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1, Introductlon and prellmlnarles

S A

et X be a - cempact Hausdorff space, let u be g
regular normed Berel measure.on X, and let .C(X) be the
Banach - spage- (Under uniform norm I £l = &l f{x)].) of
all. complex ~valued . contlnuous functions f on:X, Identify-
ing measure and corresponding integral on C(X) we shall
use the notation w(f) = [ f£(x)du (x). A family & =

X

=-{(x o n): 47 10" ¢ S} of sefuences in X is called a

'famlly of” equl—:u —unlformly distributed sequences (1n
German: *”gleichm3331g e glelchvertellt”) if for every
fe C(X) and for every real number e > O there exists an
integer N(f, e¢), independent of ¢, such that

N

(1 g RIREIC

) - u(£)| £¢  for all N = N(f,¢ )
o,n .

and for all o ¢ S (Hlawka [9]) 4

The question arises as to the poss1ble gize of such
a family @, both from the topological and from the measure-
theoretic point of view (section by, ThlS questlon may be
modified by restrlctlng attention to’ sequences of a spec1al
type only such as the taill sequences of a glven u unlform—
ly distributed sequence (section 5,6) or the sequences '
formed by the successive powers of a generator in a compact
monothetic group (section 2,3); In all of these modifi-
cations, a common feature of the answers to the above
guestions is the following: sqchfa‘familyiafwill in general
be in some (topolOWical) sense nowhefe dense, it may be
enlarged to one yhich is in some (topological). sense closed
and i1f the set of all seqnences in question in some natural
sense is given the mearure 4, then 4" may have measure
abltrary close.to a. ’ ,

Before taking up, the subgect in.detail we mentlon two
facts.. whlcb we. shall have to use. First, 1in order to show
that the. sequences of a certaln famlly'?’are equi~- uo-
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uniformly distributed it obviously suffices to establish
(1) for the functions f of a fixed set F < C(X) having
the property that flnite linear combinatlons of elements .
of F are, uniformly dense. in c(X) ([9] § 2, [:11] Satz 4)..
This fact w1ll in the following be referred to as Weyl's .
criterion LT e e e . ,

Secendly we note that 1n,the deflnltion given above,
C(X) may be replaced by the set of all real-valued Borel
measurable functlons f on X having the following property:
for every n.> 0 there exist real-valued continuous
functions f,,f, such-that £,5£°f, and u (f,-f,) Sn
Indeed, we then have - :

1 . ‘ . < 1 N
% _2 fq(xo’n) - w(fy) -n=g n21 fq(xc,n) B
< 1 N < y
—u’(fg) =5 nZ’] fx, p) =ulf) F né folx o n) -
ey
“ulfg) =y L Talxg ) - wlfp) o

(2) Ag L fxy n) -uln)] £

p N
= max “-N: n;q f’l(x R - ulfg) s
Nv
1§ L, falx g n) - w(p)l )

Since n is arbitrary it is indeed possible to choose
N(f, e ) so large that for all N=N(f, e ) the right. hand
member 1s smaller than a given e >0, uniformly in o.
. As a consequence, if /= {(x _ )7 4ioe S} isa
family pfmgqui—_p‘4qn;formly dlstrlbuted sequences, (1)

F:S



will hold for any complex-valued (Borel measurable)
function f whose discontinuilties are contained in a closed
suw<geroset, "in particular’ for every characteristic
functibn - x, of a subset A of X whose boundary has w -
measure Zero and for the product of x A with any function
fec(x). , ,
.t -A case' of) particular interest, already mentioned, is
the set of ‘sequences (a") _, "if X is a compact monothetic
group and if* a runs through the generators of X. Here,
because of the one-to-one correspondence between
generators and sequences, the answers to the questions-
referred to above may be given by statements about sets
of generators of X. Since it 1s both instructive and
convenient; for our later considerations, we shall first
deal with the special case of uniform distribution mod 1
before. passing onh -to more general sgituations.
Some of the results of sections 2 and 3 have been

announced by the authors in a talk given in October 1963
in the colloguium on uniform distribution at the Mathe-

matical Center in Amsterdam.



2. Uniform distribution mod 1

Let X be the additive group of reals mod 1 and letu
be ordinary :Lebesgue meagure on [0,1 [. It is well known

that ‘theé sequence (na)._. is .(u -)uniformly distributed

n="1
mod 1 iff a is irrational., Taking in Weyl's criterion
2 m™ikx

for F -the set of functions f, (x) = e (k an integer)

we ‘find that necessary and sufflclentvfor_the_sequences

(x o’ﬁ)ﬁ;g (o e S) to be equi-uﬂiformlz distributed mod

1 1s the existence, for every integer k=1 and for every

real rumber € > 0, of an-integer N(k,e ),independent of
¢ , such that -

e "IKX 6 n |2 ¢ for all N2N(k, ¢ )

(3) |

} >~

2l

n=",

and for allo e S. In what follows we shall denote by [a]
[a] the residue
of a mod 1. This should not cause confusion with the

i

the greatest integer in a and by a

further use of brackets when replacing parentheses or
sighalling open or close intervals. _
Theorem 1. Let A be a set of irrational numbers such that
the sequences (na) -1 (aeA) are equi- uniformly distri-
buted mod 1. Then the et of residues mod 1, A = {a: ae A}
is nowhere dense in [0,1[ .
Proof. Assume the contrary. Then we can find an integer
k=1 such that the set kA is dense in [0,1 [(mod 1). Given
any integer N21 and any real number § (0< 6 <1) we can
therefore find a number a ¢ A such that kae [O, N [(moa 1)
and, a Torteriori, nkae [0, §[ for 12n=N. Thus, for these
n, 1f ¢ has been chogen small enough, eQTTlnka is close
?1 e27rinka |,

to 1 and so is | in contradiction to

(3). n

Corollary 1.1, Let a2 be irrational. Then the sequences

(nma)n=
mod 1.
Corollary 1.2. The family of all sequences (na) 1

&

1 (m=1,2,...) are not equi-uniformly distributed




(a irrational);isfnot-the union of countably many families
of modmﬂnequl unlformly dlstrlbuted sequences.

Corollary 1. 3 Let A and A be as in theorem 1.,Then A has
outer Lebesgue measure smaller than_j._

Theorem 2. Let 5(0 < 6<1) be glven; Then there exists a
closed nowhere dense set A of 1rrat10na1 numbers 1n [O 1[
such that _ (A) > 1 6 and such that . the sequences

(na) 1 (a c A) are equl unlformly dlstrlbuted mod 1 -
Proof For every 1nteger k 1 we choose a real number > ©
in such a way that

S | .
uw{xel0,11[: I»e? fléx~1} <c,}

Let A, = {x¢[0,1[: | o2 “_ik? -1 Z¢ ) and let
A = F} Ak° Then A is closed, consists 2f irrational
numbgr; only, and we have (A) - ~% =1-9,
Furthermore, lOP any k 1 and for any akqu ie have

2 1\23 eeninkal_j_‘e”Nkaﬂlg 2
-'N nkq - N 2 mika -1 ch
Thus, by. Weyl's criterion, the sequences (na) (a € A)

are equ1 uniZormly distributed mod 1 and A is nowhere
dense by theorem 1.



-3, Uniform distribution 1n compact monothetlc groug_ -

. Let X be 'a compact group Whlch as- a topological..
“'spadce, 1 Hausdorff and let u be normed Haar measure on
X. The group X 1s called monothetic if:there 1is at least
.’one ‘element a e X (called "generator'") such that the
-}sequence (a ) ‘is everywhere dense in X (van Dantzig [1]
cf. [] Eﬂ II °‘9) As a consequence, a compact mono-
thetic Broup 1s abellan If a 1s a generator (and only ‘in
© this'case), the sequence (an);=1 is w-uniformly distri-
buted [2] . If Xn)n=1 is any W -uniformly distributed
sequence in X, then the sequences (:ny)(y € X) are equi-

u ~uniformly distributed [9] . We denote by A the closure
of a subset A of X. In the rest of this section, we shall
omit explicit reference to Haar measure u in statements 2
concerning uniform distribution. o
Theorem 3. Let A be a set of generators of X such that the
sequences (a” )n=1 (a € A) are equi~-uniformly distributed.
Then also the sequences (an); (a ¢ A) are equi-uniform-
ly distributed,

Proof. Let f e C(X) and ¢ > O be given., Suppose we have

=1

=

() | & 1 (™ - w(£) | e for all N:N(f, ¢ )

and for all a ¢A. Then, since £(x") is a continuous
function of » for every n, () also holds for all ae A.
We ncte that theorem 35 yields another proof of
theorem 1 which may be regerded as a corollary of theorem
3. Indeed, if A satisfies the hypotheses of theorem 1 and
if A contained an open interval, then A would have to
contain rational numpers which certainly are no generators.
We may generalize the statement of theorem 71 in the
following form:
Theorem 4, Let X be not totally disconnected and let A be
a set of generators of X sucn that the sequences (an)§=1
(a € A) are equi-uniformly distributed. Then A is nowhere

P



dense B
| Proof By PontrJagln's duallty theorem ([16] theorem 46
1[8]1theorem 24 26) there ex1sts a continuous, character 4a
of X such that d(X) ={a(x):x e X} is the entlre clrcle__

group T, By theorem 3, without loss of generallty we may .
assume A to be cloged, If A contalned an open subset of X

the d(A) woulo have to contaln an open 1nterval 1n T s1nce
d 'is an open mapplng on X onto T. On the other hand ‘since
d is a continuous homomorphism, d(A) would have to consist
of generators of T only, a contradlctlon o

Corollary A,ﬂ Suppose that X 1s connected and a is a
generatorgofjx Then the sequences ((a ) ) (m 1,200, )
are unlformly distributed but not equi- unlformly dlstrl—i
 buted. u
Proof. Slnce X is connected 1ff 1ts dual group is tor81on—
free ( [16 ] theorem 46 [8] theorem 24, 25)' we have d(a") =
= (a) % 1 for every non tr1v1al character d of X and
for every 1nteger m= 1 Thus, am is a generator of X KSJ
theorem 25,11). The second assertlonvfollows from theorem

s

4 since the sequence (am)mzq_isieverywhére‘dense in X.

We note that, by theorem 4, the second assertion of
Corollary 4,1 even holds if X is not totally dlsconnected
but in this case a’ need not any more be a generator for .
every m32 For convenience of notatlon we shall denote the
set of all generators of X by G.

Corollary 4 2 Suppose that X 1s connected and satlsfles

»the second aXlom of countablllty. Then the famlly of all
sequences (a ) (a e G) is not the unlon of countably
many famllles of equi-uniformly dlstrlbuted sequences
Proof, Under the stated hypothese, G is a set of flrst
category in X f3] . [8] 25.27).
Corollary 4 3 Let X and A be as in theorem 4 Then,
u(A)<’l ' , » - ] _
Proof. If (A) 1, then A Would have to be_everyWhere

dense in X 51nce every open sot has positive Haar measure.

&



LI X 1s totally disconnected, the assertion of ‘theorem
iy may fall to hold In fact the sequences (a" ) (a € G)
will be equ1 unlformly dlstrlbuted (see’ theorem 5 below)
and G may be open (see example follow1ng corollary 5.1
below) In order to show thls we first establish an
uaux1liary result We note ‘that, in the absence of the
second ax1om of countablllty, Zorn's lemma 1s used in the
iproof . P
Lemma 1. Let d be a cbntlndoUs character_ofvx having the
property that aX) = T, ’Then; forAemefy irrational number
. O there ex1sts a generator a € G such that d(a) = 82 “ia.
Proof Let D = {dAM:A € A}be a complete system of different
contlnuous characters of X let dO be the trivial character

~(do¢?;1)r-@nd let d, = d. Since X is monothetic there is

1 : » 271 B
.at least one generator b € G. Suppose d, (b) = e A
(6 o = 1). By assumption (dq(X)#T);" 4 1is irrational. Let
T, be the topological direct product T, = Ty (T =T

.for all a eh ). It is well known that the7mapping @ :x > R=
= (d (x))A A, ¢ T, 1is a topological 1somorph1sm of X on-

to a closed subgroup X = ¢@(X) of T,. In fact, X is the

olosure (with respect to the product topology in T ) of

: the sequence (b )n q € TA (The notation is chosen for

technical reasons and should not be confused with the

notation for residues mod 1 in section 2).

We now choose a maximal system of exponentSlBA,
linearly independent over the field of rational*nUmbers
and 1nclud1ng B o= and B,. We denote by D'={d Are Ae A'}
the correspondlng subsystem of D We now define an element
a of TA in the following way first we choose arbltrarlly
a set of real numbers N (\' e A'), llnearly in-
dependent over the field of rational numbers and 1nclud1ng

o= and aq— o {(this may even be done by changlng at«l

most two of the numbers A') Then we define o, fop
Ae AN bY ertlng By as a finite linear combination of
BM "s with rational coefflclents and replacing every gw



9

by ©o,,. Now we put & = (e2 TLEA Yyen €T g
IF Ul Agyein,h s eh=tke (e2" LEx)
2 mlg) 2n 1ak
e k. ki<€

T

ren & ta

k 1,...,m} is an arbitrary

o ""'
l

nelghbourhood of a in T then we can find an 1nteger n

A 4
(not necessarlly p051t1ve) such that B e Uu(a; Agoseeeshy $E).

Indeed because of our constructlon of o, for any lattlce
h, 8

N 0 (mod 1)
1 i

-

H h”JB

point (hAk)kzﬂ’ the. congruence \
k.

implies § h, 4y = 0 (mod 1),
k=1 -k .k R
Thus, by Kronecker's theorem ([12] VII § 2) the simultane-
ous inequalltles
In 8,y - oy | <n {(mod 1) (k=1,...,m)
o k k. o o
have a common integral'Solution n for any choiCe of
a=n(e). Thus & belongs to the group X and therefore
there exists an element a ¢ X such that & e ¢(a).

ByIOUr construction N will be an infegerllf and only
if B 1is an integer. Since b was a generator of X, this is
the case if and only if A =0. Thus, d (a) % 1 for all

X # 0 and a is a generator of X ([8] theorem 25.,11).
Theorem 5. The sequences (a' )m -1 (a e G) are equi- unlform—
ly distributed if and only if X is totally dlsconnected
Proof. We apply Weyl's criterion, taklng in place of F a’
complete system D of different continuous characters of X.
If X is totally disoonnected; thenvd(X)'is finite for
every d ¢ D. For every a e G and for every'non trivial
character d e D, we therefore have | d(a)-1]= >rO;
where Cq only depends on d. Thus, for every non_@rivialx,
character d, we obtain

. 1 N n
(5) © tg I a@M)]-=
. ] n="1,
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and for all a ¢ G. ,

If X is ﬁot‘totally aisconnected, then there is a
character d e D such that a(X):= T. If the sequences
(an)°° -1 (a eG) were equi-uniformly distributed, then, by
theorem 3, we would have G = G. In consequence by lemma
1, we would have d(G) T, ThlS, however, is 1mp0331b1e
since e2 1o Jls not a generator of T for rational o,
Corollary 5.1, G 1sdclqsed if and only if X is totally
disconnected,. ) .7 ‘

Proof If X is totally dlsconnected the assertion follows
from theorem 5 and theorem 3 If X is not totally dis-
connected, the same reasoning applies as in the second
part of thé proof of theorem 5. '
Corollary 5.1 may of course also be proved without
any reference to equi-uniformly distributed sequences; As
a consequence of-lemma 1, G can certainly not be openA »
unless X is totally disconnected. If, however, this is the
case, then G may well be-.open as aiready demonstrated by

any finlte group with the discrete topology. Below we shall..

exhibit a compact totally disconnected monothetic group X
containing infinitely many elements and having an open set ..
of generators. This, in connection with theorem 5, shows .
that we cannot omit the hypothesis of X not being totally
disconnected in theorem U4, ,

Let Tf be the topological direct product of count-
ably many copies of T. Let a ¢ T be defined by

eom 1.2 )j_q and define X to be the closure of the

sequence (an);=1 in Too . Then X is a compact monothetic

2 nibk.z‘k)m
k=1

with the property that b, =1. Since

group. Consider an element b = (e e X
(b, integers, 1§bk§2k)
b may be approximated arbitrarily close by elements of the
form a (nkﬂ), for every glven m21 the system of simultane-

ous congruences
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n ~-bk (mod oK ) (k=1,...,m)

has’ a solutlon n > O which has to be an odd 1nteger There-

fore, there exists an integer n' > 0 such that

k
)

12 n'by (mod.27)  (k=1,...,m)

and a may be approximated”arbitrarily closely'by elements
of the form bn'. Thus, b is a generator and: we have

2 Wlbk 2"

G —{ b=(e =1} . This set G, however, is

_)k 1* Pyq
obv1ously an open subset of X of Haar measure %u

~ The follow1ng theorem establlshes a generallzatlon
of fheorem 2 which we, however, shall use in the proof.
We note that, if X satisfies the. second axiom of count-
ability, G is a G—set and thus a Borel set ([8] 25.27).
Theorem 6. Suppose that X satisfies the second axiom of

countablllty and let ¢ (O < e <1) be given. Then there is

a closed nowhere dense subset Q of G such that u (Q)>u(G)-
- & and such that the sequences (an)°;=1 (a ¢ Q) are equi-
unlformly distributed. - , i L
Proof, Let D = {d,: k=0,7, 2,...} be a complete system of
dlfferent contlnuous characters of X and let D' be the
subset of D consisting of those characters 4 for which
d(Xx) = T(D' is empty iff X is totally dlsconnected) We
observe that A denoting normed Haar measure on T, for
every d ¢ D' and for every Borel set .B <« T, we have (B) =
= M (dnq(B)) (This may be seen e.g. by defining a Borel
measure X on T by this equation and checking that it has
all the properties characterizing Haar measure on T). For

every character d, € D' we may choose by theorem 2 a

closed subsget Ak gf T having the property that the sequen-
ces (dk(an))g;q (a,(a) e A,) are equi-} -uniformly dis-
tributed in T and such that A(A.) > 1 - = .
Qq = rz o k (A ) if D' is not empty aﬁd Q=X if D
is emp%y Then 1J(Q1) > 1 - ¢ and, putting Q@ = @, " G, we

We put

have u(Q)>u (G)



SETEED

12

Suppose now that a € Q is chosen arbitrarily and that
d, ¢ D is any non- tr1v1a1 character Ir dk(X) = T, then

k(a) € A, and

=

(a,(2))? ] 2

2l .
=
- L

6) 14 ; ) |- |
for all{NéN(dk;Ai)

and for allaeQ. If 4,(X) is finite, then d,(a) # 1 since
a 1s a generator and .(6) holds by the reasoning used in
the proof of (5). Thus, by Weyl's criterion, the sequen-
ces (an)nm1 (a e Q) are equi-uniformly distributed in X.
By theorem 3 we may replace Q by its closure which will
then have the properfles asserted in theorem 6,

We remark that, wnlle no assumption of connectedness
is necegsary 1n the hypothe51s, theorem 6 is 1nterest1ng
only in the non-totally dlsconnected case in v1ew of
theorem 5.

COrollary 6 1 Suppose that X 1s connected and satisfies
the second axiom of countability. Then, for every given

(O~<e <1) there is a closed nowhere dense subset A of
X such that u (A) > 1- ¢ and such that the sequences.,

(an)z'1 (a e A) are equi-uniformly distributed.
Proof. Under the mentioned hypotheses we have u (G) =
([3],'cf. 8" 25.27). An application of theorem 6 completes

phe’proOf,

i
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L Uniform: distrlbutlon in- compact Hausdorff spaces

Let X be any compact Hausdorff space and let 3 be,'

IO

any regular normed Borel measure on X Every sequence
&= (Xn)n 1.
topologlcal dlrect product space X of countably many
COpleS of X, We denote byCM the closure of a subseté@ of
X in the product topology The theorems stated in the

©0

c X may be regarded as an element of theijuq

previous sectlons have rather close analoga also in the N
present context ‘

Theorem 7. Suppose that & = {.%;e Xé : o eS}is a
family of equi-uniformly distributed sequences. Then so

is 4.

Proof Let £ ¢ C(X) and € >0 be given. By assumption, we

have

(7) "l%‘ - v (£)] ¢ © for all NEZN(f,e )

and for all o ¢ S. Let & =‘(;&:’n‘)(:1___,I be an arbltrary element

niq £(x,). Then FN is a_v
continuous function on X _ . Thus, for Esaﬁz we ~conclude

from (7) that:also

b= JRN

of X and define FN(E ) =

Z_.\'.

2 f(x -u (f)] e for all N2N(f,e) .
n—, :
This proves the agsertion, _ ,
Theorem 8. Suppose that X contains at least two points
and,that»ﬁfis a family of equi-up ~uniformly distributed
sequences, Then 2’is nowhere .dense in X. .
Proof, Assume the contrary. Because of theorem 7 weAmayp;
assume that(Q'is closed and therefore containsg an:open. - -
subsetlﬂ_ostL If X satisfies the second axiom of count-
ability; -then, via Baire’s-categoryvtheorem,gthisvcontraeﬁ
dicts the well known fact that the set of all wuw -uniform--
ly distributed sequences in X is of first category in X_ .

&
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If X does not. satlsfy the ‘gecond: axiom of countabll-

ity we may argue the follow1ng way:. W1thout loss of w
generallty we may assume thattﬂ is of the form U = Tr U s
where U is an open subset of X for all nZ1 and n=1
U, = ’X“for all n—-N1 “Let V and W be open subsets of X with
dlsgplnt closures Let f be a Urysohn function on X (i e.

£ e c{X) and 0= f(x) 5 for all x € X) such that f(x) =

for all x eV and f(x) 0 for all x ¢ W, Let N= 3N be

given. Because of our assumption d’contains sequences
n= (yn)n p 621 and ¢ (Zn)n=4 el with the following . ..

properties: y é V for N, <"nSN and z_ e W for N, < nSN.
n n 1

1
g

1 1 oy
We conclude.ﬁ- 2 £y, ) 3 and % niq £(z,) = 3. Since

N was arbltrary, thls contradicts our assumption that &
1s a family of equi- p -uniformly distributed seguences,

If X satisfies the second axiom: of countability,
then, as mentioned above, the set of all y-uniformly
dlstrlbuted gequences in X 1s of first category in X
Thls could suggest the idea that s 1n contrast to corollary
1.2 and 4.2, the set of all u -~uniformly distributed
sequences might well be the coun®able union of famllles of
equi- u -~uniformly distributed sequences. A closer 1nspect—
ion, however, shows that this still will not be the case
in general. Indeed, if X is a compact connected abellan
group satisfying the second axiom of: countablllty (and
a forteriori monothetic,[87] 25.14) ‘and if , is normed
Haar measure on X“;then“thé;sét"ofyaii u —unlformly"dls—“'"

noo
)n 1

(a ¢ G). This sety however,'cannot be spllt 1nto”?
the union of countably many families of equleli unlformly i

(a
distributed sequences by corollary 4.2,

- In order to-state an analogon of corollary 4. 1 (cf .
[7] theorem 2) wé rtecall that the shift transformatlon ‘
P in X_ is defined by P( = (yn)n=1’ where :
Tqeq (150 sy A

n)n 1
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Corollary &.1. Suppose that X contains at ieasf two boints.

Suppose furthermore that £€eX_ is wuw -uniformly distributed
in X and that, for some subsequence (mk)k 4 of the posi-
tive integers, :the sequence (p 3 )k 4 1s dense in some
open subset of X . Then the sequences P kg (k=1,2,...)
are p -uniformly distributed but not" ‘equi- y ~uniformly
distributed. ' ‘

Corollary 8.2. Let X and & be as in thggrem 8 and suppose
that X is the support of u ., Then u_ (&) < 1.

Proof. Under the mentioned hypothesis, the support of u_
is X . I ¢ had u _-measure 1, then ¢ would coincide with
X_,in contradiction to theorem 8.

The following theorem and its proof are essentially
due to E. Hlawka ([9] § 6) who has stated them for the
case of a compact group.

Theorem 9., Suppose that X satisfies the second axiom of
countability and let §(0 <6 <1) be given, Then there
exists a closed fam1lyw?'of equi-y -uniformly distributed

sequences such that w (&) > 1 -6,

Proof. In order to be able to apply Weyl's criterion we
first note that because of the second axiom of countability
there exists a countable set F = {f,: k=1,2,...} < c(x)

as described in section 1. Given any k#1 we again define

Fk,N € C(X“) for & = (Xn)n=1 by
1 N
Fenle) =5 nlq e {xy).

It is a well known consequence of the individual ergodic

theorem ( [5],[9] 8 6,[11]) that

pqui Py (8= plfy)
for wu_-almost all ¢ eX . Therefore, by Egoroff's theorea

( [u] § 21 A), there exists a neasurable subset ?}cOf X

of measure u,(d ) & 1 - J% such that the functions F
3 3
converge uniformly on Gfkgfor N+ o,

&



‘Taking 3’0 = : ,?{k"we obtain u_ ( g’o ) 21 =5, Further-
more, .for gve§§1k%ﬂﬁand feor every given €> O, we have

e LR '7< | |
3 k(x ):_- u(fk) l = ¢ for all NEN(f,,e )

N MZ

WJ{ 1
N
and for_all; g» (x )n 4 € é/ 2? An application of

Weyl's criterion leads to the assertion°

o
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5, Almost well distributed sequences "

Let X be a compact Hausdorff space and let u be a
regular normed Borel measure on X. As in the preceedlng
section we denote by P the shift transforuation in'the in-

finite product space X A sequence £eX  1is called H -

well distributed if the sequences P'E€ (m=1,2,...) are
equi- M -uniformly distributed (Hlawka [9], Petersen [15]).
While under the assumption of the second axiom of count-
ability wu_  -almost every sequence is u -uniformly distri-
buted ([ﬂﬂj), u ~alwost no sequence'iS‘u -well distributed
if u is not a point-ueasure ([7] corollary 2.1). We shall
now apply the results of the preceedlng gection .to some
questions connected with the concept of good distributlon

Theorem 10. Suppose that the sequence &aIX is p -well

distributed. Then so is every sequence in the closure of
the set & = {p"¢ : m=1,2,... }.

Proof.By theorem 7, Z’is a family of eqq}—11—uniformly
distributed sequences If n belongs to 57, then so does
P" n for every m=1. ' R

As an illustration in the case of uniform distribution

mod 1 we note that if a 1is i{pational and if ¢- is the se-.

quencev(na) (mod 1), then 7 is the family of all se-
quences (na+b)m (moa 1)(k>e{:0 10y,
We shall call a sequence £ eX almost uw -well distri-

<]

buted if there ex1sts an 1nf1n1te subsequence (m; )k=1 of -

the non- negatlve 1ntegers ‘such that the seéquences
pKg (k=1,2,...) are equi- u-uniforuly distributed. If we
want to refer to this particular subsequence we shall call
£ almost w-well distributed (m )k 1-
definition 1mp11es that an alwost m -well dlstrlbuted se-
quence is u-uniforuly dlstrlbuted - ‘
Theorem 11. Suppose that & eXm is almost w-well dis-
tributed (mk);;q ' | | e
is also aliiost wuw-well distributed (mk+h)k=1°

and let h be'any;positive integer. Then ¢

Note that the very -



B
Proof. For any given f e ¢(X) and for any e > O we have

e -‘mk+N~,
]%, ) £(x,) - w (£) | £ for all N2N(f,c )
‘n=mkf1 :

and for all k=1. We conclude -

mk+h+N

o S
1 n=mk§h+1 f‘xn) -ju (f)l 5
m N+ mk+h

T ) - I n(x) |+

N_ n=m, +N+1 ‘ n=m, +1

m, +N
g L e(xy) - ow(n)] s

A

sebllell o< o ror a1l NEmax(n(r,e ), EALL

N €

and for all k=21, .

Corollary 11,1, Let & and h be as in ﬁhebrem 11. Then the
sequences pk g (Im|%h, k=1,2,...) are equi-u-uniformly
distributed. | -
Proof, By theorem 11, for every fixed m, the sequences
pk (k=1,2,...) are equi- p -unifommly distributed.
Taking the union of these finitely many families of se-

quences, we again obtain a family of equi- y ~uniformly dis-
tributed sequences. |
Corollary 11.2. Suppose that g eX 1is almost u -well dis-

tributed (mk)k=1 and that the differences (mk+1—mk) are
bounded; Then ¢ is u-well distributed.

Proof . Put m_ =0, let h = ﬁéﬁ (mk+1—mk) and apply corol-
lary 11.1. -
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, If we compare these statements with the results of the
previousg sectidns,~we;may»r¢gard’corollary 11.1 as some

. sort of analogon .to theorem-37aﬁd theorem 7. In fact, it

) asserts fhat;5restricting attention to the‘subSeQuence ng
of a given U -uniformly distributed sequence & ; everymk
family of equi~ W -uniformly distributed subsequences P &
(k=1,2,...) may be enlarged by an operation similar to
taking the closure, referring, however, not to a topology
but to the concept of relative density of a set of integers.
In this sense, corollary 11.2 appears to be an analogon to
theoren 4 and theorem 3 if we state it in the following
form: Suppose that & e X ismnot ¥ -well distributed and
suppose that the sequences p kE (k=1,2,...) are equi-u
uniformly distributed. Then the sequence of integers
(mk);__1 is not relatively dense (i.e. it is not possible
to find a positive integer h such that every interval of
length h contains at least one integer m).

The following theorem again stems from a remark of E.
Hlawka ([9] last paragraph; the statements "jede Folge"
and "offene Menge" in the passage referred to are
erroneous). In the context just mentioned, it establishes

an analogon to theorem 6 and theorem 9,
Theorem 12. Suppose that X satisfies the second axiom of

countability. Then pw—almost every sequence g-axg is
almost w-well distributed. In particular, u_ -almost
every sequence ¢&e&X has the following property: given any

00

§ (0 <8 <1) there exists a subsequence (mk)k=1 of the non-
negative integers of asymptotic density greater than 1 -9
such that € is almost u -well distributed (mk);ﬂ.

Proof. By theorem 9 we can find a sequence of families 9}
of equi- v -uniformly distributed sequences such that

b (75) 2 1 —31. (j=1,2,...). We note that P is a u_ -
measure preserving ergodic transformation in X _ [5].

By the individual ergodic theorem, there is a subset ?%
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of X such that um (;7 ) = 1 and such that for. every & e ;73.
the sequence of exponents . for which P F; € 3’ has
asymptotlc den31ty . 3’) Taking ¥ = ﬂ g we _obtain
1 (;7) ’l ‘and every €é;7’ has the propell’ﬁ:; stated in the
theorem i C :
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6. Almost well, weakly well, and completely uniformly
 distributed seguences S

Let; as in section 5, X be a compact Hausdorff Spacé
and let u;be abrégular normed Borel measure on X. In view
“of theorem 12 we are led to consider the. folloWing classes
of sequences in X and to ask.for the set- theoretlc and
measure- theoretlc relationships between thems:

/A ={&. e)( 2 £ 1s p‘uniformly dlstrlbuted},
Oap ={€ eX_: ¢ is-almost u-well distributed}.
az@l~ié £X. 3 for every §(0 <6< 1) there exists a sub-

seguence (m of the non-negative integers

k)k=1 _
“of asymptotic density greater than 1-6 such
that £ is almost u-well distributed: (mk)k b
%ﬂmg =f£édgﬁ there exists a subsequence (m )k d of the;rﬁ".
non-negative integers of asymptotic den81ty,%
1 such that ¢ is almost u-well dlstrlbuted T

(m>

0 =1t e X : & is u-well: ‘@istributed) .

Obviou slv we have ::(/ifé?Zl)::)(/‘&/Q1 DOUZII 3?20 Further’more,
if the second axiom of countablllty 1s satlsfled we have
u (0{220) 1 by theorem 12 and u_ @) = 0 if u is not a
point measure byu[Y]corollary 2.1. 1In what follows we.
shall showythat, under these hjpbtheses and in the presence
of u—Well distributed Sequences each of the ébové_inclu—
sions is strict and . @) = O. ’ ’

In this conte t it seems approprlate also to clarify
the relatlons,between the properties of a sequence geX
to be almost'U—well distributed, weakly u-well distributed
in the sense of Hlawka [40] and completely u—uniformly
distributed in the sense of Korobov [13]. We shall there-
fore also consider the follow1ng classes of sequences in X:
W20~ {ceX : ¢ is weakly u-well distributed, i.e. for every

fe C(X) we have
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lim lim sup ¢ z N X f(Xn)—p(f);l~]= 01}.
N> R »w r=0 n=rN-+1
cul = {EeXm £ is completely u-unlformly dlstrlbuted i.e.
' ' , the sequence (ng) is u_ -uniformly dlstrlbut-
Ted in X1

Aééin, it is well known and easy to see that we have
WD CUl and WodWW->20 Furthermore, if the second axiom of
countability is satisfied, wé have u_(CU) = 1 (replacing :
in the corresponding statément about uniformly distribﬁté€5~
sequences X by X_-and i by w_), u_ @)= 1 by [10] Satz 2-
(ef. theorem 16), and CUnM= ¢ by [7] theorem 2 if u is
not a point measure. Thus, um—almoSt every sequence geX
is at the same time almost u-well distributed (even in
the sense ofCﬂaw ), weakly u-well distributed, and comple-
tely u—unlformly distributed. We shall show that, in fact,
iﬁﬂndﬁ@é @ if u is not a point measure, thus establishing
" Q%?ub)~.C) and that, in the presence of p-well distribut-
ed sequences, all inclusions in the chain W >3- 2 are
strict. In particular, we havemw:m butdWpUsd Part
of the proofs will be carried out by expllcltly construct-~
ing sequences that are of one type but not of the other.

Let us note again that, in the definition of weakly
p-well distributed sequences, we can replace £ (X) by the
larger class of functions described at the end of section
1. In fact, if teX 1s weakly p-well distributed and if
£, fq, f2 are real-valued Borel measurable functions
(f5eC(X), J=1,2) satisfying £,Sf5f, and u(fy-f,) < g-
then we can choose N(f,e) so large that for all N2N(f, s)
we hawve

¥ E o | £S5 (ye1.2).
lim sup = = r.(x_)-u(f )N =75 (j=1,2).
R>o Bpio Nopopye 30003 o

By (2) we conclude
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- R2 [1 (rgﬁ)N » ) : |
1im sup — f{x_J)-u(f) =
R »o B opzoN nory ntoot
2 ‘g1, (vt e <
PSR T 1 1 ¥ £.(x )-u(f.)] + 5 Ze.
= ¥ 1imsupz } % _ J - n J
J:::/l R » = r=0 N n=r +1

Thls proves our assertlon

We now proceed with the detailed. exp051t10n of the
Statemehts outllned above, The proof .of the follow1ng
theorem is, Wlth some slight modlfloatlons, the same as
the proof of theorem 2 in E?].,We shall, however, repro-
duoe it here'for the convenience of the reader. ‘
Theorem 13. Suppose that M is not a point measure and
suppose thaté Q(x )Oo e»X is completely p-uniformly V
dlstrlbuted Then g 15 not almost u-well distributed with
respect to any subsequence (mk)k 1 of the non-negative

integers of asymptotlc den51ty 1.

Proof. Assume the contrary and let 7 = (mk)£’1 be a sub-
sequence of the non-negative 1ntegers of asymptotic den-
sity 1 such that £ is almost ~u-well distributed (mk)k 4+
Since u 1s not coucentrated 1n one point we can find an
open set AcX such that O<u(A) <1. Without loss of general-
ity we may assume that the boundary o; A has u-measure ' A
zero. Let N>1 be given and let A, AEH Ap where An . A for
12nSN and A = X for n>N. Then A_is open in X and its
boundary has 1~measure zero. Furthermore, we have

0 <y (A ) <1, Since the sequence‘(PmE)gzq is by assumption
u -uniformly distributed In X and, since 7. has asymptotic
den51ty 1 S0 1S the sequence (P k&)k 4 Therefore, there

ex1sts a p051t1ve 1hteger k(N) such that P k(N)Ee A,
Hence,_for every -choice of N21, we have

1mk(N)+N . s
! xp(x,) - w(A) =1 - u(a)> o.
n:mk(N)+

= B
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This, however, contradicts our assumption that £ is almost
u-well distributed (mk);=1' o
Corollary 13, 1 Suppose that X satisfies the second axiom
of countablllty and that ‘u is not a p01nt measure. Then
w{am,) = 0. | a
Proof. Under the mentioned hypothe81s, we have o (fﬂo
" The statement then follows from theorem 13
Corollary 13 2 Suppose that X satisfies the second ax1om
of countablllty and that u 1s not a point measure. Then
cuam, 09, - | | |
Proof The statement follows from theorem 12 and corollary
13.1. '
Theorem 14. Suppose that X contains at least two p01nﬁs
and that there ex1sts a u-well distributed sequence. Then»
there also exists a sequence EeX constructed explloltely
below, whlch 1s not u-well dlstrlbuted but almost u—well
distributed (m k)k p where (m ) has esymptotlc den51ty 1}
Consequently we havemﬁwgglw
Proof. Suppose that the sequencef1= (yk);=1€:x
distributed and let aeX belong to the support of up. We
then choose a p01nt b#a in X and construct a sequence
g='(x 7 16 X_ by induction as follows: Let xq—b If
1,.. h (h21 an’ 1nteger) have already Eeen defined such
as’ to comprise all elements Yy with k¥ £ h'-h(2h-1), then
let Xn (h' <n h4+4h3+6h ) be the next 4h5+6h consecutive
's and let x =P for h4+4h3+6h < n= (h+1)
Obv1ously, due to the increasing stretches of b's.

is u—well

e’X

Ve

which certainly do not cover the support of u, the sequepce,
g is not y-well distributed. If we allow m to run through
all integers satisfying h'  m< h*+dh? (h=1,2,...), then
it is easy to see that this subsequence# of the positive
integers has asymptotic density 1. We shall now show that
the corresponding sequences P (mew) are equi-u-uniform-
1y distributed. | '

To this purpose, let feC(X) (ff0) and € > O be given

FS
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and suppose. that. -

m-+N

Z' £(y,) -u(f)

n—m+1

% ~ for all NZN(f,e)

[~

= B

and for all m=1;2; ‘It w1ll suffice to show that

m+N _
Loof(x,) - ()]

n=n+1

A

(8) | ¢ for all NZN(f,e )

= B

and for all me%” which are greater than @he fourth power
of some fixed integer H=H(f,e). In fact, we choose this

integer H in sueh a way that A«QH+1 4Hﬂ1 and 6H —N(f,e).
6H +4H+1
For a fixed me77, m2H , let us denote by N' the number of

elements Xoin (12nsN) chosen from the sequence n and by

Z,f(x ) the sum over these elements. For all N=N(f,a)
we have N ZN(f, ) because of h4 S m< h4+4h3 and 6h° 2
6 2 N(f,e¢). Thus we obtain

1 m+N. | N' 1 . N-N‘;"
N n=£+4f(xn) = 5§y L fx) w T £(b) =
- el - N L e(e ) + e (n)
and |
© 12 T re) cu (o) 121D Tr) - (0)]+ 2M W e
L % ) - | = X ) - + M.
P y g y i
R A

Because of our construction of & and of the restriction
imposed .on.m we have = v )

N-N' oo Anpd 4H}1 g

= £
N 6h2+4h+4 6% +4H}4 unﬂr'

This, in connection with (9), proves (8).

&
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In order to establish the 1nolu51onmww3mzw we again
need a lemma.
Lemma 2. Let?ﬂ be a subseqguence of the non- negatlve
integers of asymptot;c density 1 and let N be given.
Then the subsequence & ={r: rNewt of the non-hegative
integers also has asymptotic density 1.
Proof. For any integer M21 we define

v (m.vM) = z 1
e A

(for other sequences, the" countlng function v is deflned‘

‘analoguously). Suppose 11m inf —QKL~1 = 1-28 (6> O),
contrary to the assertion. We then have S

v, BRN) =v @,R) + (N-1)R  for every Rx1

and therefore

VQE,RN) _ 1 V@Q R) <diqsy N-1 _$
RN N | N g8+ F =1 - g
for infinitely many R, in contradiction to our assumption.
Theorem 15, Suppose that the sequence g= (x ) e X 1is
almost H-well distributed (m ) and M= (mk)k~1 has asymp-

totic density 1. Then & is weakly u-well distributed.
Consequently, we havemwmbmey
Proof. Let f&C(X) and €> 0 be given and let
1 m+N
|5 ! fix ) mu(£) ] £ e for all NZN(f,e)
n=m+"1 ,

and for all me7Z. Fix any N&N(f,e) and let R ={r 2 O:rNe}.
Furthermore, let®' be the subsequence of tThe non- negatlve
integers, complementary to&% ‘Then we have - - a

a =|= ) ;f(Xn>{,H(f)t-§ e . for all redR
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and ag . £ 2||f|| for all r20, Sinced? has asymptotic density
1 by 1émma 2, R' has asymptotic density O. We conclude
R-1
1 1 e o
= a, == () a + ) a_ )=
r< R r<R

< Be , VRLR) oflr|l< 2¢  for all RZR .
R R o]
AS a consequence, We have

:_A' . R o /l . . -
lim sup % ) ay £ 2+ - for all N2N(f,e)
R » = r=0 77 ,

and, since € was arbitrary,

o 4R (re N :
lim lim sup = I ¥ f(xn)-u(f)l = 0., -

N> R » r=0 n=rN+1 ' o A

For Ehe case of a compact group X with normed Haar.
measure -, the Zcl.lowing theorem has been proved by Hiawka
([10]satz 2). In order to obtain an even sharper statement,
the proof given there actually makesiuée of group theo-
retic concepts. We shall therefore give another proof here
which makes use of ergodic theory and is'valid also in the
more general situation considered in this section (the
possibility of this approach has also’already been mention-
ed by Hlawka). . |
Theorem 16. Suppose that X satisfies the second axiom of

countability. Then p_-almost all sequences ¢ ¢ X are weakly
u-well distributed. o N

Proof. We note that Weyl's criterion holds qu'weakly u-well
distributed sequences just as well. We therefore choose a
countable subset F = {fk: k=1,2,...} ¢ C(X) as described in
section 1 and fix a function f:fke;F (f¥0). We. then define

eC(X_) for ¢ = (x_). . by

the function F

N
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it
HE

o}
1
N

Fﬁ(&)*svl%v £(x )-u(f)
Since u -almost all geX are p—uniformly‘distribuﬁed;
we have ii@ FN(g) = 0 for gﬁ—almost all geX_

Let the integer j21 be given. By Egoroff s theorem
([4] 521 A) there exists a subset . of X-“such-that
um(ZG) >1- ~3ﬁ§ﬂ and such that thleunctlons Fﬁ converge
to zero uniformly on &.. Let N(j) be chosen in such a way
that Fy (g) = —% for all N2N(Jj) and for all geaéy We fix
an 1nteger N= N(J) By the individual ergodic theorem,
applied to the measure preserving trahsformation PN in X_,
for all £ in some subset (f,j,N)eX_ of u_-measure 1,
we have prNEG:?i for all r20 except for a subsequence
(rh);=1 of the non negative 1ntegers of - ‘asymptotic density
smaller than pwrsr “f“ . Fot every such ¢ ~(Xn)n=1€>¥(f,J,N)
we obtain S L _

R e
losup 3 1 14 1 £(x)-u(e) | =
R >« 7 r=0 n=rN+1 -
. 1
=.lim, sup .= 2 Pl (pPN ) 3
R > P=Q‘ | .
R 4 R-1
L 1 - rN 10 :
£ 1im sup 2 Fy (p 7)) + z L 4} =
R » r=0
- PrNge?a‘ | PrNgeEf“'
: : d R J..
S, elell a
23 AapE . o
For every cte M 4(f,j,N) we therefore have
u~N:N(j) . S
lim sup y |I\I' ) f(x))-u(f)| £ T for all N2N(j)
R+ r=0 n=rN+ n Joo ' o
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and for every £e ¥(f) = Y N 7(f,3,N) we have
J=1 N=N(J)

1 R-1 % (r+4)N : FERES
(10) lim lim sup = 7 = ) f(xn)—p(f)‘ = 0.
N*w R >~ r=0 = n=rN+1 -

Taklng ¥ = f\?(f ) we flnally have u (1) = 1 and by

Weyl s orlterlon, (10) holds for all fecC(X) and for all
£ =(x) ¢ 7.

Corollary 16.1, Suppose that X satisfies the second axiom
of countability and that p is not a pointfme'asur'e° Then
amvzwgcmaw

Proof. The statement follows from theorem 16 and corollary
1%.1. =

In view of the inclusionsmmammz,theorem' 14 furnish-"
es an example of a sequence which is weakly u-well distri-
buted but notvu’Wellxdistribubed; Our last two theorems

will be concerned’with oonstruetions of sequenoes belong-
ing to the (differences of) olasses%ﬁ\@ﬂ@uzmmmand MmN
(owo uidM) respectively’,:

Lemma: 5. Let A be closed subset of X with u-zZero boundary
and suech that u(A)=o >0.: If the sequence &= (Xn)n=1 is

u—unlformly (resp u-well) distributed in X, then the sub-. . -

sequence n _.gnA = (y ) 1, conS1st1ng of all elements of

£ lying in A, 1p~un1formly (resp 1u—well) dlstrlbuted

in A; considered as a compact Hausdorff space 1n the rela-
tive topology. '

Proof. Since every continuous complex-valued function on

A is of the form.fyAf(fi-C(X)j by Tietze's extension theo-
rem, we have tTo show that

11) 1 fx (7)) - Tu(ex )| =0 for all feC(X),
( lim IN ki xp (7)) = gulfx )| . for all f e C( )’

resp. that



1 'm+N
liml ﬁ Z fx

(v,) - %ﬁ(fo)l = 0 for all feC(X)

A

uniformly in m=0,1,2,
Let f‘eC(X) be given and suppose-first thatg is

u-unlformly dlstrlbuted 1n X. For every glven 1nteger N21

we deflne N' to be the smallest 1nteger hav1ng the property
N'

that § x,(x ) = N.
o AT L

Thus, we have N'2N-and -
.'1
o’

N . 1 N
lim ooF = 5. 1im oy Z )(A(x y =1,

N Nhw n

From thevidentity'

21 £x, i )- u(f I LB Ty () (Eny)
Ny 2 k XA o NN L, XAt/ TR X

we then deduce (11).

Suppose next that ¢ is u-well distributed. For every' » -

integer m=20 we now define m' as the smallest integef“haviné”ﬁ”f

omE
the property that. ) ° Xy (x Yem+1,’ and N(m) as the smallest
n=1 - oooom'AN(m)

1nteger hav1ng the property that Z )<A(X ) N Thus,?”;

‘n=m T+

we have N(m) N Furthprmore, by the same reasoning as above,. .

if N is greater than a fixed 1nteger N s ;independent of m,
then __H._ is close to 1 and the dlfference
aN(m)

q N o 4J&N(”S’“% m’ +N( m) ;;x}
L g | - L
-u(fo)]

is close to O; uhifbrmly iﬁ'm=0;1;é;,..’ThiS'proves the
assertion. e
Theorem 17. Suppose that y is not a point measure and that

there exists a py-uniformly distributed sequence. Then

&
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there also exists a 'sequence ¢ € X s constructed explicitely
below, which is w-uniformly distributed but not almost
u~-well distributed and not weakly u-well distributed,
Consequent’ly' we have m;mazo and W 2 70 2.

Proof. Let .A be 'a closed subset of X with u-zero boundary
and such that 0< U(A)F-a<1 (our hypothesis on y implies

the exlstence of such a set- A). Furthermore, let B be the
closure of the complement of A, Then also B has y-zero
boundary and we have u(f) = u(fo) + u(fxB) for every
feC(X). By lemma 3 there exists a sequence n "(yk)k 1
which is o unlformlg distributed in A and a sequence

L= (zl)l 4 which is ;—-u—unlformly distributed in B. We
construct the sequence ¢ =(x )n p by induction as follows:
Let Xy=Z,, Xp=Zge If XgseeesX 1 ;(héﬂ)-have already been
chosen such as to comprise certgin initiaiVSegments of the

sequences n and g, then let X s000sX n . be the
i e 20y By "2(, y¥2ne] z

next 2[ 'ho] consecutive yk s and let x co e
| 2(2)+2[hQ]+1

X p4q. De the next 2h- 2[hu] consecutive z, 's not yet
2("5 )
incorporated into the sequence £ to be constructed.
We first show that the Sequence & constructed in this
way is w-uniformly distributed in X. Let f e C(X) and e >0
be given. For a given integer N22 we determine the 1nteger
h in such a way that 2(2)‘N«<2\ﬂ41) Furthermore, we define
(resp.. N ) to be the number of y,_ 's (resp. z, 's) ocurrlng

among the flrst 2( ) xn"s° Thus, we have Ny ~Ny+N *2( ) and

. B
) f(Xn?fU(f) =

n="1 . N
§X~~“1 L £ ) (Fx, )|+ ﬁl— 14 (fx, )} + |
[ P T Xy e WAL,
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o N
' [ -Né +1f(xn? . (NfNyz}“(f)] H

TN

here Z and Z denote the.sums over the yk 5] and‘zl's, ‘ ’

y 4 R SN
respectiVely, occurrlng among the flrst Ny n's, and the

third term dii”E“TTSS for N+Nyz, In v1ew of 1lim N =

E N>
= 1im N_ = * we obtaln, for all sufflelently large N,
N-—>oo
1 | NN

|5 zf<x ) -u<f>| —Me+| e+
Y2 .

+§—Z— ] 5 VQ,EVZ“ .LE%”,fH,

vz

Evidently, for sufficiently large N, the last term becomes
smaller than e. Furthermore, we have = o

?E 2[@1 +2.[2 al&Q [3&]+ +2[(h 1 Yo
Nyz T 2.1 +2 2 +2.3  +...+2.(h-1)"
- N
Therefore, we conclude lim‘ﬁzw =aand, by a similar
N N=>e “yz
reasoning, lim ®— = 1-o. Thus, we obtain
oo Nz .
4 N St
I"‘, 2 r(x ) - u(f) | <le.
N _nzz‘ : n o

for all sufficiently large N. :
We next show that.& is not almost u-well distributed. v
In order]to dd this, for evefy given Integer m2?2 we. estimate- .
JR
the difference |= ) X

N n=m-+1 A

(Xn)—a! from below for suitably '
chosen integers N. We distinguish four cases, depending

on the choice of m

1) 2( hys Sm<2(, )+[hu] We choose N=2(, )+2[ha]—m Then
we have N >[h<ﬂ and B
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1 CmEN =
Iy 1 xA<x ) —ta!_ 1-0>0.
o ~m+1
) h+1
2) 2(2)+[h@] Sme2(; )+2[h@ We choose N=2( , )-m. Then

we have N:>2h- 2[}1 o] and

1 m'i‘N (X ) i ma:xji J _ - _ hol < % L
N 1 0\ n 1535h 2h-2 |ha|+j = 2h-{ha] ~ 2-a °

n=m+

Therefore, we obtain

m+N

1 a. - - d-a
”"2' (X) ' - m— g == > (),
N n—m+1 “a N ?'“ 2-0
< : ' h+1, _
3) ) 2[hoc]—m< 2(, )+h+[m] We choose N=2("J")-m.
Then' we have N>11 Duﬂ and '
& mfN el
CE Y ox, (%) -a] =a> 0.
N n=m+1 At '
h+1

4 E(h)+h+[hoc]§m<2(h;/‘)° We choose N=2(",

Then we have N >2 Rh+1)u] and

1 " s _2L(h1)a]
w2 _XA(Xn_)l h- [ha]iz[(hﬂ)a]

For large h the right member is close to 1§z'>a. As a
consequence, for larger h we obtain

1 z 1 ’ a 1 :
1 Ky (% Jma | 2 5 (552 a) = 212 o,
N pemin A D 2 M-a 2
. . 1o o d-a
Choosing now g= min (a,g_a, 5 1+a), we see that,

given any p051t1ve 1nteger N s for every integer m which
is larger than a certaln constant M depending on N we
can flnd an 1nteger N ~N such that

_m+Nh.h _

>

S
!
Q
v
™

y+2 [(h+1%] ~m.
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It is therefore not pOSSlble to select an 1nf1n1te
increasing sequencesof 1ntegers mk in such a way that
the sequence P ke (x=1,2,...) are equl—u—unlformly distri-
buted. Thus, & is not.almost'thell'distributed. ’

Finally we show that the sequence £ .is not weakly

u-well distributed. In fact, we shall prove that, for
every .fixed- Integer N24, £
1 R§q|1(r§4)N

lim = = ¥, (x )-a] = 2a(1-0).

R R r=0 Nn=PN+1 AT
To this purpose it will r@ffice to show the following:

i i 2 <
Given any 1n§eger h22, let (XPN+1,000,X(P+1)N) (rh_1<r_rh)
be those blocks of N consecutive elements of & that have
some overlap with the block of 2 [ha] consecutive elements
yk and 2h—2{hu] consecutive elements Zl’ but no overlap
with the following block of 2[(h+1)a] consecutive elements
and 2(h+1)-2[(h+1)a] consecutive elements z. in the . ~*

Ve 1
same sequence &. Then
T
(r+1)N Y
l]_m-_l".—’:':-;—"-—- z I/\]I z XA(X )—a|=2a(’l—a),
hso “h "h-1 r:rh_1+4 n= rW+1 n “ -
- <2h | e o
S 4%p -p 55344, T i
(We note tha? TN N+1 rom this follows
i 4 -r g =0 i o A
%it)(rh o and
r /
lim -~y —r ~v--m .. 2» !rl‘.i ,.Z XA (Xn)_a'l =

5 T'R“q ,»\r+1\N'9- 3
- lim = 2 = 2 >~ al)

Now, if h is qufflcveﬂtLy laLPe, for approx1mately giﬁgl

2 o
@t least —~§%~~—2)values of » (r he A<r T ) the dlfference dy,
4(r+1)N 1 ' ‘
N (x )—a§ will have the value 44a, while for

X, (%
n-ri+1 A D

&
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approximately:. _ﬁ_@lﬁﬁl (at least _Ewglﬁﬁb -2) values of

r (rh 1<r~r i thls value will be o and for at most two
valuesiofir,. d w1ll be different from a and 1-a but
bounded:above by 25 Thus we obtaln BRASMER T

.J.:ﬁrh.4; (r+1)N \ S
BETg 3 E 1 ) el =
ot hed e r-—rh 4% +1: n=rN+1

~1lim £

. h?“

iy 2[ha](1 )+ (2n- 2[h°ﬂ)°‘ = 20(1-a).
N T

This completes the proofi:

In the mod 1 case, a less abstract example of a |
sequence enjoying the properties mentioned in theorem 17
(haVing also served as a model for the construction.
carried out in the proof) is furnished by the'sequence
(0, O,;,O ; ;,O,i i 2,0 g"°°)° Sequences of thls type
have been considered in [14] in connection with the re-
arrangement of arbitrary sequences, everywhere dense mod 1,
to mod 1 uniformly distributed sequences.

Theorem 18. Suppose that p is not a point measure and that

there ex1sts a u—well dlStleUbed sequence. Then there.:

alsp. ex1°ts an almost u—well but not weakly u~well distris

buted sequenoe weX ,constructed expllcltely below, with

the follow1ng property 1f2& (m, 1s any 1nf1n1te sub-'

sequence of the non' negatlve 1n%eze;s such that w 1S .
almost u—well dlstrlbuted ( k k 4 thenfﬂ has asymptotlc
density O Consequently we havedmﬂidmﬂ andﬁ?ﬂ??ﬁ,‘b 6’12’29

Proof. AS in the pfooJ of theorem 17, let A be a closed
subset of X with u-zero ooundawy and such that O<u(A) a<1
and let B be the closure of the complement of A. Let

E= (Xk)k 1 be a sequence which is u—well dlstrlbuted in X,
let n= <y1)1=4 be%1 *well dlstrlbuted in A and let’ c (z )m 1
be y—u-well distributed in B (cf. lemma 3). We constiuct
the sequence w:(un)zzq by induction as follows: Let u1=x1,

Ir uq,o,.,uh4 (h&1) have already been chosen such as to
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comprise certain~initial;segments:of the sequences &5 n s
and &, let u 4+1”’ ’uh4+6h2+1 be the next 6h2+1'c0n=
secutive Xy 's, and let Uyl gp2yp7 e (h+1)4 consist of
the 2h°+2 consecutive blocks of 2h elements each (referred)
to in the following as yz-blocks ), which in turn consist
of the next E[hQ] consecutlve yl s and, immediately follow-
ing, the next 2h- Q[ha] consecutive zm s not yet incorpor-
ated into the sequence u to be constructed
We shall first: shcw that.the- sequence w 1s almost

u~-well dlstrlbuted (h )h 4- To this purpose, given any
f eC(X) and any € >0, we choose Nq such that, uniformly-
in h=1,2, : SR
RN
b RO £

o

1 f(y)-e(ex )l fe for all NAN,.
1=h+1 A o

=l

h+N .
m=§1+ﬂ Vf(zm) o (fxp)l o

= B

Furthermore, we choose 'the integer H such that min(2[H o],

h(1-a
e for all h>H Let now h~H and NzN, be glven We define:
Nx to be the mumber of Xk S among the elemeptesuha+1;..,,.:
uh4+N Furthermoreg consider the yz-bloc?s completely
covered by these e;ements and let N and N be the number L
of the Yy 's and zm s contalned 1n all of these yz- blocks,j.
respectlvely We set Ny “Ny+Nz and Nu_N NX Ny Nz°

Then we have'

hf*m

2H-2[Ha]) 2 N, and such that max (
h

'2»%
=

f(u ) ‘u(f) =5 [3, :'Z;:—f(Xk)-u(f}.] +
‘e, B

HETE I

RO

B By
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SOONTL N ma ‘ : r N7
Yz ) ¥ a } f(y )_i (fx ) }+]=—¥uq (f )} +

f” N..{Nyz‘:Ny v 1 Q“I%A:}[gNyz, }“ ZA :
N[N . - N

+"%‘Z'{—1\_f§z [%Z z f(z )-— u(fXB):} [m;‘—’]}u ,(fXB)}Jr
1

[Zﬂu yn (e ]

Here, the sums ) ,.l. ., ) .are extended over the .corres-
' X y Z '

ponding Nx’Ny’Nz elements x respectively. The

k’yljzm
second and third member disappear if N*<6h2+1+2h; the
fourth member also may disappear and contains a sum
A » ' u
over N tail elements where N, (if positive) is less
than the number of elements in the unfinished yz-block.

Taking absolute values, because of N2N, and 6h2+1%min(2[hi],

_ 1
2h-2 [hal) 2 N, we obtain
1 h4+N | Nx
— - £
|N 24 f(un) p(f)] S5Toe
- n=h. +1 : ,
i Ny, (N, N
e il e-ﬂaN ;uAI]IfH}+
z vz

+
z}f
N
oA,
I
[}
*
g
.
=z
' .
N
=Y
\.—-:,—tw
+

+

ml
no
=Y
1

N M_
S vlzg i lell 4 (, W -1l e lel]

V’Z

Let the 1nueger iZ21 be cbosen such that (h+i- 1)4<h4+N

(b+1) . We then have
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N, 2h(2h +2) o+ 2w 1)(2(h+4) +2)+ +2(h+§-1)~3

N ? g[ha](2h2+2) + 2[(h+1)a](2(h+1) +2)+ A2[(h+i-1)a]

N 5%2(P7£§232(2h?f2)f2(h;q_[(h+1)a])(2(h+453+2)+,,.+
R +é(h+i—4—[(h+i-4>;3)~j

and therefore

« .min(i%%lsce

sy

H+i=1 h+i~

[Lh'*‘l 4)0&1_)( Vz<maX(L 1 , h+i-1)a ).
y

N : :
By our ch01ce of h2H we conclude l-1~ -1 £¢ and, analog—
yz

OUSly: i‘““%jr*“ < e, Thus we obtain
”1 h4+N - . , |
5 L zf(un) —u(£) | Se+ 3eff|l for all wzN,
n=h +1 S

and for all h2H. This proves that w is almost u-well
distributed (hq) ‘

Suppose next that the subsequence%ﬁ:(mk); 4 Of the
non-negative 1ntgg§rs has positive upper as%mptotlc
density. We shall show that the sequences P k, (k=1,2,...)
cannot be equi-u-uniformly distributed. Consider the set
ofrpositive.integg:s'ﬁ ={ns h4;6(h-1)2énéh4+6h2 for some
h=1;2,°,,}e-Since'n has“aéymptotic density zero, infinitely

many m,_e77 must lie outside of 7 and therefore satisfy

k
the inequality

)]
hpf6h2+1 émmklé (h+1)4—6h2;1 (h21 an integer)

It follows that the element I belongs to some yz-
block of length 2h and, since 5 +4h <(h+4) the elements

U in (12n=4n) cover at least one complete yz-block of
k

length 2h. Since this happens for infinitely many k, by
the same reasoning as in the proof of theorem 17, the

&
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Sequences p Ky (k=1,2,...) cannot be equi-u-uniformly
distributed. | | | e

- -Finally, since the elementsvxk form a subsequence:
of asymptotic density O in w, by the same reasoning as

in the proof of theorem 17 we find that

lim = Xy (U )=a | = 2a(1-a).
- R R r=0 - N n=rN+1 A n C

for all N21, Thus, the sequence y cannot be weakly u-well
distributed. This completes the proof.

The preceding discussion still leaves some open
questions concerning the remaining possible inclusions
between the classes ﬁfm‘an‘dﬂtw,; on the one hand and 79%% - on
the other hand. Apart from these we mention one particular
question to which we do not know the answer: Suppose that
X satisfies the second axiom of coUntability, Does there
always exist a u-well distributed sequence?



References

1 wvan DantzigguD.;-J Zur topologischen Algebraii; Komplet -
tierungstheorie. Math. Ann. 107, 587-626 (1932), "

2 Eckmann, B.: - Ubepr monothotlsche Gruppen Commentarll
‘math. Helvet. 16, 249 263 (1943/44),

% Halmos, P.". and Samelson, H.: On monothetic groups.
Proc. Nat. Acad. Sci. USA 28, 254-258 (1942)¢i

4 Halmos, P.R.: | Measure Theory. Van Nostrand, New York
1956.

5 : Lectures on Ergodic Theory. Publicatibns
of the Math. 8001ety of Japan 3, Tokyo 1956,

6 Hartman, S. und Ryll Nardzewskl, C.: Zur Theor;e der
lokalkompakten abelschen Gruppen. Colloguium E
mathematlcum 4 157-188 (1956) .

7 Helmberg, G. and Paalman-de Miranda, A.: Almost no - 7
sequence 1is well distributed. To appear in ‘Proc.
Kon. Ned. Ak. Wetenschappen = Indag. Math.

8 Hewitt, E. and Ross, K.A.: Abstract Harmonic Analysis
I. Springer Verlag, Berlin 1963.

9 Hlzwka, E.: Zur formalen Theorie der Gleichverteilung
. lzompakten Gruppen. Rend. Circ. mat. Palermo &,

33-47 (1955).

10 H Uber einen Satz von van der Corput. Archiv
der Math. 5, 115~120 (1955).

11 : Folgen auf kZompakten REumen. Abh. math.
Sem. Jniv. Hamburg 20, 227-241 (1956).

12 Koksma, J.F.: Diophantische Approximationen. Ergebn.
Math. u. Crenzgeb. Bd. 4, Heft 4, Springer Verlag,
Berlin 19%6.

13 Korobov, N.M.: On completely uniform distribution and
jointly normal numbers (Russian). Izvestija Akad.
Nauk SSSR, Ser. zath. 20, 649-660 (1956).



\;4

14 von Neumann, J.: Gleichméssig dichte Zahlenfolgen
(Hungerian, German summary). Math. fiz. Lapok 32,
52"40 (1925) s

15 Petersen, G.M.: Almost convergence and uniformly distri-
buted sequences. Quart. J. Math., Oxford, 2. ser.

7, 188-191 (1956).

16 Pontrjagin, L.S.: Topologische Gruppen I,II. Teubner
Verlag, Leipzig 1957.






