 3 

The results: from §8, 9, 1 0, 11 , 12 imply that ( c2 EB c2 ) ! ! , ( c3 EB c3 ) ! ! 

and (c5 fJl c:5)!! are true. Therefore we can apply the induction procedure 

of §7. It proves that the strong conjecture holds for any group of the 
) n m 1 

form (Ck EB Ck where k = 2 • 3 • 5 • 

It has been proved that (Ck)!! is true for any k. The induction 

procedure of §7 now implies that (G) ! ! is true for any G of the form 

G = C @ C where d2· = 2n • 3m • 51 and d1 = k • d2 . Then G! is also 
d1 d2 

true for any such G. This completes the proof of Theorem 3, 

It has been proved by P, Erdos, A. Ginzburg and A. Ziv, and independent

ly by N.G. de Bruijn that any structure over C with length 2n-1 contains n 
a zero-substructure of length= n. From this.it follows that any structure 

of length c:!n-1 over C fJl C n' such that all elements are contained within 
n 

a coset a + H where His a cyclic subgroup of order n, contains a zero-

substructure of length n. See [6]. 
As has been noticed in the introduction it has been proved by H.B. Mann 

and J.E. Olson that any structure over C @ C where pis some prime 
p p 

number cons:isting of different elements with length..:_ 2p-2 contains some 

zero-substructure. See [1]. 

§14. An equivalent formulation of (C )k! 
p 

Let X be some finite dimensional vectorspace over C with dimension N. 
p 

With respec:t to a given base e 1, ••. , eN we define the unit-cell U as 

in §9. 

Now we have the following equivalence: 

Theorem 9. The following are equivalent: 

a) (C )k! is true. 
p 

b) If N ..:_ (p-1)k + 1 and A is some N-k dimensional subspace of X then 

A () U contains some element t :/: 0. 

Proof: a) • :....£l: Let A be some N-k dimensional subspace of X. Then A is 

determined by k linear functions on X: 

A = { x EX j qi 1 ( x) = q>2 ( x) = • • . = q>k ( v) = 0} 
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Let e1, ••• , eN be some base with respect to which the unit-cell 

U is defined. Now we define the following structure S over (C )k: 
p 

where v,. = 
J 

<1>1 (ej) 

<1>2 ( e j) . 

~k(e j) 

If N ~ (p-1)k + 1 and (C )k! is true, then there exists a zero
p 

substructure S' • 

Now l 
v-cS' 

1 

v. = 0 and therefore 
1 

l <j>.(e.) = o 
v.~S' J 1 

1 

for j = 1, 2, ••• , k. 

This implies: <j>.( l e.) = 0 for J = 1, 2, ••• , k; 
J v.ES' 1 

1 

hence: t = l 
v.E.S' 

1 

e. is an element of A. As S' is not empty we 
1 

have t E: A ('\U and t f; 0. This completes the proof. 

b) ~ a): Let S = {v1, v2 , ••• , vN} be a structure over (Cp)k and 

suppose that N ~ (p-1)k + 1. 

Now we consider the collection A of all solutions (A 1, ••• , AN) 

of the equation: 

with A. EC . 
1 p 

This collection A is a linear subspace of the finite dimensional 
N vectorspace (CP) of all N-tuples (A 1, ••• , AN) with Ai€ CP, 

while the dimension of A is at least equal N - k. 

Therefore A is at least equal N - k. 

Therefore A contains some element t f; 0 of the unit-cell U which 

is defined with respect to the canonical base of (C )N. This 
p 

means that there exists a solution of the equation A1v1 + ••• 

••• + ANVN = 0 where Ai= 0 or 1 for each j and not Ai= 0 for 

all i. This proves the existence of a zero-substructure of S. 
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§15. Some applications for puzzelists and gamblers 

. ( )k' . . . I: If the conJecture C • is valid we have the following corollary 
n 

in the theory of finite undirected graphs: 

Let G be a graph with k vertices and N edges. If N ~ k(n-1) + 1 

then G contains a subgraph which is in each vertex of an order 

divisible by n. 

Proof: We consider the k x N incidence matrix (a .. ) where 
iJ 

the i-th edge has the .j-th vertex as an endpoint, a .. 
iJ 

i-th edge is a loop with the j-th vertex as endpoint, 

else. 

a .. = 1 if 
iJ 

= 2 if the 

and a .. = 0 
iJ 

The N columns of this matrix can be considered as some structure 

over (C )k. If N > k(n-1) + 1 there exists a zero-substructure. The 
n -

edges corresponding to the columns that form this zero-structure 

form the demanded subgraph. 

II: A gambler bets, after throwing 11 times with two discernable 

dices and marking the scores, that it is possible to elect a 

certain number of these throws such that the sums of the scores 

of both dices separately are both divisible by six. 

It has been shown that (c6 f c6)? is valid and therefore he 

certainly wins. However if he plays the same game with three dices 

and 17 throws it is just a conjecture that he will never lose. 
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