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ABSTRACT. A new notion of correctness for concurrent processes is introduced and inve
stigated. It is a relationship P sat S between process terms P built up from operators of 
CCS [Mi 80], CSP [Ho 85] and COSY [LTS 79] and logical formulas S specifying sets of 
finite communication sequences as in [Zw 89]. The definition of P sat S is based on a Pe
tri net semantics for process terms [01 89]. The main point is that P sat S requires a 
simple liveness property of the net denoted by P. This implies that P is divergence free 
and externally deterministic. 

Process correctness P sat S determines a new semantic model for process terl118 and logi
cal formulas. It is a modification ~· of the readiness semantics [OH 86] which is fully 
abstract with respect to the relation P sat S. The model ~· abstracts from the concurrent 
behaviour of process terms and certain aspects of their internal. activity. In ~· process 
correctness P sat S boils down to :semantic equality: ~*[[ P] = IR*[ S]. The modified readi
ness equivalence is closely related to failure eqUivalence [BHR 84] and strong testing 
eqUivalence [DH 84]. 

1. INTRODUCTION 

A process is designed to serve the needs of one or more users. Internally it may exhibit a 
complicated, nondeterministic and concurrent behaviour. However, for the users only its 
externally visible reactions to communications are relevant. In particular, :such reactions 
:should occur within a f"lllite amount of time. Process correctness links the internal process 
behaviour to the external communication behaviour. 

Formally, it is a relationship between processes and specifications which states when a 
given process P satisfies or is correct with respect to a given specification S, abbreviated 

P sat S. 

Every notion of process correctness brings about some abstraction from the internal pro
cess behaviour according to the following. principle: 

For a process the internal structure is irrelevant as long as 
it exhibits the specified communication behaviour. 

The purpose of this paper is to present a simple new notion of process correctness and 
inve1Stigate its impact on abstraction. 
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To motivate this notion, we stipulate a rudimentary user interface of processes consisting 

of the following: 

(1) a power switch for starting and halting the process (switch on or off), 

(2) a stability light that indicates when the internal process activity has ceased, and 

(3) communication buttons, one for each communication the process may engage in. A 

communication is possible only when the stability light is on and it is done by de

pressing the corresponding communciation button. 

Processes may have more comfortable user interfaces, but we rely only on the above one. 

To define correctness, we have to discuss what the communication behaviour of such a 

process is. Many answers are possible and meaningful. We aim at a simple, but widely 

applicable definition and therefore let it be a set of finite communication sequences that 

are possible between user and process. These sequences are known as histories or traces 

[Ho 78]. Since tracces are insensitive to intervening internal actions and concurrent pro
cess activities, this definition achieves abstraction from both internal activity and concur

rency. Our viewpoint is here that internal activity and concurrency are only part of the 

process construction, not of the specified communication behaviour. 

Of course, other viewpoints are possible. For example, in the work of Mazurkiewicz [Mz 

77] even the word "trace" ls used for something more elaborate, viz. the equivalence class 

of finite communication sequences modulo an independence relation on communications 

expressing concurrency. To avoid confusion, we prefer to call these equivalence classes 

"Mazurkiewicz-traces" and reserve the word "trace" for finite sequences. 

As specification language for trace sets we use a many-sorted first-order predicate logic. 

Since its main sort is "trace", it is called trace logic and its formulas are called trace 
formulas. Informal use of trace logic appears in a number of papers (e.g. [CHo 81, MC 81, 

Os 83, Sn 85, Rm 87, WGS 87ll. Precise syntax and semantics, however, is given only in 

[Zw 89]. We shall adopt Zwiers' proposal, but we need only a simplified version of it 

because we deal here only with atomic communications instead of messages sent along 

channels. 

As descriptiou language for processes we use terms built up from operators of CCS, CSP 

and COSY [Mi BO, Ho 85, LTS 79]. The operational behaviour of such process terms will 

be described by labelled transitions of Petri nets. Full details of this approach are given 

in [01 88/89, 01 89]. With these preparations, we can define process correctness as a 

relationship 

P sat S. 

between process terms and trace formulas. The main point is how we use the trace for

mulas S. In most previous papers CCHo 81, MC 81, Os 83, ZRE 85, Zw 89] trace formulas 

express only safety properties or partial correctness Ccf. [OL 82]). Then P sat S if every 

trace of P satisfies the formula S. This does not exclude the possibility that P diverges or 

deadlocks. As a con.sequence, there exists a single process term which satisfies every trace 

specification with the same alphabet. Such a process term is called a miracle after Dijk

stra [Di 76]. 

This is unsatisfactory because we would like to use the notion of process correctness al

so for process construction, i.e. given a trace formula S construct a process term P with 
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P sat S. With miracle:s thi:s ta:sk become:s trivial and meaningle:ss. Therefore we shall be 
more demanding and u:se trace formulas to express al:so a :simple type of liveness property 
implying total correctness (cf. [OL 82]). Essentially, P sat S requires the following: 

* Safety: 
* Livene:ss: 

P may only engage in traces satisfying S. 
P must engage in every trace sati:sfying S. 

The notions of "may" and "must" are deflned by looking at the Petri net transitions of P. 
The terminology of "may" and "must" originates from [DH 88] but the details are diffe
rent here. The livene:ss condition i:s due to [OH 86] and related to the idea of Misra and 
Chandy to u:se :so-called quiescent inrmite trace specification:s to expre:ss liveness in the 
:setting of a.synchronous communication (see [Jo 87]). It implie:s that every process P :sa

tisfying a trace formula S is divergence free and externally deterministic. That is: in every 

run of the proce:ss the user ha8 exactly the same possibilitie:s of communication, no mat
ter which actions the process has pursued internally. This implies deadlock freedom of P. 

Thus in our approach trace formulas can :specify only a :subset of processe:s. We are inte
rested in thi8 sub:set because, a.s demonstrated in [01 88/89], it has many applications and 
yields simple compositional transformation rules for process coru;truction and verification. 

We believe that in computing it is essential to identify subclasses of problems or pro

grams where things work better than in the general c88e. 

2. TRACE LOGIC 

We start from an infinite set Comm of unstructured communications with typical elements 
a, b. By a communication alphabet or simply alphabet we mean a finite sub:set of Comm. 
We let letters A, B range over alphabets. Syntax and :semantics of trace logic we adopt 

from Zwiers [Zw 89]. It is a many-sorted predicate logic with the following .sorts: 

trace 
nat 

comm 
log 

<finite communication :sequences) 

{natural numbers) 

{communications) 

{logical value:s) 

Trace logic then consists of sorted expression:s built up from sorted constants, variables 

and operator symbols. For notational convenience, trace formulas count here 88 expres:si

on.s of sort log. 

All communications appear as constants of sort trace and comm, and all natural numbers 

k :l: 0 appear 88 constants of sort nat. The set Var of variables is partitioned into a set 
Var:trace of variables t of sort trace and a set Var:nat of variables n of sort nat. Among 

the trace variables there is a distinguished trace variable called h; it will be used in the 
definiton of trace specification. For all communication alphabets A and all communications 

a, b there are unary operator symbols ·t A and ·[b/al of sort trace -> trace. Further on, 
there are binary operator symbols •. • of sort trace x trace -> trace and • [ • J of sort 
trace x nat -> comm, and a unary operator symbol I • I of sort trace -> nat. The 

remaining symbols used in trace logic are all standard. 
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Definition. The syntax of trace logic is given by a set 

Exp = Exp:trace u Exp:nat u Exp:comm u Exp:Jog 

of expressions ranged over by xe. The constituents of Exp are defined as follows. 

(1) The set Exp:trace of trace expressions consists of all expressions te of the form 

te:: = E I a I t I te1 . te 2 I te t A I te[b/al 

where every trace variable t in te occurs within a subexpression of the form te0 t A. 

(2) The set Exp:nat of natural number consists of the following expressions ne: 

ne:: = k I n I ne1 + ne2 I ne1 * ne2 I ltel 

(3} The set Exp:comm of communication expressions consists of the following expressions 

ce: 
ce:: = a I te[nel 

(4) The set Exp: log of trace formulas or logical expressions consists of the following 

expressions le: 
le:: = true I te1 " te2 I ne1 " ne2 I ce1 = ce2 

I -, le I le1 A le2 I 3t. le I 3n. le 0 

Let xe{te/t} denote the result of substituting the trace expression te for every free oc

currence of the trace variable t in xe. Furthermore, let xe{b/a} denote the result of lite

rally replacing every occurrence of the communication a in xe by b. 

The standard semantics or interpretation of trace logic is introduced along the lines of 

Tarski's semantic definition for predicate logic. It is a mapping 

assigning a value to every expression with the help of so-called environments. These are 

mappings 
p E Env 3 = Var -> DOM3 

assigning values to the free variables in expressions. The semantic domain of .J is 

* DOM .::i = Comm u IN0 u Comm u {J_} u {true, false}, 

and the environments p respect sorts, i.e. trace variables t get values in Comm* and natu

ral number variables n get values ln IN0 . 

Definition. With the above conventions the standard semantics .J of trace logic is defined 

as follows. 

(1) Semantics of trace expressions yielding values in Comm*: 

.J!Ie]{p} = E , the empty trace 

,J[ a](p) = a 

.3[ t] lpl = p(t) 

.J[ te1 . te 2 ] (p) = .JII te1 ] (p) . .:s .JII te 2 ] (p) , the concatenation of the traces 

.J[ tet A ] (p) = .J[ te] (p) t :J A , the projection onto A, i.e. with all communications 

outside A removed 

.JIIte[b/al](p) = .J[te](p) {b/a} , i.e. every occurrence of a is renamed into b. Brackets 

[ .. .l denote an unevaluated renaming operator and brackets {...} its evaluation. 
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(2) Semantics of natural number expressions yielding values in IN . 
o· 

,'J[k](p) = k for k e IN 0 

:J[ n] (p} = p(n) 

,'J[ ltel] (p) = I :J[ te] (p)i .:S' the length of the trace 

Expressions ne1 + ne2 and net* ne2 are interpreted as addition and multiplication. 

(3} Semantics of communication expressions yielding values in Comm u {l}: 

,'J[ a] (p} = a 

:J[ te[ne)] (p) = :J[ te] (p)[:J[ ne] (p) l.:S , the selection of the :J[ ne] (p)-th element of the 
trace :J[ ne] Cpl if it exists and l otherwise 

(4) Semantics of trace formulas yielding values in {true, false}: 

,'J[ true] (p) = true 

:J[te1 s: te2 ](p) = ( :J[te1 ](p) s::s :J[ te2 ](p)), the prefix relation on Comm* 

:J[ne1 s: ne2](p) = ( :J[ne1](p) s:.:S :J[ne2 ](p)), the standard ordering relation on N0 

:J[ce1 = ce2 ](p} = ( .'J[ce1](p) =:s .'J[ce2 ](p)), the strong, non-strict equality on DOM:S. 

Thus a value 1, which ls possible for a communication expression, does not propaga
te to the logical level. 

Formulas ..., le, let A le2, 3t.le, 3n le are interpreted as negation, conjunction and exi

stential quantification over Comm and N0 , respectively. 

(5) A trace formula le is called valid, abbreviated l=le, if :J[le](p) true for all environ-
ments p. D 

How to use trace logic for the specification of trace sets? The answer is that we use a 
certain subset of trace formulas. 

Deflnltion. The set Spee of trace specifications ranged over by S, T, U consists of all tra

ce formulas where at most the distinguished variables h of sort trace is free. D 

Thus the logical value :J[ S](p) of a trace specification S depends only on the trace value 
p(h). We say that a trace g e Comm'" satisfies S and write Q I= S if :J[S](p) = true for 

p(h) = g. Note the following relationship between .satisfaction and validity: 

iff 

A trace .specification S specifies the set of all traces satisfying S. In fact, wether or not a 
trace satisfies a trace .specification S depends only on the trace value within the projection 
alphabet 'X(S}. This is the smallest set of communications such that h is accessed only via 
trace projections within 'X ( S). The definition is not straightforward because expressions 
allow an arbitrary nesting of projection and renaming operators. Consider for example 

S = (lk.hlt {dn} s: ((Jk.hl dn/lk]) t Uk, up}. 

Should the communication lk appear in 'X(S) or not? To solve this question, we follow 
[Zw 89] and first convert every expression into a cetain normal form where all trace pro 
jections · t A are adjacent to the trace variables. 
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Definition. A trace expression te is called normal if it can be generated by the following 

syntax rules: 
te :: = E I a I t~ A I te1 • te2 I te[b/al. 

An arbitrary expression xe is normal Jf every maximal trace expression te in xe is normal. 

Maximal means that te is not contained in a larger trace expression in xe. 0 

Every other expression xe can be converted into a unique normal expression, called its 

normal form and denoted by xenorm. This convertion is done by applying algebraic laws 

which move all projections • t A in the trace expressions of xe down to the trace varia

bles. 

Definition. For normal trace expressions te the projection alphabet or .simply alphabet 

ex(te) is defined inductively as follows: 

ex(e) = odal <D 
ex(h t A) = A 

ex (t t A) = <)) if t :J: h 

ex (te1 . te2 J = ex (te1) u ex {te2 l 
ex (te[b/ all = a (te) 

For arbitrary trace expressions te the alphabet is given by IX ( te) = ex ( tenorm J. For arbitra
ry expressions (in particular trace specifications) xe the alphabet is 

IX (xe) = LJ a (te) 

where the union is taken over all maximal trace expressions te in xe which contain an 

occurrence of h that is free in xe. If such a trace expression does not exist, the alphabet 

ex{xe) is empty. 0 

Example. We determine the projection alphabet IX(SJ of the expression 

S (!k.hlt {dn} ,;: {(lk.hJ[dn/lkJJt Uk, up} 

Maximal trace expressions of S are tel 

Their normal forms are 

Clk.hlt {dn} and te2 ((lk.h>Cdn/lknt Uk, up}. 

telnorm = e.ht {dn} and te2norm = e.ht {up}. 

Thus we obtain 1X(S) = ex(tell u IX(te2) = ex(telnorm) u a(te2norm) = {dn, up}. 0 

Projection Lemma. Let S be a trace specification. Then 

~ F S iff ~ t exCS) F S 

for all traces ~ E Comm*. 0 

Since trace logic includes the standard interpretation of Peano arithmetic, viz. the model 

[IN 0 , 0, 1, +::S' *::s· =::s), trace specifications are very expressive. The following theorem is 

essentially stated in [Zw 891. 
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ExpreHl\l'enelHll Theorem. Let i'. s:; A* be a recursively enumerable set of traces over the 
alphabet A. Then there exists a trace specification TRACE(tl with projection alphabet 
i:dTRACE!i:>) = A such that 

iff ~ I= TRACE{:tl 

for all traces ~ e A*. The same is true for sets 1: s:: A" whose complement in A* is re
cursively enumerable. D 

For practical specification, such a general expressiveness result is not very helpful. Then a 
concise and clear notation is important. We use the following: 

* Natural number expressions counting the number of communications in a trace: 

a # te = df I tet {a} I 

" Communication expressions se/ectiJJ.g specific elements of a trace: e.g. 

last te = df teEltell 

* Extended syntax for logical expressions: e.g. for k :.o 3 
k-1 

ne 1 ,; .•. ,; nek =df /\ne ,; ne1• 1 
j=l j 

* Regular expressions denoting sets of traces. 

3. PROCESS TERMS 

Process terms are recursive terms over a certain signature of operator symbols taken from 
Lauer's COSY [L TS 79, Be 87], Milner's CCS [Mi 80] and Hoare's CSP as in [Ho 85]. More 
specifically, we take the parallel composition II from COSY, prefix a., choice + and action 
morphism [<P] from CCS, and deadlock stop : A , divergence div: A and the idea of using 
communication alphabets to state certain context-sensitive restrictions on process terms 
from CSP. 

To the set Comm of communication we add an element 1 E Comm yielding the set Act = 
Comm u !1 l of actions. The element 1 is called internal action and the communications 
are also called external actions. We let u,v range over Act. As before let a, b range over 
Comm and A,B over communication alphabets. The set of {process) identifiers is denoted 
by Idf; it is partitioned into sets Idf: A s:: Idf of identifiers with alphabet A, one for each 
communication alphabet A. We let X,Y, Z range over ldf. By an action morphism we mean 
a mapping <p: Act -> Act with <p(i:) = i: and cp(a) :J: a for only finitely many a e Comm. 
Communications a with <p(a) = 1 are said to be hidden via cp and communications a with 

<p {al= b for some b :J: a are said to be renamed into b via cp. 

Definition. The set Ree of {recursive) terms, with typical elements P,Q,R, consists of all 

terms generated by the following context-free production rules: 

p ··= stop: A 

div:A 

( deadlock l 

( divergence ) 
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( prefix } 

( choice } 

( paralellism } 

(morphism} 

( identifier ) 

( recursion } 

An occurence of an identifier X in a term P is said to be bound if it occurs in P within a 

subterm of the form µX.Q. Otherwise the occurence is said to be free. A term P e Ree 

without free occurences of identifiers is called closed. P {QI X} denotes the result of 

substituting Q for every free occurence of X in P. 

A term P is called action-guarded if in every recursive subterm µX.Q of P every free 

occurence of X in Q occurs within a subterm of the form a.R of Q. E.g. µX. a. X is 

action-guarded, but a. µX . X is not. 

To every term P we assign a communication alphabet ix ( P} defined inductively as follows 

ix(stop :A}= ix(div:A} =A, 

IX ( a. P ) = {a} u IX ( P) , 

IX(P+Q) = 1X(P 11Q)=adP)u1X(Q }, 

ixCP[cp]) = cp(ix(P))-h}, 

o:(X} =A if X e ldfCAl, 

a(µX.Pl = aCXlu ixCP>. 

Deflnltlon. A process term is a term PeRec which satisfies the following context-sensitive 

restrictions: 

(1) P is action-guarded, 

{2) every subterm a.Q of P satisfies aeac(Q}, 

(3) every subterm Q+R of P satisfies ix(Q} = ix(R}, 

{4} every subterm µX.Q of P satisfies a(X }= a(P}. 

Let Proc denote the set of all process terms and CProc the set of all closed process 

terms. 0 

The semantics of a process term P will be defined as a certain Petri net !n[ p]. As nets 

we consider here labelled place/transition nets with arc weight 1 and place capacity w [Re 

85] but we will mainly work in the subclass of safe Petri nets. We deviate slightly from 

the standard definition and use the following one which is inspired by [Go 88). 

Definition. A Petri net or simply net is a structure ~ "' { A, PI, ->, M0 } where 

(1) A is a communication alphabet; 

(2) PI is a possibly infinite set of places; 

(3) -> ~ ~nf(P!} x CA u I i: }) >< ~nf(Pl) is the transition relation; 

(4) M0 e ~nf(P!} is the Jnltial marking. D 
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Here \l>niPD denotes the set of all non-empty, finite subsets of Pl. An element (I, u, OJ 

e -> is called a transition (labelled with the action u) and will usually be written as 

I ~>O. 

For a transition t = I _!!_> 0 its preset or input is given by pre(t} 

output by post(t) = 0 and its action by act(tl = u. 

I, its postset or 

The graphical representation of a net !.1l = (A, PI, ->, M0 ) is as follows. We draw a 

rectangular box subdivided into an upper part diaplaying the alphabet A and a lower part 

displaying the remaining components PI, -> and M0 in the usual way. Thus places p e PI 

are represented as circles with the name "p" outside and transitions 

t = { P1• .. ., Pm } _JL> { qt' ... , qn } 

as boxes carrying the label "u" inside and connected via directed arcs to the places in 

pre(t) and post(tl. Since pre(t) and post{t) need not be disjoint, some of the outgoing arcs 

of u actually point back to places in pre(t) and thus introduce cycles. The initial marking 

is represented by putting a token into the circle of each p e M. 

The dynamic behaviour of a Petri net is defined by its token game; it describes which 

transitions are concurrently enabled at a given marking and what the result of their 

concurrent execution is. Though the initial marking of a net is defined to be a set of 

places, the token game can result in more general markings, viz. multisets. 

Consider a net !.11 = ( A, PI, ->, M0 ). A marking or case or global state of !.1l is a 

multiset (over PI), i.e. a mapping M: PI -> IN0 . Graphically, such a marking M ls 

represented by putting M(p) tokens into the circle drawn for each p e Pl. For simplicity 

any set N <:: PI, e.g. the initial marking M0 , will be identified with the multiset given by 

the characteristic function of N: N(pl=t for p e N and N(p)=O otherwise. For multisets M 

and N let 

M 1:: N, M u N and M - N 

denote multiset inclusion, union and difference. If M and N are sets then M <:: N an M -

N are just set inclusion and difference whereas M u N in general differs from 

set-theoretic union. We write p e M if M(p) :io l. 

A global transition of !.11 is any non-empty, finite set l: of transitions of !.1l. Define by 

using multiset union 
pre(!t.J = LJ pre<tl 

t E l: 

and analogously for post(l:J and act(l:J. 

Definition. Let !.1l be a net, X. be a global transition of !.11 and M be a marking of !.11. Then 

(1) the transitions in X. are concurrently enabled at M or simply X. is enabled at M if 

pre(.i:) <:: M, 

(2) if enabled at M, the concurrent execution of the transitions in l: transforms M into a 

new marking M' of m; this is also called a step from M to M' in (the token game ofJ 

f.Jl. In symbols: 
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M X> M' in l.'n 

if pre{:tl s:: M and M' = ( M - pre(:tl) u post(!:l. For I: = { t } we write M _L> M' in

stead. 0 

We distinguish two notions of reachability for nets l.'n = ( A, PI, ->, M0 ): 

A (dynamically) reachable marking of l.'n is a marking M for which there exist intermediate 

Mn and global transitions .t1, ... , :tn with 

.t I: I: 
Mo _1_> Mt _2_> ... -A> Mn = M 

Let mark(!J?) denote the .set of reachable markings of !.'?. Note that the set mark{!.'?} does 
not change if in (•) we consider only singleton transitions 1::1 = { t1 }. 

The set place(!.J?) of statically reachable places of !n i.s the smallest subset of PI satisfying 

{1) M s; place(!Jl} , 

{2) If I s:: placerol) and I .J:L> 0 for some u e A u { i: } and 0 s:: PI then also 0 s:: place(!Jl). 

The term "statical" emphasizes that, by (2), the set place(!.'?) is closed under the execution 

of any transition t = I .J:L> 0 independently of whether t is ever enabled at some 

dynamically reachable marking of !.'?. Thus placerol} s:: { p I 3 M e mark{l.ll): p e M } and in 

general this inclusion is proper. 

In the following we .shall mainly work with safe nets where multiple tokens per place do 

not occur. Formally, a net !Jl is safe if 

V M e mark{!n) V p e PI: M{p) " 1. 

Thus in a safe net all reachable markings are sets. 

Moreover, we mostly wish to ignore the identity of places and forget about places that 

are not statically reachable. We do this by introducing su.itable notions of isomorphism 

and abstract net. 

Deflnitlon. Two nets !.'?1 = ( A1, Pl1, ->1, M01 ), i=l,2, are weakly isomorphic, abbreviated 

if A,_ = A2 and there exists a bijection ll : place<!n ) -> place(!.'? ) such that 

1l<Mo1) = Mo2 

and for all I, 0 s:: placeC!n1l and all u e A u { i: } 

where !lCM01>, !!CU, !!CO) are understood elementwise. The bijection ll is called an weak 
isomorphism between !Jl1 and f!l2 . 0 
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Clearly, =isom is an equivalence relation. An abstract net is defined as the isomorphism 

class 
[!Yi]= = { !n' I !Yl = isom !n' } 

isom 

of a net m. It will be w:ritten shorter as [!n]. For abstract nets, we use the same 

graphical representation as for nets; we only have to make sure that all places are 

statically reachable and eliminate their names. Most concepts for nets can be lifted in a 

straightforward way to abstract nets. For example, we shall call an abstract net [In] safe, 

if !n ls safe. Let Net denote the set of nets and ANet the set of abstract nets. 

The semantics of process terms is a mapping !]?[ · ] : CProc -> ANet which assigns to 
every P e CProc an safe abstract net of the form 

!n[ p ] = [ (cx(P}, Pl, -> , M0 ) ] . 

For the definition of the components PI, -> and M0 we refer to [01 89). Here we have 
space only for an example. 

Example. Let P = a.b.c.stop: {a, b, c } II d.b.e.stop : { d, b, e}. Then 

!n[ P ] == {a , b, c d , e } 

4. PROCESS CORRECTNESS 

In this section we define our notion of process correctne:ss P sat S. Let us begin with an 

informal explanation by considering once more the user interface of the process P shown 

in the introduction. Consider now a communication trace ~ = a1 ... a., over cx{P). We :say 

that P may engage in ~ if there exists a transition sequence of the process where the u:ser 

was able to depress the communication buttons ac·I\. in that order. We say that P must 

engage in ~ if the following holds: When started the process eventually becomes stable. 

Then it is po:ssible for the user to communicate a1 by depressing the corre:sponding com

munication button. Now the process may engage in some internal activity, but eventually it 

becomes stable again. Then it is ready for the next communication a2 with the user, etc. 

for a3 , .. ., an. Also after the last communication I\. the process eventually becomes stable 

again. Summarising, in every transition sequence of the process the user ls able to depress 
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the communication buttons a1, •.• , a.. in that order after which the process eventually 

becomes stable. Stability can be viewed as an acknowledgement of the process for a suc

cessful communication with the user. We say that P is stable immediately if the stability 

light goes on immediately after switching the process on. These explanations should suf

fice to appreciate the following definition of process correctness. 

Deflnition. Consider a closed process term P and a trace specification S. Then 

P sat S 

if tx(P) = tx(S) and the following conditions hold: 

(1) Safety. For every trace b e cx(P)* whenever P may engage in 9 then 9 F= S. 

(2) Liveness. For every trace Q e cxCSJ* whenever pref b I= S then P must engage in Q. The 

notation pref 9 F= S means that 9 and all its prefixes satisfy S. 

(3} Stability. P is stable immediately. D 

The distinction between safety and liveness properties of concurrent processes is due to 

Lamport (see e.g. COL 82]}. Following Lamport, a safety property states that nothing bad 

ever happens and a liveness property states that something good eventually happens. In 

our context, a bad thing is a trace 9 not satisfying S and a good thing is the successful 

engagement in all communications of a trace 9. Note that the notion of safety is different 

from safeness defined for nets in Section 3: safeness can be viewed as a specific safety 

property of the token game of a net. Stability is al:so a safety property, but it is singled 

out here because its rSle is more technical. Its presence allows a more powerful verifica

tion rule for the choice operator [01 88/89). For mathematical characterisations of safety 

and liveness properties see [AS 85]. 

In the following we give formal definitions of the notions of "may" and "must engage" 

and of initial :stability by looking at the Petri net denoted by P. The intuition behind these 

definitions is as follows. Whereas transitions labelled by a communication occur only if 

the user participates in them, transitions labelled by 1 occur autonomously at an unknown, 

but positive speed. Thus 1-transitions give rise to unstability and divergence. 

DefJnl.tlon. Consider a net tll "' (A, PI, ->, M0 ) and let M, M' e mark(tll) and 9 e Comm*. 

(1) Progess properties. The set of next possible actions at M is given by 

next(M} = {u e Act I 3t e -> : pre(t} !:: M and act(t) = u}. 

M is called stable if 1 4 next(M) otherwise it is called unstable. M is ready for a com

munication b if M is stable and b e next(M). M is ready for the communication set A if 

M is stable and next(M) "' A. ~ is stable immediately if M0 is stable. We write 

M ij> M' 
t 

if there exists a finite transition sequence M --1-> 

such that 9 = (act(t1) .•• act<tn)) \ 1 , i.e. b results 

act(t1) ... act(tn} by deleting all internal actions 1. 

tn 
Mt ... Mn-1 ---> Mn = M' 
from the sequence of actions 
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{2) Divergence properties. !J? can diverge from M if there exists an infinite transition se-
quence 

t t t 
M __ 1_> Mt __ 2_> M2 __ 3_> 

such that 1 = act{tl) = act(t2) = act(t3) = ... m can diverge immediately if m can diverge 

from M 0 . !JI can diverge after g if there exists a marking M with 

M j_> M 
0 

such that !JI can diverge from M. m can diverge only after g if whenever m can diverge 

after some trace g' then g ;: g'. m can diverge if there is a marking M e mark(!Jt) from 

which m can diverge. m is divergence free if m cannot diverge. 

(3)Deadlock properties. !JI deadlocks at M if next(Ml = <!>. :31 deadlocks immediately if !J? 

deadlocks at M 0 . !J? can deadlock after 9 if there exists a marking M with 

M Q > M 
0 

such that !J? deadlocks at M. m can deadlock only after 9 if whenever !J? can deadlock 

after some trace g' then 9 ;: 9'. m can deadlock if there is a marking M e mark(!J?) at 

wich m deadlocks. m is deadlock free if m cannot deadlock. 0 

We now tum to process terms. 

Deflnitl.on. Consider a closed process term P, a representative !J?0 

the abstract net !J?[ P], and a trace 9 e Comm" 

(1) p is stable immediately if m is so. 

(a(Pl, PI, ->, M0 l of 

(2) P can diverge (immediately or after Q or only after {1) if m0 can do so. P 15 divergence 

free if m 15 so. 

(3) p deadlocks immediately if mo doe5 so. p can deadlock {after lJ or only after g) if mo 
can do 50. p is deadlock free if m is so. 

(4) P may engage in 9 if there exists a marking M e markC!J?0 ) such that M J_> M. 

(5) P must engage in g = B.i .•. an if the process term P II a1 ... an. stop: °'(P) is divergence 

free and can deadlock only after g. 0 

Clearly, the above definitions are independent of the choice of the representative !J?0 . The 

formalisations of immediate stability and "may engage" capture the intuitions earlier, but 

the formalisation of "must engage" requires some explanation. The process term at ... an. 

stop: oc(P) models a user wishing to communicate the trace at ... an to P and stop after

wards. Communication is enforced by making the alphabet of user and process identical. 

Thus the parallel composition P II a1 ... an. stop: oc(P) can behave only as follows: it can 

engage in some prefix a1 ···8k of 9 with 0 ;: k ;: n and then either diverge (i.e. never be

come stable again) or deadlock (i.e. become stable, but unable to engage in any further 

communication). The user's wish to communicate g ls realised if and only if P II a1 ..• an. 

stop: oc(P) never diverges and if it deadlocks only after g. A final deadlock is unavoidable 

because the user wishes to stop. This is how we formalise the notion of "must engage". 
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The terminology of "may" and "must engage" originates from DeNicola and Hennessy's 

work on testing of processes lDH 84, He 88]. There it is used to define several so-called 

testing equivalences on processes, among them one for the "may" case and one for the 

"must" case. Here we make different use of theses two notions. Also, our definition of 

"must engage" is stronger than in [DH 84, He 88J because we require stability after each 

communication. This will result in an equivalence which differs from their testing equiva

lences (see Section 6). 

We can show that P sat S has very strong consequences for P. 

Propoaitlon. Consider a closed process term P and a trace specification S. Then P sat 

S implies the following: 

(1) "May" is equivalent to "must", i.e. for every trace ~ the process P may engage in ~ if 

and only if P must engage Jn b-
(2) P is divergence free. 

(3) P is externally deterministic. D 

Intuitively, a process is externally determinlstic if the user cannot detect any nondetermi

nism by communicating with it. Formally, we define this notion as follows: 

Defln!tlon. Consider a closed process term P and some representative ~0 
M0 ) of IYllI P]. Then P is called externally deterministic if for all traces ~ 

all markings M1, M2 e mark~0) whenever 

b b 
M0 => M1 and M0 => M2 

such that M1 and M2 are stable then 

(O'.(P), PI, ->, 

e Comm* and 

That is: every communication trace b uniquely determines the next stable set of communi

cations. D 

Thus trace formulas specify only divergence free and exemally deterministic processes. 

This is a clear restriction of our approach, but it yields an interesting class of processes 

with many applications and simplest verification rules (see Section 7). 

Examples. Let us consider the trace specification 

which is an abbreviation for dnuh :s: upuh :s: 2 + dnuh, and examine how a process P satisfy

ing S should behave. Since P sat S implies O'.(PJ = oc(S) = { up, dn } , P should engage only 

in the communications up and dn. By the safety condition, in every communication trace ~ 

that P may engage in, the difference of the number of up's and the number of dn's is 

between 0 and 2. If P has engaged in such a trace b and the extension ~.dn still satisfies 

S, the liveness condition of P sat S requires that after b the process P must engage in 

the communication dn. The same is true for up. 
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Thus S specifies that P should behave like a bounded counter of capacity 2 which can 

internally store a natural number n with O s: n s: 2 Afte~ a co · ti t i:. h 
· • mmuruca on race y t e 

number stored is n= UP"'Q - dn .. g. Initially when i:. is empty · C . ' 
• \I , n 1s zero. ommurucating up 

increments n and communicating dn decrements n Of course th . . 
· , ese commurucat1ons are 

possible only if the resulting changes of n do not exceed the counter bounds. 

A process term satisfying S is 

P = µX. up. µY. ( dn. X + up. dn. Y ) 

denoting the following abstract net 

:;11[ p] = { Up, dn J 

This net is purely sequential, i.e. every reachable marking contains at most one token, and 

there are no internal actions involved. Another process term satisfying S is 

Q = ( ( µX. up. dn. X) [ lk/dn J 11 ( µX. up. dn. X) [ lk/up ]) \ lk 

denoting the following abstract net. 

~[Q] = { up, dn } 

Here, after each up-transition the net has to engage in an internal action i; before it is 

ready for the corresponding dn-transition. Since 1-actions occur autonomously, readiness 

for the next dn is guaranteed, as required by the specification S. This leads in fact to a 

marking where up and dn are concurrently enabled. 

The examples of P and Q demonstrate that presence or absence of concurrency or inter

vening internal activity are treated here as properties of the implementation (process term 

and net ), not of the specification. 
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It is easy to generalise the above trace specification. For k :. t a bounded counter of capa

city k is specified by 

If we drop the upper bound k, we obtain a trace specification S for an unbounded coun

ter that can store an arbitrary large natural number: 

S = dn•h .:: up•h 

In a process satisfying S"" the communication up may and must occur after every trace. 

One such process is given by the term 

P = µX. up. ( X [ lk/dn l II µY. dn. lk. Y) \ lk 

which denotes the infinite abstract net 

IJ?[ p ] { up, dn } 

After the n-th communication up the net will engage in n-1 internal actions t before being 

ready for the corresponding n-th communication dn. But again, these intervening internal 

actions do not impair the user's view of the specified behaviour. D 

S. MODIFIED READINESS SEMANTICS 

The liveness condition of the satisfaction relation P sat S is difficult to check when only 

the net semantics of P is available. To simplify matters, we introduce now a second, more 

abstract semantics for process terms. It is a variation of the readiness semantics !R intro

duced in [OH 86]. The main idea of i:R is to record information about the process behavi

our in the form of pairs ( g, ~) consisting of a trace g and a so - called ready set ~· This 

is a set of communications in which the process is ready to engage when it has become 

stable after the trace g [Ho 81, FLP 84, BMOZ 88]. Additionally, !:R records information 

about divergence and applies a certain closure operator known as "chaotic closure" and 

due to [BHR 84]. The semantics !:R is modified here in three ways: 

(1) Information about initial unstability is recorded. This is needed because we use here 

Milner's choice operator + instead of Hoare's two operators 0 and or distinguishing 

external and internal choice as in [OH 86]. 
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(2) The "acceptance closure" due to [DH 84] is enforced on the ready sets. 

(3} A new "radiation closure" on ready sets is enforced; it will be explained below. 

To avoid confusion, we shall write \R* for the modified readiness semantics. Formally, it is 

a mapping 
!R"' [ ·] : CProc -> DOMtJt 

which assigns to every P e CProc an element \R"'[ P] in the readiness domain DOMl:lt. This 

domain consists of pairs CA,f} where A is a communication alphabet and r is a set of 

process informations. We consider three types of process information: 

(1} The element 't indicating initial unstability. 

(2) Ready pairs ( Q, 8) consisting of a trace Q e A"' and a ready set -\! i: A. 

(3) Divergence points ( Q, t) consisting of a trace Q e A• and a special symbol t standing 

for divergence. 

The set of these process informations can be expressed as follows: 

* • InfotJt:A = { t } u A x l.l)(A} u A x { t }. 

Define 

DOMl7t:A = { CA,r> I f c Info :A }. 

The readiness domain is then given by 

DOM\lt = U DOMtJt:A 

where the union is taken over all communication alphabets A. 

For a pair (A, f) e DO~ we define its alphabet by ix(A, f} = A and its set of process 

informations by n CA, r> = r. We adopt the following notational conventions: letters y, S 

range over InfotR:A, letters f, h. over subsets of Info!:lt:A and hence pairs (A, rl, CB, h.> 
over DOM!:lt, letters 3, '8 range over ready sets and the letter :E can either be a ready set 

or the symbol t. 

The mapping \R*[ · ] retrieves the relevant process information from the operational Petri 

net semantics. Hence we talk of an operational readiness semantics. First we consider 

individual nets. 

Deflnitkm. The readiness semantics of a Petri net !n = ( A, Pl, ->, M0 ) is given by 

!R*C~YU = close( A, { 1 I M0 is unstable } 

u { (g, a> I 3 M e mark(iJl) : 

M0 j_> M and M is stable and 3 = next(M) } 

u { C9, t) I 3 M e mark!inl : 

M0 Q > M and in can diverge from M } 

where the closure operator close: DOMIR -> DO~ is defined as follows: 

close (A,f) = (A, r u ( c9, (8) I 3 a: {q, 3l e r and a c 0 c succ(g, n 
u ( Cg', J!) I 3 9s:q': (q, t) e r and 9' e It 

and (:£ c A or :E = t) 

u < 19, '8l I 3 a: (ij.a, t) e r and 0 c succ(~. n } ) 
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Here sued!), n denotes the set of all successor communications of g in r: 

succ(g, n = { a I 3 @: (lj.a, (8) E r } . 

The readiness semantics of an abstract net [~] is given by !Ji* ([\lt]) = \R* Um and the (ope

rational) readiness semantics of a closed process term P is given by ~·[ P] = ~· (\n[ P]). O 

Let us now investigate the basic properties of the readiness semantics. First of all, it i.s 
an interleaving semantics, i.e. it i.s insensitive to concurrency. This is demonstrated by the 

law 
~ [a. stop:{a.} II b. stop:{b} ] = \R*[ a. b. stop:{a, b} + b. a. stop:{a, b} ] 

which is easily established by retrieving the readiness information from the corresponding 
nets. Secondly, the readiness semantics enjoys a number of structural properties which we 

summarise under the notion of being well-structured. 

Definition. An element (A,rl e DOM!:lt is called well-structured if the following holds: 

(1) Initial ready pair: 3 (8 <:; A : (e, (BJ E r. 
(2) Prefix closure: (lj. a, ~) E r implies 3 (8 c A : !g, (8) E r and a E @. 

(3) Extensibility: (g, ~) E r and a E ~ imply 3 (8 c A : (lj. a, (lj) E r. 
(4) Acceptance closure: (g, ~) E r and ~ c (8 c succ(g, n imply {g, (8) E r. 
(S) Chaotic closure: !lj, t) e r and lj ,;: f)' and (£ c A or :E = tl imply (lj', £) e r. 
(6) Radiation closure: (g. a, tl E r and (!j c succ(lj, n imply {g, (8) E r. 
(7) Unstability closure: (E, t} E r implies '( E r. 0 

Proposition. For every closed process term P the readiness semantics ~·[ P] e DOM!Yt is 

well-structured. 0 

Properties (1), (3), (5) and (2) without the condition "and a e (l;" are as in the original 

readiness semantics ~ in [OH 86]. Property (4) stems from the semantic models studied 
by DeNicola and Hennessy [DH 84, He 88]; it implies the condition "and a e @" in (2). 
Property (7) is motivated by [DH 84] and [BKO 87]. Property (6) is completely new: it 
states that divergence affects the ready sets one level up; we therefore say that divergen
ce "radiates up". Note that the closure properties (4) - (6) add ready sets and divergence 
points to ~·[ P] which are not justified by the token game of !J?[ P]. These additions ma

ke the semantics \R"'[ ·] more abstract so that less process terms can be distinguished 
under ~*[ ·]. In Section 6 we shall see that the resulting level of abstraction is in perfect 

match with the distinctions that we can make among process terms under the satisfaction 

relation P sat S. Technically speaking, !R"'[ ·] i.s fully abstract with respect to this relati
on. 

Here we notice that with the readiness semantics we can easily express the process pro
perties relevant for the satisfaction relation P sat S. Recall that Tt(~*[ P]) is the set of 
process informations collected by ~*[ P]. 

Proposition. For every divergence free, closed process term P and trace g 

(1) P may engage in g iff (lj, ~) e Tt(~*[p]) for some ready set~· 
{2) P can deadlock after g iff Clj, Cl)) e n(~*[p]). 



125 

(3) P must engage in g iff for every prefix a1 . . . ~ of g with O .: k < n and 

every ready set ~ 

( a1 •.• ~· ~ l e TIU.R*[ P]) implies ~ .. 1 e ~. 
i.e. whenever P becomes stable, it is ready to engage in the next communication of Q. 

(4) P is externally deterministic iff for every trave g there is at most one ready set ~ 
with UJ, ~) e TI (!Jt*[ P]J. D 

With these preparations, we can now approach the main objective of this section: a direct 

comparison of process terms and trace specifications on the basis of the readiness do
main. To this end, we extend now the readiness semantics IR*[ ·] to cover trace specifica
tions as well, i.e. to a mapping 

~*[ ·]: CProc u Spee -> DOM!:R. 

Definition. The readiness semantics of a trace specification S is given by 

!:R"[S] = ( cx(S), { (g, ~) I g e cx(S)" and pref !j F S 

and ~ = { a e cx(SJ I lj. a F S l ) ) 

where, as before, pref !j F S means that I) and all its prefixes satisfy S. D 

Since trace specifications S specify only processes which are stable immediately and diver

gence free, it is understandable that !Jt*[ S] does not contain elements of the form 1 and 

{lj, t) indicating unstability and divergence. Note that !;R*[ S] satisfies the properties {2) -

(7) of being well-structured, but not (1) because ~*[ S] may be empty. Thus the readiness 

semantics of trace specifications S is closed, i.e. close{ !:R*[ S] J = !X*[ S] but need not be 

well-structured. However, if e F S then !Jt*[ S] is well-structured. 

The main result of this section is the following theorem which is proved in [01 88/89]. 

Correctness Theorem. For every closed process term P and trace 

specification S we have 
P sat S iff 

i.e. in the readiness semantics process correctness reduces to semantics equality. 0 

The Correctness Theorem simplifies, at least conceptually, the task of proving that a 

process term P satisfies a trace specification S. 

Example. In Section 4 we considered the trace specification 

and argued informally that the process terms 

P = µX. up. µY. ( dn. X + up. dn. Y l 

and 

Q = ( ( µX. up. dn. X }[ lk/dn J II ( µX. up. dn. X )[ lk/up J ) \lk 

both satisfy S. We can now prove this claim by comparing the readiness semantics of S 

with that of P and Q: 
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!.R*rr S] = ( {up, dn}, { !fi, ~l I v Ti' ,;: fi: o ,;: upsfi' - dn•fi' ,;: 2 

and ( if O = up•fi - dn•fi 

and ( if O < up•fi - dn•Ti < 2 

and ( if up•fi - dn•Ti = 2 

then ~ = {up} 

then ~ = { up, dn } ) 
then~={dn} )}) 

By an exhaustive analysis of the reachable markings of the nets ()?[PD and ()?[ Q] display

ed in Section 4 we see that 

Thus indeed P sat S and Q sat S. D 

6. FULL ABSTRACTION 

Process terms denote Petri nets describing all details of the process behaviour many of 

which are irrelevant from the viewpoint of trace specifications. We therefore investigate 

the following question: 

Under what circumstances can we replace a closed process term P by a closed 

process term Q without ever noticing this change by the satisfaction relation sat ? 

Since replacement can take place within a larger process term, we use the notion of a 

context to make this question precise. A context is a term (!'(X) e Ree with one free 

identifier X. To simplify notation, we shall write (!'(R) instead of (!'(XHR\X} for the sub

stitution of a process term R for X in (!'(X). For example, the "must" condition of P sat S 

can be viewed as a condition on Q'(P) where the context is 

(!'(X) = X II a1 .•. an. stop : cx(P) 

Equivalence under the satisfaction relation sat is covered by the following satisfaction 

equivalence "'sat on closed process terms: 

p "'sat Q 

if for every trace specification S the following holds: P sat S iff Q sat S. Now the above 

question becomes: Under what condition on P and Q do we have Q'(P) "'sat: (!'(Q) for every 

context (!'(X} with Cl<Pl, Q'(Q} e CProc ? Milner's notion of fu/I abstraction [Mi 77] (see 

also [PI 77, HP 79]} can be seen as looking for a sufficent and necessary condition that 

solves this type of question. 

Deflnition. A semantics (or semantic model) !m : CProc -> DOM\'M is called fully abstract 

for an equivalence relation "' on CProc if the following holds for all closed process terms 
P and Q: 

!J1l[ PD = !J.Yl[ Q] lff Q'(P} "' (!'(Q) holds for every context (i!Xl with Q'(P), (!(Q) e CProc. 

D 

Intuitively, a fully abstract model !m optimally fits the equivalence = in the sense that !m 

just makes the identifications on process terms that are forced by "'· For a given semantic 

model !l1l : CProc -> DO~ let the model equivalence= be defined as follows: 

p =\'M Q if !lJ?[ p] = !J.Yl[ Q]. 
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Then we can state the following consequence of the definition of full abstraction. 

Propo11it!on. For every equivalence relation " on CProc there exists a fully abstract model 
roi for = which is compositional w.r.t. the process operators in CProc and unique up to 
model equivalence "mt· D 

This proposition provides an attractive method of specifying the semantics of processes. 
Starting from an equivalence relation = that captures the kind of distinctions or observati
ons on processes one is interested in, the proposition guarantees the existence of a com
positional semantics \ln that is optimal for " and unique up to model equivalence "on· 
Then rot is the semantics specified by "· More generally, this specification method is used 
for programming languages with and without concurrency (see e.g. [As 84]) and in the 
area of algebraic specifications {see e.g. [ST 87]). 

The existence of a fully abstract semantics Im is an interesting fact, but its implicit defi
nition via contexts does not give us any ides about the explicit structure of \ln. Often it 
is a very difficult or even unsolved problem to find such an explicit structure [Mi 77, Pl 
77, HP 79, MS 88]. Fortunately, for the satisfaction equivalence " we will be able to * .sat exhibit this structure: it is the modified readiness semantics !:R [ ·] discussed in the previ-
ous sections. 

Full Abstraction Theorem. The modified readiness semantics !:R*[ ·]: CProc -> DOM!:R is 
fully abstract for the satisfaction equivalence "sat , i.e. for all closed process terms P and 
Q the following holds 

if and only if for all contexts ([{Xl with (l(P), (l{Q) e CProc and all trace specifications S 

(l(P) sat S iff (l{Ql sat S. 

Proof. "only if": see (01 88/89]. "if": Suppose :it*[p] * :it"'[Q], say :it"'[p] ~ !:R*[Q]. We 
will exhibit a context Q"(X) with (l{P), Cl(Q) e CProc and a trace specification S with 

(l(P) sat S but Cl(Q) s/t S. 

Let A=a.(PJ. If a.(PJ * a.(Q), we can take CHXl = X and S = ht A :;;; hf A. If a.(P) = a.(Q), we 
* distinguish three cases depending on the structure of process informations in n(!.R [ P]) 

and n(!.R*[ Q]). 

Case 1: 1 e n(!:R*[Q]} and i; ~ n(!:R*[p]). Then P cannot diverge immediately. Take 

Q"(Xl = X II stop:A and S = ht A .:: E 

Then Q"(P}, Cl(Q} 6 CProc and 1 e n(!:R*[Cl(Q}]), but 1 ~ rr{\R*[(!(P}]). In fact, (HP} ls stable 
immediately, divergence free and can engage only in the empty trace. Thus <HPl sat S. On 
the other hand, (!{QI sf.t s because Q"(QJ is unstable as the 1 in its readiness semantics 

indicates. 

Case 2: (g, ~) 6 rr<!Jt*[Cl(QJ]) and (g, ~) a rr!:it"'[p]). Suppose ~ = a1 ... an where n ;, 0 
and a1, ... , an 6 A. Since ;x*[p] is well-formed (cf. Section 5), we conclude that 
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because otherwise the chaotic closure would force Cq, ~) e 'TC(~*[ P]). Let g' be the longest 

prefix of g such that 

(2) 3 @ : (Q', @) E 'TC(~·[ p]} 

Such trace g' exists because there is an initial ready pair (e, @) in rrU.R*[ P]). Take some 

fresh d ' A. Such a communication d exists because Comm is infinite whereas A c Comm 

is finite. 

Subcase 2.1: g' < g . Then Q' = at . . . ~ for some k < n. As context we consider the term 

<HXl = d. ( X 
II ( dk . stop:Au(d} 

+ at . ( dk-t stop:Au(d} 

+ a2 . ( . . . ( d . stop:Au{d} 

+ ~ • ~+t . stop:Au{d} } ... }}) 
) [cpl 

where the renaming morphism cp : Act -> Act is given by cp (u) = d for u e Au ( d l and 
cp ( u) = u otherwise. The notation drn. . stop:Au{d} abbreviates d . . . . . d . stop:Au{d} . ...._____. 

m times 

Clearly, (f{P), <HQ} e CProc. The initial communication d of <HX) serves to absorb possible 

unstabilities of P and Q in (HP) and ~(Q). Since d + A, the communications d occuring in 

the right-hand operand of the parrallel composition of ~(P) and <HQ) do not require 

synchronisation with the left-hand operand P or Q. Thus both CHPl and (HQ) can deadlock 

only after engaging in k + 1 communications. 

In fact, (i(P) must engage in k + 1 communications because, by property (1) above, (HP) is 

divergence free. Hence we consider as specification the trace formula 

s =df d=h" k-1-t 

Then (!(P) sat S, but (!(Q) s~t S becuase (HQ) may engage in the trace 

( d . at . . . ~ ... t ) { cp } = d . d . . . d 

of the length k -1- 2. 

Subcase 2.2: g' = g 

Case 3: (g, t) e 'IT(!X*[Q]) and (g, t) 4 'TC(~"[P]). 

Full details for these cases are given in [01 88/89]; we omit them here. D 

The full abstraction proof exploits that the modified readiness semantics ~·[ ·] incorpora

tes three extra closure conditions: chaotic closure, acceptance closure, and radiation clo
sure. The chaotic closure, dealing with divergence, was introduced by Brookes, Hoare and 

Roscoe in their failure semantics ~[ ·] for CSP [BHR 84]. The acceptance closure on ready 

sets was introduced by DeNicola and Hennessy for a process semantics of CCS that Is 

fully abstract for their strong "must" version of testing equivalence [DH 84, He 88]. For 

simplicity we call this semantics here strong testing semantics and denote it by t:. The 

radiation closure, however, is new. 
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Consider for example the process terms 

P = a . stop: {a} + Q and Q = a . a . div: {a}. 

Then P and Q, or better their syntactic equivalents in CSP and CCS, are distinguished by 

failure and testing semantics: ~[ P] * ~[ Q] and .tlI PD o; .tlI Q]. But in the modified readi

ness semantics they are identified. Indeed, look at the abstract nets denoted by p and Q: 

~[p] = { a } { a } 

• 

Thus the ready pair (a,$) belongs to ~*[p] by the token game of \)t[P], but it also be

longs to !R*[ Q] by the radiation closure. Informally, the divergence point (a . a, 1'} of 
~*[Q] "radiates up" and thus forces (a, Cl)} to be present in ~*[Q]. Hence 

This identification is justified by the idea of full abstraction because in every context <r!Xl 
both (f(PJ and <HQl satisfy exactly the same trace specification S. 

The example demonstrates that the modified readiness equivalence "ot• on process terms, 

given by 
if 

differs from the corresponding failure equivalence =., and strong testing equivalence ":t· It 

has to be different because of the satisfaction relation sat which uniquely determines "ot" 
via the notion of full abstraction. 

However, the differences appear only for processes which can diverge. On divergence free 

process terms "!.lt"' and ":t: coincide and on divergence free process terms which are stable 

immediately also = ,. and = coincide. This can be easily seen by comparing the definitions 
!:It tJ 

of the semantics !R*[ ·] with llI ·] and ~[ ·]. 

7. CONCLUSION 

Based on the notion of process correctness P sat S defined in this paper we have develo
ped compositional transformation rules for the systematic construction of process terma 
from given trace specifications [01 88/89). Most rules tum out to be very simple. For 
example, parallel composition P II Q of process terms P and Q is reflected by the logical 
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conjunction of trace formulas. Soundness of these rules is proved by using an equivalent 
denotationa.J definition of the modified readiness semantics. Applications of our notion of 
process correctness and the transformation rules can be found in [BDF 88, DB 89, 01 

88/89]. 

[As 84] 

[AS 85] 
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