
CORRECTNESS OF CONCURRENT PROCESSES

Emst-Riidiger Olderog

Centrum voor Wiskunde en Informatica, Al118terdam
Vakgroep Programmatuur, Universiteit van Amsterdam

lnstitut flir Informatik und Praktische Informatik, Universitii.t Kiel

ABSTRACT. A new notion of correctness for concurrent processes is introduced and inve
stigated. It is a relationship P sat S between process terms P built up from operators of
CCS [Mi 80], CSP [Ho 85] and COSY [LTS 79] and logical formulas S specifying sets of
finite communication sequences as in [Zw 89]. The definition of P sat S is based on a Pe
tri net semantics for process terms [01 89]. The main point is that P sat S requires a
simple liveness property of the net denoted by P. This implies that P is divergence free
and externally deterministic.

Process correctness P sat S determines a new semantic model for process terl118 and logi
cal formulas. It is a modification ~· of the readiness semantics [OH 86] which is fully
abstract with respect to the relation P sat S. The model ~· abstracts from the concurrent
behaviour of process terms and certain aspects of their internal. activity. In ~· process
correctness P sat S boils down to :semantic equality: ~*[[P] = IR*[S]. The modified readi
ness equivalence is closely related to failure eqUivalence [BHR 84] and strong testing
eqUivalence [DH 84].

1. INTRODUCTION

A process is designed to serve the needs of one or more users. Internally it may exhibit a
complicated, nondeterministic and concurrent behaviour. However, for the users only its
externally visible reactions to communications are relevant. In particular, :such reactions
:should occur within a f"lllite amount of time. Process correctness links the internal process
behaviour to the external communication behaviour.

Formally, it is a relationship between processes and specifications which states when a
given process P satisfies or is correct with respect to a given specification S, abbreviated

P sat S.

Every notion of process correctness brings about some abstraction from the internal pro
cess behaviour according to the following. principle:

For a process the internal structure is irrelevant as long as
it exhibits the specified communication behaviour.

The purpose of this paper is to present a simple new notion of process correctness and
inve1Stigate its impact on abstraction.

108

To motivate this notion, we stipulate a rudimentary user interface of processes consisting

of the following:

(1) a power switch for starting and halting the process (switch on or off),

(2) a stability light that indicates when the internal process activity has ceased, and

(3) communication buttons, one for each communication the process may engage in. A

communication is possible only when the stability light is on and it is done by de

pressing the corresponding communciation button.

Processes may have more comfortable user interfaces, but we rely only on the above one.

To define correctness, we have to discuss what the communication behaviour of such a

process is. Many answers are possible and meaningful. We aim at a simple, but widely

applicable definition and therefore let it be a set of finite communication sequences that

are possible between user and process. These sequences are known as histories or traces

[Ho 78]. Since tracces are insensitive to intervening internal actions and concurrent pro
cess activities, this definition achieves abstraction from both internal activity and concur

rency. Our viewpoint is here that internal activity and concurrency are only part of the

process construction, not of the specified communication behaviour.

Of course, other viewpoints are possible. For example, in the work of Mazurkiewicz [Mz

77] even the word "trace" ls used for something more elaborate, viz. the equivalence class

of finite communication sequences modulo an independence relation on communications

expressing concurrency. To avoid confusion, we prefer to call these equivalence classes

"Mazurkiewicz-traces" and reserve the word "trace" for finite sequences.

As specification language for trace sets we use a many-sorted first-order predicate logic.

Since its main sort is "trace", it is called trace logic and its formulas are called trace
formulas. Informal use of trace logic appears in a number of papers (e.g. [CHo 81, MC 81,

Os 83, Sn 85, Rm 87, WGS 87ll. Precise syntax and semantics, however, is given only in

[Zw 89]. We shall adopt Zwiers' proposal, but we need only a simplified version of it

because we deal here only with atomic communications instead of messages sent along

channels.

As descriptiou language for processes we use terms built up from operators of CCS, CSP

and COSY [Mi BO, Ho 85, LTS 79]. The operational behaviour of such process terms will

be described by labelled transitions of Petri nets. Full details of this approach are given

in [01 88/89, 01 89]. With these preparations, we can define process correctness as a

relationship

P sat S.

between process terms and trace formulas. The main point is how we use the trace for

mulas S. In most previous papers CCHo 81, MC 81, Os 83, ZRE 85, Zw 89] trace formulas

express only safety properties or partial correctness Ccf. [OL 82]). Then P sat S if every

trace of P satisfies the formula S. This does not exclude the possibility that P diverges or

deadlocks. As a con.sequence, there exists a single process term which satisfies every trace

specification with the same alphabet. Such a process term is called a miracle after Dijk

stra [Di 76].

This is unsatisfactory because we would like to use the notion of process correctness al

so for process construction, i.e. given a trace formula S construct a process term P with

109

P sat S. With miracle:s thi:s ta:sk become:s trivial and meaningle:ss. Therefore we shall be
more demanding and u:se trace formulas to express al:so a :simple type of liveness property
implying total correctness (cf. [OL 82]). Essentially, P sat S requires the following:

* Safety:
* Livene:ss:

P may only engage in traces satisfying S.
P must engage in every trace sati:sfying S.

The notions of "may" and "must" are deflned by looking at the Petri net transitions of P.
The terminology of "may" and "must" originates from [DH 88] but the details are diffe
rent here. The livene:ss condition i:s due to [OH 86] and related to the idea of Misra and
Chandy to u:se :so-called quiescent inrmite trace specification:s to expre:ss liveness in the
:setting of a.synchronous communication (see [Jo 87]). It implie:s that every process P :sa

tisfying a trace formula S is divergence free and externally deterministic. That is: in every

run of the proce:ss the user ha8 exactly the same possibilitie:s of communication, no mat
ter which actions the process has pursued internally. This implies deadlock freedom of P.

Thus in our approach trace formulas can :specify only a :subset of processe:s. We are inte
rested in thi8 sub:set because, a.s demonstrated in [01 88/89], it has many applications and
yields simple compositional transformation rules for process coru;truction and verification.

We believe that in computing it is essential to identify subclasses of problems or pro

grams where things work better than in the general c88e.

2. TRACE LOGIC

We start from an infinite set Comm of unstructured communications with typical elements
a, b. By a communication alphabet or simply alphabet we mean a finite sub:set of Comm.
We let letters A, B range over alphabets. Syntax and :semantics of trace logic we adopt

from Zwiers [Zw 89]. It is a many-sorted predicate logic with the following .sorts:

trace
nat

comm
log

<finite communication :sequences)

{natural numbers)

{communications)

{logical value:s)

Trace logic then consists of sorted expression:s built up from sorted constants, variables

and operator symbols. For notational convenience, trace formulas count here 88 expres:si

on.s of sort log.

All communications appear as constants of sort trace and comm, and all natural numbers

k :l: 0 appear 88 constants of sort nat. The set Var of variables is partitioned into a set
Var:trace of variables t of sort trace and a set Var:nat of variables n of sort nat. Among

the trace variables there is a distinguished trace variable called h; it will be used in the
definiton of trace specification. For all communication alphabets A and all communications

a, b there are unary operator symbols ·t A and ·[b/al of sort trace -> trace. Further on,
there are binary operator symbols •. • of sort trace x trace -> trace and • [• J of sort
trace x nat -> comm, and a unary operator symbol I • I of sort trace -> nat. The

remaining symbols used in trace logic are all standard.

110

Definition. The syntax of trace logic is given by a set

Exp = Exp:trace u Exp:nat u Exp:comm u Exp:Jog

of expressions ranged over by xe. The constituents of Exp are defined as follows.

(1) The set Exp:trace of trace expressions consists of all expressions te of the form

te:: = E I a I t I te1 . te 2 I te t A I te[b/al

where every trace variable t in te occurs within a subexpression of the form te0 t A.

(2) The set Exp:nat of natural number consists of the following expressions ne:

ne:: = k I n I ne1 + ne2 I ne1 * ne2 I ltel

(3} The set Exp:comm of communication expressions consists of the following expressions

ce:
ce:: = a I te[nel

(4) The set Exp: log of trace formulas or logical expressions consists of the following

expressions le:
le:: = true I te1 " te2 I ne1 " ne2 I ce1 = ce2

I -, le I le1 A le2 I 3t. le I 3n. le 0

Let xe{te/t} denote the result of substituting the trace expression te for every free oc

currence of the trace variable t in xe. Furthermore, let xe{b/a} denote the result of lite

rally replacing every occurrence of the communication a in xe by b.

The standard semantics or interpretation of trace logic is introduced along the lines of

Tarski's semantic definition for predicate logic. It is a mapping

assigning a value to every expression with the help of so-called environments. These are

mappings
p E Env 3 = Var -> DOM3

assigning values to the free variables in expressions. The semantic domain of .J is

* DOM .::i = Comm u IN0 u Comm u {J_} u {true, false},

and the environments p respect sorts, i.e. trace variables t get values in Comm* and natu

ral number variables n get values ln IN0 .

Definition. With the above conventions the standard semantics .J of trace logic is defined

as follows.

(1) Semantics of trace expressions yielding values in Comm*:

.J!Ie]{p} = E , the empty trace

,J[a](p) = a

.3[t] lpl = p(t)

.J[te1 . te 2] (p) = .JII te1] (p) . .:s .JII te 2] (p) , the concatenation of the traces

.J[tet A] (p) = .J[te] (p) t :J A , the projection onto A, i.e. with all communications

outside A removed

.JIIte[b/al](p) = .J[te](p) {b/a} , i.e. every occurrence of a is renamed into b. Brackets

[.. .l denote an unevaluated renaming operator and brackets {...} its evaluation.

111

(2) Semantics of natural number expressions yielding values in IN .
o·

,'J[k](p) = k for k e IN 0

:J[n] (p} = p(n)

,'J[ltel] (p) = I :J[te] (p)i .:S' the length of the trace

Expressions ne1 + ne2 and net* ne2 are interpreted as addition and multiplication.

(3} Semantics of communication expressions yielding values in Comm u {l}:

,'J[a] (p} = a

:J[te[ne)] (p) = :J[te] (p)[:J[ne] (p) l.:S , the selection of the :J[ne] (p)-th element of the
trace :J[ne] Cpl if it exists and l otherwise

(4) Semantics of trace formulas yielding values in {true, false}:

,'J[true] (p) = true

:J[te1 s: te2](p) = (:J[te1](p) s::s :J[te2](p)), the prefix relation on Comm*

:J[ne1 s: ne2](p) = (:J[ne1](p) s:.:S :J[ne2](p)), the standard ordering relation on N0

:J[ce1 = ce2](p} = (.'J[ce1](p) =:s .'J[ce2](p)), the strong, non-strict equality on DOM:S.

Thus a value 1, which ls possible for a communication expression, does not propaga
te to the logical level.

Formulas ..., le, let A le2, 3t.le, 3n le are interpreted as negation, conjunction and exi

stential quantification over Comm and N0 , respectively.

(5) A trace formula le is called valid, abbreviated l=le, if :J[le](p) true for all environ-
ments p. D

How to use trace logic for the specification of trace sets? The answer is that we use a
certain subset of trace formulas.

Deflnltion. The set Spee of trace specifications ranged over by S, T, U consists of all tra

ce formulas where at most the distinguished variables h of sort trace is free. D

Thus the logical value :J[S](p) of a trace specification S depends only on the trace value
p(h). We say that a trace g e Comm'" satisfies S and write Q I= S if :J[S](p) = true for

p(h) = g. Note the following relationship between .satisfaction and validity:

iff

A trace .specification S specifies the set of all traces satisfying S. In fact, wether or not a
trace satisfies a trace .specification S depends only on the trace value within the projection
alphabet 'X(S}. This is the smallest set of communications such that h is accessed only via
trace projections within 'X (S). The definition is not straightforward because expressions
allow an arbitrary nesting of projection and renaming operators. Consider for example

S = (lk.hlt {dn} s: ((Jk.hl dn/lk]) t Uk, up}.

Should the communication lk appear in 'X(S) or not? To solve this question, we follow
[Zw 89] and first convert every expression into a cetain normal form where all trace pro
jections · t A are adjacent to the trace variables.

112

Definition. A trace expression te is called normal if it can be generated by the following

syntax rules:
te :: = E I a I t~ A I te1 • te2 I te[b/al.

An arbitrary expression xe is normal Jf every maximal trace expression te in xe is normal.

Maximal means that te is not contained in a larger trace expression in xe. 0

Every other expression xe can be converted into a unique normal expression, called its

normal form and denoted by xenorm. This convertion is done by applying algebraic laws

which move all projections • t A in the trace expressions of xe down to the trace varia

bles.

Definition. For normal trace expressions te the projection alphabet or .simply alphabet

ex(te) is defined inductively as follows:

ex(e) = odal <D
ex(h t A) = A

ex (t t A) = <)) if t :J: h

ex (te1 . te2 J = ex (te1) u ex {te2 l
ex (te[b/ all = a (te)

For arbitrary trace expressions te the alphabet is given by IX (te) = ex (tenorm J. For arbitra
ry expressions (in particular trace specifications) xe the alphabet is

IX (xe) = LJ a (te)

where the union is taken over all maximal trace expressions te in xe which contain an

occurrence of h that is free in xe. If such a trace expression does not exist, the alphabet

ex{xe) is empty. 0

Example. We determine the projection alphabet IX(SJ of the expression

S (!k.hlt {dn} ,;: {(lk.hJ[dn/lkJJt Uk, up}

Maximal trace expressions of S are tel

Their normal forms are

Clk.hlt {dn} and te2 ((lk.h>Cdn/lknt Uk, up}.

telnorm = e.ht {dn} and te2norm = e.ht {up}.

Thus we obtain 1X(S) = ex(tell u IX(te2) = ex(telnorm) u a(te2norm) = {dn, up}. 0

Projection Lemma. Let S be a trace specification. Then

~ F S iff ~ t exCS) F S

for all traces ~ E Comm*. 0

Since trace logic includes the standard interpretation of Peano arithmetic, viz. the model

[IN 0 , 0, 1, +::S' *::s· =::s), trace specifications are very expressive. The following theorem is

essentially stated in [Zw 891.

113

ExpreHl\l'enelHll Theorem. Let i'. s:; A* be a recursively enumerable set of traces over the
alphabet A. Then there exists a trace specification TRACE(tl with projection alphabet
i:dTRACE!i:>) = A such that

iff ~ I= TRACE{:tl

for all traces ~ e A*. The same is true for sets 1: s:: A" whose complement in A* is re
cursively enumerable. D

For practical specification, such a general expressiveness result is not very helpful. Then a
concise and clear notation is important. We use the following:

* Natural number expressions counting the number of communications in a trace:

a # te = df I tet {a} I

" Communication expressions se/ectiJJ.g specific elements of a trace: e.g.

last te = df teEltell

* Extended syntax for logical expressions: e.g. for k :.o 3
k-1

ne 1 ,; .•. ,; nek =df /\ne ,; ne1• 1
j=l j

* Regular expressions denoting sets of traces.

3. PROCESS TERMS

Process terms are recursive terms over a certain signature of operator symbols taken from
Lauer's COSY [L TS 79, Be 87], Milner's CCS [Mi 80] and Hoare's CSP as in [Ho 85]. More
specifically, we take the parallel composition II from COSY, prefix a., choice + and action
morphism [<P] from CCS, and deadlock stop : A , divergence div: A and the idea of using
communication alphabets to state certain context-sensitive restrictions on process terms
from CSP.

To the set Comm of communication we add an element 1 E Comm yielding the set Act =
Comm u !1 l of actions. The element 1 is called internal action and the communications
are also called external actions. We let u,v range over Act. As before let a, b range over
Comm and A,B over communication alphabets. The set of {process) identifiers is denoted
by Idf; it is partitioned into sets Idf: A s:: Idf of identifiers with alphabet A, one for each
communication alphabet A. We let X,Y, Z range over ldf. By an action morphism we mean
a mapping <p: Act -> Act with <p(i:) = i: and cp(a) :J: a for only finitely many a e Comm.
Communications a with <p(a) = 1 are said to be hidden via cp and communications a with

<p {al= b for some b :J: a are said to be renamed into b via cp.

Definition. The set Ree of {recursive) terms, with typical elements P,Q,R, consists of all

terms generated by the following context-free production rules:

p ··= stop: A

div:A

(deadlock l

(divergence)

0

a.P

P+Q

P II Q
p [cp J
x
µX.P

114

(prefix }

(choice }

(paralellism }

(morphism}

(identifier)

(recursion }

An occurence of an identifier X in a term P is said to be bound if it occurs in P within a

subterm of the form µX.Q. Otherwise the occurence is said to be free. A term P e Ree

without free occurences of identifiers is called closed. P {QI X} denotes the result of

substituting Q for every free occurence of X in P.

A term P is called action-guarded if in every recursive subterm µX.Q of P every free

occurence of X in Q occurs within a subterm of the form a.R of Q. E.g. µX. a. X is

action-guarded, but a. µX . X is not.

To every term P we assign a communication alphabet ix (P} defined inductively as follows

ix(stop :A}= ix(div:A} =A,

IX (a. P) = {a} u IX (P) ,

IX(P+Q) = 1X(P 11Q)=adP)u1X(Q },

ixCP[cp]) = cp(ix(P))-h},

o:(X} =A if X e ldfCAl,

a(µX.Pl = aCXlu ixCP>.

Deflnltlon. A process term is a term PeRec which satisfies the following context-sensitive

restrictions:

(1) P is action-guarded,

{2) every subterm a.Q of P satisfies aeac(Q},

(3) every subterm Q+R of P satisfies ix(Q} = ix(R},

{4} every subterm µX.Q of P satisfies a(X }= a(P}.

Let Proc denote the set of all process terms and CProc the set of all closed process

terms. 0

The semantics of a process term P will be defined as a certain Petri net !n[p]. As nets

we consider here labelled place/transition nets with arc weight 1 and place capacity w [Re

85] but we will mainly work in the subclass of safe Petri nets. We deviate slightly from

the standard definition and use the following one which is inspired by [Go 88).

Definition. A Petri net or simply net is a structure ~ "' { A, PI, ->, M0 } where

(1) A is a communication alphabet;

(2) PI is a possibly infinite set of places;

(3) -> ~ ~nf(P!} x CA u I i: }) >< ~nf(Pl) is the transition relation;

(4) M0 e ~nf(P!} is the Jnltial marking. D

115

Here \l>niPD denotes the set of all non-empty, finite subsets of Pl. An element (I, u, OJ

e -> is called a transition (labelled with the action u) and will usually be written as

I ~>O.

For a transition t = I _!!_> 0 its preset or input is given by pre(t}

output by post(t) = 0 and its action by act(tl = u.

I, its postset or

The graphical representation of a net !.1l = (A, PI, ->, M0) is as follows. We draw a

rectangular box subdivided into an upper part diaplaying the alphabet A and a lower part

displaying the remaining components PI, -> and M0 in the usual way. Thus places p e PI

are represented as circles with the name "p" outside and transitions

t = { P1• .. ., Pm } _JL> { qt' ... , qn }

as boxes carrying the label "u" inside and connected via directed arcs to the places in

pre(t) and post(tl. Since pre(t) and post{t) need not be disjoint, some of the outgoing arcs

of u actually point back to places in pre(t) and thus introduce cycles. The initial marking

is represented by putting a token into the circle of each p e M.

The dynamic behaviour of a Petri net is defined by its token game; it describes which

transitions are concurrently enabled at a given marking and what the result of their

concurrent execution is. Though the initial marking of a net is defined to be a set of

places, the token game can result in more general markings, viz. multisets.

Consider a net !.11 = (A, PI, ->, M0). A marking or case or global state of !.1l is a

multiset (over PI), i.e. a mapping M: PI -> IN0 . Graphically, such a marking M ls

represented by putting M(p) tokens into the circle drawn for each p e Pl. For simplicity

any set N <:: PI, e.g. the initial marking M0 , will be identified with the multiset given by

the characteristic function of N: N(pl=t for p e N and N(p)=O otherwise. For multisets M

and N let

M 1:: N, M u N and M - N

denote multiset inclusion, union and difference. If M and N are sets then M <:: N an M -

N are just set inclusion and difference whereas M u N in general differs from

set-theoretic union. We write p e M if M(p) :io l.

A global transition of !.11 is any non-empty, finite set l: of transitions of !.1l. Define by

using multiset union
pre(!t.J = LJ pre<tl

t E l:

and analogously for post(l:J and act(l:J.

Definition. Let !.1l be a net, X. be a global transition of !.11 and M be a marking of !.11. Then

(1) the transitions in X. are concurrently enabled at M or simply X. is enabled at M if

pre(.i:) <:: M,

(2) if enabled at M, the concurrent execution of the transitions in l: transforms M into a

new marking M' of m; this is also called a step from M to M' in (the token game ofJ

f.Jl. In symbols:

116

M X> M' in l.'n

if pre{:tl s:: M and M' = (M - pre(:tl) u post(!:l. For I: = { t } we write M _L> M' in

stead. 0

We distinguish two notions of reachability for nets l.'n = (A, PI, ->, M0):

A (dynamically) reachable marking of l.'n is a marking M for which there exist intermediate

Mn and global transitions .t1, ... , :tn with

.t I: I:
Mo _1_> Mt _2_> ... -A> Mn = M

Let mark(!J?) denote the .set of reachable markings of !.'?. Note that the set mark{!.'?} does
not change if in (•) we consider only singleton transitions 1::1 = { t1 }.

The set place(!.J?) of statically reachable places of !n i.s the smallest subset of PI satisfying

{1) M s; place(!Jl} ,

{2) If I s:: placerol) and I .J:L> 0 for some u e A u { i: } and 0 s:: PI then also 0 s:: place(!Jl).

The term "statical" emphasizes that, by (2), the set place(!.'?) is closed under the execution

of any transition t = I .J:L> 0 independently of whether t is ever enabled at some

dynamically reachable marking of !.'?. Thus placerol} s:: { p I 3 M e mark{l.ll): p e M } and in

general this inclusion is proper.

In the following we .shall mainly work with safe nets where multiple tokens per place do

not occur. Formally, a net !Jl is safe if

V M e mark{!n) V p e PI: M{p) " 1.

Thus in a safe net all reachable markings are sets.

Moreover, we mostly wish to ignore the identity of places and forget about places that

are not statically reachable. We do this by introducing su.itable notions of isomorphism

and abstract net.

Deflnitlon. Two nets !.'?1 = (A1, Pl1, ->1, M01), i=l,2, are weakly isomorphic, abbreviated

if A,_ = A2 and there exists a bijection ll : place<!n) -> place(!.'?) such that

1l<Mo1) = Mo2

and for all I, 0 s:: placeC!n1l and all u e A u { i: }

where !lCM01>, !!CU, !!CO) are understood elementwise. The bijection ll is called an weak
isomorphism between !Jl1 and f!l2 . 0

117

Clearly, =isom is an equivalence relation. An abstract net is defined as the isomorphism

class
[!Yi]= = { !n' I !Yl = isom !n' }

isom

of a net m. It will be w:ritten shorter as [!n]. For abstract nets, we use the same

graphical representation as for nets; we only have to make sure that all places are

statically reachable and eliminate their names. Most concepts for nets can be lifted in a

straightforward way to abstract nets. For example, we shall call an abstract net [In] safe,

if !n ls safe. Let Net denote the set of nets and ANet the set of abstract nets.

The semantics of process terms is a mapping !]?[·] : CProc -> ANet which assigns to
every P e CProc an safe abstract net of the form

!n[p] = [(cx(P}, Pl, -> , M0)] .

For the definition of the components PI, -> and M0 we refer to [01 89). Here we have
space only for an example.

Example. Let P = a.b.c.stop: {a, b, c } II d.b.e.stop : { d, b, e}. Then

!n[P] == {a , b, c d , e }

4. PROCESS CORRECTNESS

In this section we define our notion of process correctne:ss P sat S. Let us begin with an

informal explanation by considering once more the user interface of the process P shown

in the introduction. Consider now a communication trace ~ = a1 ... a., over cx{P). We :say

that P may engage in ~ if there exists a transition sequence of the process where the u:ser

was able to depress the communication buttons ac·I\. in that order. We say that P must

engage in ~ if the following holds: When started the process eventually becomes stable.

Then it is po:ssible for the user to communicate a1 by depressing the corre:sponding com

munication button. Now the process may engage in some internal activity, but eventually it

becomes stable again. Then it is ready for the next communication a2 with the user, etc.

for a3 , .. ., an. Also after the last communication I\. the process eventually becomes stable

again. Summarising, in every transition sequence of the process the user ls able to depress

118

the communication buttons a1, •.• , a.. in that order after which the process eventually

becomes stable. Stability can be viewed as an acknowledgement of the process for a suc

cessful communication with the user. We say that P is stable immediately if the stability

light goes on immediately after switching the process on. These explanations should suf

fice to appreciate the following definition of process correctness.

Deflnition. Consider a closed process term P and a trace specification S. Then

P sat S

if tx(P) = tx(S) and the following conditions hold:

(1) Safety. For every trace b e cx(P)* whenever P may engage in 9 then 9 F= S.

(2) Liveness. For every trace Q e cxCSJ* whenever pref b I= S then P must engage in Q. The

notation pref 9 F= S means that 9 and all its prefixes satisfy S.

(3} Stability. P is stable immediately. D

The distinction between safety and liveness properties of concurrent processes is due to

Lamport (see e.g. COL 82]}. Following Lamport, a safety property states that nothing bad

ever happens and a liveness property states that something good eventually happens. In

our context, a bad thing is a trace 9 not satisfying S and a good thing is the successful

engagement in all communications of a trace 9. Note that the notion of safety is different

from safeness defined for nets in Section 3: safeness can be viewed as a specific safety

property of the token game of a net. Stability is al:so a safety property, but it is singled

out here because its rSle is more technical. Its presence allows a more powerful verifica

tion rule for the choice operator [01 88/89). For mathematical characterisations of safety

and liveness properties see [AS 85].

In the following we give formal definitions of the notions of "may" and "must engage"

and of initial :stability by looking at the Petri net denoted by P. The intuition behind these

definitions is as follows. Whereas transitions labelled by a communication occur only if

the user participates in them, transitions labelled by 1 occur autonomously at an unknown,

but positive speed. Thus 1-transitions give rise to unstability and divergence.

DefJnl.tlon. Consider a net tll "' (A, PI, ->, M0) and let M, M' e mark(tll) and 9 e Comm*.

(1) Progess properties. The set of next possible actions at M is given by

next(M} = {u e Act I 3t e -> : pre(t} !:: M and act(t) = u}.

M is called stable if 1 4 next(M) otherwise it is called unstable. M is ready for a com

munication b if M is stable and b e next(M). M is ready for the communication set A if

M is stable and next(M) "' A. ~ is stable immediately if M0 is stable. We write

M ij> M'
t

if there exists a finite transition sequence M --1->

such that 9 = (act(t1) .•• act<tn)) \ 1 , i.e. b results

act(t1) ... act(tn} by deleting all internal actions 1.

tn
Mt ... Mn-1 ---> Mn = M'
from the sequence of actions

119

{2) Divergence properties. !J? can diverge from M if there exists an infinite transition se-
quence

t t t
M __ 1_> Mt __ 2_> M2 __ 3_>

such that 1 = act{tl) = act(t2) = act(t3) = ... m can diverge immediately if m can diverge

from M 0 . !JI can diverge after g if there exists a marking M with

M j_> M
0

such that !JI can diverge from M. m can diverge only after g if whenever m can diverge

after some trace g' then g ;: g'. m can diverge if there is a marking M e mark(!Jt) from

which m can diverge. m is divergence free if m cannot diverge.

(3)Deadlock properties. !JI deadlocks at M if next(Ml = <!>. :31 deadlocks immediately if !J?

deadlocks at M 0 . !J? can deadlock after 9 if there exists a marking M with

M Q > M
0

such that !J? deadlocks at M. m can deadlock only after 9 if whenever !J? can deadlock

after some trace g' then 9 ;: 9'. m can deadlock if there is a marking M e mark(!J?) at

wich m deadlocks. m is deadlock free if m cannot deadlock. 0

We now tum to process terms.

Deflnitl.on. Consider a closed process term P, a representative !J?0

the abstract net !J?[P], and a trace 9 e Comm"

(1) p is stable immediately if m is so.

(a(Pl, PI, ->, M0 l of

(2) P can diverge (immediately or after Q or only after {1) if m0 can do so. P 15 divergence

free if m 15 so.

(3) p deadlocks immediately if mo doe5 so. p can deadlock {after lJ or only after g) if mo
can do 50. p is deadlock free if m is so.

(4) P may engage in 9 if there exists a marking M e markC!J?0) such that M J_> M.

(5) P must engage in g = B.i .•. an if the process term P II a1 ... an. stop: °'(P) is divergence

free and can deadlock only after g. 0

Clearly, the above definitions are independent of the choice of the representative !J?0 . The

formalisations of immediate stability and "may engage" capture the intuitions earlier, but

the formalisation of "must engage" requires some explanation. The process term at ... an.

stop: oc(P) models a user wishing to communicate the trace at ... an to P and stop after

wards. Communication is enforced by making the alphabet of user and process identical.

Thus the parallel composition P II a1 ... an. stop: oc(P) can behave only as follows: it can

engage in some prefix a1 ···8k of 9 with 0 ;: k ;: n and then either diverge (i.e. never be

come stable again) or deadlock (i.e. become stable, but unable to engage in any further

communication). The user's wish to communicate g ls realised if and only if P II a1 ..• an.

stop: oc(P) never diverges and if it deadlocks only after g. A final deadlock is unavoidable

because the user wishes to stop. This is how we formalise the notion of "must engage".

120

The terminology of "may" and "must engage" originates from DeNicola and Hennessy's

work on testing of processes lDH 84, He 88]. There it is used to define several so-called

testing equivalences on processes, among them one for the "may" case and one for the

"must" case. Here we make different use of theses two notions. Also, our definition of

"must engage" is stronger than in [DH 84, He 88J because we require stability after each

communication. This will result in an equivalence which differs from their testing equiva

lences (see Section 6).

We can show that P sat S has very strong consequences for P.

Propoaitlon. Consider a closed process term P and a trace specification S. Then P sat

S implies the following:

(1) "May" is equivalent to "must", i.e. for every trace ~ the process P may engage in ~ if

and only if P must engage Jn b-
(2) P is divergence free.

(3) P is externally deterministic. D

Intuitively, a process is externally determinlstic if the user cannot detect any nondetermi

nism by communicating with it. Formally, we define this notion as follows:

Defln!tlon. Consider a closed process term P and some representative ~0
M0) of IYllI P]. Then P is called externally deterministic if for all traces ~

all markings M1, M2 e mark~0) whenever

b b
M0 => M1 and M0 => M2

such that M1 and M2 are stable then

(O'.(P), PI, ->,

e Comm* and

That is: every communication trace b uniquely determines the next stable set of communi

cations. D

Thus trace formulas specify only divergence free and exemally deterministic processes.

This is a clear restriction of our approach, but it yields an interesting class of processes

with many applications and simplest verification rules (see Section 7).

Examples. Let us consider the trace specification

which is an abbreviation for dnuh :s: upuh :s: 2 + dnuh, and examine how a process P satisfy

ing S should behave. Since P sat S implies O'.(PJ = oc(S) = { up, dn } , P should engage only

in the communications up and dn. By the safety condition, in every communication trace ~

that P may engage in, the difference of the number of up's and the number of dn's is

between 0 and 2. If P has engaged in such a trace b and the extension ~.dn still satisfies

S, the liveness condition of P sat S requires that after b the process P must engage in

the communication dn. The same is true for up.

121

Thus S specifies that P should behave like a bounded counter of capacity 2 which can

internally store a natural number n with O s: n s: 2 Afte~ a co · ti t i:. h
· • mmuruca on race y t e

number stored is n= UP"'Q - dn .. g. Initially when i:. is empty · C . '
• \I , n 1s zero. ommurucating up

increments n and communicating dn decrements n Of course th . .
· , ese commurucat1ons are

possible only if the resulting changes of n do not exceed the counter bounds.

A process term satisfying S is

P = µX. up. µY. (dn. X + up. dn. Y)

denoting the following abstract net

:;11[p] = { Up, dn J

This net is purely sequential, i.e. every reachable marking contains at most one token, and

there are no internal actions involved. Another process term satisfying S is

Q = ((µX. up. dn. X) [lk/dn J 11 (µX. up. dn. X) [lk/up]) \ lk

denoting the following abstract net.

~[Q] = { up, dn }

Here, after each up-transition the net has to engage in an internal action i; before it is

ready for the corresponding dn-transition. Since 1-actions occur autonomously, readiness

for the next dn is guaranteed, as required by the specification S. This leads in fact to a

marking where up and dn are concurrently enabled.

The examples of P and Q demonstrate that presence or absence of concurrency or inter

vening internal activity are treated here as properties of the implementation (process term

and net), not of the specification.

122

It is easy to generalise the above trace specification. For k :. t a bounded counter of capa

city k is specified by

If we drop the upper bound k, we obtain a trace specification S for an unbounded coun

ter that can store an arbitrary large natural number:

S = dn•h .:: up•h

In a process satisfying S"" the communication up may and must occur after every trace.

One such process is given by the term

P = µX. up. (X [lk/dn l II µY. dn. lk. Y) \ lk

which denotes the infinite abstract net

IJ?[p] { up, dn }

After the n-th communication up the net will engage in n-1 internal actions t before being

ready for the corresponding n-th communication dn. But again, these intervening internal

actions do not impair the user's view of the specified behaviour. D

S. MODIFIED READINESS SEMANTICS

The liveness condition of the satisfaction relation P sat S is difficult to check when only

the net semantics of P is available. To simplify matters, we introduce now a second, more

abstract semantics for process terms. It is a variation of the readiness semantics !R intro

duced in [OH 86]. The main idea of i:R is to record information about the process behavi

our in the form of pairs (g, ~) consisting of a trace g and a so - called ready set ~· This

is a set of communications in which the process is ready to engage when it has become

stable after the trace g [Ho 81, FLP 84, BMOZ 88]. Additionally, !:R records information

about divergence and applies a certain closure operator known as "chaotic closure" and

due to [BHR 84]. The semantics !:R is modified here in three ways:

(1) Information about initial unstability is recorded. This is needed because we use here

Milner's choice operator + instead of Hoare's two operators 0 and or distinguishing

external and internal choice as in [OH 86].

123

(2) The "acceptance closure" due to [DH 84] is enforced on the ready sets.

(3} A new "radiation closure" on ready sets is enforced; it will be explained below.

To avoid confusion, we shall write \R* for the modified readiness semantics. Formally, it is

a mapping
!R"' [·] : CProc -> DOMtJt

which assigns to every P e CProc an element \R"'[P] in the readiness domain DOMl:lt. This

domain consists of pairs CA,f} where A is a communication alphabet and r is a set of

process informations. We consider three types of process information:

(1} The element 't indicating initial unstability.

(2) Ready pairs (Q, 8) consisting of a trace Q e A"' and a ready set -\! i: A.

(3) Divergence points (Q, t) consisting of a trace Q e A• and a special symbol t standing

for divergence.

The set of these process informations can be expressed as follows:

* • InfotJt:A = { t } u A x l.l)(A} u A x { t }.

Define

DOMl7t:A = { CA,r> I f c Info :A }.

The readiness domain is then given by

DOM\lt = U DOMtJt:A

where the union is taken over all communication alphabets A.

For a pair (A, f) e DO~ we define its alphabet by ix(A, f} = A and its set of process

informations by n CA, r> = r. We adopt the following notational conventions: letters y, S

range over InfotR:A, letters f, h. over subsets of Info!:lt:A and hence pairs (A, rl, CB, h.>
over DOM!:lt, letters 3, '8 range over ready sets and the letter :E can either be a ready set

or the symbol t.

The mapping \R*[·] retrieves the relevant process information from the operational Petri

net semantics. Hence we talk of an operational readiness semantics. First we consider

individual nets.

Deflnitkm. The readiness semantics of a Petri net !n = (A, Pl, ->, M0) is given by

!R*C~YU = close(A, { 1 I M0 is unstable }

u { (g, a> I 3 M e mark(iJl) :

M0 j_> M and M is stable and 3 = next(M) }

u { C9, t) I 3 M e mark!inl :

M0 Q > M and in can diverge from M }

where the closure operator close: DOMIR -> DO~ is defined as follows:

close (A,f) = (A, r u (c9, (8) I 3 a: {q, 3l e r and a c 0 c succ(g, n
u (Cg', J!) I 3 9s:q': (q, t) e r and 9' e It

and (:£ c A or :E = t)

u < 19, '8l I 3 a: (ij.a, t) e r and 0 c succ(~. n })

124

Here sued!), n denotes the set of all successor communications of g in r:

succ(g, n = { a I 3 @: (lj.a, (8) E r } .

The readiness semantics of an abstract net [~] is given by !Ji* ([\lt]) = \R* Um and the (ope

rational) readiness semantics of a closed process term P is given by ~·[P] = ~· (\n[P]). O

Let us now investigate the basic properties of the readiness semantics. First of all, it i.s
an interleaving semantics, i.e. it i.s insensitive to concurrency. This is demonstrated by the

law
~ [a. stop:{a.} II b. stop:{b}] = \R*[a. b. stop:{a, b} + b. a. stop:{a, b}]

which is easily established by retrieving the readiness information from the corresponding
nets. Secondly, the readiness semantics enjoys a number of structural properties which we

summarise under the notion of being well-structured.

Definition. An element (A,rl e DOM!:lt is called well-structured if the following holds:

(1) Initial ready pair: 3 (8 <:; A : (e, (BJ E r.
(2) Prefix closure: (lj. a, ~) E r implies 3 (8 c A : !g, (8) E r and a E @.

(3) Extensibility: (g, ~) E r and a E ~ imply 3 (8 c A : (lj. a, (lj) E r.
(4) Acceptance closure: (g, ~) E r and ~ c (8 c succ(g, n imply {g, (8) E r.
(S) Chaotic closure: !lj, t) e r and lj ,;: f)' and (£ c A or :E = tl imply (lj', £) e r.
(6) Radiation closure: (g. a, tl E r and (!j c succ(lj, n imply {g, (8) E r.
(7) Unstability closure: (E, t} E r implies '(E r. 0

Proposition. For every closed process term P the readiness semantics ~·[P] e DOM!Yt is

well-structured. 0

Properties (1), (3), (5) and (2) without the condition "and a e (l;" are as in the original

readiness semantics ~ in [OH 86]. Property (4) stems from the semantic models studied
by DeNicola and Hennessy [DH 84, He 88]; it implies the condition "and a e @" in (2).
Property (7) is motivated by [DH 84] and [BKO 87]. Property (6) is completely new: it
states that divergence affects the ready sets one level up; we therefore say that divergen
ce "radiates up". Note that the closure properties (4) - (6) add ready sets and divergence
points to ~·[P] which are not justified by the token game of !J?[P]. These additions ma

ke the semantics \R"'[·] more abstract so that less process terms can be distinguished
under ~*[·]. In Section 6 we shall see that the resulting level of abstraction is in perfect

match with the distinctions that we can make among process terms under the satisfaction

relation P sat S. Technically speaking, !R"'[·] i.s fully abstract with respect to this relati
on.

Here we notice that with the readiness semantics we can easily express the process pro
perties relevant for the satisfaction relation P sat S. Recall that Tt(~*[P]) is the set of
process informations collected by ~*[P].

Proposition. For every divergence free, closed process term P and trace g

(1) P may engage in g iff (lj, ~) e Tt(~*[p]) for some ready set~·
{2) P can deadlock after g iff Clj, Cl)) e n(~*[p]).

125

(3) P must engage in g iff for every prefix a1 . . . ~ of g with O .: k < n and

every ready set ~

(a1 •.• ~· ~ l e TIU.R*[P]) implies ~ .. 1 e ~.
i.e. whenever P becomes stable, it is ready to engage in the next communication of Q.

(4) P is externally deterministic iff for every trave g there is at most one ready set ~
with UJ, ~) e TI (!Jt*[P]J. D

With these preparations, we can now approach the main objective of this section: a direct

comparison of process terms and trace specifications on the basis of the readiness do
main. To this end, we extend now the readiness semantics IR*[·] to cover trace specifica
tions as well, i.e. to a mapping

~*[·]: CProc u Spee -> DOM!:R.

Definition. The readiness semantics of a trace specification S is given by

!:R"[S] = (cx(S), { (g, ~) I g e cx(S)" and pref !j F S

and ~ = { a e cx(SJ I lj. a F S l))

where, as before, pref !j F S means that I) and all its prefixes satisfy S. D

Since trace specifications S specify only processes which are stable immediately and diver

gence free, it is understandable that !Jt*[S] does not contain elements of the form 1 and

{lj, t) indicating unstability and divergence. Note that !;R*[S] satisfies the properties {2) -

(7) of being well-structured, but not (1) because ~*[S] may be empty. Thus the readiness

semantics of trace specifications S is closed, i.e. close{ !:R*[S] J = !X*[S] but need not be

well-structured. However, if e F S then !Jt*[S] is well-structured.

The main result of this section is the following theorem which is proved in [01 88/89].

Correctness Theorem. For every closed process term P and trace

specification S we have
P sat S iff

i.e. in the readiness semantics process correctness reduces to semantics equality. 0

The Correctness Theorem simplifies, at least conceptually, the task of proving that a

process term P satisfies a trace specification S.

Example. In Section 4 we considered the trace specification

and argued informally that the process terms

P = µX. up. µY. (dn. X + up. dn. Y l

and

Q = ((µX. up. dn. X }[lk/dn J II (µX. up. dn. X)[lk/up J) \lk

both satisfy S. We can now prove this claim by comparing the readiness semantics of S

with that of P and Q:

126

!.R*rr S] = ({up, dn}, { !fi, ~l I v Ti' ,;: fi: o ,;: upsfi' - dn•fi' ,;: 2

and (if O = up•fi - dn•fi

and (if O < up•fi - dn•Ti < 2

and (if up•fi - dn•Ti = 2

then ~ = {up}

then ~ = { up, dn })
then~={dn})})

By an exhaustive analysis of the reachable markings of the nets ()?[PD and ()?[Q] display

ed in Section 4 we see that

Thus indeed P sat S and Q sat S. D

6. FULL ABSTRACTION

Process terms denote Petri nets describing all details of the process behaviour many of

which are irrelevant from the viewpoint of trace specifications. We therefore investigate

the following question:

Under what circumstances can we replace a closed process term P by a closed

process term Q without ever noticing this change by the satisfaction relation sat ?

Since replacement can take place within a larger process term, we use the notion of a

context to make this question precise. A context is a term (!'(X) e Ree with one free

identifier X. To simplify notation, we shall write (!'(R) instead of (!'(XHR\X} for the sub

stitution of a process term R for X in (!'(X). For example, the "must" condition of P sat S

can be viewed as a condition on Q'(P) where the context is

(!'(X) = X II a1 .•. an. stop : cx(P)

Equivalence under the satisfaction relation sat is covered by the following satisfaction

equivalence "'sat on closed process terms:

p "'sat Q

if for every trace specification S the following holds: P sat S iff Q sat S. Now the above

question becomes: Under what condition on P and Q do we have Q'(P) "'sat: (!'(Q) for every

context (!'(X} with Cl<Pl, Q'(Q} e CProc ? Milner's notion of fu/I abstraction [Mi 77] (see

also [PI 77, HP 79]} can be seen as looking for a sufficent and necessary condition that

solves this type of question.

Deflnition. A semantics (or semantic model) !m : CProc -> DOM\'M is called fully abstract

for an equivalence relation "' on CProc if the following holds for all closed process terms
P and Q:

!J1l[PD = !J.Yl[Q] lff Q'(P} "' (!'(Q) holds for every context (i!Xl with Q'(P), (!(Q) e CProc.

D

Intuitively, a fully abstract model !m optimally fits the equivalence = in the sense that !m

just makes the identifications on process terms that are forced by "'· For a given semantic

model !l1l : CProc -> DO~ let the model equivalence= be defined as follows:

p =\'M Q if !lJ?[p] = !J.Yl[Q].

127

Then we can state the following consequence of the definition of full abstraction.

Propo11it!on. For every equivalence relation " on CProc there exists a fully abstract model
roi for = which is compositional w.r.t. the process operators in CProc and unique up to
model equivalence "mt· D

This proposition provides an attractive method of specifying the semantics of processes.
Starting from an equivalence relation = that captures the kind of distinctions or observati
ons on processes one is interested in, the proposition guarantees the existence of a com
positional semantics \ln that is optimal for " and unique up to model equivalence "on·
Then rot is the semantics specified by "· More generally, this specification method is used
for programming languages with and without concurrency (see e.g. [As 84]) and in the
area of algebraic specifications {see e.g. [ST 87]).

The existence of a fully abstract semantics Im is an interesting fact, but its implicit defi
nition via contexts does not give us any ides about the explicit structure of \ln. Often it
is a very difficult or even unsolved problem to find such an explicit structure [Mi 77, Pl
77, HP 79, MS 88]. Fortunately, for the satisfaction equivalence " we will be able to * .sat exhibit this structure: it is the modified readiness semantics !:R [·] discussed in the previ-
ous sections.

Full Abstraction Theorem. The modified readiness semantics !:R*[·]: CProc -> DOM!:R is
fully abstract for the satisfaction equivalence "sat , i.e. for all closed process terms P and
Q the following holds

if and only if for all contexts ([{Xl with (l(P), (l{Q) e CProc and all trace specifications S

(l(P) sat S iff (l{Ql sat S.

Proof. "only if": see (01 88/89]. "if": Suppose :it*[p] * :it"'[Q], say :it"'[p] ~ !:R*[Q]. We
will exhibit a context Q"(X) with (l{P), Cl(Q) e CProc and a trace specification S with

(l(P) sat S but Cl(Q) s/t S.

Let A=a.(PJ. If a.(PJ * a.(Q), we can take CHXl = X and S = ht A :;;; hf A. If a.(P) = a.(Q), we
* distinguish three cases depending on the structure of process informations in n(!.R [P])

and n(!.R*[Q]).

Case 1: 1 e n(!:R*[Q]} and i; ~ n(!:R*[p]). Then P cannot diverge immediately. Take

Q"(Xl = X II stop:A and S = ht A .:: E

Then Q"(P}, Cl(Q} 6 CProc and 1 e n(!:R*[Cl(Q}]), but 1 ~ rr{\R*[(!(P}]). In fact, (HP} ls stable
immediately, divergence free and can engage only in the empty trace. Thus <HPl sat S. On
the other hand, (!{QI sf.t s because Q"(QJ is unstable as the 1 in its readiness semantics

indicates.

Case 2: (g, ~) 6 rr<!Jt*[Cl(QJ]) and (g, ~) a rr!:it"'[p]). Suppose ~ = a1 ... an where n ;, 0
and a1, ... , an 6 A. Since ;x*[p] is well-formed (cf. Section 5), we conclude that

128

because otherwise the chaotic closure would force Cq, ~) e 'TC(~*[P]). Let g' be the longest

prefix of g such that

(2) 3 @ : (Q', @) E 'TC(~·[p]}

Such trace g' exists because there is an initial ready pair (e, @) in rrU.R*[P]). Take some

fresh d ' A. Such a communication d exists because Comm is infinite whereas A c Comm

is finite.

Subcase 2.1: g' < g . Then Q' = at . . . ~ for some k < n. As context we consider the term

<HXl = d. (X
II (dk . stop:Au(d}

+ at . (dk-t stop:Au(d}

+ a2 . (. . . (d . stop:Au{d}

+ ~ • ~+t . stop:Au{d} } ... }})
) [cpl

where the renaming morphism cp : Act -> Act is given by cp (u) = d for u e Au (d l and
cp (u) = u otherwise. The notation drn. . stop:Au{d} abbreviates d d . stop:Au{d}_____.

m times

Clearly, (f{P), <HQ} e CProc. The initial communication d of <HX) serves to absorb possible

unstabilities of P and Q in (HP) and ~(Q). Since d + A, the communications d occuring in

the right-hand operand of the parrallel composition of ~(P) and <HQ) do not require

synchronisation with the left-hand operand P or Q. Thus both CHPl and (HQ) can deadlock

only after engaging in k + 1 communications.

In fact, (i(P) must engage in k + 1 communications because, by property (1) above, (HP) is

divergence free. Hence we consider as specification the trace formula

s =df d=h" k-1-t

Then (!(P) sat S, but (!(Q) s~t S becuase (HQ) may engage in the trace

(d . at . . . ~ ... t) { cp } = d . d . . . d

of the length k -1- 2.

Subcase 2.2: g' = g

Case 3: (g, t) e 'IT(!X*[Q]) and (g, t) 4 'TC(~"[P]).

Full details for these cases are given in [01 88/89]; we omit them here. D

The full abstraction proof exploits that the modified readiness semantics ~·[·] incorpora

tes three extra closure conditions: chaotic closure, acceptance closure, and radiation clo
sure. The chaotic closure, dealing with divergence, was introduced by Brookes, Hoare and

Roscoe in their failure semantics ~[·] for CSP [BHR 84]. The acceptance closure on ready

sets was introduced by DeNicola and Hennessy for a process semantics of CCS that Is

fully abstract for their strong "must" version of testing equivalence [DH 84, He 88]. For

simplicity we call this semantics here strong testing semantics and denote it by t:. The

radiation closure, however, is new.

129

Consider for example the process terms

P = a . stop: {a} + Q and Q = a . a . div: {a}.

Then P and Q, or better their syntactic equivalents in CSP and CCS, are distinguished by

failure and testing semantics: ~[P] * ~[Q] and .tlI PD o; .tlI Q]. But in the modified readi

ness semantics they are identified. Indeed, look at the abstract nets denoted by p and Q:

~[p] = { a } { a }

•

Thus the ready pair (a,$) belongs to ~*[p] by the token game of \)t[P], but it also be

longs to !R*[Q] by the radiation closure. Informally, the divergence point (a . a, 1'} of
~*[Q] "radiates up" and thus forces (a, Cl)} to be present in ~*[Q]. Hence

This identification is justified by the idea of full abstraction because in every context <r!Xl
both (f(PJ and <HQl satisfy exactly the same trace specification S.

The example demonstrates that the modified readiness equivalence "ot• on process terms,

given by
if

differs from the corresponding failure equivalence =., and strong testing equivalence ":t· It

has to be different because of the satisfaction relation sat which uniquely determines "ot"
via the notion of full abstraction.

However, the differences appear only for processes which can diverge. On divergence free

process terms "!.lt"' and ":t: coincide and on divergence free process terms which are stable

immediately also = ,. and = coincide. This can be easily seen by comparing the definitions
!:It tJ

of the semantics !R*[·] with llI ·] and ~[·].

7. CONCLUSION

Based on the notion of process correctness P sat S defined in this paper we have develo
ped compositional transformation rules for the systematic construction of process terma
from given trace specifications [01 88/89). Most rules tum out to be very simple. For
example, parallel composition P II Q of process terms P and Q is reflected by the logical

130

conjunction of trace formulas. Soundness of these rules is proved by using an equivalent
denotationa.J definition of the modified readiness semantics. Applications of our notion of
process correctness and the transformation rules can be found in [BDF 88, DB 89, 01

88/89].

[As 84]

[AS 85]

8. REFERENCES

E.Astesiano, Combining an operational with an algebraic approach to the spe
cification of concurrency, in: D. Bjtlrner (Ed.), Proc. Workshop on Combining
Methods {Nyborg, Denmark, 1984)

B. Alpern, F.B. Schneider, Defining liveness, Inform. Proc. Letters 21 { 1985)

181-185.

[BMOZ 88] j.W. de Bakker,].-]. Meyer, E.-R. Olderog, JJ. Zucker, Transition systems,
metric spaces and ready sets in the semantics of uniform concurrency, J.
Comput. System Sci. 36 { 1988 l 158-224.

[Be 87] E. Best, COSY: Jts relation to nets and CSP, in: W. Brauer, W. Reisig, G. Ro
zenberg {Eds.), Petri Nets: Applications and Relationships to Other Models of
Concurrency, Lecture Notes in Comput. Sci. 255 { Springer-Verlag, 1987)
416-440.

[BKO 87] J.A. Bergstra, J.W. Klop, E.-R. Olderog, Failures without chaos: a new process
semantics for fair abstraction, in: M. Wirsing (Ed.), Proc. IFIP Working Con
ference on Formal Description of Programming Concepts III (North-Holland,
1987} 77-101.

[BDF 88] M. Bretschneider, M. Duque Anton, A. Fink, Constructing and verifying proto
cols using TCSP, in: S. Aggarwal, K. Sabnani (Ed.), Proc. IFIP Working Con
ference on Protocol Specification, Testing and Verification {North-Holland,
1988).

[BHR 84] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of communicating sequen
tial processes,]. ACM 31 (1984) 560-599.

[CHo 81] Z. Chaochen, C.A.R. Hoare, Partial correctness of communicating processes,
in: Proc. 2nd Intern. Conf. on Distributed Comput. Systems, Paris, 1981.

[DH 84] R. DeNicola, M. Hennessy, Testing equivalences for processes, Theoret. Com
put. Sci. 34 (1984 l 83-134.

[Di 76] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs,
NJ, 1976!.

[DB 89] M. Duque Anton, M. Bretschneider, Formulas, processes and Petri-nets ap
plied to the specification and verification of a HDLC protocol, in J. Diaz, F.
Orejas !Eds.), Proc. TAPSOFT '89, Vol. 2 Lecture Notes in Comput. Sci. 352
(Sprlnger-Verlag, 1989) 140-154.

[Go 88]

[Hen 88]

U. Goltz, Uber die Darstellung von CCS-Programmen <lurch Petrinetze, Docto
ral Diss., RWTH Aachen, 1988.

M. Hennessy, Algebraic Theory of Processes (MIT Press, Cambridge, Mass.,
1988).

[HP 79]

[Ho 78]

[Ho 81]

[Ho 85]

131

M. Hennessy, G.D. Plotkin, Full abstraction for a simple programming langua

ge, in: J. Becvar (Ed.), 8th Symp. on Math. Found. of Comput. Sci., Lecture

Notes in Comput. Sci. 74 (Springer-Verlag, 1979) 108-120.

C.A.R. Hoare, Some properties of predicate transformers, J. ACM 25 (1978)
461-480.

C.A.R. Hoare, A calculus of total correctness for communicating processes,

Sci. Comput. Progr. 1 (1981! 44-72.

C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, London,
1985).

[Jo 87] B. Jonsson, Compositional Verification of Distributed Systems, Ph.D. Thesis,

Dept. Comput. Sci., Uppsala Univ., 1987.

[LTS 79] P.E. Lauer, P.R. Torrigiani, M.W. Shields, COSY - A system specification

language based on paths and processes, Acta Inform. 12 (1979) 109-158.

[Mz 77] A. Mazurkiewicz, Concurrent program schemes and their interpretations, Tech.

Report DAIMI PB-78, Aarhus Univ., 1977.

[MS 88] A.R. Meyer, K. Sieber, Towards fully abstract semantics for local variables,

Preliminary Report, in: Proc. 15th ACM Symp. Principles of Program. Lang.

(San Diego, California, 1988) 191-203.

[Mi 77] R. Milner, Fully abstract models of typed /.-calculi, Theoret. Comput. Sci. 4

(1977) 1-22.

[Mi 80] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Comput.

Sci. 92 (Springer-Verlag, 1980 J.

[MC 81] J. Misra, K.M. Chandy, Proofs of networks of processes, IEEE Trans. Softwa

re Eng. 7 (1981) 417-426.

[OJ 88/89] E.-R. Olderog, Nets, Terms and Formulas: Three Views of Concurrent Proces

ses and Their Relationship, Habilitationsschrift, Univ. Kiel, 1988/89.

[01 89) E.-R. Olderog, Strong bisimilarity on nets: a new cvoncept for comparing net

semantics, in: j.W. de Bakker, W.P. de Roever, G. Rozenberg (Eds.), Linear

Time/Branching Time/Partial Order in the Semantics of Concurrency, Lecture

Notes in Comput. Sci. 354 (Springer-Verlag, 1989) 549-573.

[OH 86] E.-R. Olderog, C.A.R. Hoare, Specification-oriented semantics for communica

ting processes, Acta Inform. 23 (1986) 9-66.

[Os 83] M. Ossefort, Correctness proofs of communicating processes: three illustrati

ve examples from the literature, ACM TOPLAS 5 (1983) 620-640.

[OL 82] S. Owicki, L. Lamport, Proving liveness properties of concurrent programs,

ACM TOPLAS 4 (1982) 199-223.

[PI 77] G.D. Plotkin, LCF considered as a programming language, Theoret. Comput.

Sci. 5 (1977 l 223-255.

[Re 85] W. Reisig, Petri Nets, An Introduction, EATCS Monographs on Theoret. Com

put. Sci. (Springer-Verlag, 1985).

[Rm 87]

132

M. Rem, Trace theory and systolic computation, in: j.W. de Bakker, A.J. Nij
man, P.C. Treleaven (Eds.), Proc. PARLE Conf .. Einclhoven, Vol. I, Lecture
Notes in Comput. Sci. 258, (Springer-Verlag, 1987 J 14-33.

[ST 87] D.T. Sanella, A. Tarleckl, On observational equivalence and algebraic specifica
tion, J. Comput. System Sci. 34 { 1987) 150-178.

[Sn 85] J.L.A. van de Snepscheut, Trace Theory and VLSI Design, Lecture Notes in
Comput. Sci. 200 (Springer-Verlag, 1985 l.

[Sti 87] C. Stirling, Modal logics for communicating systems, Theoret. Comput. Sci. 49
(1987) 311-347.

[WGS 87] J. Widom, D. Gries, F.B. Schneider, Completeness and incompleteness of tra
ce-baced network proof systems, in: Proc. 14th ACM Symp. on Principles of
Progr. Languages, Mtinchen, 1987, 27-38.

[Zw 89] J. Zwiers, Compositlonality, Concurrency and Partial correctness, Lecture No
tes in Comput. Sci. 321(Springer-Verlag,1989).

[ZRE 85] J. Zwiers, W.P. de Roever, P. van Emde-Boas, Compositionality and concurrent
networks, in: W. Brauer (Ed.), Proc. 12th Coll. Automata, Languages and
Programming, Lecture Notes in Comput. Sci. 194 (Springer-Verlag, 1985)
509-519.

