

CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Maastricht)
P.C. Baayen (Amsterdam)
R.T. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wlskunde en lnfonnatlca
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded
on February 11 , 1946, as a nonprofit institution aiming at the promotion of mathematics,
computer science, and their applications. It is sponsored by the Dutch Government through
the Netherlands Organization for the Advancement of Pure Research (Z.W.0.).

CWI Tract 13

On the design of ALEPH

D. Grune

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

1982 CR Categories: 0.3.1, 0.3.4, F.4.2.
ISBN 90 6196 284 6

Copyright © 1986, Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Acknowledgements

It has been said that a thesis in computer science will cost fifteen man-years, and
the present project is not far off that mark. Without the sustained effort of many peo
ple this book just would not have existed, and I realize with gratitude that Rob Bosch,
Wim Bohm and Frank van Dijk have each given several years to the ALEPH project.
Rob Bosch wrote the first (machine-dependent) ALEPH compiler, Wim Bohm designed
ALICE, the ALeph Intermediate CodE, and Frank van Dijk implemented the new ALEPH
compiler.

Prof. A. van Wijngaarden, my promotor, has been an inspiring listener who has left
me a great deal of much-valued freedom in organizing this text.

In 1970 Kees Koster started the CDL-project from which the ALEPH-project derives,
and in 1982 he acted as coreferent for this thesis, thus spanning the complete project
over more than a decade.

Hans van Vliet and Lambert Meertens gave the manuscript a careful reading and
Sandor Nacsa showed interest in ALEPH at a moment when that commodity was in
short supply.

I am grateful to the many friends who have given me mental support, especially to
my wife Lily, who kept a steady faith in the eventual success of this venture.

Finally, I thank the Centre for Mathematics and Computer Science to publish this
monograph in their series CWI Tracts, and all those who have contributed to its
technical realization.

Gerard Kok has written a tutorial on ALEPH [KOK 77].

CONTENTS

On the Design of ALEPH

I. INTRODUCTION 3
1.1. The language 3

1.1.1. Goals 4
1.1.2. Realization 5

1.2. The compiler 6
1.3. On the structure of this book 7
1.4. Global view 7

2. ON GRAMMARS 12
2.1. The production mechanism 12
2.2. Top-down parsing 13
2.3. VW-grammars 13
2.4. Affix grammars 16

3. ON THE DESIGN OF THE ALEPH LANGUAGE 18
3.1. History of affix grammars 18
3.2. The design philosophy 18

3.2.1. Some thoughts on producing correct programs 18
3.2.1.1. The methods 19
3.2.1.2. The use of redundancy 19

3.2.2. Machine-independence and portability 20

3.3. From VW-grammar to ALEPH 20
3.3.1. Turning VW-grammars into a programming language 21

3.3.1.1. Two-colour grammars 21
3.3.1.2. A top-down parser 24
3.3.1.3. Affix grammars 25
3.3.1.4. CDL 26

3.3.2. From affix grammar to ALEPH 29
3.3.2.1. Global flow-of-control 29
3.3.2.2. Finding a place for the primitive predicates 29
3.3.2.3. Local flow-of-control 30
3.3.2.4. Success/failure 33
3.3.2.5. Side effects 34

3.3.2.5.1. Overriding the consistency check 36
3.3.3. Affixes 36

3.3.3.1. The affix-passing mechanism 37
3.3.4. Globals 37
3.3.5. Affix rules 39
3.3.6. The final program 39
3.3.7. The notation 40
3.3.8. Conclusion 40

3.4. The portability of ALEPH programs 41
3.4.1. ALEPH may not be available 42
3.4.2. User-externals and local pragmats 42
3.4.3. Numerical values of the characters 42
3.4.4. More restrictive overflow conditions 42
3.4.5. Strings in file-descriptions 43
3.4.6. Machine-dependent output 43

ii CONTENTS

3.4.7. The need for job control 44
3.5. Data structures in ALEPH 44

3.5.1. Stacks 45
3.6. Evaluation of some compromises 46

4. ON THE DESIGN OF THE ALEPH COMPILER 48
4.1. History of the compilers 48
4.2. The design technique 48

4.2.1. Design criteria 48
4.2.2. The portability of the compiler 49

4.2.2.1. ALICE as a target code 50
4.2.2.2. An example 51

4.2.3. The four stages of the design 52
4.2.4. Evaluation 53

4.3. The parser 54
4.3.1. The information streams 54
4.3.2. The input grammar 54
4.3.3. The derivation of the parser 55

4.4. On ALICE 57
4.4.1. A short introduction to ALICE 57
4.4.2. The design of ALICE 59
4.4.3. Problems with and modifications to ALICE 61

4.5. Bootstrapping 62
4.5.1. A formalism for job steps 62
4.5.2. Bootstrapping the compiler 64

5. THE DESIGN OF THE ALEPH COMPILER 67
5.1. The tasks of the compiler 68

5.1.1. Create-status-information 68
5.1.2. Create-values 69

5.1.2.1. Collect-values 70
5.1.2.1.1. Plain-values 70
5.1.2.1.2. An inventory of values 71

5.1.2.1.2.1. Recognizing expressions 71
5.1.2.1.2.2. Recognizing constant-sources 71

5.1.2.1.3. Definitions as generated by collect-values 72
5.1.2.1.4. Hidden definitions 72

5.1.2.1.4.1. Hidden definitions from list-heads 73
5.1.2.1.4.1.1. Definitions generated for fixed-lists 73
5.1.2.1.4.1.2. Definitions generated for absolute-size stacks 73
5.1.2.1.4.1.3. Definitions generated for relative-size stacks 73

5.1.2.1.4.2. Hidden definitions from filling-list-packs 75
5.1.2.1.5. Definitions from constant-descriptions 76
5.1.2.1.6. Definitions from naming unnamed values 76
5.1.2.1.7. The place of collect-values in the total scheme 77
5.1.2.1.8. An example 77
5.1.2.1.9. The non-ALICE constructs 78
5.1.2.1.10. The grammar of the definition list 79
5 .1.2.1.11. Conclusion 80

5.1.2.2. Sort-and-count-and-output-values 80
5.1.2.2.1. Check-and-construct-and-output-values 80

CONTENTS

5.1.2.2.1.1. The driver 80
5.1.2.2.1.2. Processing a definition D 80
5.1.2.2.1.3. Obtaining a valref V for a defref DR 81

5.1.2.2.2. Read-values-into-direct-access 81
5.1.2.2.3. Discard-valuesfrom-direct-access 82
5.1.2.2.4. Correctness 82
5.1.2.2.5. Alternative algorithms . 82

5.1.2.2.5.1. Sorting 82
5.1.2.2.5.2. Counting 82

5.1.2.2.6. Conclusion 83
5.1.3. Further design, stages I & 2 83

5.2. Obtaining and organizing the information 83
5.2.1. The tag-list 83
5.2.2. Create-values 84

5.2.2.1. Collect-values 86
5.2.2.1.1. Constant-descriptions 86
5.2.2.1.2. List-heads 86
5.2.2.1.3. Table-heads 87
5.2.2.1.4. Stack-heads without size-estimate 88
5.2.2.1.5. Stack-heads with absolute-sizes 88
5.2.2.1.6. Stack-heads with relative-sizes 89
5.2.2.1. 7. Filling-list-packs 90
5.2.2.1.8. Expressions 91
5.2.2.1.9. Constant-sources 91
5.2.2.1.10. The grammar of the definition list 91

5.2.2.2. Sort-values 92
5.2.2.2.1. The reader 92
5.2.2.2.2. The driver 93
5.2.2.2.3. Processing a definition D with serial number N 93
5.2.2.2.4. Obtaining a valref V for a defref DR 93
5.2.2.2.5. Conclusion 93

5.2.3. Further design, stage 3 94

6. MODIFICATIONS TO ALICE 95
6.1. Inconsistencies in the ALICE definition 95
6.2. Shortcomings of ALICE 95
6.3. ALICE is not of type LL(l) 97
6.4. The calling mechanism 98
6.5. The extension sequence 102
6.6. A new ALICE instruction? 104
6.7. The ALICE grammar 107

7. REFERENCES 119

8. SUMMARY 124

9. INDEX 125

iii

iv CONTENTS

The ALEPH Manual

0. PREFACE 130

1: AN INFORMAL INTRODUCTION TO ALEPH 131
I. I. A grammar 131
1.2. Rules 131
1.3. Further rules 133
1.4. Input 134
1.5. Output 136
1.6. Starting the program 137
1.7. Some details 138

2. INTRODUCTION TO THE MANUAL 140
2.1. Interface with the outside world 140
2.2. The syntactical description 140

3. PROGRAM LOGIC 141
3.1. General 141

3.1.1. The program 141
3.1.2. The use of tags 142

3.2. Rules 142
3.2.1. Rule-declarations 142
3.2.2. Actual-rules 143
3.2.3. Members 145

3.3. Affixes 145
3.3.1. Formal-affixes 145
3.3.2. Actual-affixes 147
3.3.3. Local-affixes 147

3.4. Operations 148
3.4.1. Transports 149
3.4.2. ldentitys 150
3.4.3. Extensions 150

3.5. Affix-forms 150
3.6. Terminators 152
3.7. Compound-members 153
3.8. Classifications 155
3.9. Criteria for side-effects and failing 156

3.9.1. Criteria for side-effects 156
3.9.2. Criteria for failure 157

4. DATA 157
4.1. Integer-based data 158

4.1.1. Expressions 158
4.1.2. Constants 158
4.1.3. Variables 159
4.1.4. The address space 160
4.1.5. Tables 162

4.1.5.1. The table-head 163
4.1.5.2. The field-list-pack and the filling-list 164

4.1.6. Stacks 165
4.1.7. Limits 166

4.2. Files 167

4.2.1. Charfiles 168
4.2.2. Datafiles 168

5. EXTERNALS 170
5.1. User externals 170
5.2. Standard externals 171

5.2.1. Integers 171

5.2.2. Words 173
5.2.3. Strings 174
5.2.4. Lists 176
5.2.5. Files 176

6. PRAGMATS 178
6.1. Compiler-pragmats 179

6.2. External-pragmats 180

6.3. User-pragmats 180

CONTENTS

7. THE REPRESENTATION OF PROGRAMS 180
7 .1. The program 180
7.2. The characters 181

8. EXAMPLES 182
8.1. Towers of Hanoi 182

8.2. Printing Towers of Hanoi 182

8.3. Symbolic differentiation 184

8.4. Quicksort 186
8.5. Permutations 186

9. REFERENCES IN THE MANUAL 187

10. INDEX 188

v

3

1. INTRODUCTION

1.1. The language*

ALEPH (A Language Encouraging Program Hierarchy) is a high-level programming
language designed to induce the user to write his programs in a well-structured way.
The language is particularly suitable for problems that suggest top-down analysis
(parsers, search algorithms, combinatorial problems, artificial intelligence problems
etc.).

An ALEPH procedure is a top-down description of what is to be done: complex
actions are defined in terms of (usually) less complex ones, which in turn are defined
in terms of still simpler ones, and so on, until a level is reached at which further
decomposition is undesirable.

An ALEPH program consists of a set of such definitions, in a notation not unlike
the rules of an affix grammar [KOSTER 7lb, MEIJER 80). In fact, many of the ideas in
ALEPH were derived from the theory of affix grammars; for example, repetition is
expressed not by a GOTO or WHILE statement but by what in a grammar would be
called 'right recursion' [BOSCH, GRUNE & MEERTENS 73, GRUNE 75).

The syntax and semantics of ALEPH are so simple that it is possible to derive stati
cally various interesting properties of the dynamic behaviour of the program. For
example, the compiler can easily verify that no variable will be used before it has
obtained a value. Thus the use of uninitialized variables is prevented in a natural way,
without resorting to the (dangerous) trick of automatic initialization. Also, it is possi
ble to detect statically anomalies in the program structure corresponding to the need
for "backtrack" in parsing, and provide a message. The signalling of such side effects
turns out to be a powerful weapon against messy programming.

The semantic simplicity of ALEPH, especially of its parameter mechanism, easily
leads to efficient object code, even without using fancy optimizing techniques. The
programmer can formulate his algorithms with all the elegance inherent in a top
down formulation, and still obtain good machine code [WICHMANN 77, BOHM 78).

Because the semantic primitives needed for the translation are small in number
and simple in nature ('pass parameter', 'call procedure conditionally', etc.), the
transfer of the compiler from one machine to another is quite straightforward. As,
however, additional semantic primitives may be defined by the programmer (e.g., mul
tilength arithmetic, 'convert to hash code', or whatever he thinks is a primitive of his
problem), the portability of the program (as opposed to that of the compiler) is deter
mined by the portability of these programmer-defined primitives.

The work presented here is a continuation of the research started by C.H.A.
Koster, which resulted in the development of CDL (Compiler Description Language)
[KOSTER 74). His COL-compiler gave us a great deal of experience with affix
grammar-like languages, from which ALEPH has benefited.

*This section is an abridged version of [BOSCH, GRUNE & MEERTENS 73].

4

1.1.1. Goals

Our main goals in the design of ALEPH were the following:
a. ALEPH must allow good programming at a reasonable effort and a moderate

price.
b. Since ALEPH is a tool and not a goal in itself, the compiler for it must be sim

ple.
c. To allow the application of the algorithms written in ALEPH on a wide range of

machines, the compiler must be portable (as far as possible).

Tlie above requirements were augmented by two more requirements of a more

practical nature:
d. Since in our institute ALEPH is mainly intended for compiler writing, sorting

algorithms, text-editing, etc., emphasis is on facilitating non-numeric program
ming.

e. Since the project had to be executed on early and mid third generation comput
ing equipment, the compiler must not require any advanced hardware.

Sub a.
Two different approaches were made for the effecting of such a vague notion as

'good programming'. First, the literature contains ideas about what constitutes good
programming [DAHL, DUKSTRA & HOARE 72, DIJKSTRA 76, LINGER, MILLS &

WITT 79]; many of these ideas were incorporated. Second, we often found it much

easier to recognize bad programming and forbid it than to recognize good program
ming and to promote it.

Our most powerful weapon against bad programming is the 'static semantic

check', applicable in those situations in which the structure of the language allows the
compiler to check statically (i.e., during compilation) whether the semantics makes
sense (during run time). Examples are: mode checking in ALGOL 68, which detects the
(nonsensical) storing of a value of one type under a name of a different type; or, more
primitively, the block structure in many high-level languages which detects the (non
sensical) access to a dynamically non-existing item. ALEPH should amply allow such
tests.

It is of course not possible to disallow bad programming in general: a language
powerful enough to formulate any algorithm in i~ is also powerful enough to formu
late it messily. Nevertheless, it is often possible to make the 'desirable' construction
more convenient than an 'undesirable' one: the way a language is used does not so

much depend on its possibilities (it is a Turing machine anyway) as on the conveni
ence of those possibilities. Although it is perfectly possible to write recursive routines
in FORTRAN, hardly anybody ever does so, as the administration is just too cumber
some, and, conversely but analogously, it is perfectly possible to 'jump all over the

place' in ALEPH but hardly anybody ever does so, as the administration is just too
cumbersome.

We require 'good programming' to be available 'at a reasonable effort'. Conse
quently, if a feature normally present and useful in programming languages is ban
ished from ALEPH, an acceptable alternative should be present.

We also require 'good programming' 'at a moderate price'. Since the only way to
program a machine efficiently is in hard machine code, we should be willing to accept
certain losses in writing in a high-level language. These losses, however, must not
depend on the style of programming in such a way as to foster bad programming: for
example, in many high-level languages it is more efficient to pass information to

5

procedures in global variables than in parameters. Consequently, ALEPH should allow
efficient implementation of those features we consider to lead to good programming.

Sub b.
The required simplicity of the compiler conflicts with the tendency to make ALEPH

as high-level as possible and with the need for extensive static checking. Some trade
off is to be expected here.

Sub c.
The greatest portability problem in compiler construction is the portability of the

object code. Traditionally, compilers are written for one specific language and for one
specific machine. Converting such a compiler to a different machine is often nearly
impossible due to fundamental differences in the object code. We shall have to make a
conscious effort to restrict these conversion problems to a bearable minimum, or,
better still, to avoid conversion at all.

Sub e.
Fancy hardware like virtual memory, hardware stack or microprogramming is not

supposed to be available. Consequently, some fairly elaborate analyses like check on
non-recursivity are worth while. Nevertheless the object code could still make good
usage of the above advanced features.

1.1.2. Realization

Sub a and b.
A good basis for the design of our programming language was found in the con

cept of a 'formal grammar'. Normally a formal grammar is used to describe the
admissible programs in the language being defined, but that is not the application we
have in mind here. Just as we can use a grammar to produce (program) texts, we can
use a grammar to produce directly the solutions to our problem. Since we want the
solutions to be produced mechanically, we are forced to consider the grammar as a
program, and write a producer (interpreter or compiler) for it. Investigation in this
area causes the borders between grammars and programs to fade away. A. van
Wijngaarden has given an application of this idea in its purest form [VAN WIJNGAAR
DEN 81).

The process of converting this abstract idea into a practical, efficient programming
language is described in section 3.3. The syntactic and semantic simplicity of formal
grammars (as compared to those of programs) have had important consequences for
ALEPH: aspects of the dynamic behaviour of an ALEPH program can be derived stati
cally and used in a static semantic check; straightforward implementation is already
quite efficient; and machine-independence is high.

Sub c.
Our solution to the problem of the object code portability is to produce machine

independent intermediate code of a very simple nature, ALICE [BOHM 77] (section 4.4 in
this book). This code can be produced internally and converted directly to pertinent
machine code (for production) or it can be produced externally and then be converted
separately by a simple ad-hoe program.

Sub e.
In the absence of advanced memory hardware, measures must be taken to make

efficient data storage available in a convenient way. We have found a good solution in
'extensible arrays' with unique indices. This facility is described in 3.5. l and in

6

paragraph 4.1.4 of the ALEPH Manual.

1.2. The compiler

Much has been written about specific topics in compiler construction. For parsing
one has an ample choice of methods, all well described: top-down [KNUTH 71],
bottom-up [DEREMER 71], operator-precedence [FLOYD 63] and many others; a
comprehensive account is given in [LEWIS II, ROSENKRANTZ & STEARNS 76]. Like
wise, code generation is widely studied, though perhaps less extensively and more ad
hoc than parsing: tree-walking, common sub-expressions, intermediate codes, threaded
code and peep-hole optimization, to mention a few subjects. Since these subjects are
not often treated in isolation it is more appropriate here to refer to general works like
[AHO & ULLMAN 78], [WULF et al. 75] or [BAUER & EICKEL 74].

All these studies provide specific algorithms to be plugged in in a general frame
work considered given (or trivial). Hardly any attention is given to the question of
how such a framework should be designed or even why it should look the way it was
given. The data flow inside the compiler (not to be confused with the data flow inside
the translated program!) is largely ignored.

Since the design of the new ALEPH compiler was a one-person project, I needed a
firm technique to guide me in designing the framework and the information flow in it.
The technique I have used can be best described as 'demand-driven'. Faced with a
well-defined source language to start from, viz. ALEPH, and a well-defined target code
to aim at, viz. ALICE, we are tempted to start a classical design process from ALEPH to
ALICE to bridge the gap. The disadvantage is that the steps in this process are largely
arbitrary, given by intuition or tradition. Especially in the beginning it is not at all
clear what information in the source text should receive attention. Examples are:
'Should comments be kept?', 'Where does the program-title go?' or 'Do we have to
keep track of the largest number of parameters ever used in a procedure call?'.

If, however, we start from the target code, it is immediately clear from its
specifications what information is demanded by each of its instructions. These
demands then give rise to other demands, which, by working backwards, we can hope
to fulfil eventually from the source code. By applying this technique in its purest
form, we would, in the end, be faced with the demand for a 'parsing' of the source
code.

The design technique is described in more detail in section 4.2. Part of its results
are shown in chapter 5.

The demand-driven design technique has served us well. One of the non-obvious
advantages is that work can be interrupted at any stage and resumed at a later time
without undue trouble, since at any moment the reasons for all decisions taken so far
are obvious. A distinct disadvantage is that it reduces compiler design to a
bookkeeper's job which lacks the fascination that attracts the majority of computer
scientists. Perhaps the time has come to perform compiler design mechanically.

Starting from the design thus obtained, F. van Dijk wrote an ALEPH compiler in
ALEPH, which was bootstrapped to ALICE. This compiler is available in ALEPH and in
ALICE [VAN DIJK 82]. For those who have access to a Control Data Cyber, a proces
sor from ALICE to COMPASS both in ALEPH and in COMPASS is. available.

An independent ALEPH compiler was written by Csirmaz Laszlo of the

7

Mathematical Institute of the Hungarian Academy of Sciences, who also made a
Hungarian translation of the ALEPH Manual [CSIRMAZ 77). The compiler was
bootstrapped onto the IBM 370 by K6sa Marton and Fuchs Gyorgy.

1.3. On the structure of this book

The ALEPH project is moderately small as language projects go. Nevertheless the
number of identifiable decisions taken in the design of the language and its compiler
is very large. It would be out of the question to describe all these decisions with their
arguments and interrelations. So some structure has to be discerned in the material to
be able to present it.

It is tempting to say that the project has a tree structure: when we think about the
compiler we do not think about the language design and when we think about an
intermediate code we do not think about parsing techniques. In the higher regions of
the tree this is satisfactory, but the nearer we get to the leaves, the more our view is
obscured by interrelations and interferences: problems inside the language design can
not be described in isolation, those in the compiler even less. The tree turns into a
directed graph.

It is, however, in these lower regions of the tree that the hard core of the design is
to be found. Any description on a higher level remains fuzzy: observations on the
design technique remain floating in the air unless supported by at least one example of
that technique shown at work.

In an attempt to treat enough hard material in a sufficiently small space, two levels
of description have been used. A first-level description of a node describes the sub-tree
beneath that node, and, since this book is concerned with design techniques, it explains
how the sub-tree was dealt with; it may identify new sub-trees, for which again a first
level description may be given in a later paragraph. Its purpose is to give the reader an
impression of that part of the project. A second-level description explicitly describes
the whole sub-tree involved and is concerned more with technical details than with a
broad view. It serves to illustrate the design principles expounded in the first-level
description of the same sub-tree.

A good example is the treatment of ALICE, the ALEPH intermediate code. The
(first-level) description of the compiler (4.2) reviews some necessary concepts, one of
which is ALICE. The chapter on ALICE (4.4) refers to the defining document, gives a
short introduction to ALICE, identifies some problems and describes the technique used
to solve them, all on the first level. The actual solving of the problems is then shown
in detail in chapter 6.

1.4. Global view

The following survey of the contents of this book may be helpful.

The thesis.
A grammar can be interpreted as a program, which makes the grammatical
formalism correspond to a programming language. ALEPH is a concretiza
tion of this idea. Detailed decisions are discussed and a well-structured
machine-independent compiler is developed

8

l. Introduction
2. On grammars

The most readable book is [CLEAVELAND & UZGALIS 77], the most
thorough one [HOPCROFT & ULLMAN 79]. We shall mainly refer to
VW-grammars and affix grammars.

2.1. The production mechanism
The general rules for producing sentences from a grammar are
explained.

2.2. Top-down parsing
If we have a produced sentence, we may want to reconstruct
the process that produced it. Top-down parsing is one possible
technique.

2.3. VW-grammars
They are schemes to produce (as much as necessary of) a
grammar which can produce the sentences we want. They have
the same expressive power as Type 0 Phrase Structure gram
mars, but are much easier to understand.

2.4. Affix grammars
A given affix grammar, which is a production device for a
language, corresponds closely to a parser, which is an analysis
device for that same language.

3. On the design of the ALEPH language
3.1. History of affix grammars

First used around 1962, they developed into a well defined
mathematical structure.

3.2. The design philosophy
Natural languages and programming languages are compared
as to their use of plausibility checks, feed-back and redun
dancy.

3.3. From VW-grammar to ALEPH

When we have a VW-grammar produce sentences partly in an
'input' alphabet and partly in an 'output' alphabet, and we
manage to build a parser for the 'input' language, we have
created a transduction grammar, i.e., a program This principle
is made practical, resulting in ALEPH.

3.4. The portability of ALEPH programs
The problems that may befall a program in being moved from
one machine to another are listed in [TANENBAUM, KLINT &
BOHM 77]. Most of these cannot materialize in an ALEPH pro
gram. Seven remaining problems are treated.

3.5. Data structures in ALEPH

The basic data type is the integer. There are constants and
variables, and lists of these. The lists of variables are extensi
ble, and can be used as arrays, stacks or single-ended queues.

3.6. Evaluation of some compromises
Four compromises in the design of.ALEPH are discussed. In
retrospect three of the four choices can be upheld.

9

4. On the design of the ALEPH compiler
4.1. History of the compiler

The original ALEPH compiler, which was derived from the CDL

compiler producing ALGOL 60 on the EL-X8, was bootstrapped
into producing COMPASS on the Cyber. It, in turn, helped
bootstrapping the completely new machine-independent ALEPH

compiler described in this book.
4.2. The design technique

4.2.1. Design criteria
The issues were portability, minimal memory require
ments and simplicity of design.

4.2.2. The portability of the compiler
The compiler produces ALICE, a special intermediate
code tailored to ALEPH. The mapping from an ALEPH

program to an ALICE program is completely machine
independent.

4.2.3. The four stages of the design
The task of designing the compiler was factorized into
four subtasks, each of which was performed in
bookkeeper's fashion.

4.2.4. Evaluation

4.3. The parser

Some parts of the design process were almost mechani
cal.

By using information streams on files wherever possible it
keeps memory requirements low. It was derived interactively
from an LL(1)-type grammar.

4.4. On ALICE

4.4.1. A short introduction to ALICE

An ALICE program consists of a highly structured stream
of macro calls, many of which are redundant on a given
machine.

4.4.2. The design of ALICE

An attempt has been made to combine reasonable sim
plicity of machine-code generation with reasonable run
time efficiency of the code obtained. This resulted in
some unusual data types, like the ALICE 'gate' (parame
ter transfer area).

4.4.3. Problems with and modifications to ALICE

4.5. Bootstrapping

The problems that cropped up when ALICE was used in
practice are discussed and a technique to mend them,
the 'parallel-script technique', is developed.

The practical application of ALICE in porting the compiler is
explained in a linear notation.

10

5. The design of the ALEPH compiler
The design of that part of the ALEPH compiler that produces the
ALICE values is given in full detail.

6. Modifications to ALICE
The development of the necessary modifications to ALICE is given in
full detail.

7. References
8. Summary
9. Index

Appendix: ALEPH Manual
The first edition of the ALEPH Manual was written in 1973 [BOSCH,
GRUNE & MEERTENS 73]; the version presented here is the fourth edition.

0. Preface
The differences between the third edition and the present one are
listed.

1. An informal introduction to ALEPH
A small program for reading and evaluating integer expressions is
derived in a tutorial manner from the grammar of the input. Most of
the language facilities are touched upon.

2. Introduction to the Manual
The syntactical description used is explained.

3. Program logic
The language constructs that govern the flow of control are described
in detail: rules, affixes, operations, affixforms, terminators,
compound-members, classifications and criteria for side-effects and
failing.

4. Data declarations

5. Externals

Concerns the language constructs that allow the declaration of global
data: expressions, constants, variables, tables, stacks and files.

The actual data handling in ALEPH is performed by 'externals', which
do not belong to the language proper.

5 .1. User externals
How to declare a (special-purpose) external not provided in the
standard.

5.2. Standard externals

6. Pragmats
A number of actions are available without explicit declaration.

Pragmats govern the behaviour of the compiler rather than that of the
program.

7. The representation of programs
8. Examples

9. References
10. Index

11

12

2. ON GRAMMARS

Some paragraphs in this book make extensive use of the concept of 'formal gram
mar' (or 'grammar' for short). We shall assume that the reader is more or less
acquainted with formal grammars. An excellent exposition, both for the novice and for
the expert, is given by J. Craig Cleaveland and R.C. Uzgalis [CLEAVELAND & UzGALIS
77]. For a thorough treatment of the subject the reader is referred to [HoPcRqFT &
ULLMAN 79]. A survey of the various notations in use in computer science is presented
in [MARCOTIY & LEDGARD 76].

A grammar is a formal recipe for generating sentences (= sequences of symbols).
The formal recipe consists of a number of formulas in a specific notation and of
instructions (generally in informal English) on how to manipulate the formulas in
order to generate the sentences. The exact form of the formulas depends on the type
of the grammar, but a specific kind of formula, called "production rule", is always
present. A production rule has a "name", often called its "left-hand-side" (LHS), and
a "right-hand-side" (RHS). We separate the LHS and the RHS by a colon (':') and
terminate the rule by a period ('.'). The RHS consists of one or more "alternatives",
separated by semicolons (';'). An alternative consists of one or more "members",
separated by commas(','). A member is either a name or epsilon(€). If a member is a
name, it may be the name of a production rule (the same or another one), or the
name of a terminal symbol.

Another item that is always present is the "starting name", also called "initial sym
bol", "root", etc. We shall generally use the name 'text' as the starting name.

In this book we shall meet mainly three types of grammars: context-free grammars,
VW-grammars and affix grammars. Grammars and their constituents will be printed in
bold.

2.1. The production mechanism

The purpose of a grammar is to describe (delineate) a set of sentences. It performs
this service by being a recipe for producing all members of that set. Although the
details of the production mechanism depend on the grammar type, the general process
for generating a sentence is as follows.

We operate on a "sentential form", a sequence of members separated by commas.
Our initial sentential form consists of the starting name. As long as the sentential
form still contains a name of a production rule, we replace that name by one alterna
tive from the RHS of that production rule. This process stops when the sentential
form consists of names of terminal symbols and £S only. We cross out the £S, replace
each name of a terminal symbol by its representation, and remove the· separating
commas.

The result of this process can be depicted as a tree: the root is the starting name,
which branches into the members of its chosen RHS; each member branches again,
etc. The leaves are the names of the terminal symbols. This tree is called the "parse
tree" and it contains a record of the production process.

It should be noted that this process is not guaranteed to terminate for arbitrary
choices of the alternatives. For some grammars the production process cannot ter
minate at all.

13

2.2. Top-down parsing

Often we have a sentence and we want to know whether it can be produced by a
given grammar: the "recognition problem". Moreover, if it can, we generally want to
know how, i.e., we want to reconstruct the parse tree: the "parsing problem". (Not
all types of grammars allow these problems to be solved in general.)

The main two general ways of tackling the parsing problem are the 'bottom-up'
and the 'top-down' methods.

In the bottom-up method we try to carry out the above procedure in the opposite
direction: we search for RHSs we can recognize and then replace these by the
corresponding LHSs. If we manage to reduce the sentence to the starting name, we
have found a parsing. We shall make little use of this technique.

In the top-down method we try to imitate the production process which produced
the sentence in the first place. We set out to generate all sentences and end immedi
ately each attempt of which it has become clear that it will not lead to the desired
goal. For a detailed description see, e.g., [AHO & ULLMAN 72, p. 285-301).

When we carry out this process deterministically, we try the alternatives of a given
production rule in some order. One alternative A may seem very promising for a long
time, thus leading us to continue the parsing attempt with further rules, try their
alternatives, etc. At a certain moment the attempt may turn out to be a failure and
then we have to find our way back so that we can try the successor, if any, of the
alternative A ; this is called "backtracking".

The general top-down technique may be extremely expensive. There is, however, a
simple way to cut the cost to a very acceptable level. We require the grammar to be
such that at each production rule we can tell from the next k terminal symbols in the
sentence which alternative to take. Consequently, we are never in doubt as to which
alternative to try and we shall never have to backtrack. In particular there can be at
most one parsing for the entire sentence: the grammar is unambiguous. A grammar
that allows this simplification is 'of type LL(k)'. We shall often require a grammar to
be of type LL(1).

The notion 'LL(k)' is treated extensively by D.E. Knuth [KNUTH 71). For a short
history of LL(k) grammars, see [AHO & ULLMAN 72, p.368].

2.3. VW-grammars

It is well known that every recursively enumerable language can be described
through a general (type 0) phrase-structure grammar, but it is also true that if the
language is not context-free, the grammars that describe it generally give little or no
indication of the nature of that language. A good example is the language
L = {an bn en In ~ 1} for which the following phrase-structure grammar is cited
[CLEAVELAND & UZGALIS 77, 1.3.4] (single-letter notion names have been replaced by
more informative ones):

14

text: a symbol, b symbol, movable c;
a symbol, text, low b, movable c.

movable c, low b: marker, low b.
marker, low b: marker, movable c.
marker, movable c: low b, movable c.
b symbol, low b: b symbol, b symbol.
movable c: c symbol.

where a-symbol has the representation a, b-symbol has b and c-symbol has c.

A. van Wijngaarden has given another way to describe a recursively enumerable
language, viz., through a two-level grammar [VAN WIJNGAARDEN 65). To introduce
the pertaining concepts and techniques we shall give here an informal construction of
a VW-grammar for the above language L = {an bn en In ~ 1 }.

We could describe the language L through a context-free grammar if grammars of
infinite size were allowed:

text:a symbol, b symbol, c symbol;
a symbol, a symbol, b symbol, b symbol, c symbol, c symbol;
a symbol, a symbol, a symbol, b symbol, b symbol, b symbol,

c symbol, c symbol, c symbol;

We shall now try to master this infinity by constructing a grammar, which allows
to produce the above grammar for as far as needed. We first introduce an infinity of
names:

text:ai, bi, ci;
aii, bii, cii;
aiii, biii, ciii;

with three infinite groups of rules:

ai: a symbol.
aii: a symbol, ai.
aiii: a symbol, aii.

bi: b symbol.
bii: b symbol, bi.
biii: b symbol, bii.

ci: c symbol.
cii: c symbol, ci.
ciii: c symbol, cii.

Next we introduce a special kind of name called "metanotion". Rather than being
capable of producing (part of) a sentence in the language, it is capable of producing
(part of) a name in a grammar rule. In our example we want to catch the repetitions
of is in a metanotion N, for which we give a context-free production rule (a
"metarule"):

N :: i; i N.

Note that we use a slightly different notation for metarules: LHS and RHS are
separated by a double colon(::) and members are separated by a blank ().

Now the four infinite groups of rules collapse into four finite rule templates called
"hyper-rules".

15

text: a N, b N, c N.

a i: a symbol. b i: b symbol. c i: c symbol.
a i N: a symbol, a N. b i N: b symbol, b N. c i N: c symbol, c N.

Each original rule can be obtained from one of the hyper-rules by substituting a
production of N for each occurrence of N in that hyper-rule, provided that the same
production of N is used consistently throughout. To distinguish them from normal
names these half-finished combinations of small letters and metanotions (like 'a N' or
'b i N') are called "hypemotions".

We can also use this technique to condense the finite parts of a grammar:

N :: i; i N.
A:: a; b; c.

text: a N, b N, c N.
A i: A symbol.
A i N: A symbol, A N.

Again the rules of the game require that the metanotion A be replaced con
sistently.

This grammar gives a clear indication of the language it describes: once the 'value'
of the metanotion N is chosen, production is straightforward.

It is important to note that although this tutorial derivation uses infinities, the final
grammar is finite and so is the production process: for the production of a particular
element of L only a finite number of production rules need to be generated.

The metanotion mechanism is so suitable for carrying context information that all
the context conditions (identification, data-type consistency, etc.) of a programming
language can be described by it. The context conditions are often enforced by block
ing production paths which would lead to sentences that violate these conditions. On
such a path a name occurs for which no production rule can be generated from any
template: we are in a "blind alley". Other mechanisms are the "infinite production
path", in which an attempt to violate a context condition prevents termination of the
production process, and the "repeated metanotion", in which the repetition of a
metanotion forces a match in a sentential form.

VW-grammars incorporating all context conditions exist for ALGOL 68 [VAN
WUNGAARDEN 75) and for ALEPH [GLANDORF, GRUNE & VERHAGEN 78). The tech
niques used are explained in detail by J. Craig Cleaveland and R. C. Uzgalis in
[CLEAVELAND & UZGALIS 77). M. Sintzoff has proved that there exists a VW
grammar for every recursively enumerable language [SINTZOFF 67).

The use of a VW-grammar can be extended to include the description of the
semantics of the generated language [CLEAVELAtoJD & UZGALIS 77, 4.5) or to produce
results directly without the intervention of a programming language [VAN WIJNGAAR
DEN 81).

16

2.4. Affix grammars

The parsing problem for VW-grammars cannot be solved in general [SINTZOFF 67,
Corrolary 2]. If we try to derive a parser from a VW-grammar by techniques analo
gous to those used in 2.2, we run into problems. Normally a LHS corresponds to the
name of a parsing procedure in the parser, but the LHS of

A i N: A symbol, A N.

is not a procedure name but a template to generate an infinity of names. Often replac
ing a metanotion by a parameter helps, but even that fails in this case.

This situation can be remedied by using an 'affix grammar', a different type of
two-level grammar, formulated by C.H.A. Koster. Although the parsing problem for
general affix grammars cannot be solved either, manageable restrictions can be formu
lated on them to yield a subset, the "well-formed" affix grammars, for which the pars
ing problem can be solved. The properties of affix grammars are described in a harsh
and forbidding formal form in [KOSTER 7lb]. A more palatable treatment of a slightly
modified form is given by H. Meijer [MEIJER 80] (or see [WATT 77]).

Affix grammars have the same expressive power as VW-grammars; P. Kiihling has
shown that the semantics of a programming language can be suitably expressed by
means of an affix grammar [KiJHLING 78]. They differ from VW-grammars mainly in
two points: there is a strict separation between the name of a production rule (its
"handle") and the metanotions it carries (its "affixes"), and there is a strict separation
between rules that produce (part of) the sentence and rules that enforce context condi
tions by checking affixes (the "primitive predicates").

A primitive predicate, which has affixes like a normal rule, contains a total recur
sive function, which will produce £ when the affixes satisfy the context condition
implemented by this primitive predicate, and otherwise the forbidden symbol w. The
set L = {an bn en In;;;;.}} is then produced by the grammar in Fig. 1.

A number of conditions are imposed on an affix grammar to make it "well
formed". These conditions effect a division of the affixes in those with known values
(technically called "inherited affixes") and those with undecided values ("derived
affixes"); moreover, for each primitive predicate an effective procedure is required,
which, given its inherited affixes, will generate a choice for its derived affixes. Thus a
structure is created for which a parser can be derived, as proved in [KOSTER 7lb, 8].

A related notion is that of 'attribute grammars' [KNUTH 68].

Since any program can be considered as a suitably coupled combination of a
context-sensitive sentence parser and a context-sensitive sentence generator, the idea
suggests itself to write programs in a form analogous to affix grammars. The ALEPH
project is an attempt to make this idea practical. The train of thought that has led
from VW-grammars to ALEPH is given in 3.3.

N: 1; N 1.
M: 1; M 1.
A: a; b; c.
B: a; b; c.

text + N: $ a production rule
list+ N +a, list+ N + b,list + N +c.

list+N+A: $ a production rule
where is zero + N;
letter + A, where is decreased + M + N,

list+M+A.

letter + A:
where is + A + a, a symbol;
where is + A + b, b symbol;
where is + A + c, c symbol.

where is zero + N:
>.x: (x = 0 ~ t:, x =I= 0 ~ w).

$ a production rule

$ a primitive predicate

where is decreased + N + M: $ a primitive predicate
>.x 'Ay: (x = y - I ~ t:, x =I= y - I ~ w).

where is + A + B: $ a primitive predicate
>.x 'Ay: (x = y ~ t:, x =I= y ~ w).

Fig. I.

17

18

3. ON THE DESIGN OF THE ALEPH LANGUAGE

3.1. History of affix grammars

Affixes were first used in 1962 by L. Meertens in writing a context-free grammar
for part of the English language. Such a grammar tends to be very repetitive and
affixes were found a welcome means of abbreviation. The meta-grammars of the
affixes were finite-choice and the resulting grammar was indeed context-free.

L. Meertens and C.H.A. Koster converted this affix grammar by hand into a
sentence-producing program, which ran on the EL-Xl of the Mathematical Centre. It
produced sentences like 'I had been showing the extraordinary long tooth that I who
had brightened always must have wanted'. Soon a simple Dutch version followed, by
Koster. It produced the hilarious but untranslatable 'kikvorsen zijn grote kikkers'.

Around 1966 Meertens wrote an affix grammar for composing music, in which the
affixes were integers on which arithmetic was done in special rules. This grammar was
no longer context-free: affixes had passed from an abbreviation mechanism to a con
trol mechanism.

Meanwhile Koster worked on the parsing and translating of natural languages by
means of affix grammars. In [KOSTER 65) a translator from (partial) English to Ger
man is described which can cope with sentences like: 'the woman in whose house i
live has a small beautiful garden too', which resulted in the stilted German phrase 'die
frau in deren hause ich wohne hat auch einen kleinen schoenen garten'.

In the years that followed Koster applied the experience with affix grammars,
gained in these experiments, to ALGOL 68, which was described by a VW-grammar
(3.3. l.l). The desire to generate the compiler (or at least the parser) automatically,
resulted in the development of CDL (Compiler Description Language) [KOSTER 7la).
For the use of CDL to describe parts of a compiler see [KOSTER 72). In 1971 a formal
definition of affix grammars appeared in [KOSTER 71 b], in all its technical detail.

In the beginning of 1972 Koster left the Mathematical Centre. D. Grune,
R. Bosch and L. Meertens took over the project and turned the compiler-description
language into a programming language: ALEPH [GRUNE, BOSCH & MEERTENS 74].
Koster continued the development of CDL and its successor CDL2 in Berlin [DEHOTTAY
et al. 76].

Both CDL and ALEPH are based on top-down parsers. D. Crowe published a
bottom-up parser for affix grammars in 1972 [CROWE 72], which was improved by
A.P.W. Bohm in 1974 [BOHM 74]. D.A. Watt has given a technique to extend any
given parser-generating method for context-free grammars into a parser-generating
method for affix grammars [WATT 77].

3.2. The design philosophy

3.2.1. Some thoughts on producing correct programs

When a human speaker (or writer) conveys a message to a human listener (or
reader), the receiver immediately subjects the message to a reasonability check, based
on his extensive knowledge of the world. When, for instance, a newspaper reader finds
New York called 'the capital of the US', he will think that somebody made a mistake,
not that he missed a major constitutional development. This error tolerance of the
listener is very useful in that it allows the speaker to express complicated things in a

19

few words in a sloppy way. If I ask at the pastry shop: 'Can I have another peach pie,
just like the one I had yesterday', I generally get results, even if it was an apricot pie
and the shop was closed yesterday.

Our entire way of communication is based on the fact that we are communicating
with a reasonable partner whose knowledge of the world is comparable to ours. We
expect that if we happen to say something (formally) nonsensical, we will either be
understood anyhow or somebody will ask back what we meant. Our messages are
never more than 'almost correct'. We see that our experience with daily communica
tion rests, among other things, on two phenomena: plausibility check ('They can't
mean that!') and feed-back ('Can you be here tomorrow at eight?' 'You mean AM or
PM?').

In the communication with a computer these two phenomena are largely absent,
and consequently we cannot expect our daily communication techniques to work
properly for communicating with a computer: a computer will not work on a handful
of 'almost correct' instructions. On the contrary, we expect a good man-machine com
munication technique (a programming language) to deviate considerably from a
natural language, and if it happens to fit in well with everyday thinking (i.e., accomo
dates sloppiness well), we do not consider that an asset. As we have seen, a natural
language is a means of producing efficiently 'almost correct' messages, sufficiently
correct for practical use; a programming language, however, should supply methods
for producing 'completely correct' messages and we should be willing to pay for the
loss of efficiency in the message production (cf. also [HILL 72)).

3.2.1.1. The methods
A good programming language should supply the user with methods that can be

handled with reasonable mental effort and that, with reasonable ease, lead to com
pletely correct formulations. ALEPH is based on three such methods, well-known from
literature and practice:

1 the selection of an applicable alternative out of a list of them, through the
fulfilment of an entry criterion,

2 the decomposition of a problem into a sequence of sub-problems, any of which
may be similar to the original problem,

3 the packaging of a list of alternatives into a named procedure.

The first method is similar to the 'guarded commands' [DUKSTRA 75), although
details of the semantics differ. The second is widely known under names like
'hierarchical programming', 'top-down approach', 'divide & conquer', etc. The third is
the traditional procedural abstraction mechanism.

It is important to note that all three mechanisms can be found in the structure of a
context-free grammar, where a rule (i.e., a procedure) consists of a list of alternatives,
each of which is decomposed into the names of other rules. This analogy, which is a
cornerstone in the design of ALEPH, is elaborated upon in 3.3.

3.2.1.2. The use of redundancy
One way to increase the reliability of communicated messages is to supply them

with redundancy. The function of this redundancy is to dilute the universe of possible
messages to the effect that if a message is damaged in the communication there is a
high probability that it turns into a non-message, detectable by the receiver. A simple

20

way to achieve this is to send the message twice in a different coding, e.g., once in
Dutch and once in Hungarian.

This does not seem to have any bearing on programming languages, since there is
no noisy channel between the sender of the message (the programmer) and the
receiver. The noisy channel, however, is somewhere else, between the intention of the
programmer and the formalization of this intention as a program. Again we benefit if
the intention is transmitted more than once, since this allows the receiver (the com
puter) to do consistency checking. The obvious example is the specification of the data
types of entities in the program, in particular of the formal parameters of a pro
cedure. When a call of a procedure is met, the types of its parameters are known from
two different sources and a consistency check can be made. See also [FEUERHAHN &
KOSTER 78, 2.1].

In addition to data-type checking ALEPH has rule-type checking, basi;:d on informa
tion about side-effects and/or the possibility of failure, known along different paths
(3.3.2.5).

3.2.2. Machine-independence and portability

A major issue in the design was the portability of ALEPH programs, including the
compiler. The problem has been approached by the use of a machine-independent
intermediate code specific to ALEPH, named "ALICE". Detailed issues in portability are
discussed in 3.4; a short survey of ALICE is given in 4.4.

This approach is in sharp contrast to the technique through which COL and COL2
achieve portability, viz., open-endedness (STAHL 78]. All data manipulation in a COL
program is done through calls to rules declared in that program. The programmer has
the choice of either declaring a rule in terms of COL-constructs or declaring it as a
"macro", in which case he has to supply a macro-body with code specific to the
target-language of his machine. Portability is then achieved by rewriting the macro
bodies of the program (and those of the COL compiler).

ALEPH, on the other hand, has built-in data-handling primitives (like stack
declarations, extensions, standard-externals, etc.) and the programmer is expected to
express his algorithms entirely in these terms. These primitives are supported by ALICE
and portability is now achieved by implementing ALICE on the new machine, after
which both the ALEPH compiler and the user program will run (4.5.2).

If the data-handling the user requires cannot be reasonably expressed in the
predefined primitives (e.g., reaching specific system facilities), the user can escape to a
macro level through an external-rule-definition, but the portability of the resulting
program is then jeopardized.

3.3. From VW-grammar to ALEPH•

ALEPH has the interesting quality that it is large enough not to be dismissed as a
toy language and small enough to keep the task of designing it intellectually manage
able (although barely so).

Therefore an account of the design of ALEPH is interesting not only because of its
results, a language with a very simple but powerful flow-of-control, in which the
uninitialized-variable problem is solved and in which side effects are under full

*This section is a revision of (GRUNE 81).

21

control, but also because the way in which these results are obtained is open to exam
ination.

In this chapter we shall give an exposition of the designing of ALEPH. We shall not
completely follow the historical development, since that included many side tracks
without issue (e.g., a satisfactory parameter-passing mechanism was found only after
much experimentation). A survey of the line of argument is given in the directed
graph in Fig. 2. The bubbles contain concepts; the arrows can be read as 'leads to' or
'is a prerequisite for'. The triangles, which have no predecessors, contain ideas that

come from the outside world; the parallelograms, which have no successors, contain
(hopefully desirable) results for that outside world.

Figure 2 is a simplification of reality: more arrows could be drawn, but the main

ones are included. The picture bears resemblance to the dependency graph of modules

in a large program; several layers can be distinguished: programming language, fiow
of-control, affixes, affix rules, globals.

Inside these levels the dependency of the concepts is fairly badly structured, as can

be expected of an object that was not designed according to firm design rules.
Little is known about design rules for programming languages. In essence design

rules serve to reduce the intellectual complexity of a task. Traditional means are:
imposing a structure, divide-and-conquer, defining interfaces, etc. Hardly any of these
applies to the design of programming languages. The most successful principle is still
orthogonality, which also has its problems. It does not allow the designer to distin
guish between the cheap and the expensive, and its consistent application is difficult.

Our discussion will lead us from VW -grammars through affix grammars to ALEPH

and conventional programming languages. Each of these fields has its own (tradi
tional) terminology and often a concept in one field will reappear in the next (in a

slightly modified form) under a different name. It may be helpful for the reader to
refer to Fig. 3 for the approximate relations.

3.3.1. Turning VW-grammars into a programming language

3.3.1.1. Two-colour grammars

A VW-grammar is a special type of phrase-structure grammar, which retains some

of the important properties of a context-free (CF) grammar. We can use a CF gram
mar to describe any language, provided that this grammar may have infinitely many
production rules; every actual production of a desired sentence in the language, how
ever, needs only a finite number of them. In essence a VW-grammar is a recipe for
generating such an infinity of CF production rules. In deriving a sentence we keep the
derivation finite by generating only those rules that we actually need for the produc
tion of that sentence.

A VW-grammar has the following main constituents:
o the metarules, a collection of (interrelated) CF grammars, each producing a

language for a specific metanotion;
o the hyper-rules, a collection of templates from which to form (an infinity of)

CF production rules.

A CF production rule is derived from a hyper-rule by replacing consistently each
of the metanotions it contains by a terminal production of that metanotion.

22

VW-grammars: affix grammars:

grammar grammar

some initial initial symbol
hypernotion

hyper-rule

invisible
production

may produce
empty

is a blind
alley

hypernotion

metarule

metanotion

symbol

rule

primitive
predicate

left-hand-side,
L,HS

right-hand-side,
RHS

alternative

may produce £

produces w

affix expression

affix rule

affix,
bound affix,
free affix

terminal symbol

ALEPH:

program

root

(global) rule

external rule

rule head

rule body

alternative

always
succeeds

fails

affix form,
rule call

affix,
formal affix,
local affix

input/output
operation

Fig. 3.

conventional
programming
languages:

program

main procedure

procedure

built-in function

procedure heading

procedure body

control structure

always yields
true

yields false

call

parameter,
formal parameter,
local parameter

input/ output
operation

Let us now introduce the notion of a 'two-colour' VW-grammar. We start from a
VW-grammar R , which produces sequences of symbols in red. We then take a second
VW-grammar P, which shares part or all of its metarules with R and which pro
duces its symbols in blue (or in a different alphabet if you wish). We now combine the
two grammars and insert hypernotions of P in hyperalternatives of rules of R : the
resulting grammar produces sentences in mixed red and blue text.

23

If it now so happens that a hypemotion of P shares one or more metanotions
with some of its neighbours that belonged to R , then the production of blue text is
controlled by the same choice of metanotion substitutions as that of the red text, and
the red and blue pieces of text will become correlated.

Figure 4 shows a two-colour grammar for the language
{red-an blue -bn blue -en In ;;;;.O}; this language cannot be produced by a CF gram
mar and the distribution of information through metanotions is essential. We shall
gradually transform this example grammar until it has become an ALEPH program
that recognizes the red text and produces the blue one. To smooth the transitions in
the explanation the starting point is more complicated than strictly necessary: context
conditions are stored in 'invisible productions'. A VW-grammar for the above
language is given as grammar Q in [CLEAVELAND & UZGALIS 77, 3.4]; invisible pro
ductions are explained in [CLEAVELAND & UZGALIS 77, 3.5].

TCGI:

N :: N n;
ABC :: a; b; c.

text: red N a, blue N b, blue N c.

red N ABC:
red symbol ABC, red NI ABC,

where rd Nl plus one is N;
where rd N is zero.

red symbol ABC: red letter ABC symbol.

where rd N plus one is N n: where true.
where rd is zero: where true.

blue N ABC:
where bi N is zero;
blue symbol ABC, where bi Nl is N minus one,

blue Nl ABC.
blue symbol ABC: blue letter ABC symbol.

where bi N is N n minus one: where true.
where bi is zero: where true.

where true: .

Fig. 4.

A possible production of TCG I is (with N = nnn in text):

24

3.3.1.2. A top-down parser

It is well known that a CF grammar can be turned mechanically into a recognizer
for the language it produces (e.g., [KNUTH 71]). In the general case this can be
inefficient, but if sufficient restrictions are put on the CF grammar, neat recognizers
result. Specifically, the LL(l) restriction leads to an efficient top-down parser, which,
as a program, has virtually the same form as the original grammar.

This suggests that it may be possible to consider the red part of the two-colour
grammar TCG 1 (which, in a sense, is LL(l)) as a top-down parser for the red text,
while at the same time retaining the producing nature of the blue part. If we do this,
we are led to consider the occurrences of metanotions in hypernotions as parameters.
We shall not worry at the moment about the exact parameter-passing mechanism; for
the time being it can be thought of as 'call-by-name'. This brings us to the
grammar/program of Figure 5.

Pl:

text: read N a, print N b, print N c.

read N ABC:
read symbol ABC, read N 1 ABC,

where rd N 1 plus one is N;
where rd N is zero.

read symbol ABC: absorb letter ABC.

where rd N 1 plus one is N: set N to N 1 plus one.
where rd N is zero: set N to zero.

print N ABC:
where pt N is zero;
print symbol ABC, where pt N 1 is N minus one,

print N 1 ABC.
print symbol ABC: produce letter ABC.

where pt N 1 is N minus one: set N 1 to N minus one.
where pt N is zero: is N zero.

Fig. 5.

When we read it as a VW-grammar we encounter two new production rules, which
can easily be defined:

produce letter ABC: blue letter ABC symbol.
absorb letter ABC: red letter ABC symbol.

The grammar P I then produces the same language as grammar TCG 1.
However, when we read it with the firm conviction that it is a program, meaning

begins to attach itself to various constructs. To perform text, read N as, then print
N b s, then print N c s. To read N ABCs, we have the choice between two alterna
tives, which we shall try in order. We attempt to read a symbol ABC, and if we
succeed we read N I ABCs and set N to N I plus one; otherwise (if we cannot read a

25

symbol ABC) we set N to zero. In this same vein we can understand the rest of the
program, which prints N b s and N c s.

Here we interpret the production rules of the grammar as production rules of the
program, which either succeed or fail. A special interpretation is necessary for
produce letter and absorb letter:

produce letter ABC:
$ a procedure that appends the letter ABC to the output.

absorb letter ABC:
$ a procedure that examines the first character of the
$input:
$ if that character is the letter ABC, it removes the
$ first character from the input and succeeds;
$ otherwise, it fails.

At this point the reader will have gathered that we have cheated. The above exam
ple was rigged so that its interpretation as a program suggested itself. If we take a
different VW-grammar, e.g., the one describing ALGOL 68 [VAN WIJNGAARDEN 75], the
above line of thought fails miserably, on several points. Among the reasons for this
are:

o Hypernotions cannot in general be identified by some characteristic part. (The
ALGOL 68-grammar is an exception: it has very few points where one is in
doubt).

o Confusion arises as to where the terminal production of a metanotion begins or
ends inside a hypernotion.

o Values of metanotions are used before they are known.

There is, however, a type of two-level grammar related to VW-grammars for which
the parsing problem can be solved: the affix grammars.

3.3.1.3. Affix grammars

Affix grammars are defined by C.H.A. Koster [KOSTER 7lb]; this definition is
slightly modified and explained well in [WATT 77]. Koster shows, given an affix gram
mar that is 'well-formed' (see below), how to construct a parser for the language it
generates. Most constituents of a VW-grammar also exist in an affix grammar. For a
list of correspondences see 3.3. The principal differences between affix grammars and
VW-grammars are:

o a hypernotion consists of a characteristic name, its 'handle', followed by one or
more metanotions, called 'affixes', and

o context conditions are enforced by special rules called 'primitive predicates',
which can be thought of as affix checkers.

A 'primitive predicate' is similar to a (normal) rule in that it has affixes; but rather
than producing its output by specifying affix forms and terminal symbols, it contains
a total recursive function T, the "associated function", which, depending on the
affixes, will produce either 'empty'(£) or the forbidden symbol (w).

Affixes occurring in the LHS of a rule are called 'bound' affixes to that rule; affixes
that occur in the alternative(s) in the RHS only are called 'free'.

26

The well-formedness criterion requires (among other things) that all occurrences of
affixes can be divided into two groups, the 'derived' (8) and the 'inherited' (i) affixes,
under the following conditions:

o if a bound affix B of a rule is inherited, all occurrences of B in the RHS of
that rule are inherited;

o if a bound affix B of a rule is derived, then the textually first occurrence of B
in each alternative in the RHS of that rule is derived and all others are inher
ited;

o the textually first occurrence of a free affix F in each alternative in the RHS of
a rule is derived and all others are inherited;

o for each primitive predicate with derived affixes D, inherited affixes I and
associated function T, a total recursive function is given which will calculate D
from I such that T(I ,D) succeeds (i.e., produces E).

The first three requirements ensure that affixes can be interpreted as input- and
output-parameters in a proper way; the last requirement makes it possible to recon
struct during parsing the context that was enforced during production.

An affix grammar equivalent to TCG I is shown in Figure 6a/b. To satisfy the
well-formedness requirement this text must be augmented by a list of functions, one
for each primitive predicate, which calculate the derived affixes from the inherited
ones. They are (in the form <name, domain of the inherited affixes, domain of the
derived affixes, function>):

<where rd plus one is, (N), (N), 'Ax: x + 1>,
<where rd is zero, (), (N), 0>,
<where is, (ABC, ABCl), (),'Ax 'Ay: (x = y ~ E, x =!= y ~ w)>,
<where bi is minus one, (N), (N), 'Ax: x - 1>,
<where bi is zero, (N), (), 'Ax: (x = 0 ~ E, x =!= 0 ~ w)>

They correspond to the 'set N to ... ' in P 1.

A more convenient variant of the affix grammars are the 'extended affix grammars'
[Kt:JHLING 78), originally defined by D.A. Watt, in which the primitive predicates have
been abandoned, and in which affix positions can be occupied by paranotions rather
than by metanotions. Again, there are well-formedness conditions if the grammar is to
be used in syntax analysis. Since extended affix grammars have played no role in the
design of ALEPH, they will not be treated here any further.

3.3.1.4. CDL

It is simple to convert the affix grammar AG I into a program; it will nevertheless
be clear to the reader that affix grammars as such are less than attractive as a pro
gramming language. There are, however, some bright points: many of the least appet
izing parts of the text exist only for the benefit of the description mechanism in
[KOSTER 7lb), and the similarity between part P of AG I and the tentative program
P I is striking; moreover, parts of the text are redundant:

o Vn can be derived from P .
o Q and Vi can be derived from S and P.
o An and A 1 follow from R.

AGl:

$ Vn: the non-terminal symbols
text, red, red symbol, blue, blue symbol.

$ V1 : the terminal symbols
red-a, red-b, red-c, blue-a, blue-b, blue-c.

$An: the non-terminal affix symbols
N, Nl, ABC, ABCl.

$ A1 : the terminal affix symbols
n, a, b, c.

$ Q: the primitive predicate symbols
where rd plus one is, where rd is zero, where is,
where bi is minus,one, where bi is zero.

$ E: the initial symbol
text.

$ R : the affix rules
N::Nn;.
Nl::N.
ABC:: a; b; c.
ABCl:: ABC.

$ S: the 'control' set; each quintuple contains:
$ the name of a non-terminal or primitive predicate symbol,
$ the number of affixes,
$ the types of the affixes (derived or inherited),
$ the domain of the affixes, and
$ the associated function

<text, 0, (), (), 0 >,
<red, 2, (6, 1), (N, ABC), 0 >,
<red symbol, 1, (1), (ABC), 0 >,
<where rd plus one is, 2, (1, 6), (N, Nl),

Ax ;\y: (x + I = y - £, x + I =I= y - w)>,
<where rd is zero, 1, (6), (N),

A.x: (x = 0 - £, x =I= 0 - w)>,
<where is, 2, (ABC, ABCl), (t, 1),

A.x ;\y: (x = y - £, x =I= y - w)>,
<blue, 2, (1, 1), (N, ABC), 0 >,
<blue symbol, 1, (t), (ABC), 0 >,
<where bi is minus one, 2, (6, t), (N, Nl),

A.x Xy: (x = y - I - £, x =/= y - I - w)>,
<where bi is zero, 1, (t), (N),

A.x: (x = 0 - £, x =I= 0 - w)>. Fig. 6a.

27

28

$ P : the rules
text: red + N + a, blue + N + b, blue + N + c.

red+ N + ABC:
red symbol + ABC, red + Nl + ABC,

where rd plus one is + Nl + N;
where rd is zero + N.

red symbol + ABC:
where is + ABC + a, red-a;
where is + ABC + b, red-b;
where is + ABC + c, red-c.

blue + N + ABC:
where bi is zero + N;
blue symbol + ABC, where bi is minus one + Nl + N,

blue + Nl + ABC.
blue symbol + ABC:

where is + ABC + a, blue-a;
where is + ABC + b, blue-b;
where is + ABC + c, blue-c.

Fig. 6b.

o When affix passing is implemented as call-by-name, the information about
derived and inherited becomes immaterial (except for checking purposes); con
sequently all entries in S that concern members of Vn can be deleted.

o We can get rid of the metarules R by observing that the languages produced
by the members of R are CF, and by making the sweeping statement that any
language can be mapped on the integers: only integer values are necessary as
affixes. (If we try this in practice we soon run into integer overflow, so eventu
ally other means have to be devised.)

This reduction leaves us with P, E and the primitive-predicate descriptions in S .
The latter can be implemented as macros, allowing escapes to a different regime, the
total recursive functions with output parameters. A notation could be:

P2:
INITSYM text.

MACRO where rdplus one is=" '2' := '1'+1 ",
where rd is zero = " 'J' : = 0 ", $ a derived affix
where is="']'= '2' ",
where bi is minus one = " 'J' := '2'-1 ",
where bi is zero = " '1' = 0 ". $ an inherited affix

$ P, same as P of AGl (Fig. 6b)

A few more steps along these lines will lead us to CDL [KOSTER 7Ia] and to its suc
cessor CDL2 [DEHOTTAY et al. 76].

29

In the remainder of this chapter we shall follow the line of thought that has led to

ALEPH.

3.3.2. From affix grammar to ALEPH

Like in CDL we shall restrict ourselves to top-down (recursive descent) parsers,

since they lead more easily to programming languages than bottom-up parsers.

Bottom-up parsers for affix grammars have been constructed by D. Crowe

[CROWE 72] and A.P.W. Bohm [BOHM 74].

We shall now investigate the consequences of interpreting a grammar as a pro

gram. Although the affix grammar AG 1 can easily be converted into a program, it

will be clear that affix grammars are still a far cry from a usable programming

language. We have 'primitive predicates', which form a kind of language inside the

language. The global flow-of-control may be obvious but details about the local flow

of-control (i.e., inside a rule) have to be decided. The exact nature of affixes is open to

negotiation. The affix rules describe data structures, but their form will depend on

decisions about the affixes.

These issues are treated in the following paragraphs.

3.3.2.1. Global flow-of-control

The global flow-of-control relies completely on rules calling rules (recursively);

since there is only one level of rules and rules cannot occur as parameters (nor be

assigned to 'rule variables'), the program is a directed graph; the starting point is the

ROOT. This has the great advantage that many properties of the program can be

derived mechanically (e.g., recursion, global side effects). Together with the fact that

affixes cannot be expressions that call user-defined rules, it also obviates the need for

a display-like mechanism for affix-passing.

On the other hand it means that the rule-calling and affix-passing mechanism will

be used heavily and that efficiency will be an important factor in the design of both.

3.3.2.2. Finding a place for the primitive predicates

The first three reductions mentioned above (3.3. l.4) are harmless. We shall post

pone the decision about the affix-passing mechanism to 3.3.3.l and incorporate the i/8

information in the rule heads in P; an i-affix (input affix) is marked by a prefixed >,
a 8-affix (output affix) by a postfixed >.

Next we realize that the number of primitive predicates can often be greatly

reduced by describing their effect (producing£ or w) in hyper-rules. For instance, the

effect of

<where prime, 1, (i), (N), "Ax: x is prime~£, x is non-prime~ w>

can be expressed in hyper-rules as follows (integral constants are used instead of

sequences of ns):

where prime + N:
where no divisor at or over + N + 2.

30

where no divisor at or over + N + Nl:
where is + N + Nl;
where indivisible + N + Nl,

where plus one is + Nl + N2,
where no divisor at or over + N + N2.

where is + N + Nl: ...

Many full-size examples of this technique can be found in [VAN WIJNGAARDEN 75,
eh. 7] and in [GLANDORF, GRUNE & VERHAGEN 78]. This suggests the possibility of
using a fixed set of metarules for every grammar, i.e., to supply a fixed set of data
types in the programming language (theoretically this is no restriction, since it has
been demonstrated that every VW-grammar can be rewritten so that only a fixed set
of metarules remain [VAN WIJNGAARDEN 74]). These data types are then supported by
a predefined set of predicates on them, the 'externals'. The choice of this set is
treated in 3.5.

The RHS of a rule may contain both affix forms and terminal symbols; we shall
simplify this situation by introducing two rules, absorb and produce. The affix form
absorb + ABC looks at the next character in the input stream; if it is equal to ABC,
absorb + ABC absorbs it and succeeds; otherwise it fails and leaves the input stream
unaffected. The affix form produce + ABC produces the character ABC. Together
they replace the absorption and production mechanism implied in the functioning of a
two-colour grammar.

We shall change the keyword INITSYM to ROOT; the end of the text will be
marked with an END. Our program is shown in Figure 7 (character constants are
quoted with slashes /). Note that characteristic strings have been supplied in the
EXTERNAL declarations, which enable the identification of the proper routines out
side the program.

3.3.2.3. Local flow-of-control

Local flow-of-control is the flow-of-control inside a rule once it is called due to
global flow-of-control rules. Since global flow-of-control is trivial (3.3.2.1), we shall
use simply 'flow-of-control' for 'local flow-of-control'.

The parsing problem for affix grammars can be solved by a general top-down
parser [KOSTER 7lb, 8]. The flow-of-control rules in such a parser are:

General parser rules:
o Call the initial rule; iff it succeeds, the input belongs to the language.
o A rule is 'called' by trying the alternatives in its RHS for applicability and cal

ling each applicable alternative.
o An alternative is always 'applicable' (see note below).
o An alternative is 'called' by calling its rules in textual order as long as these

rule calls succeed.
o An alternative 'succeeds' iff all of its rule calls succeed.

P3:

ROOT text.

EXTERNAL set to plus one+ >N + Nl> = "/NCR",
set+ >N + Nl> = "SET",
set to minus one+ >N + Nl> = "DECR",
equal+ >N + >Nl = "EQUAL".

text: read+ N + /al, print + N + /bi, print + N + le/.

read + N> + > ABC:
read symbol + ABC, read + N 1 + ABC,

where rd plus one is + N 1 + N;
where rd is zero + N.

read symbol + >ABC: absorb + ABC.
where rd plus one is +, >N + Ni>: set to plus one + N + Ni.
where rd is zero + N>: set + 0 + N.

print + >N + >ABC:
where pt is zero + N;
print symbol + ABC, where pt is minus one + Ni + N,

print + N 1 + ABC.
print symbol+ >ABC: produce + ABC.
where pt is minus one + N> + >Ni: set to minus one + Ni + N.
where pt is zero + > N: equal + N + 0.

END

Fig. 7.

31

o A call to a production rule R 'succeeds' iff R has at least one applicable alter
native that succeeds.

o A call to a primitive predicate P may succeed or fail depending on the result of
the evaluation of the total function of P .

Note: these rules are more complicated than necessary, since the notion of applica
bility is superfluous; we shall, however, need this notion in our further discussion.

The implementation of the above flow-of-control rules requires automatic back
tracking (3.3.1.2). A traditional way to avoid backtracking is to require the grammar
to be of type LL(l). So we have two options:

o either supply a backtracking facility;
o or refuse backtracking and require the affix grammar to be of type LL(l).

ALEPH is intended for the writing of production software; here any backtrack
problems should be solved once at the writing desk, rather than over and over again
when the program is run. This has led us to choose the second option.

Now what does it mean for an affix grammar itself to be of type LL(l)? It should
be borne in mind that the LL(l)-property is important only because it allows simple

32

flow-of-control rules for a backtrack-free deterministic parser. We shall therefore take
these rules as a starting point:

o Call the initial rule; iff it succeeds, the input belongs to the language.
o A rule is 'called' by trying the alternatives in its RHS for applicability and cal

ling an applicable alternative (there can only be one such alternative).
o An alternative is 'applicable' iff its first rule call succeeds.
o An alternative is 'called' by calling its other rules in textual order as long as

these rule calls succeed.
o An alternative 'succeeds' iff all of its rule calls succeed.
o A call to a production rule R 'succeeds' iff R has an applicable alternative that

succeeds.
o A call to a primitive rule may succeed or fail depending on the prevailing con

ditions.

Moreover, we have an error condition:
o if any applicable alternative fails, the input does not belong to the generated

language (i.e., if an alternative is applicable it is the correct one).

We want to take over these rules as much as possible. In an affix grammar the
'first affix expressions' in the alternatives of a rule may involve primitive predicates,
more than one of which may succeed. This problem is (partly) solved by deciding to
try them in textual order. With some other modifications this leads us to the flow-of
control rules of ALEPH:

ALEPH rules:
o Execute the affix form in the root; it must succeed.
o An affix form is 'executed' by trying in order the alternatives in the RHS of its

rule for applicability and executing the first applicable alternative, if any.
o An alternative is 'applicable' iff its first affix form succeeds.
o An alternative is 'executed' by executing its other affix forms in textual order as

long as these affix forms succeed.
o An alternative 'succeeds' iff all of its affix forms succeed.
o An affix form which calls a (global) rule R 'succeeds' iff R has an applicable

alternative and the executed alternative succeeds.
o An affix form which calls an external rule E may succeed or fail depending on

the prevailing conditions.

These flow-of-control rules allow us to view the first affix form as an 'entrance
key': one enters the first alternative to which one has the right key. Once this alterna
tive has been entered no others can be reached anymore. An important consequence is
that there is only one way to reach a given affix form. This leads immediately to the
Central Theorem of ALEPH:

When the N -th affix form in the M -th alternative is reached, the
entrance keys of alternatives 1 through M - I have failed, and affix
forms I through N - I in this alternative have succeeded.

This Central Theorem is a great help in deriving assertions (see below).

We still have to investigate the error condition inherited. from the LL(l) flow-of
control rules; we shall postpone this until 3.3.2.5.

The above rules are (almost) all the flow-of-control ALEPH has: there are no

33

CASE-, WHILE-, DO-, REPEAT-, UNTIL-, or EXIT-clauses. Rather than emphasiz
ing repetition, ALEPH emphasizes decomposition: each problem is decomposed into
several alternatives with entrance keys and each alternative is decomposed into a
sequence of sub-problems (which may, of course, be congruent to the original prob
lem). In short, every problem is attacked by recursive descent: ALEPH encourages
structured programming in the traditional sense.

find name + >name + >list + entry>:
is empty + list, insert + name + list + entry;
is name on top + name + list, top of + list + entry;
next of+ list + listl, find name + name + listl + entry.

$ approximate declarations of the rules used:

is empty + >list:
$ succeeds if 'list' refers to an empty list.

insert + >name + >list + entry>:
$ insert the name in 'list' and put its position in 'entry'.

is name on top + >name + >list:
$ succeeds if the topmost name on 'list' equals 'name'.

top of+ >list + entry>:
$put the position of the top of 'list' in 'entry'.

next of+ >list + listl>:
$put the position of the next element of 'list' in 'list]'.

Fig. 8.

One problem associated with structured programming can be solved elegantly in
ALEPH: the multi-exit loop. A good example is searching a list for a given name; the
search process stops in one of two ways: the list is empty, or we found the name. In
the first case we want to insert the name, in the second we are satisfied with the refer
ence to it. Traditionally we would need a multi-exit loop or a global toggle; or we
would have to perform the same test twice. In ALEPH we simply state the alternatives
and tell what to do; see Figure 8.

It should be noted that, in theory, nothing prevents the programmer from using
the same technique in, say, ALGOL 68; the efficiency of the procedure-calling and
parameter-passing mechanisms, however, may make the choice less attractive than in
ALEPH.

3.3.2.4. Success/failure

We have assumed in the above that any rule can fail (but we have not based any
conclusions on that). It soon becomes clear, however, that some rules cannot fail;
there are four sources of non-failure:

34

o an external has an output affix D and its associated function is such that it can
always be satisfied by a correct choice of D (e.g., set to zero);

o a rule produces£;
o the rule is produce (3.3.2.2);
o a rule has an alternative consisting entirely of affix forms which cannot fail.

Through the last property the non-failure propagates through the text: since
where rd is zero cannot fail, read cannot fail, etc.

The Central Theorem shows us immediately that if any alternative but the last one
in a rule body has an entrance key that cannot fail, part of the RHS is inaccessible.

3.3.2.5. Side effects

It is the error condition for LL(l)-parsing in 3.3.2.3 which allows us to avoid back
tracking, in the following way. When a rule call fails, it has only called other rules
that failed. Now since the only terminal rule is absorb, and since absorb has no side
effect when it fails (3.3.2.2), no rule call that fails will have had side effects (by induc
tion). So nothing is modified on failure, and no backtracking is necessary. This is the
'No cure - no pay' principle: one may order something, but if one does not get it,
one does not pay.

We would certainly like to carry this nice feature of LL(l) parsing over into our
programming language. This is done trivially by forbidding any applicable alternative
to fail (either statically or dynamically). But we can do better than this.

Where a CF grammar only has rules (which have side effects on success), ALEPH

has rules (which also have side effects on success) and primitive predicates (which
never have side effects). Moreover, some of the ALEPH rules derive entirely from prim
itive predicates (3.3.2.2). So in ALEPH a successful affix form does not necessarily
imply side effects.

Consequently it is perfectly safe to allow failure of an applicable alternative, pro
vided no affix form with side effects has yet succeeded in the alternative.

Under this regime the 'No cure - no pay' principle holds:

If an affix form (= rule call) fails it has had no side effects.

This means that one can always ask for a service; if it cannot be rendered the
request fails and it is as if nothing had happened. The price for this is, of course, a
(compiler-checked) restriction on global side effects.

In 3.3.2.4 we have divided the rules into two groups, those that can fail and those
that cannot. Now we have a second division, in those that can have side effects (on
success) and those that cannot. These divisions are independent, so four classes (rule
types) result:

can fail cannot fail

can have side effects PREDICATE ACTION

cannot have side effects QUESTION FUNCTION

(A rule that can neither fail nor have side effects is still useful if it has output affixes.)

35

Note: the word 'PREDICATE' as a rule type has nothing to do with the word
'predicate' in 'primitive predicate'.

The above classification allows us to give a proper place to absorb and produce:
their rule types are EXTERNAL PREDICATE and EXTERNAL ACTION, respec
tively. It should be noted that all side effects treated here originate from these two
rules. We shall call these side effects 'external', as opposed to the 'global' side effects
we shall encounter in 3.3.4.

In principle the compiler could assess these properties, but it is much more useful
to have the programmer specify his intentions (opinions) and have the compiler check
them. The non-trivial redundancy (3.2. l.2) thus obtained is used for error detection.

Our program is shown in Figure 9; affixes are from now on written in small
letters.

P4:

ROOT text.

EXTERNAL
FUNCTION set to plus one+ >n + nl> = "/NCR",
FUNCTION set+ >n + nl> ="SET",
FUNCTION set to minus one+ >n + nl> = "DECR",
QUESTION equal+ >n + >nl ="EQUAL",
PREDICATE absorb + >abc = "ABS",
ACTION produce+ >abc ="PROD".

ACTION text: read+ n + /al, print + n + /bi, print + n + le/.

ACTION read+ n> + >abc:
read symbol + abc, read + nl + abc,

where rd plus one is + nl + n;
where rd is zero + n.

PREDICATE read symbol+ >abc: absorb + abc.
FUNCTION where rd plus one is + >n + nl>:

set to plus one + n + nl.
FUNCTION where rd is zero + n>: set + 0 + n.

ACTION print + >n + >abc:
where pt is zero + n;
print symbol + abc, where pt is minus one + nl + n,

print + nl + abc.
ACTION print symbol+ >abc: produce + abc.
FUNCTION where pt is minus one + n> + >nl:

set to minus one + nl + n.
QUESTION where pt is zero + >n: equal + n + 0.

END

Fig. 9.

36

We see the impact the rule type classification has on the program: for each rule it
is locally clear what to expect of it in terms of flow-of-control. The consistency of the
indications is checked by the compiler; here we have strong type checking, not for
data types but for rule types (algorithm types).

As with strong type checking on data the errors detected originate from incon
sistencies on behalf of the programmer. Suppose there is a rule xyz which has £ as one
of its alternatives and which is used for testing the presence of an xyz. Now, if xyz is
declared as a PREDICATE, the empty alternative will cause an error message, and if
it is declared as an ACTION, its use as a test will be noticed.

For an application of this type checking in the construction of a program, see
4.3.3.

3.3.2.5.1. Overriding the consistency check

The above works fine for a problem from which all backtrack has been removed,
but it effectively prevents the programmer from programming his own backtracking.
This situation is felt to be too restrictive. There are some legitimate reasons for a pro
grammer to want a failing rule to have side effects, e.g.:

o during debugging it may be necessary to trace the activities of a rule even if it
ultimately fails;

o the input grammar is not completely LL(l), i.e., at a few points the parser has
to peek ahead (such a grammar can sometimes be much simpler than a pure
LL(l) grammar for the same language).

We shall therefore allow failure after side effects, but only under protest: the com
piler gives a warning message (ALEPH Manual 3.2.2.b). Normally this serves as an
error message and the programmer can easily mend the situation.

3.3.3. Affixes

Rules in an affix grammar can have bound affixes (those that occur in the LHS
and in the RHS) and free affixes (that occur in the RHS only). In ALEPH these are
termed formal and local affixes, or 'formals' and 'locals'. To avoid errors we shall
require the locals to be declared in the LHS as well; they will be distinguished from
the formals by a preceding - (minus-sign).

The 'control' of an affix grammar (S) contains information about the nature of the
bound affixes (=formals) of a rule. They can be 'inherited' or 'derived', corresponding
in ALEPH to 'input' and 'output' formals, respectively. An input formal has a value
upon entry to the rule (is 'initialized'), an output formal must have received a value
when the rule ends.

Of course it is necessary that the input affixes of an affix form have all obtained a
value (are 'initialized') when the affix form is executed. Now, since

o the Central Theorem states that there is only one path from rule entrance to a
given affix form, and the C.T. gives that path,

o the initial states of all formals and locals at rule entrance are known from the
LHS, and

o for each affix form A on the path the effect on the actual affixes passed to it is
known from the LHS of A ,
the compiler can ascertain in an efficient way that the value of an affix will not
be used before that affix has received a value. No run-time checking is

37

necessary. A similar test can ensure that an output formal will always receive a
value.

The details of this test depend on the affix-passing mechanism.

3.3.3.1. The affix-passing mechanism
The affix-passing mechanism has to obey two conditions: the value of an inherited

affix must be available inside the rule, and the value obtained by a derived affix inside
the rule must be made available to the caller.

If we do not allow the value of an affix to be changed (once it has obtained a
value), then the story ends here: all affix-passing mechanisms which conform to the
above conditions are indistinguishable (except, perhaps, as to efficiency).

At the time of the design, however, we did not seriously consider the possibility of
programming with initializable constants only, and felt that variables were indispens
able. However debatable this decision may be (3.6), it has led to an interesting exten
sion of the 'No cure - no pay' principle to local variables.

Since rules need the possibility to change values of affixes of calling rules, it seems
that we need at least call-by-reference (or a more general mechanism). Call-by
reference, however, can surprise the programmer painfully with invisible aliases, as in:

ACTION produce a orb + p> + q>:
set + p + /al, set + q + /bi, produce + p.

where a call produce a or b + x + x produces 'b'. Moreover, backtrack rears its ugly
head again when a rule fails after having changed the value of an (output) affix.

On the other hand it is clear that call-by-value alone is insufficient.
A good in-between is found in 'copy-restore': upon rule entry all input affixes are

copied to a local work space, and upon rule exit all output affixes are restored from
that local work space. If we now suppress the restoring if the rule fails ('copy-maybe
restore'), no effects on affixes will propagate upwards upon failure, and a failing rule
will never spoil information: the 'No cure - no pay' principle also holds for affixes.

Under these circumstances we can easily introduce 'in-out-affixes', which must
have a value upon entrance and which return the (possibly changed) value; notation:
+>tag>.

The copy-maybe-restore mechanism allows us to view the (formal and local) affixes
as local variables, some of which are already initialized upon rule entrance and some
of will be returned to the caller if and when the rule succeeds. This mechanism is easy
to explain and efficient to implement. It aids programming in that it supplies
automatic backtracking on local variables.

The introduction of variables allows a shorter form of our program, as given in
Figure 10.

3.3.4. Globals

ALEPH is intended for the wntmg of fair-sized programs like compilers, text
justifiers, etc. With such programs it often happens that a rule at the periphery of the
directed graph (3.3.2.l) needs a piece of information which has to retain its value to
the next call of that rule. Examples are the line number and page heading for a print
rule, and the name list (identifier table) in a parser rule which handles identifiers.

38

PS:

ROOT text.

EXTERNAL
FUNCTION increment by one+ >n> = "/NCR",
FUNCTION set+ >n + nl> = "SET",
FUNCTION decrement by one + >n> = "DECR",
QUESTION equal+ >n + >nl ="EQUAL",
PREDICATE absorb+ >abc = "ABS",
ACTION produce+ >abc ="PROD".

ACTION text - n:
read + n + /al, print + n + /bi, print + n + le/.

ACTION read + n> + >abc:
read symbol + abc, read + n + abc,

where rd plus one + n;
where rd is zero + n.

PREDICATE read symbol+ >abc: absorb + abc.
FUNCTION where rd plus one + >n>: increment by one + n.
FUNCTION where rd is zero + n>: set + 0 + n.

ACTION print + >n + >abc:
where pt is zero + n;
print symbol + abc, where pt minus one + n,

print + n + abc.
ACTION print symbol + >abc: produce + abc.
FUNCTION where pt minus one + >n>: decrement by one + n.
QUESTION where pt is zero + >n: equal + n + 0.

END

Fig. 10.

VW-grammars and affix grammars accommodate these entities by aggregating
them in metanotions or affixes and passing them up and down all rules concerned.
The NEST in the formal grammar of ALGOL 68 [VAN WIJNGAARDEN 75] is a good
example.

From a practical point of view there are two objections to this technique. Given
the affix-passing mechanism explained above (3.3.3.1) it results in massive copying
and restoring of large data structures; and it forces the programmer to specify long
tails of affixes to his rules.

The latter problem can be obviated by taking many (disparate) affixes together in a
single affix which is then passed to all rules concerned. It is clear that we loose struc
ture this way: many rules get access to affixes they do not really need.

Once we have lumped into one affix all affixes in which there is more than local
interest, we can (partly) solve the former problem: make that affix implicitly accessible
to all rules. In fact we have reinvented global variables. Of course this solution comes

39

at a price: we loose the automatic backtracking which we had when all affixes were
still local (but we keep it for those that remain local).

Fortunately this solution does not really create a new problem. We already had
rules which have (external) side effects because they absorb input or produce output.
Now we also have rules that have (global) side effects because they modify global
data. The same criteria for backtracking hold (see in particular 3.3.2.5.1).

A special case is the modification of global data through output affixes of a
FUNCTION or QUESTION. Thus an affix form can have side effects, even if the
called rule cannot. All this is covered in ALEPH Manual 3.9.l.

The introduction of globals allows us to relieve absorb and produce of their excep
tion status. All input and output in ALEPH is done through files, and, in the case of
character 1/0, through 'charfiles'. Notation:

CHARFILE input= >"INPUT", output= "OUTPUT">.

Note the use of the right-symbol > ; placed in front it indicates that the file has been
prefilled, placed behind it indicates that the file will be passed back. Now absorb and
produce just correspond to two externals which receive a file as an affix:

EXTERNAL
PREDICATE get char+ '"'file+ char> = "GETC",
ACTION put char+ "''file+ >char= "PUTC".

The difference between global and external side effects has vanished.

3.3.5. Affix rules

The affix rules of an affix grammar correspond to data types in a programming
language. Although much can be said about the realization of those data types, we shall
not pursue this subject any further in this book. The actual decisions in ALEPH, espe
cially with respect to data-aggregating mechanisms, will be explained in 3.5.

3.3.6. The final program

Given suitable external routines INCR ... PROD, program P 5 is an executable
ALEPH program. A number of externals, however, have been predefined in ALEPH, and
it is good practice to restrict oneself to these. Since user-declared externals are not
automatically portable they should be used for exceptional purposes only.

INCR and DECR are predefined and called incr and deer. There is a special nota
tion for setting a variable to a given value:

o-n
and, likewise, equality can be tested by

n = 0

produce is handled by put char (3.3.4); get char behaves like absorb, but only par
tially so. get char yields the next character from the file and fails on end-of-file (it
would be unpleasant to have to find out what the next character was by using absorb
alone!). So we have to rewrite absorb, using a global VARIABLE.

The final form of the program is given in Figure 11 (comment behind $s).

40

P6:

ROOT text.

CHARFILE input = >"input", output = "output">.

VARIABLE char = I I. $some suitable initialization.

CONSTANT end of file = max char + 1. $ 'max char' is predefined.

PREDICATE absorb + >abc:

char = abc, get next char.

ACTION get next char:
get char + input + char;

end of file ~ char.

$ if it is there.
$ otherwise.

ACTION text - n: get nexi char: $the real initialization.

read+ n + /al, print + n + /bi, print + n + /cl.

ACTION read + n> + >abc:

absorb + abc, read + n + abc, incr + n;

o~n.

ACTION print + >n + >abc:

n = O;
put char + output + abc, deer + n, print + n + abc.

END

Fig. 11.

3.3.7. The notation

A few words about the notation are in order. There has been strong pressure from

prospective users against the use of pluses as affixers in favour of a notation with

parentheses and commas, as in the ALGOLs, Pascai, etc. We have resisted this pressure,

mainly because it was directly connected with the wish to write (nested) expressions as

affixes. The values of these expressions, however, have to come from rule calls, which

may fail. The idea clearly runs contrary to the philosophy of ALEPH, where the 'value'

a rule returns is its success or failure and where computational results are passed on

as affixes.

It should also be noted that the ability to return computational values is only a

partial blessing: as soon as a procedure returns more than one result, the programmer

has to resort to, possibly legalized, trickery. A good example is the integer division

which naturally yields both quotient and remainder. No major language of today

makes both results simultaneously available (but see divrem, ALEPH Manual 5.2.l).

3.3.8. Conclusion

We have shown that by exploiting the analogy between grammars and programs,

and between parsing and problem solving, a practical language can be designed that

has some properties not generally found in programming languages.

41

Among these properties are:

o a simple and effective flow-of-control based solely on selection, decomposition

and procedure calling;

o a Central Theorem which states in simple terms the conditions which apply
when a given construct is reached;

o an efficient compile-time check on the initialization of variables;

o a firm and compiler-checkable concept of side effects.

A few other features indispensable to a modem programming language, like excep
tion handling, modularization or a programming environment, do not follow directly

from this analogy. For the development of CDL2 in this direction see [BAYER et al. 81].

3.4. The portability of ALEPH programs

ALEPH is, in essence, a very simple language. Broadly speaking, its basic building
actions are:

o pass parameter,
o call subroutine, and
o jump conditionally on boolean result,

which can all be implemented with reasonable ease on any reasonable machine. Dur

ing the design of ALEPH care has been taken not to spoil this simplicity, and with that

the machine-independence and portability, more than necessary. As a result of this,

most of the portability problems listed in [TANENBAUM, KLINT & BOHM 77] cannot

occur in an ALEPH program. Nevertheless there are some obstacles which will or may

have to be faced by the programmer who attempts to transport an ALEPH program

from a source machine to a target machine. In the order presented in [TANENBAUM,

KLINT & BOHM 77] they are:

1. ALEPH may not be available on the target machine.

2. The program may use 'user-externals' (ALEPH Manual 5.1) or local 'pragmats'.

3. The program may rely on numerical values of the character set.

4. The target machine implementation may have more restrictive overflow condi
tions.

5. The target machine implementation will have a different idea about the contents
of the string-denotation in a file-description.

6. The program may generate machine-dependent output, even if it is itself
machine-independent (i.e., besides being portable, a program should be retarget
able).

7. If two or more co-operating ALEPH programs are to be transported, they may run
into communication problems.

All the problems apply a fortiori to the ALEPH program we are concerned with

here, i.e., the ALEPH compiler. We shall now consider each of these problems in turn,

both for the ALEPH compiler and for the general ALEPH program.

42

3.4.1. ALEPH may not be available

This problem applies only to the compiler. As explained in 4.2, its solution is sup
ported by the use of ALICE and by bootstrapping (4.5).

3.4.2. User-externals and local pragmats

Neither user-externals nor local pragmats should occur in portable software. Care
has been taken in the design of the compiler to avoid algorithms which would make
user-externals desirable. For example, hashing methods for the identifier-list algorithm
have been rejected, since calculating hash values efficiently in a machine-independent
way is difficult, because of overflow problems and limitations in the data access. See
[GRUNE 77].

3.4.3. Numerical values of the characters

The bit patterns, and thereby the numerical values, assigned to characters are gen
erally machine-dependent. The use of a user-external to obtain such values efficiently
is undesirable, as indicated above. This problem can mostly be avoided by using
character-denotations whenever possible. If, for efficiency reasons, it is desirable to use
characters as indices in indexing a fixed array (as it is in the ALEPH compiler), the
contents of the array can be written in a code-independent way using character
denotations and then be reordered at run time so as to fit the collating sequence of
the actual character code. For details see [VAN DUK 82].

3.4.4. More restrictive overflow conditions

In general, an ALEPH program may run into overflow problems in one of three
ways: an arithmetic operation may generate a result outside the integer capacity; the
program may run out of memory space; and a stack may run out of virtual address
space (an overflow condition specific to ALEPH). All three are a definite threat to por
tability.

Part of the integer overflow problem is alleviated by the arithmetic operations of
ALICE: the compiler need not do any arithmetic and can delegate all of it to ALICE in
the form of calculations (ALICE Manual 3. l.l). It should be noted that, regardless of
overflow conditions, the compiler has to delegate some of it to ALICE, since it does not
know various implementation-dependent values like max char, int size, min addr, etc.

This does not mean that arbitrarily large results can be obtained; if a result gets
too large, an ALICE calculation will detect the overflow.

In the compiler design arithmetic has been restricted to the bare minimum, and
care has been taken to ensure that results will remain less than 2 15• It is clear that
ALEPH will not run reasonably on a machine with smaller integers anyway, for lack of
virtual addressing space. (This implies that the machine realized by ALICE has to use
at least two bytes for modelling integers on byte-oriented target machines.)

The compiler is very careful about memory usage. Any stream of information
which is produced sequentially and consulted sequentially is kept in a file rather than
in a stack.

Memory requirements could be lowered still further by putting the direct-access
information in secondary memory through a background-pragmat (ALEPH Manual

43

6.1), but this solution is not very practical in porting the compiler, since the
background-pragmat will probably not be one of the first features to be implemented
at the target site.

The amount of virtual address space available to a stack can be controlled by the
relative-size in its stack-description. It can be adjusted to the local situation, but only
after the compiler has been installed. Therefore, the relative-sizes in the distributed
compiler are adjusted to the amounts of virtual address space needed for the compila
tion of the compiler itself. This can, however, be done only approximately, since, e.g.,
the virtual address space occupied by strings is implementation-dependent. The
relative-sizes are based on a string packing of one character per word.

3.4.5. Strings in file-descriptions

The nature and amount of the information a program has to know about the files
it uses differs greatly from operating system to operating system [NOS/BE 79,
RITCHIE & THOMPSON 74]. The most universal properties can be specified in a
machine-independent way in ALEPH. These are whether the file is to be read or to be
written, and whether it contains characters or integers (ALEPH Manual 4.2).

Further information can be supplied in a string; this string is passed unmodified to
ALICE in a file-administration macro sequence (ALICE Manual 3.2.3.1). The contents
will be installation-dependent; on the Cyber, e.g., it contains the file name, an indica
tion whether the file contains printer control characters, an indication whether the file
is allowed to reside on magnetic tape and some information on how the file name can
be changed upon program invocation. The receiver has several options here:

o he can adapt his (first version of the) ALICE processor to this convention,
o he can change the strings in the ALICE file (they are easy to find),
o he can take the file name to be the name of a data-description in the operating

system, if his operating system works that way.

It should be noted that the problem of machine-independent file identification is
especially serious in compilers. Many portable user programs need only a standard
input file and a standard output file, as they are predefined, e.g., in ALGOL 68 [VAN
WIJNGAARDEN 75] or c [KERNIGHAN & RITCHIE 78]. A compiler, however, will need
scratch files, libraries, several output files, etc.

3.4.6. Machine-dependent output

There are several situations in which a program which is by itself machine
independent produces machine-dependent output. Examples are compilers and
graphic display systems. Porting such programs can be simplified by introducing a
machine-independent problem-oriented interface. All output of the program is formu
lated in terms of this machine-independent interface, thus enabling the program to be
portable. The output is then passed to a (hopefully simple) post-processor that con
verts it into machine-usable form. In the case of our ALEPH compiler the interface is
provided by ALICE.

We shall not address the problem of machine-dependent input here.

44

3.4.7. The need for job control

A job-control language is used to describe the general logistics of a job: the origin
of input files, the destination of output files, the sequence of programs to be called,
etc. It will be used extensively in the bootstrapping process described in 4.5, and the
receiver is expected to be reasonably proficient at it. It is totally different for different
operating systems, so the best a writer of portable software can do is to minimize the
requirements.

The minimal requirements in the case of the compiler are:
o there is one input file: the ALEPH source text,
o there are two output files: the listing and the ALICE code,
o there is one program: the compiler itself.

Such an arrangement, however, would mean that all external declarations must be
built-in and all intermediate results kept in memory: memory requirements would
become appalling. Therefore, the external declarations are kept on a second input file
and are read as necessary; several scratch files are used.

The compiler is distributed as one program. As explained in 4.3, the ALEPH com
piler is not really an N -pass compiler; rather, there is an information-collecting
phase, which fills stacks and files, followed by a number of information-processing
phases, which produce the various parts of the ALICE code from this information. If
memory shortage requires so, some of these phases can be split off into a second
separate program. The pertinent information will then have to be passed on by means
of ALEPH 'datafiles'.

3.5. Data structures in ALEPH

Data structures present themselves in the design of ALEPH in a natural way as
affixes. In principle each affix comes with a grammar which produces all 'values' the
affix may take. Such a value is passed around from rule to rule and is finally handed
to an external rule (a 'primitive predicate' of the affix grammar) that may operate on
it. The external rule may create new values and succeed or it may fail. The program
mer should be able to specify the internal structure of such a rule.

The first thing an external rule will in general do is to take apart the affix value,
i.e., to parse it. For that, however, the control structure of a normal ALEPH rule is
quite adequate and we don't need the escape mechanism of an 'external rule'. Like
wise, new affix values can be created through normal ALEPH rule calls.

If we can use the terminal symbols of the affix grammar (the set A1 in AG I in
3.3.1.3) as constants, the only 'external rules' we need are comparison and copying,
plus a storing and addressing scheme. These are provided as the ALEPH primitives
identity, transport, extension and element.

This set may be sufficient in theory, but it is not efficiently usable: we are reduced
to doing unary arithmetic (which should not amaze us, since it is the same with affix
grammars!).

In ALEPH as it stands now the only basic data type is the integer. Names can be
given to integer constants, integer variables, lists of integer constants and lists of
integer variables, through the following language constructs:

o constant-descriptions, which give names to (compile-time) constants;

45

o variable-descriptions, which declare global integer variables; initialization with a
compile-time constant is obligatory;

o table-descriptions, which declare "tables" of integer constants, the "elements";
the elements are grouped in "blocks", a block is indexed by an integer (a
"pointer") and an element is selected from a block through a named "selector";

o stack-descriptions, which declare "stacks" of integer variables; a "stack" is like
a table, but the values it contains may be replaced and blocks may dynamically
be added to or removed from the right end (see 3.5.1).

There are two more language constructs to facilitate data handling:
o string-denotations; strings can only reside in tables and stacks where they

appear as lists of integers in a machine-dependent format;
o file-descriptions, which provide communication channels with the world.

Integers pass through them, interpreted either as integers or as characters.
There is a special way to send pointers to another program (ALEPH Manual
4.2.2).

Data items can be handled either by means of the four ALEPH primitives men
tioned above, or through the standard external rules available to the user; for the
latter see ALEPH Manual 5.

3.5.1. Stacks

A flexible information storing device is an important facility for a compiler writer,
or for the programmer of any fair-size program, who has to cope with accumulating
information of unpredictable size.

Fixed-size arrays, still often used in compilers and editors, use memory inefficiently
and tend to be too small at inconvenient moments. Linked lists are better, but need
room for the links, provide no direct access and have deallocation problems.

The ALEPH 'stack' can be viewed as an extensible array of blocks of elements
(integers). A block can be reached by indexing with a pointer and an element in a
block can be reached by selecting with a name. The right end can be used in stack
fashion: a block can be pushed onto it through an extension and the right-most block
can be removed through a call of unstack. Single elements cannot be pushed on a
stack (unless the stack is defined so that one element constitutes a block).

The integers used for indexing a stack are chosen by the system, in such a way
that they identify the stack they belong to. The programmer can use a pointer
initialization or a limit to get hold of such a value once a block has been added to the
stack and the standard-external was allows him to check whether a given integer value
is a valid index to a given stack.

There are no direct limitations to the size of a stack. The collection of stacks in a
program may grow as far as the operating system allows. Since the system may con
ceivably run out of integer values to be used as indices, very large stacks may cause
problems (ALEPH Manual 4.1.4).

For the programmer stacks are about as convenient as heap-generators in
ALGOL 68: on the one hand one has to be more careful about. deallocation, but on the
other hand they allow direct access. The run-time efficiency of stacks, however, is
much greater than that of heap-generators. The latter require a garbage collector
whereas the former need a simple shifting algorithm only. Implementation note: the
rule-call stack is treated internally as a normal ALEPH stack.

46

In the present implementation the contents of the stacks lie in a contiguous piece
of memory. If the extension of one stack causes it to bump into the next, the available
space (possibly increased by a systems call) is redistributed by shifting the contents.

A disadvantage is that since all indexing is done with integers, each access to an
element has to go through the administration block of its stack.

Only global stacks are available. There are no fundamental difficulties with local
stacks, but there is no syntax for them. Stacks can, however, be passed on as parame
ters.

3.6. Evaluation of some compromises

In the design of ALEPH two major compromises have been made: the introduction
of variables and that of compound-members.

The original design left us with data items that are declared, receive a value once
and remain unaltered until the end of the declaration range. If the environment needs
modification a new range must be opened, a new data item must be declared and it
must be set to the modified value by passing it as a inherited affix to an appropriate
rule. Now this is fairly acceptable for small data items, but it is hard to implement
efficiently for large data structures like name-lists, etc. Furthermore this approach
causes a considerable growth of the run-time stack. On the other hand, all these prob
lems yield to optimization techniques, especially in ALEPH, where the flow-of-control is
very much restricted.

In total, the introduction of variables has probably improved the language more in
usability than it has damaged it in complexity (see, however, [WULF & SHAW 73]).

The introduction of compound-members was a matter of convenience for the pro
grammer. It is only slightly more work to write a separate rule-declaration for every
compound-member, but the main burden comes from the need for meaningful names.
On the other hand, the existence of compound-members has created big problems, as
there are:

o the 'spoil and fail' effect, which necessitates the insertion of hidden locals;
o the determination of the rule type of a compound-member.

Both the language and the compiler would have been simpler without compound
members, probably without great detriment to its usability. The introduction of
compound-members is slightly regretted.

Of the minor compromises, two will be mentioned here: the introduction of the
classification and the decision that the arithmetic operations be FUNCTIONs rather
than QUESTIONs.

A classification (ALEPH Manual 3.8) looks like, and performs functions similar to,
an alternative-series (ALEPH Manual 3.2.2), except that the selection of the alternative
is done by sequentially comparing the value of a variable to a number of constant
ranges rather than by sequentially trying 'entrance keys'. Although essentially
superfluous, it is a well-known language feature (CASE, SWITCH and the like) that
helps the programmer in expressing the concept of obtaining an action by indexing,
and helps the implementer in optimizing the code. It can be implemented without
undue difficulty and is responsible for 6 of the 83 ALICE instructions (4.4.1).

For some time we have played with the idea that, e.g., the plus on integers is in
essence a request rather than an order, since the result may not exist in a given

47

implementation due to integer overflow, and consequently plus should be declared as
a QUESTION {see (BOSCH, GRUNE & MEERTENS 73, 3.3]). Likewise, accessing an
indexed element of a list should be considered a request rather than an order, since
the indexed element may not exist. Because of the flow-of-control rules of ALEPH
(3.3.2.3) this would force the programmer to supply alternatives for the case that the
request failed. Ultimately the only run-time error messages from any ALEPH program
would be 'Memory resources exhausted' and 'Allotted time exceeded'.

However attractive this concept may be, the problem is that the user cannot gen
erally supply a reasonable alternative if the result of an arithmetic operation has no
representation on his machine, except to abort the program (see, however, 3.3.8). In
the case of the indexed element he will not supply an alternative since through using
the index he has shown his conviction of its appropriateness, which, if he had doubted
it, he could have verified through a call of was (ALEPH Manual 5.2.4).

48

4. ON THE DESIGN OF THE ALEPH COMPILER

4.1. History of the compilers

The first COL translators, written by C.H.A. Koster, were combinations of trans
ducers and macro processors, which transformed the input text (in COL) piecemeal
into output text (in ALGOL 60). Hardly any context checking was done at this stage,
nor was it really necessary since the subsequent ALGOL 60 translation would catch
most errors (but since the ALGOL 60 translator was operating on the wrong level, diag
nostics left much to be desired). Some syntax checking was provided, since the trans
lator was driven by the grammar of COL, but context checking in a language that does
not restrict the order in which the declared items occur requires an amount of
foresight that can only be achieved by a multi-pass process.

Later versions (like the one published in [KOSTER 7la]) introduced some measure
of context checking, though remaining one-pass. Information about the use of an
identifier was collected, and, when its declaration was met, a consistency test was per
formed. This collecting of information was done solely for the benefit of the pro
grammer, so as to provide him with early warnings about errors; it played no role in
the transformation process itself.

All these versions of the translator ran on the Electrologica EL-X8.
About the same time that ALEPH emerged and the need for an efficient ALEPH com

piler arose, the EL-X8 ceased to be available and the project had to be moved to a
Control Data Cyber 72. ALGOL 60 on this machine was not well supported. That, and
the wish for an efficient compiler, led to the decision to generate COMPASS (the assem
bler for the Cyber 72) code [COMPASS 79] rather than ALGOL 60.

Thus the first ALEPH compiler, written by R. Bosch, was immediately involved in a
fairly complicated cross-bootstrapping process between ALGOL 60 on the EL-X8 and
COMPASS on the Cyber. The shock was eased by the use of a set of COMPASS macros
that mimicked the primitives needed by ALEPH, thus putting a large part of the bur
den on the macro processor incorporated in the COMPASS assembler.

If context checking through ALGOL 60 was unsatisfactory, context checking through
COMPASS was non-existent. Moreover, the introduction of the the copy-maybe-restore
mechanism (3.3.3.l) made context knowledge indispensable, since it needs information
about the affixes for its correct translation.

So Bosch modified the compiler to make two passes over the text, do context check
ing and produce directly, thus removing the last reminiscences of a macro processor. It
is this compiler that was used to implement the portable ALEPH compiler described in
this book.

4.2. The design technique

4.2.1. Design criteria

The ALEPH compiler mentioned above has been a workable product on the Control
Data Cyber since 1974. However, originated in a turmoil of changing languages and
machines in an environment where even the physical transport of files was a problem,
it shows all the signs of having grown rather than having been designed.

Since one of the main purposes of ALEPH was to serve as a vehicle for portable
compilers, its portability was of great importance. Now, the old compiler was written

49

with only one purpose in mind, to get ALEPH running. It was deemed impossible to
convert it into a portable compiler.

The design of the new compiler focuses on two issues:
o portability,
o minimal memory requirements (equally important for portability).

In 3.4 it is shown that an ALEPH program in general is fairly machine-independent.
But if that program is a compiler we run into a specific problem: the . machine
independence of the generated code ('retargetability'). The approach to its solution is
explained below. For the minimal memory requirements, see 4.3. l.

An additional requirement was that the design technique should be so simple and
effective, that the design could be done by a single person. This resulted in the factor
ization of the design as explained in 4.2.3.

4.2.2. The portability of the compiler

The machine-independence of CDL was based on the idea that the compiler should
be given, in addition to the program to be compiled, a description of the target
machine in some formalized form. The compiler would then turn out object code
tailored to the target machine.

The CDL compiler did this by reading, in a fixed order, pieces of text to be pro
duced for, e.g., 'beginning of procedure', 'jump to label', etc., and consequently a
machine description had to be given in these terms~ This works well if the machine
lends itself to expressing these primitives (and, since that machine was ALGOL 60, it
did) and if the changes in the machine are small and superficial (like a change from
ALGOL 60 in underline-style to ALGOL 60 in apostrophe-style).

As soon as one wants to compile towards a totally different machine, e.g., an
assembler, this scheme breaks down. The required primitives just aren't there. It has
been suggested that for target machines of this type the machine description should
include items like the number of registers which are available for certain purposes, the
properties of the arithmetic used, the alignment requirements for data, etc. [BOURNE,
BIRRELL & WALKER 75]. Although a modicum of machine-independence can be
reached this way, it turns out that it is difficult to give a correct machine description
of this nature. Now, if the compiler and target machine are located close together,
repeated corrections of the machine description are a minor nuisance, but if they are
far apart this technique gives rise to the proverbial debugging loop across the Atlantic
(RICHARDS 77].

In the mid seventies a new concept became popular, the 'machine-independent
intermediate code' [BROWN 77]. The idea is that a compiler at site A translates a pro
gram into this intermediate code such that the resulting translation is not a grain
more machine-dependent than the original. This translation is then shipped to sites
B to Z where it should be possible to transform it, with reasonable effort, into some
thing locally usable.

It should be noted that for each program there is only one translation into the
machine-independent code, regardless of the actual machine which does the translat
ing. So the whole process could equally well be performed at site K and the (identi
cal) result sent to sites A · · · J, L · · · Z .

The success of this scheme hinges on the choice of the machine-independent inter
mediate code. We have two options here: either to use an existing widely available

50

language or design a new code tailored to our needs. Of the widely available existing
languages only FORTRAN is a candidate. It was rejected off-hand because of its obvi
ous draw-backs. In hindsight it may have deserved a better chance than it got. Its
draw-backs are indeed obvious: recursion is pretty hard to simulate in FORTRAN,
input/output can only be done a line at a time, and dynamic memory management is
alien to FORTRAN. Its advantages as an intermediate code are much less obvious:
programs using a small, well-chosen subset of FORTRAN are quite portable, there are
excellent optimizing compilers for it, and the above problems can be solved in a prac
tical way: see [WAITE 75, p.315] for a (partial) solution.

A.P.W. Bohm has studied the problem of designing a machine-independent inter
mediate code for the specific purpose of implementing ALEPH. This has resulted in
ALICE, ALeph Intermediate CodE, which is the code produced by the new ALEPH com
piler. ALICE is described in detail in [BOHM 77]; the reader can find a short introduc
tion in 4.4.1 in this book. Bohm has written a pilot implementation of ALICE on the
PDPl l/45 under UNIX [RITCHIE & TuoMPSON 74]; it is described in [BOHM 78].

ALICE is a very clean interface and through its cleanness has been a great help in
structuring the design and implementation of the compiler. It is doubtful if FORTRAN
could have rendered a similar service.

The following paragraph treats the role that ALICE has played in the design of the
compiler.

4.2.2.1. ALICE as a target code

Prime concern in the design of ALICE has been the ease of implementation on a
variety of machines, so that a receiver will, hopefully, have minimal trouble in imple
menting it on his local machine. Equally important, but needing less emphasis, was its
suitability for expressing the semantics of ALEPH. Concern for the ease of translating
ALEPH into ALICE code, however, came only third. In the design of ALICE simplicity
(and versatility) of translation has always prevailed over simplicity of generation. One
reason for this is that translation must be done for each machine type on which
ALEPH is to be installed, whereas generation needs to be done only once. As a conse
quence ALICE is a peculiar machine for which it is not particularly easy to generate
code.

The actual situation is not as bad as it sounds. ALICE may pose many require
ments, it is also well-structured enough that these requirements can easily be localized
and dealt with.

One way of localizing all requirements is the bottom-up approach. We start with
the ALICE macros as building blocks. Each needs zero or more parameters and sup
plies zero or more parameters. We then combine these building blocks into larger
units, each needing and supplying parameters, until we have a set of building blocks
which can support an ALEPH program.

A disadvantage of this method is that the usefulness of a building block becomes
apparent at a very late stage only, and one may easily design superfluous building
blocks.

In a top-down design, however, one never loses sight of the purpose, since it is the
only thing pursued. Here we start from the ALEPH constructs and work our way down
along the 'tree of obligations'; for each obligation:

51

o either we convince ourselves that it is trivial to fulfil,
o or we subdivide it into further obligations.

The crucial point is the subdivision. Each subdivision defines an interface, be it
ever so simple, and the art of top-down design is actually the art of choosing inter
faces.

To see this process at work we shall show it below (4.2.2.2) in sufficient detail for
the ALEPH construct identity (i.e., comparison). We shall perform it step by step and
shall let ourselves be guided only by the principles of top-down design and the struc
ture of ALICE.

The analysis performed there makes it clear that no (or hardly any) ALICE code can
be produced until the entire ALEPH program has been read and digested. ALICE code
is then produced from the digested form. This does not necessarily imply two passes
over the input; only if the ALICE translation more or less follows a version of the
ALEPH source text (as modified by the first pass) can we speak of a 'second pass'. In
practice it hardly ever does: the information is collected in stacks, from which the
appropriate ALICE code is generated, often in an order which is totally unrelated to
the order in the source text.

The strict division between an information-collecting phase and an information
processing phase has the additional advantage that all information for semantical
error-detecting and error-reporting is available when it is needed.

4.2.2.2. An example

Suppose we have found in the ALEPH text an identity (ALEPH Manual 3.4.l)

xyz = 72

and we want a translation into ALICE. The corresponding ALICE form is a statement,
which is either a call, an ext-call or a primitive (ALICE Manual 3.3.3). Now a call
requires an identification of the ALEPH rule to be called, which is missing, and the
primitives are of a different nature altogether. So an ext-call is indicated, with an stag
EQL. Such an ext-call (ALICE Manual 3.3.8.1) requires a description of its input
parameters xyz and 72 in the form of a copies-to-input-gate.

If we assume for the sake of argument that xyz is a global variable, its copy-to
input-gate amounts to load-variable-in-v _reg (the structure of an ALICE program is
briefly explained in 4.4. l):

LVVrepr_of_xyz $ Load V _reg from Variable

But the generation of this statement requires a repr _of_xyz, which can only come
from a preceding ALICE variable-description

,F I ,F ,F t " " VAR repr_o1 _xyz,vare1,repr_o1 _nex _var, xyz

This in turn requires a valref: the initial value of xyz, which must come from some
preceding value-definition or calculation, e.g.,

/NT valref,O

(the second repr in the variable-description is the repr of the next variable-description,
a complication we are not concerned with at the moment).

So the use of the L VV-macro requires the foresight of having already generated a
corresponding VAR-macro which again requires the foresight of having already

52

generated an /NT-macro.

Likewise the translation of the 72 requires an LVC-macro which requires a repr
which must come from a preceding CSS-macro and a valref which must come from
an /NT-macro preceding both other macros. Moreover, all /NT-macros of the whole
program have to come together (in an ALICE values) and so have all VARs and CSSs.

Now it might be argued that all these macros could be generated when the need
for them becomes apparent, that each could carry an indication of its eventual posi
tion in the ALICE-file, and that sorting could finish the job (a technique already used
in one of the first FORTRAN compilers [SHERIDAN 59]). For simple cases this works,
but the scheme fails already on indexed elements:

next*list[p]

will be translated using

IJP
LVV repr _of_p
LAG repr _of _list
LVI number _of_ next

$ Index Input Parameter
$ Load V _reg from Variable
$ Load A _reg from Global
$ Load V _reg Indexed

The last macro requires the position of the field next in a block on the stack list,
knowledge which can only be obtained from the ALEPH stack-description which maybe
we have not seen yet.

All this would be simpler if ALICE allowed a construction like

JIP
LVVp
LAG list
LVI next

The original sequence, however, is easier to translate to machine code and therefore
preferred (4.2.2.1).

4.2.3. The four stages of the design

The above observations were made the basis of the design technique. It was clear
from the onset that the design technique had to be structured in some way or another,
since the design was a one-person project and the complexity of even a relatively
small compiler as for ALEPH is too great to allow one person to master all the details
all of the time. Moreover, we already possessed an ALEPH compiler designed by accre
tion and erosion, a design technique (or lack thereof) which had yielded a clumsy
compiler, which, though working, was infested with traces of design changes, ad hoe
solutions and unexpected machine-dependencies.

The design technique in principle consisted of four stages:

o Stage 1: All ALEPH constructs were considered and for each an ALICE transla
tion was chosen.

o Stage 2: For each ALICE construct (comprehensive constructs as well as macros)
a list was made of the information items it needed, in the context in which it
occurred.

53

o Stage 3: Ways were devised to extract this information from the source text,
resulting in algorithms which acted as if each were a separate pass over the
source text.

o Stage 4: The algorithms were supplied with concrete data representations and
combined into a single compiler.

In practice Stage 1 turned out to be almost trivial: because ALICE was specifically
designed as an ALEPH intermediate code, the ALICE translation was obvious.in all but
a few cases. Only when dealing with the typical ALEPH flow-of-control operators like
comma-symbol, semicolon-symbol and compound-member, one has to realize that their
semantics is expressed in ALICE through the true- and false-addresses. If proper atten
tion is paid to this, Stage 1 can be incorporated in Stage 2.

Stage 2 is performed in top-down fashion. Our first aim is to produce an ALICE

program, which supplies us with the secondary aims of producing the ALICE items
string, status-information, values, data, communication-area and rules, the first of
which requires the 'title of the program', etc., etc. A representative part of the process
is described in great detail in 5.1.

Stage 3 was performed on the pattern left behind by Stage 2. This pattern con
sisted of lists of requirements for information to be extracted from the source text and
abstract algorithms waiting for further information about their data types. Now that
all parts of the ALICE program have been considered once, the details can be filled in.
A representative part of Stage 3 is described in 5.2.

It turned out that Stage 4, choosing concrete data types and merging the algo
rithms into a single compiler, was easily combined with the actual writing of the com
piler. The compiler was written by the programmer of the project, F. van Dijk,
directly from the results of Stage 2 and Stage 3, as published. The compiler is
described in [VAN DIJK 82).

4.2.4. Evaluation

The structured approach as explained above has resulted in a design in which no
significant errors or omissions have come to light.

It should, however, be pointed out that the very structuredness of the approach
has turned compiler designing into a bookkeeper's job. Hardly any inspiration was
needed since each step followed more or less mechanically from the previous one.
Consequently, the design in chapter 5 is in essence a dull and detail-ridden work, in
spite of or perhaps because of its obvious correctness.

Concluding paragraphs like 5.1.2.1.11 and 5.1.2.2.6 are symptomatic of the top
down approach and correspond to 'returns' from subroutine calls.

Now that this kind of work has been done by hand once, we are probably in a
position to enlist mechanical aid if this design technique is repeated for another com
piler. If I had to design another compiler (with an equally fitting and well-defined tar
get code as ALICE is), I would let the computer keep track of the requirements. Each
requirement would be labelled with what kind of information it is concerned with,
who is interested, who is going to supply the information, and probably some other
items. A program could then sort them so that no information would be needed
before it was produced; clashes would be reported, requiring mending by hand. This
process bears an interesting resemblance to the data-flow analysis often done by
optimizing compilers [AHO & ULLMAN 78). There the items tracked are run-time

54

values, here they are design-time values, i.e., the pieces of information needed for gen
erating code.

Perhaps computer-aided compiler design is as feasible as, or even more feasible
than, computer-aided compiler construction. For a system that seems to have all the
necessary features, see [WILLIS 81).

4.3. The parser

A compiler traditionally consists of a sequence of N programs, each performing a
pass over a representation of the source program and each producing tables and a
transformed source program for its successor. Such a compiler is then called an N -
pass compiler.

The present ALEPH compiler barely fits this description. It starts, as usual, by
breaking up the sequence of characters which constitute the ALEPH text into units that
correspond more or less to the symbols in ALEPH Manual 7 .2. The parser then
attempts to structure the resulting sequence according to a variant of the grammar of
ALEPH (4.3.2). But rather than writing the augmented input to a file and passing it to
a second program, the compiler distributes the information over a number of "infor
mation streams". Similar information goes to the same stream.

The ALEPH translator (= . ALICE generator) then processes these information
streams in the order required by ALICE (which differs completely from the order in
which they were generated, see 4.2.2.1), and generates code from them.

Some aspects of the parser are treated below. For the details, especially concerning
the error recovery, see [VAN DIJK 82].

4.3.1. The information streams

The information streams are implemented through ALEPH stacks and files. If the
information written to a stream is needed again by the parser in some later stage, that
stream has to be on a stack. If, however, the information is immaterial for further
parsing, either a stack or a file can be used. Since one of the requirements in the com
piler design was minimal memory usage, we use files wherever possible. Every piece of
information that will not be needed again by the parser is immediately written to a
file. Often information was split in a small part to be kept on a stack and to be con
sulted again, and a larger part to be written to a file and to be passed to the transla
tor.

Such an aggregate of files is a very handy device for information sorting, both
because of its ease of programming and because of its efficiency. It bears a close
resemblance to a railroad switchyard where the vans from trains are regrouped into
other trains according to their destination.

4.3.2. The input grammar

The ALEPH text is read according to an LL(l)-type grammar (given in [VAN
DIJK 82)) which was derived by hand from the original ALEPH grammar in the ALEPH
Manual. Many techniques for turning a grammar into an LL(l)-type variant are
described in appendix c of [LEWIS II, ROSENKRANTZ & STEARNS 76].

Major surgery was necessary for three notions: member, compound-member and
expression.

55

A member can start with a tag in the following ways (as indicated by the LL(l)
checking program from [GRUNE, MEERTENS & VAN VLIET 73]).

qwert + 3, ...
qwert -+ yuiop, ...
qwert = 3, .. .
qwert[yuiop] .. .
qwert*yuiop[asdfg] ...

$ rule-tag in an affix-form
$ source in a transport
$ source in an identity
$ list-tag in a source
$ selector in a source

A compound-member can start in three ways with a tag:

(qwert: ...
(qwert .,..- yuiop: .. .
(qwert + yuiop, .. .

$ rule-tag in a compound-member
$ rule-tag in a compound-member
$ rule-tag in an affix-form

and in two ways with a minus-unit:

(- a: ...
(-)

$ local-part
$ failure-symbol.

The notion expression needed rewriting since it was left-recursive in the original
version.

The LL(l)-property of the final version has been checked with the parser-generator
PGEN written by G. Florijn and G. Rolf [FLORIJN & ROLF 81].

4.3.3. The derivation of the parser

The parser was derived from the LL(l)-grammar by human interaction with the
original ALEPH compiler. As a first step all rules in the grammar were preceded by the
symbol PREDICATE. The resulting ALEPH program was fed into the ALEPH com
piler, which produced a number of error messages about rules that could not fail
(since they contained an empty alternative) and warnings about backtrack. The rules
that could not fail were made 'actions', which resulted in other error messages, now of
two types: 'predicate cannot fail', remedied by turning the rule into an action, and
'alternative never reached', remedied by some rearranging. After a few turns only
backtrack warnings remained. Each such warning points at a situation where a certain
input must be present, but where the rule reading that input is a predicate. If the rule
fails, an error message must be given and possibly some error correction must be
done on the input stream and/or on the data structures. The offending rule call was
therefore replaced by a compound-member consisting of that rule call as its first alter
native and the error reporting and correcting actions as its second alternative. This
done, we had in our hands an ALEPH syntax checker.

The next step was the insertion of actions that would derive output from the infor
mation just read and send it to the desired stream. Given the parallelism of these
streams hardly any reordering of information was necessary.

A slight problem, however, arises where the grammar has been mutilated in order
to make it of type LL(l). Here information is gathered and kept in affixes until a
point is reached where the information can be written to the appropriate stream.

In a sense we are playing parser generator, but, as opposed to the average parser
generator (as, e.g., Yacc (JOHNSON & LESK 78] or PGEN [FLORIJN & ROLF 81]), this
approach allows us full control over the flow of information.

56

The result of these processes can be observed in the following excerpt from the
parser.

PREDICATE member - tg:
tag + tg, member after tag + tg;
no tag member.

ACTION member after tag+ >tg - src:
source after tag + tg + src,

(transport or identity tail + nil + src;
error + no transport or identity tail + end of member,

dummy member
);

transport or identity tail + tg + nil;
actual affix sequence option + tg.

PREDICATE source after tag+ >tg + src> - tgl:
of unit,

(tag+ tgl;
error + no tag + end of tag, tg - tgl),
(non starred element + tg + tgl + src;
error + no subbus + end of source, dummy src - src);

non starred element + tg + tg + src.

First the tag and then the source are kept in affixes rather than being written to a
stream. The effects of the undeclared rules are given below. The phrase 'if possible'
indicates that the predicate will fail if the described action is not possible.

PREDICATE tag + tg>:
$ if possible, read a tag and yield a representative
$pointer in 'tg'.

PREDICATE no tag member:
$ if possible, read a no-tag-member and write
$ its translation.

PREDICATE transport or identity tail + >tg + >src:
$ if possible, read a transport-or-identity-tail
$ and write its translation. A pointer representing
$ the (left-most) source is given in 'src'; if this
$ is NTL, the source is a single tag represented
$by 'tg'.

ACTION error + >msg + >eon:
$ display somewhere the error message represented by 'msg'
$ and advance the input stream until a character is found
$ that occurs in the set of characters indicated by 'eon'
$('end of notion').

ACTION dummy member:
$ write the translation of a dummy member.

ACTION actual affix sequence + >tg:
$ write the translation of an affix-form with a rule-tag
$ represented by 'tg' and actual-affixes still to be read.

PREDICATE of unit:
$ if possible, read an of-unit (a '* ').

PREDICATE non starred element + >tgO + >tgl + src>:
$ if possible, read a non-starred-element (i.e., a
$ source between square brackets). Combine it with
$the selector 'tgO' and the list-tag 'tgl' into
$ a source and yield a representative pointer in 'src'.

4.4. On ALICE

57

ALICE (ALeph Intermediate CodE) was designed by A.P.W. Bohm to serve as a

machine-independent intermediate code; its original version is described in the ALICE

Manual [BOHM 77]. This chapter gives a short introduction, followed by some com

ments on the design. Then some problems are pointed out, and it is shown that the

design technique had to be made more explicit to solve these problems.

Note: although the key-words in the ALICE Manual are written in lower-case letters,

they are represented in capitals in this book to improve readability.

4.4.1. A short introduction to ALICE

An ALICE program results from the translation of an ALEPH program and consists

of five sections:

o status-information: some general information about the ALEPH program, e.g., its

name, the number of files it uses, etc.

o values: a list of identified constants used by the program; some are given expli-

citly, some must still be calculated.

o data: declarations of global variables, stacks, tables and files.

o communication-area: data for the interface with the run-time system.

o rules: the translation of the ALEPH rule-declarations.

The textual appearance of an ALICE program is that of a bare assembler program;

even the ALEPH identifiers have been replaced by integers (their reprs). The original

identifiers are retained in special places for run-time error reporting.

An ALICE program is intended to be processed by a macro processor (or

equivalent): each line contains one "instruction", consisting of a three-letter keyword

followed by zero or more parameters. Some of these instructions carry macro

processor information only, but most are intended to cause code production on some

machine (but may be ignored on others). In general each instruction contains all the

information needed to generate the intended code. As a result some information is

repeated many times in the ALICE program.

58

ALICE has 81 instructions, distributed as follows:

values 9
data 17
calling mechanism 18
affix-passing 18
classification 6
extension 4
miscellaneous 11

Total 83

As remarked before, many of these are redundant (on any given machine but not in
general!). For instance, our Cyber implementation generates code for 40 of them.

Some of the instructions are used for calling 'standard external rule' like plus,
get char or pack string. They carry a three-letter parameter identifying the external
rule called; there are 74 of these.

The ALEPH data-declarations map fairly directly on sequences of ALICE macros,
except that all constants used in the program appear together in values.

The translation of an ALEPH rule-body is given as a directed graph, each node of
which corresponds more or less to a member in the ALEPH text. This graph is linear
ized by giving each node a number (an 'address') and specifying the addresses of its
success- and failure-nodes. The order of the nodes may differ completely from that of
the corresponding members.

A prominent feature of the ALICE call is the 'gate', a set of generalized registers
which carry the parameters during the transfer from caller to callee. The flow of data
to and from this gate is channelled through two registers, v_reg and w_reg, respec
tively. Another register, a_reg, is used to hold addresses of stacks, files, etc. Depend
ing on the implementation technique chosen, these registers may correspond to real
registers, may be incorporated in machine instructions, or may be dealt with other
wise.

We shall now show a typical node. We assume that the ALEPH program contains a
rule-declaration whose heading is

QUESTION halve + >k + l>

(let us say that halve succeeds if k is even and then yields the half of k in l; otherwise
it fails). A call

halve+ p + q

where p is a global variable and q is a local (or formal) variable will then result in a
node similar to the following. (Explanations have been added behind $s; this is not
allowed in ALICE.)

LAB 27
CLL 51,1,0

!GT 1

LVV72

CVR 1,1

FCL 51,33

LDW 1,2

sws 5

FRE
CLEO

$ This is node 27.
$ Call begins, 51 = repr of 'halve:
$ 1 = can fail, 0 = is not recursive.
$ The parameter transfer area ('gate')
$has size 1.
$ Load V _reg with the value of global
$ Variable 'p:· 72 = repr of 'p'.
$ Copy V _reg to either gate location 1

$ or to stack location 1 ('k').
$ Fallible call of rule 51; on failure continue
$ at node 33; on success continue here.
$ Load W _reg from either gate location 1
$ or from stack location 2 ('!').
$ Store W _reg in local variable 'q';
$ 5 = the stack location of 'q'.
$Free W_reg
$ Call ends; 0 = continue at textually
$following node.

59

It is tempting to consider ALICE as the assembler language of an ALICE machine.
This view, however, is artificial and misleading: ALICE macros have a meaning only in
a very specific context, and the information in their parameters has a high degree of
redundancy (e.g., an FCL may only occur after a CLL with the same first parameter).
Neither of these aspects is found in a traditonal assembler language.

4.4.2. The design of ALICE

Aside from the obvious requirement that it should be able to mimic faithfully the
semantics of ALEPH, ALICE was designed according to the following criteria (given in
the order of decreasing priority):

o It should not add any machine-dependence.
As to data, a direct consequence is that integral-denotations, character
denotations and string-denotations should still possess their original forms.
Alignments are no problem since the ALICE machine (as opposed to the ALICE

language) has only one data item, integer.
As to instructions, this means that we cannot make any assumptions on the
nature of, e.g., the subroutine-jump.

o It must be possible to obtain reasonable code with reasonable effort on a
variety of machines.

o The translation from ALEPH to ALICE should be reasonably straightforward.
This was added to make our own lives easier and to prevent designs that would
make the ALEPH compiler too slow.

The 'reasonable effort' required from the user to transform ALICE into acceptable
code was interpreted as 'line-by-line macro processing'. More specifically we aimed at
a structure in which each macro can be processed using only the information con
tained in its parameters.

The above criteria conflict (of course), but not very much so. The main clash is
between instruction-independence and reasonably good code. If we want total

60

instruction-independence we are not allowed to make any assumptions about the
internal structure of instructions and cannot supply any useful information; the code
quality will suffer.

Two approaches are conceivable:
o Pass only essential information and rely on the receiver to find other informa

tion needed.
o Attempt to guess what the receiver will need on a variety of machines.

If we choose the first approach the receiver will probably not go through the trou
ble of performing a deep analysis and will produce second rate code. We have there
fore chosen the second approach. It is not unreasonable to make certain assumptions
about the properties of some machine-independent instructions. For instance, if
asked: 'Will a subroutine call benefit from knowledge about the number of calls
preceding it?', everybody will answer: 'No'. The certainty of the answer arises from
assumptions about the properties of a (general) subroutine-call mechanism.

Moreover, the requirement of 'reasonable code through reasonable effort on a
variety of machines' gives rise to some interesting concepts. Good examples in point
are the 'repr-val-pair' (ALICE Manual 3.2.1.1) and the 'gate' (ALICE Manual 3.3.2). A
repr-val-pair is the ALICE form of an integer constant; it consists of two integers, viz.,
its representation and a reference to its value (not its value itself, since that may be
unknown to the ALEPH compiler generating the ALICE repr-val-pair). The main opera
tions on it are: constant-source, which declares a repr-val-pair, and
load-constant-in-v _reg, which accesses it.

The assumed property underlying this concept is that on some machines constant
values can be kept in machine-instructions, but not on all machines.

If the machine allows constants in instructions, the declaration can be ignored and
the value is used directly at all times. Otherwise the constant-source macro results in
a memory location labelled with the repr and filled with the value of the valref; access
is then through the label. On the Cyber all constants in the range
-131071 : + 131071 get the first treatment; larger constants are kept in separate loca
tions. Thus reasonable code is generated through reasonable effort on a variety of
machines.

The technique used in the design of such concepts is the following: various scripts
for the implementation of a feature are written down side by side and adjusted so that
the actions in one script team up with comparable actions in the other scripts. These
comparable actions may require different information, which is then supplied by vari
ous parameters.

The ALICE Manual shows the result of this process. A test implementation of
ALICE was made on the PDPl 1/45 [BbHM 78).

As explained above, the receiver of ALICE code will have to write an ALICE-to
object translator. In recent years the problem of the automatic generation of this type
of translator has been taken up [CATIELL 80) as part of the PQCC project at
Carnegie-Mellon University [LEVERETI et al. 80). Here text in TCOL, a machine
independent intermediate code of a somewhat lower level than ALICE, is matched
against a machine-description formalized in a TCOL-oriented way. The matchings
found are used for code generation.

The flavour of ALICE, which is mainly flow-of-control oriented, is so different from
that of TCOL, which is mainly expression-oriented, that a comparison is difficult. At
first sight a translator from ALICE into TCOL seems possible but would probably feel

61

unnatural.

4.4.3. Problems with and modifications to ALICE

When ALICE was put to serious use in the implementation of the machine
independent ALEPH compiler, many small inconsistencies were uncovered and a few
problems had to be cured, this in spite of careful checking. This shows again that no
amount of human reading can replace a field test (nor can any amount of field testing
replace human reading).

The small inconsistencies were mainly just plain bugs, which were easily corrected.
There was, e.g., no way to translate an ALEPH dummy-affix (ALEPH Manual 3.4) (i.e.,
an output parameter whose value gets lost) into ALICE: the ALICE macro sequence
restore-from-output-gate requires the value to be stored in at least one place.

The four more substantial problems were:
o The grammar of ALICE is not of type LL(l).
o The calling sequence conflicts with the design criteria (it cannot be derived from

the source text 'in a reasonably straightforward way').
o The ALICE extension is inadequate.
o A new flow-of-control instruction had been requested, which would replace the

caller by the callee (this 'swap' instruction was desired for writing finite-state
parsers in ALEPH).

The solution of these problems required some redesign of ALICE, the details of
which are given in chapter 6. This paragraph contains some observations on that
design process.

To understand the LL(l) problem we have to realize that there are two ways to
parse an ALICE text: either according to a regular grammar (which simply describes a
sequence of distinguishable macros), or according to the context-free grammar given
in the ALICE Manual. It is this last grammar that is not of type LL(l): some notions
have two or more alternatives that can start with the same notion N.

The LL(l) problem is a good illustration of the idea that design is often more an
art than a science. In spite of the rationalizations in paragraph 6.3, there is no hard
scientific reason why the ALICE grammar should be of type LL(l). An ALICE program
is just a sequence of macros, and, if it is a correct ALICE program, each macro is used
in its proper context and is meaningful on its own accord. Since the writer of the
ALICE processor is not supposed to check the correctness of the ALICE programs gen
erated by the ALEPH compiler, the need for parsing according to the context-free
grammar will never arise. Nevertheless, when the context-free ALICE grammar was
fed to an LL(l)-checking program [GRUNE, MEERTENS & VAN VLIET 73, FLORIJN &
ROLF 81], it pointed emphatically at the trouble spots: the calling sequence and the
extension. In repairing these trouble spots the LL(l) requirement, which was based
solely on aesthetical considerations, proved to be of great help.

The cause of this effect is not easily discerned. The problem with the calling
sequence was that it required the knowledge of the number of locals of the rule to be
called (in a target-stack-frame macro). This knowledge is only available after the
actual-rule of the called rule has been fully analyzed, since additional locals may be
generated by the translation process (6.4). This would mean that all actual-rules had
to be analyzed completely (and the results kept!) before code generation could start,

62

thus laying an unacceptable burden on the compiler. So a scheme had to be devised
which avoided the necessity of knowing the number of locals at the call.

Now, this problem (one bad parameter in one macro) did not cause the LL(l) vio
lation, nor did the LL(l) violation cause this problem. If nevertheless they have a
relation, it must be through a common cause, which I surmise is the immaturity of
the design of the calling sequence. This view is supported by the redesign of the
extension sequence (6.5).

More generally I hypothesize that any area that has received less than average
attention in any designed object, be it a program, a family budget or a city plan, has
a larger chance of being implicated by any formal analysis, however unrelated, than
the other areas. This may be the reason why all software checking tools (and all
psychotherapy methods) help (a little).

If the cause works on more than one front, so does the cure. The wish to make the
sequence both implementable and LL(l) serves to focus the attention, which in turn
leads to a more mature, implementable, efficient and aesthetic design (as given in
chapter 6).

The parallel-script design technique for machine-independent instructions as
explained above can be seen at work in chapter 6 in the correcting of the calling
sequence, in the design of the swap instruction and in the redesign of the extension
sequence. In all cases the scripts catered for two different types of machines, those
with registers (like the CDC Cyber where memory-to-memory operations are non
existent) and those without registers (like the PDPl 1145, where, although it has regis
ters, memory-to-memory operations are more efficient for the translation of ALEPH
[BOHM 78]). In addition to these two types, some thought was given to machines on
which indirect addressing is to be avoided. It is remarkable to see that the resulting
additional script greatly simplified the swap instruction.

We now have a good view of the development of the design technique itself. First
the repr-val-pair more or less suggested itself in answer to our attempts to construct a
machine-independent constant. Then the same happened in the design of the parame
ter passing, resulting in the concept of a 'gate'. We then realized that in both cases
two different scripts were rolling off in parallel. This was then used as a point of
departure in the correction of the calling sequence and as a life line in the redesign of
the extension sequence, where both scripts had to be adjusted heavily to achieve a
measure of flexibility which would not have been reached otherwise.

4.5. Bootstrapping

A verbal description of a bootstrapping process is notoriously long-winded. A
better representation is that through T-diagrams [EARLEY & STURGIS 70]. As an
experiment we shall introduce here a simple formalism for handling job steps and use
it to describe the bootstrapping of the ALEPH compiler.

4.5.1. A formalism for job steps

We shall explain here a formalism which has some advantages over T-diagrams,
although it is isomorphic to them.

In this formalism a program P in the language LAN which expects input in the
language INPUT and yields output in the language OUTPUT is written as

63

P = INPUT> OUTPUT? LAN.

Input in the language INPUT can be supplied to P by prefixing it with JN PUT +,
and running power on a machine capable of running LAN is supplied by postfixing it
with !LAN. (If we have such running power, we say that ! LAN is an 'available
machine'). The result is then

R = INPUT + INPUT> OUTPUT? LAN! LAN.

By applying the two reduction rules of the formalism:

A + A > ~ empty, and
? M ! M ~ empty if !Mis an available machine,

this reduces to:

R =OUTPUT

which is of course what we want. Every reduction of the type '? M ! M ~ empty'
corresponds to a run on an actual machine. (It should be noted that, in spite of their
appearance, the >, +, ? and ! are not operators. They are, in fact, just separators,
governing the reduction rules.)

As an example we shall now describe the normal compile-load-&-go sequence of a
program in, say, ALEPH. We need input: INPUT +, three programs:

the user program:
the compiler:

the loader:
an available machine:

UP = INPUT> OUTPUT? ALEPH,
CP =ALEPH> OBJECT? BIN,
LD = OBJECT> BIN? BIN, and
!BIN.

The program is fed to the compiler which is then run on ! BIN, yielding a load
module, LM:

LM = UP + CP ! BIN =
= INPUT> OUTPUT? ALEPH + ALEPH > OBJECT? BIN! BIN =
= INPUT> OUTPUT? OBJECT,

through application of the +>-rule. We shall now do the load-&-go phase in one
step, supplying the data in INPUT:

RESULT = INPUT + LM + LD ! BIN! BIN,

thus calling for two machine-runs:

RESULT
= INPUT+ INPUT> OUTPUT? OBJECT +

OBJECT> BIN? BIN! BIN! BIN =
= OUTPUT? BIN ! BIN = OUTPUT.

We need not do the reductions in this order and can, for instance, derive a formula
for the general compile-load-&-go sequence in the absence of the user program and
the input:

64

CLG
= CP ! BIN + LD ! BIN ! BIN =
= ALEPH > OBJECT? BIN! BIN +

OBJECT> BIN? BIN! BIN ! BIN =
=ALEPH> BIN! BIN.

And indeed, if we prefix this with a user program and input it reduces to the desired
output. However, since it is not of the form A > B ? C it is not a program.

The above example shows that +ALEPH> BIN! BIN (where! BIN is an avail
able machine}, behaves as if it were! ALEPH, i.e., it is (almost) an available machine.
This is generally true:

If there exists a program S = Ml > M2? M3, and ! M2 and ! M3 are available
machines, then ! Ml is also an available machine, and
! Ml = + S ! M3 ! M2 = + Ml > M2 ! M2.

Proof: ! Ml is an available machine if the reduction '?Ml!Ml ~empty' is allowed:

? Ml ! Ml = ? Ml + Ml > M2 ! M2 = ? M2 ! M2 = empty

since ! M2 is an available machine. (M3 does not occur, since it is only used to drive
the translator from Ml to M2.)

Some advantages of this notation over the traditional T-diagrams are that it is
easier to type, that reductions can be done conveniently even on incomplete jobs, and
that it never gets geometrically stuck.

4.5.2. Bootstrapping the compiler

The proposed transporting scheme is now as follows (ALICE Manual 1.2).
The ALEPH compiler is brought to the target site, both in ALEPH and in ALICE:

P = ALEPH > ALICE ? ALEPH,
Q =ALEPH> ALICE? ALICE.

An important property of ALICE is that it is a one-statement-a-line language, with a
format which is easily accepted by most macro-processors, including those normally
incorporated in assemblers. Moreover, the communication between the statements is
very restricted, consisting mainly of a constant table; all other pertinent information
is repeated in each statement. This makes it easy to translate each statement into
some assembler instructions, independent of the other statements.

The receiver now writes (probably by hand) a macro-definition file R which con
verts ALICE to the target assembler, say, TASS,

R = ALICE > TASS? MAC,

and runs

Q + R ! MAC = ALEPH >ALICE? TASS = S.

He then constructs the job

T = S ! TASS + R ! MAC = ALEPH> TASS,

which produces TASS, and with which he can run an ALEPH program
K = INPUT> OUTPUT? ALEPH:

65

INPUT+ K + T ! TASS= OUTPUT,

at the expense of three runs. (Actually, many more runs will be necessary, since the

operations ! MAC and ! TASS will each be composed of a number of runs on the

actual machine.) Corrections and improvements found during this debugging and

learning phase can easily be effected by editing R, which is the only variable part.

After a while the situation stabilizes, and it becomes desirable to remove the

! MAC step from the job step T. The obvious (but not the best) way is to write an

ALICE processor U:

U =ALICE> TASS? XYZ

in the most appropriate vernacular XYZ and to obtain binary code from it:

U' = ALICE > TASS? BIN.

Now the program K can be run as follows:

DATA + K + S ! TASS+ U' ! BIN! TASS= OUTPUT,

which still takes three runs, but supposedly! BIN is much more efficient than ! MAC.

A larger improvement can, however, be obtained by starting from the original

ALEPH compiler P (which has not yet played a role). This program is structured so

that the ALICE-generating part is easily isolated and replaced by a TASS-generating

part. The structuring is based on the distinction between ALICE as a stream of (inter

nal) information and ALICE as a stream of (external) characters.
The internal stream is represented in P as a sequence of calls of the rule g macro,

one for each ALICE macro. At the moment of the call the pertinent parameters are

available on the stack pars; the first parameter is an indication which macro is to be

produced.
The supplied ALEPH compiler chooses this indication to be the address of a string

describing the format of the macro and the nature of its parameters. All g macro has

to do is to copy the string and to replace certain characters in it by certain parameters

from pars.
The receiver can, however, replace g macro and a number of constants, and have

the ALEPH-compiler P generate TASS (for details see [VAN DUK 82]):

P' =ALEPH> TASS? ALEPH.

This leads in an obvious way to the required form of the compiler:

P' + T =ALEPH> TASS? TASS.

All the above hinges on the ease of implementation of ALICE, even when we have

proceeded to a stage where no ALICE is explicitly produced any more. The underlying

machine is still an ALICE machine, executing the ALICE primitives. Most of these are

trivial, but two of them, extending stacks and input/output, need considerable atten

tion.

Extending a stack is by itself a simple operation, but trouble arises when there is

no more space. The simplest option is to give up, and this may be acceptable during

the installation phase, but for production purposes it will soon be necessary to create

room. Several schemes are given in ALICE Manual 3.2.2.1. As explained in hint 6, a

66

stack-shifting algorithm is provided in ALEPH (and in ALICE), to aid in implementing
the extension primitive.

Input/output is as complicated as the operating system requires. Very little
machine-independent support can be given here.

67

5. THE DESIGN OF THE ALEPH COMPILER

As explained in 4.2.3 the ALEPH compiler was designed in four stages:

o stage 1, find ALICE translations of all ALEPH constructs,

o stage 2, take stock of the information items needed by each ALICE construct,

o stage 3, devise ways to obtain and process this information,

o stage 4, design actual algorithms and concrete data representations.

Stages 1 & 2 were combined into a stock-taking phase; stage 4, the concretization

phase, was for the larger part incorporated in the actual writing of the compiler [VAN

DJJK 82].

The results of the design technique are shown below, stages 1 & 2 in 5.1 and stage 3

in 5.2. To prevent the reader from being suffocated by details, the reporting has been
restricted to the first two sections of the ALICE code, status-information and values (see

4.4.1). The design process is depicted in Fig 12, where the design tasks are performed

in left-to-right top-to-bottom order; the shading indicates the tasks described in this

book.

Stage I

Stage 2

Stage 3

Stage 4 concretization

ALICE section: status-information values data communication-area rules

Fig. 12.

It will be clear that such a transversal cut through an iterative design cannot be made

without impunity. Problems arising from tasks being left undescribed were solved by

referring to the pertinent parts of the ALEPH and ALICE Manuals.

The stages 1, 2 and 3 involve some abstract algorithms in which (compile-time)

variables occur. If the value of such a variable V is used as part of the name of some

other entity, it is written [VJ. So, if the variable last stack has been set to the name of
the stack profit, then '<<[last stack]' means '<<profit'. The precise ways in which

these items are represented in the actual compiler are decided on in stage 4.

68

5.1. The tasks of the compiler

The first goal of the ALEPH compiler is to provide the user with:
o a translation of his ALEPH program into ALICE,

o a listing,
o possibly a cross-reference,
o syntactic-error messages where appropriate,
o semantic-error messages where appropriate.

Second to that, we want the compiler to run, possibly slowly, on a small machine
and to be easily adaptable to a bigger one (4.2.1). This obliges us to keep direct-access
data to a minimum, an obligation which will profoundly affect our design.

As explained in the ALICE Manual and 6.7 the ALICE program resulting from a call
of the ALEPH compiler consists of five sections:

status-information,
values,
data,
communication-area, and
rules.

These sections must be constructed from information gathered by the compiler. So
in very broad outline the compiler can be described as:

ACTION compile program:
create status information &
create values &
create data &
create communication area &
create rules.

The semantics of the ampersand (&) will have to remain vague. The intention is
that the various components of the five "processes" are executed in such an order as
to yield correct results. The ampersand does not imply that its left side and right side
are executed collaterally in the sense of ALGOL68, but only that we have not yet
decided about their synchronization. The final design will, of course, not contain any
ampersands.

In the meantime this feature enables us to talk about create-status-information as a
process in its own right, rather than a set of actions spread out over the whole com
piler.

We shall now turn to the five sections of the ALICE program.

5.1.1. Create-status-information

To produce the ALICE code for status-information (ALICE Manual 3.4) we must
have the following information:

a) the title string of the program,
b) the maximum of all size-of-input-gates and size-of-output-gates (ALICE Manual

3.3.2),

69

c) the number of values,
d) the number of variable-decls,
e) the number of file-administrations,
f) the number of breathing lists (ALICE Manual 3.2.2.1),
g) the number of non-breathing lists,
h) background option,
i) dump option.

Since most of these items can be defined or modified almost anywhere in the pro
gram, it is clear that we must read the entire program text before we can generate the
first ALICE instructions. All this information and much more must be gathered in data
structures to be produced at command.

Items a, hand i result from pragmats or the absence thereof.
Items d, e, f and g can be determined by simple counting.
Since size-of-input-gate and size-of-output-gate (item b) for a rule follow directly

from its heading, their maximum can easily be established.
Item c, the number of (ALICE) values, however, is the result of a thorough transfor

mation of the constant-declarations in the ALEPH program. This implies that the
transformation algorithm must have a way to tell in advance how many values it will
generate. See 5.1.2.2.2.

5.1.2. Create-values

The ALICE-part values (ALICE Manual 3.1) consists of the collection of all values,
integer, character, pointer, etc., that are used in the rest of the ALICE program, i.e., in
the ALICE data, communication-area and rules. Expressions defining these values are
submitted to the ALICE processor which is the first program to be able to evaluate
them. The resulting values are assigned unique representations (called "valrefs") and
are referred to in data and rules, in which no other values occur. The expressions and
values in values are partially ordered in such a way that no value is ever referenced
until after its initialization. This order need not be the same as in the ALEPH pro
gram:

CONSTANT p = q - 1.
CONSTANT q = 15.

Here q is referenced (textually) before being initialized; the semantics of ALEPH
Manual 3.1.1 makes this legal.

We shall have to do some sorting, which can only be done after all expressions and
values have been met. An additional result of the sorting must be the number of
values to be generated (5.1.1). This gives us the following structure for create-values:

ACTION create values:
collect values, sort and count and output values.

The valrefs in ALICE are represented by integers in such a way that they appear in
the ALICE-values in a contiguous ascending sequence. Since the order of the values is
determined by sorting, it is clear that collect-values cannot assign the correct valrefs to
the values it finds. We shall therefore let collect-values generate provisional valrefs,
called "defrefs", the nature of which will be determined in the process of defining
collect-values.

70

5.1.2.1. Collect-values

The process collect-values must identify all constructions in the program that give
rise to (compile-time) values and assign defrefs to them. When looking through the
ALEPH Manual we find the following items from which all other values derive:

integral-denotations,
character-denotations,
constant-tags, and
table-limits.

Note that these are in fact the members of plain-value, which can be used in bases,
terms and expressions to form new constant values.

Now for each value in the program we must provide a defref and enough informa
tion for that value to be calculated.

5.1.2.1.1. Plain-values

We shall first consider the four alternatives of plain-value.

Integral- and character-denotations are no problem: instructions for assigning val
refs to them exist in ALICE. An intermediate defref will not do any harm.

Constant-tags have already got a representation, which can act as a defref; they
obtain their values in constant-descriptions or in pointer-initializations.

The tags in external-constant-descriptions do not give rise to compile-time con
stants and need not be considered here.

A constant-description equates a constant-tag to an expression, which we shall deal
with later on (5.1.2.1.5).

On the other hand, the pointer-initialization is a problem. It gives the value of the
constant-tag as the virtual address of the preceding block in a filling-list-pack. This
address is dependent on the way virtual memory is allocated, as described in ALEPH
Manual 4.1.4. The recipe presented there supplies the min-limit of the stack in which
the pointer-initialization occurs, provided we know the lengths of all list fillings of all
tables and stacks without size-estimate and the values of all expressions in absolute
sizes and in relative-sizes. We can then calculate the desired value from the value of
the min-limit and the offset of the block from the beginning of the filling. If that's
what it takes, that's what it takes.

Table-limits exist in three forms, min-limits, max-limits and calibres. Their
representations (of the form <<TAG, >>TAG and <>TAG) can be used as
defrefs. The value of a calibre is the number of selectors in the stack- or table-head,
so it is known to the compiler in a machine-independent way. The values of min- and
max-limits are provided by the mechanism loosely descrihed above.

The conclusion is that, if we are able to evaluate expressions and do all the calcu
lations indicated in ALEPH Manual 4.1.4, we can indeed supply ALICE values for all
the members of plain-value. We shall leave the details of this process until after the
treatment of the following problem.

71

5.1.2.1.2. An inventory of values

All values originate in expressions or in 'constant-sources', where "constant
source" is that part of source which could also occur as a plain-value. Since ALICE

requires a complete list of values in its values, collect-values will have to recognize all
expressions and constant-sources. This causes some problems.

It may be noted that character-denotations, constant-tags and table-limits occur
exclusively in plain-values. Integral-denotations occur in plain-values and in pragmat
items. In the latter case they appear in ALICE as strings rather than as values and
need not be considered here.

5.1.2.1.2.1. Recognizing expressions

Expressions occur in:

exits,
zones,
expressions (recursively),
constant-descriptions,
variable-descriptions,
single-blocks,
compound-blocks,
relative-sizes, and
absolute-sizes.

Each of these can be recognized without problems, except for the expression in a
zone, where it clashes with a single list-tag. If we find a single tag in a zone, we have
a problem. If it is a constant-tag, it is an expression for which normal expression code
must be generated, and if it is a list-tag it must be left in place. We shall see, how
ever, that the code generated for an expression which consists of a single tag is that
same tag, so that in practice the problem does not occur (5.1.2.1.9).

5.1.2.1.2.2. Recognizing constant-sources

Constant-sources occur in sources where they appear alongside

table-elements,
variable-tags,
stack-limits,
stack-elements, and
dummy-symbols.

If the source happens to occur as an actual, further side-lines appear:

list-tags and
file-tags.

Until we have read the whole ALEPH program, we cannot with certainty distinguish
variable-tags, list-tags and file-tags from constant-tags, nor stack-limits from table
limits. This means that we shall have to collect information about the use in a provi
sional form first and combine it later with declaration information.

72

5.1.2.1.3. Definitions as generated by collect-values

We are now in a position to give a complete list of all constructs to be examined
by collect-values and to state what is to be done in each case.

At this level of description collect-values will yield a sequence of 'definitions', which
we shall write down in a form similar to a constant-description:

tag, equals symbol, expression.

Since we shall need more tags than are present in the program, we shall allow tags
to contain the special characters<, >, ! and#. We shall use these tags as defrefs.

5.1.2.1.4. Hidden definitions

Some of the examined constructs contain expressions, and others give rise to
implicit definitions with hidden expressions, as we saw from the above pointer
initializations. We shall first make all implicit definitions explicit, so that the problem
reduces to the treatment of straightforward definitions.

Implicit definitions exist in table-heads (ALEPH Manual 4.1.5), stack-heads (ALEPH
Manual 4.1.6), filling-list-packs and pointer-initializations (both ALEPH Manual 4.1.5).
Each table- and stack-head of a list LST is an implicit definition of the calibre
< > LST and the min-limit < <LST. The max-limit > > LST derives from the length
of the filling-list-pack. Two more values figure in the explanation in ALEPH Manual
4.1.4, the 'virtual-min-limit', here written as !<LST, and the 'virtual-max-limit',
>!LST.

The meanings of these values are shown in Figure 13, where a stack with calibre 3
and containing 5 blocks is displayed.

-----r-a-ct_u_al_~u =1ss space ----------1>1
1
_ _

1
<>LSR = 3

calibre

~~~JI 11 I I I I I™ I I I I I I I 11 I 11 I I I I I I I 11 I 1 I_~--~~ 
f t f t 

!<LST 
virtual min limit 

<<LST 
min limit 

>>LST 
max limit 

Fig. 13. 

>!LST 
virtual max limit 

The highest address that ever can occur in a calculation is the virtual-max-limit of 
the right-most list. The lowest possible address is the address just left of the left-most 



73 

list; this address must be available, i.e., its calculation may not cause (negative) 

integer overflow (although the corresponding location need not exist). 

Not all of these values may occur in expressions, but they do contain all the infor

mation that may ever be asked about a stack or a table. If some of them should turn 

out to be superfluous, they could be omitted afterwards. 

5.1.2.1.4.1. Hidden definitions from list-heads 

The recipe in ALEPH Manual 4.1.4 distinguishes between tables and stacks without 

size-estimate (called here 'fixed lists'), stacks with an absolute-size and stacks with a 

relative-size; so shall we. 

5.1.2.1.4.1.1. Definitions generated for fixed-lists 

The name of the latest fixed-list is kept in the variable last fixed which is initially 

set to # FL, the name of the (virtual) fixed-list before all fixed-lists. 

Each head with the tag FL and a calibre CAL yields the following definitions: 

!<FL = >![lastfixed] + <>FL 
<>FL =CAL 
>!FL = >>FL 

and last fixed is set to FL. We do not need to generate a definition for < <FL, since 

it is equal to !<FL when the program starts (ALEPH Manual 4.1.4) (although the two 

values may diverge later on, due to calls of unqueue or unqueue n). 

In the case of an external-table with string STR the last definition is replaced by: 

>!FL = >![last fixed] + external table size(STR) 

Note that the value of >>FL cannot be deduced from the list-head. It will be 

defined in 5.1.2.1.4.2, where it originates from the filling-list-pack. Since definitions 

from the program may be out of order anyway we need not have compunctions about 

generating this one out of place. 

5.1.2.1.4.1.2. Definitions generated for absolute-size stacks 

The name of the latest absolute-size stack is kept in a variable last ast which is ini

tially set to #AST. 

Each head with tag AST, calibre CAL and absolute-size S/Z yields the following 

definitions: 

!<AST= >![last ast] + <>AST 
<>AST= CAL 
>!AST= >![last ast] + SIZ 

and last ast is set to AST. 

5.1.2.1.4.1.3. Definitions generated for relative-size stacks 

The name of the latest relative-size stack is kept in a variable last rst which is ini

tially set to # RST. 

Each head with tag RST, calibre CAL and relative-size S/Z yields the following 

definitions: 



74 

!<RST = >![last rst] + <>RST 
<>RST =CAL 
>!RST = >![last rstj + virtsize!RST 

sumsize!RST = sumsize![last rstj + SIZ 
virtsize!RST = (virtlefiover![last rst] I sizeleftover![last rstj) X S/Z 
virtlefiover!RST = virtlefiover![last rst] - virtsize!RST 
sizelefiover!RST = sizelefiover![last rst] - SIZ 

and last rst is set to RST. 
(Note the building of new defref names with special characters: for each stack 

XXX there are defref names like sumsize!XXX, etc.) 
The last four definitions implement the proportional distribution required in 

ALEPH Manual 4.1.4.d. The order of division and multiplication has been chosen so 
as to avoid integer overflow. The four constants defined above have the following 
meanings: 

sumsize!RST 

sizeleftover!RST 

virtsize!RST 

virtlefiover! RST 

the sum of all relative-sizes of all relative-size stacks up to and 
including the stack with the tag RST, 
the sum of all relative-sizes of all relative-size stacks following 
the stack with the tag RST, 

the size of the virtual memory allotted to the stack with the tag 
RST, and 

the sizes of the virtual memory allotted to all relative-size stacks 
following the stack with the tag RST. 

When all list-heads have been processed, the following six constants will still be 
undefined: 

>!#FL 

>!#AST 

>!#RST 

sumsize!#RST 

the right-most address of the 'zero-th' fixed-list, i.e., the one 
address just before all lists, mentioned in 5.1.2.1.4, 
the right-most address of the zero-th absolute-size stack, which is 
the last fixed-list, if it exists, or > ! # FL otherwise, 
the right-most address of the zero-th relative-size stack, which is 
the last absolute-size stack, if it exists, or >!#AST otherwise, 
the sum of the relative sizes of all relative-size stacks before the 
first, i.e., 0, 

sizelefiover!#RST the sum of the relative sizes of all relative-size stacks after the 
zero-th, if any, or 0 otherwise, 

virtlefiover! # RST the amount of virtual memory available for all relative-size 
stacks. 

This leads to the following definitions to be added at the end of the program 
(again happily out of order): 



>!#FL = manifest constant(MNA) 
>!#AST= >![last fixed] 
>!#RST = >![last astj 
sumsize!#RST = 0 
sizeleftover! # RST = sumsize! [last rst] 
virtleftover!#RST = manifest constant(MXA) - >![last astj 

75 

Here MNA and MXA are the ALICE symbols for the (implementation-dependent) 
bounds of the virtual memory. 

This scheme also works if some or all of the types of lists do not occur in the pro
gram. 

If, however, the expressions for SIZ (the absolute- or relative-sizes of ALEPH 

stacks) evaluate to crazy values, strange things happen. A negative value for SIZ will 
result in a negative address space; if all SJZes are zero, division by zero results. We 
have no way of safeguarding against this: the ALICE processor should be prepared to 
deal with such cases, as it will have to deal with a virtual address space that turns out 
to be smaller than the actual address space. 

5.1.2.1.4.2. Hidden definitions from filling-list-packs 

The definitions given so far fail to define the max-limit, which stands to reason 
since the latter cannot be deduced from the list-head but must be taken from the 
filling-list-pack instead. In ALEPH the filling-list-pack may be missing, but to simplify 
the discussion we shall assume the presence of a filling-list-pack for each list

definition; if need be an empty (and in ALEPH illegal) filling-list-pack '= ( )' can be 
assumed. 

The processing of a filling-list-pack in the definition of a list LST with calibre CAL 

requires three variables: a variable last pointer which is initialized to >![prev lst], 

where prev lst is a global variable referring to the name of the previous list of the 
same type as the present one; a variable offset which is initially set to O; and a 
counter n starting at I. 

For each single- or compound-block (which must be of length CAL), offset is 
increased by CAL, and no definition is generated. 

For each string-denotation of length K the following definition is generated: 

and 

# [n]LST = [last pointer] + offset + stringlength(K) 

last pointer is set to # [n]LST, 
offset is set to 0 and 
n is increased by l. 

For each pointer-initialization with tag PNT we generate: 

PNT = [last pointer] + offset 

and set last pointer to PNT and offset to 0. 

At the end of a filling-list-pack we generate: 

> > LST = [last pointer] + offset . 



76 

The ALICE list-area (ALICE Manual 3.2.2. l) requires a valref for the number of vir
tual addresses. For a fixed-list with tag FL this is '>>FL - >![last fixed}', for an 
external-table it is external table size(STR), for an absolute-size stack it is its 
absolute-size SIZ, and for a relative-size stack with tag RST it is virtsize!RST. Since 
each table- or stack-head is followed by a filling-list-pack, one variable virt size 
suffices. 

This concludes the treatment of list-heads and pointer-initializations. 

5.1.2.1.5. Definitions from constant-descriptions 
For each constant-description with tag TAG and expression EXP we generate the 

definition: 

TAG= EXP 

5.1.2.1.6. Definitions from naming unnamed values 
We have now covered all named values. Unnamed values are integral- and 

character-denotations in constant-sources and expressions. 
The difference between named and unnamed values is important because ALICE 

supports arithmetic only if it is dyadic on simple named values; and if a constant 
value appears as a source in ALICE, it must be a named value. 

We shall therefore name all values and generate 'secret' defrefs as required. For 
this we need a global variable de/ref count, starting at l. 

For each integral-denotation /NT not in a pragmat-item we generate: 

#[de/ref count} = int denotation (/NT) 

and increase de/ref count by l. 
For each character-denotation CH we generate: 

#[de/ref count} = char denotation (CH) 

and increase de/ref count by l. 
For each expression EXP in an exit, a zone, an expression, a variable-description 

or a single- or compound-block, we generate: 

#[de/ref count]= EXP 

and increase de/ref count by l. 
The same is done for each of the components of base, term and expression. This 

yields definitions of the following form: 



base defref = plain value defref 
base defref = ( expression defref) 
term defref = base defref 
term defref = term defref X base defref 
term defref = term defref I base defref 
expression defref = term defref 
expression defref = + term defref 
expression defref = - term defref 
expression defref = expression defref + term defref 
expression defref = expression defref - term defref 

77 

At this point the story may become boring, but at least it is complete to the point 
of exhaustion. 

Two expressions which resulted from hidden definitions have unnamed values in 
them, for which defrefs can be created in the same way. Said expressions occur in the 
definitions of virtsize!RST in paragraph S. l.2. l.4.1.3, and of # [n] LST in S. l.2. l.4.2. 

We have now assigned defrefs to and generated definitions for all constant values 
in the program. 

5.1.2.1.7. The place of collect-values in the total scheme 

We can visualize the function of collect-values as follows. The process collect-values 
reads the text of the ALEPH program and produces two texts: a list of definitions of 
constant-tags (defrefs}, and a copy of the program from which all constant
descriptions have been deleted and in which each constant-source is replaced by a 
constant-tag. If we changed the format of the list of definitions into that of a large 
constant-declaration and concatenated both texts, we would obtain a new program 
that is semantically identical to the original program (if we accept the explicit calcula
tion of virtual addresses which cannot be specified in official ALEPH). 

This is a step in the right direction since the list of definitions can serve as a basis 
for generating the values part of the ALICE text, and the copy of the program and the 
data- and rules-part of the ALICE code are similar in that both contain the same infor
mation and neither contains unnamed values. 

S.1.2.1.8. An example 

Suppose the source code contains the zone [ -3X(IAI - /al)]. This results in 
the following 15 definitions: 

#1 
#2 
#3 
#4 
#S 
#6 = 
#7 
#8 
#9 

#10 = 
#11 = 

3 
#1 
#2 
IA/ 
#4 
#S 
#6 
/a/ 
#8 
#9 
#7 - #10 

$ plain value 
$base * 
$term * 
$ plain value 
$base * 
$term * 
$ expression * 
$ plain value 
$base * 
$term * 
$ expression 



78 

#12 
#13 
#14 
#15 

= 
= 
= 

( #11) 
#12 
#3 x #13 
- #14 

and the source code is copied as # 15. 

$ expression pack 
$base 
$term 
$ expression 

* 
* 

* 

ALICE has no identity-operator, no monadic operators and no bracketing. So 
many of the above definitions cannot be expressed directly in ALICE; these are marked 
with an * in the last column. 

5.1.2.1.9. The non-ALICE constructs 
The question arises who is going to do something about this. At first sight it seems 

quite feasible to have collect-values contract all identities, monadic pluses and 
expression-packs, and add zeros to all monadic minuses. It should then deal automati
cally with cases like: 

CONSTANT dog= cat, cat = (+mouse), mouse = /qi - Is/. 

and replace all dogs, cats and mice with the generated defref for I qi - Is/. In order 
to do this, however, it requires direct access to the list of definitions and to the copied 
program texts in which the animals occur. Now, although direct access to all 
definitions might be granted under protest, direct access to the program text is out of 
the question ( 4.2.1 ). 

The list of definitions is inherited by the process sort-values, which will have to 
solve these problems anyway. 

Nevertheless, if we wish, some things can be done by collect-values to simplify the 
produced list. We can generate 

defrefl = defrej2 

for 

defrefl 

and for 

+ defrej2 

defrefl = ( defref2 ), 

and 

defrefl = # 0 - defrej2 

for 

defrefl = - defrej2, 

if we start by issuing a definition 

#0 = 0. 

Moreover, any time a secret defref is about to be generated equal to an existing 
defref, generation can be omitted and the existing defref be used instead. 

With this simplification made, the definition list for the zone above reduces to: 

# 1 3 $ plain value 
#2 I Al $ plain value 



79 

#3 = /a/ $ plain value 
#4 = #2 - #3 $ expression 
#5 = #1 x #4 $term 
#6 = #0 - #5 $ expression 

This is a considerable reduction, well worth the effort, although it does not solve 
the general 'dog, cat and mouse' problem above. But it does ensure that the code gen
erated for an expression which is a single tag is that same tag, thereby fulfilling the 
promise of paragraph 5.1.2.1.2.1. 

Another simplification may be obtained by observing that the offset in the 
definitions of #[n]LST, PNT and >>LST in paragraph 5.1.2.1.4.2 is often 0, 
namely after every string-denotation and pointer-initialization. But this modification 
does not affect the form of the definition list and a decision about it can be taken at 
any time (5.2.2.1.7). 

5.1.2.1.10. The grammar of the definition list 

The following forms occur in the definition list: 

de/ref = de/ref $ * 
de/ref = de/ref { +, - , X, I } de/ref 
de/ref= int denotation (digit string) 
de/ref = char denotation (char) 
de/ref= string length (integer) 
de/ref= manifest constant (symbol) 
de/ref= external table size (string) 

The first one does not correspond to an ALICE construct; sort-values will have to 
take care of this. 

The defrefs in the definition list may have the following forms: 

where 

and 

TAG 
!<TAG, <<TAG, <>TAG, >>TAG, >!TAG 
sumsize!TAG 
virtsize!TAG 
virtleftover!TA G 
sizeleftover!T AG 
#[N]TAG 
#[N] 

TAG is a tag occurring in the program or 
#FL, #ASTor #RST 

N is a compile-time integer variable 



80 

5.1.2.1.11. Conclusion 

This concludes the stock-taking phase of the design of collect-values. 

5.1.2.2. Sort-and-count-and-output-values 

The list of definitions as obtained from collect-values is at least three steps away 
from the final goal, a sorted list of ALICE-values. The definitions are not sorted, they 
contain defrefs rather than valrefs, and one of them is not ALICE. On top of that, the 
definitions as extracted from the program may turn out to be circular, or involve 
undefined or incorrectly defined defrefs. 

Sorting will require direct access: we are not going to do a polyphase sort-merge. 
Now that we have collected all definitions, and no longer have to worry about the 
program itself, we can afford to read them in in toto. With this direct-access facility 
the structure of sort-and-count-and-output-values becomes clearer: 

ACTION sort and count and output values: 
read values into direct access, 
check and construct and output values, 
discard values from direct access. 

We must remember here the requirement from 5.1.1, that no ALICE values may be 
output until their number is known and output in status-information. We shall 
delegate this to read-values-into-direct-access (5.1.2.2.2). 

5.1.2.2.1. Check-and-construct-and-output-values 

This process has five tasks: 
o check for circularities and undefined defrefs, 
o remove non-ALICE operations, 
o sort and assign valrefs, 
o yield a translation table of defrefs versus valrefs, 
o output ALICE values. 

These activities are best combined in one algorithm consisting of three parts: 
o a driver which makes sure that all definitions are handled, 
o a definition processor which turns correct definitions into ALICE values and 
o a searcher which obtains a valref for a given defref. 

The algorithm produces a stream of ALICE value-macros together with a translation 
table whose elements have the form (de/ref, valrej). It gradually deletes the entire 
definition list. 

5.1.2.2.1.1. The driver 

I) as long as there is a definition in the list, process that definition. 

5.1.2.2.1.2. Processing a definition D 

I) mark the definition D as UNDER CONSIDERATION (to catch circularities). 
2) if Dis of the form defrefl = defref2, obtain a valref vl for defref2. 
3) if the right-hand-side of D does not depend on defrefs, process it as follows. 



3.1) if Dis of the form 

defrefl = int denotation (DIG), 

obtain a new valref v 1 and generate 

INTvl,DJG 

3.2) similar actions for char denotation (CH). 
3.3) similar actions for string length (/NT). 
3.4) similar actions for manifest constant (SYM). 
3.5) similar actions for external table size (STR). 

4) if the right-hand-side of D depends on defrefs, process it as follows. 
4.1) if Dis of the form 

defrefl = defrej2 + defref3, 

81 

obtain valrefs v2 and v3 for defrej2 and defref3 respectively, obtain a new 
valref v 1 and generate 

ADD vl,v2,v3 

4.2) similar actions for 

defrefl = defrefl - defref3. 

4.3) similar actions for 

defrefl = defrej2 X defref3. 

4.4) similar actions for 

defrefl = defrefl I defref3. 

5) enter the pair (defrefl, vl) into the translation table. 
6) remove the definition D from the list. 
7) yield the valref v 1. 

5.1.2.2.1.3. Obtaining a valref V for a defref DR 

1) if DR occurs in the translation table, yield the corresponding valref; 
2) if no definition of DR occurs in the definition list, DR is an undeclared tag from 

the program; give an error message with DR (and line number) and yield the val
ref of zero; 

3) if the definition of DR is marked UNDER CONSIDERATION a circularity exists; give an 
error-message with the last program tag and present line number and yield the 
valref of zero; 

4) otherwise process the definition of DR and yield the valref thus obtained. 

5.1.2.2.2. Read-values-into-direct-access 

Although this operation seems trivial, there is one task it can fulfil. We need to 
know how many ALICE values there will be before generating the first one (5.l.l). 
Now, from the above algorithm we see that for each definition D there will be an 
ALICE value, except if D is of the form 

de/ref = de/ref 

Definitions can be counted and distinguished by read-values-into-direct-access, and the 



82 

resulting number passed to create-status-information. 

5.1.2.2.3. Discard-valuesfrom-direct-access 

The definitions can be discarded but the translation table must be kept. 

5.1.2.2.4. Correctness 

The following facts can be observed. 
o All definitions are processed (because of the driver). 
o Each definition generates one ALICE macro before it is removed (5.1.2.2.1.2.3 

and 5.1.2.2.1.2.4), except when it is an identity (5.1.2.2.1.2.2). The reading pro
cess can, through simple counting, determine the number of ALICE macros to be 
produced. 

o An ALICE macro with valrefs as second and/ or third operands is not generated 
until these valrefs are known. So the list is sorted. 

o A new valref is created for every ALICE macro, and these valrefs can be created 
in order. 

Termination can be made plausible by the following considerations: 
o Steps l, 2 and 3 of obtaining-a-valref for-a-defref (5.1.2.2.1.3) terminate immedi

ately. Step 4 asks for the processing of an unmarked definition. 
o Step 1 of processing-a-definition (5.1.2.2.1.2) marks the definition. All its steps 

terminate immediately, except those calling for obtaining-a-valreffor-a-defref. 
o For each application of 5.1.2.2.1.3 followed by 5.1.2.2.1.2, an unmarked 

definition gets marked. Since the number of definitions is finite, this process ter
minates. 

o Each definition marked in 5.1.2.2.1.2.1 will be removed in 5.1.2.2.1.2.6. So the 
driver will also terminate. 

5.1.2.2.5. Alternative algorithms 

5.1.2.2.5.1. Sorting 

Any topological-sort algorithm can be used. An algorithm that suggests itself 
scans the list of definitions and tests each definition for dependency on definitions 
which have not been processed yet. If it does not depend on such definitions, it is 
processed and an ALICE-value is generated. This process is continued until no further 
progress is made. If there are unprocessed definitions left, they are in error or depend 
on erroneous definitions. A separate algorithm is needed to disentangle this knot and 
give reasonable error messages. 

The algorithm may be useful if memory is very much limited since it allows much 
data to be kept on backing store. While scanning the definition list it can produce a 
new definition list plus some ALICE-values and subsequently scan this new list. Infor
mation about whether or not a definition has been processed can be obtained from 
the translation table. 

5.1.2.2.5.2. Counting 

We could keep track of the number of values while producing the definitions, 
rather than counting them in read-values-into-direct-access. This has the advantage 
that the number will be available at the right moment, and create-status-information 
and create-values can be executed in their proper order, whereas now they have to be 



83 

merged. The disadvantage is that the counting is distributed over the entire reading 
process; this is unreasonable since the validity of the counting depends on the sorting 
algorithm. 

5.1.2.2.6. Conclusion 

This concludes the implementation-independent design of sort-and-count-and
output-values, and therewith that of create-values. 

5.1.3. Further design, stages 1 & 2 

Create-data, create-communication-area and create-rules (5.l) have been designed 
along the lines demonstrated above, and have been used as a basis for stage 3 of the 
design (5.2.3). Since they consist of nothing but more details, they are not presented 
here. 

5.2. Obtaining and organizing the information 

Now that we know exactly what information we need for every construct in the 
language in order to translate it, we shall turn to devising ways of obtaining and 
organizing this information. 

Detailed information is necessary for create-values, create-data and create-rules, 
and this information is interrelated through tags, defrefs, an information aggregate 
called declaration-info, alternative graphs, statement graphs, symbolic run-time stacks, 
(the last three of which occur in the design of create-rules which is not given here), 
etc. We shall describe here only the data-manipulation required for generating ALICE 

values. 

5.2.1. The tag-list 

In the description in 5.1.2 tags and defrefs are continually looked up, but it would 
of course be ridiculous to do so in actual practice. A tag occurring in the program is 
looked up in a tag-list once and is then replaced by a pointer to the entry in the tag
list. Thereafter the pointer gives immediate access to the information needed and no 
further searching is necessary. 

We shall now see how this is done in more detail. When we meet a tag in the pro-
gram text, it is one of the following: 

a selector, 
a formal or local, 
a global (constant, variable, rule, etc.) or 
an undefined tag. 

In each of these cases the sequence of characters of foe tag must be saved for pos
terity: the formals or locals for the dump-pragmat, and undefined tags for error
messages. So the tag is looked up in one big list of strings, and when in the sequel we 
speak of a tag we mean the pointer to this string. We first check (from immediate 
context) if it is used as a selector (which is saved until we see the list tag). Next we 
check if it is a formal or local; if so, we treat it as such. If not, it is a global tag. 

We may not have seen its declaration yet, or its declaration may be missing, or 
there may be multiple declarations for it. So we are tempted just to replace the tag 
by the pointer we have in our hands, since this is all we know. But that would defeat 



84 

our purposes: the next time somebody gets hold of this tag (i.e., this pointer) he wants 
information about it, e.g., where it occurred or how and where it was declared. So the 
replacement pointer must be to a global-info-block containing the following informa
tion: 

a pointer to a string (just obtained), 
a pointer to declaration-info (initially empty), 
a pointer to cross-reference info (initially to the present occurrence), 
marking bits. 

The declaration-infos can be different for different types of declarations, since 
information of a different nature must be stored for each. The cross-reference infor
mation could be a chained list of line numbers, which need not be kept in direct 
access. The tag list and the global-info-list will have to be present all the time. 

We can now see a global tag as a pointer to a global-info-block containing infor
mation about, e.g., its string. This information is unreliable until the entire program 
has been read, and may be so even thereafter if the program is wrong. 

Since some information which is independent of the declarations must already be 
collected at an early stage (see, e.g., 5.1.2.1.2.2), room for marking bits is supplied in 
the global-info-block. 

The actual compiler data structures and their interrelations are described by F. van 
Dijk [VAN DIJK 82]. 

Implementation Note: 
The tag-list algorithm used in the compiler is the one described in [GRUNE 77]. 

Pointers to global-info-blocks are kept on a stack, stored in the order of the strings in 
the global-info-blocks. This data structure allows binary search; the insertion problem 
is solved by keeping the stack diluted with nil-pointers, which can be sacrificed upon 
insertion of a new tag. Redilution takes place when the percentage of nils sinks below 
a given minimum value (about 4 percent). 

5.2.2. Create-values 

As we know, create-values consists of two phases, one collecting 'definitions' and 
one sorting these definitions into ALICE-values, meanwhile producing a translation 
table. The definitions are in essence produced sequentially so that hopefully they can 
be written to a file, which would lower storage requirements (4.2.1). 

Since these definitions form the interface between the two phases, we are tempted 
to tackle these definitions first and choose a (language-independent) representation for 
them, so that collect-values will know what to produce and sort-and-count-and-output
values will know what to expect. The grammar of these definitions is given in 
5.1.2.1.10; it is full of 'defrefs' the grammar of which is also given there. We should 
therefore design representations for these defrefs, but in doing so we are confronted 
with a bewildering variety of forms and the question arises whether collect-values 
really has to produce such complicated things. The possible forms are: 



sumsize!TAG, 
virtsize!TAG, 
virtleftover!TA G, 
sizeleftover !TAG, 
#[NJTAG, 
TAG, 
!<TAG, <<TAG, <>TAG, >>TAG, >!TAG and 
#[N]. 

85 

It would be nice to let the first four coalesce into a single # [N]TAG or, better 

still, the first five into a # [N]. However, this must not make the error messages 

worse. 

The definition list (or definition file) serves to pass information to sort-and-count

and-output·values and it should be in such a form as to do so effectively. This means 

that the format should be such that the usual operations on the list are simple and 

cheap. Now the algorithm in 5. l.2.2. l.3 requires finding the definition of a given 

defref DR, and if no care is taken, this could be an expensive operation. 

If the defref involves a TAG, this is a tag from the program (or #FL, #AST or 

# RST, which, if need be, could be simulated), and we can expect that a definition 

can be found through the tag-list and the global-info. 
If, however, the defref is # [N], it is just an integer and in principle we have to 

search the definition list to find its definition. But if it is 'just an integer' we could try 

to let it be a reference to the position of its definition, e.g., the serial number of that 

definition. This is, of course, only possible if the serial number of a definition of a 

# [NJ-defref is always known by the time the defref is used in another definition. At 

first sight this seems to be true; we shall have to verify this in the design of collect

values. 

We can summarize our wishes for the definition list as follows. Definitions come in 

the following forms (5.1.2.1.10): 

operator: 

{=+,=-, 
= x, =/} 

=intdenot 
=chardenot 
=strlength 
=manfcon 
=extsize 

operands: 
defref defref 

defref defref defref 
defref string 
defref character 
defref integer 
defref symbol 
defref string 

and defrefs come in three forms: 

TAG 
!<TAG, <<TAG, <>TAG, >>TAG, >!TAG 
#[N] 

If a defref of the form # [N] occurs as a first operand (i.e., is being defined), that 

definition must be the N-th definition. 



86 

These design requirements do not follow logically from anything said so far. They 
are tentative additional requirements made for the sake of efficiency, of which we 
hope that they will not lead us into trouble elsewhere. If they do we shall have to 
back up and review the situation. 

5.2.2.1. Collect-values 

Collect-values addresses itself to 

constant-descriptions, 
table-heads, 
stack-heads, 
filling-list-packs, 
pointer-initializations, 
constant-sources, and 
expressions. 

5.2.2.1.1. Constant-descriptions 

A constant-description equates an ALEPH tag to an expression. The expression is 
processed, which yields a defref. If this defref is not of the form # [Nj, a definition 
for the next secret defref N is generated, to be equal to the given (named) defref. The 
tag is looked up in the tag-list. If the declaration-info is empty, it is now set to the tri
plet 

(coNsTANT, line number, N); 

otherwise there is a double definition. 
This declaration-info provides easy access to the tag's definition in the sorting 

phase. 

5.2.2.1.2. List-heads 

A list-head defines a list identified by a tag. This tag is looked up in the tag-list. It 
may already have a non-empty declaration-info, in which case an error message is in 
order. In essence no definitions are generated then, but we must keep in mind that 
some pointer-initialization may depend on this faulty declaration. 

If the tag is still 'free', a declaration-info of some form must be appended. It 
should allow easy access to the definitions of various limits, preferably in the form of 
the serial numbers of their definitions. ALICE requires for its list-info of a list L the 
virtual-min-limit !<L, the virtual-max-limit > !L, the min-limit < <L, the max-limit 
> > L, and the calibre < > L, despite the confusing terminology in ALICE Manual 
3.2.2.2 (see also 5.1.2.1.4). A declaration-info of the following form seems reasonable: 

(TABLE/STACK, line number, !<LST, >!LST, <<LST, >>LST, <>LST). 

The final value of the max-limit field will be set during the processing of the 
filling-list-pack since it cannot be correctly set earlier. There is a variable prev lst 
(5.1.2.1.4.2) which refers to the name of the previous list of the same type as the 
present one. As we see from the last paragraph of 5.1.2.1.4.2, we shall also have to 
keep track of virt size. 



87 

We shall now look into the details. 

5.2.2.1.3. Table-heads 

When we read 5.1.2.1.4.1.1 we are immediately confronted with two problems: 
last fixed and the definition < > FL = CAL. CAL is a genuine integer and integers 
are normally handled in string form only. We can do one of two things now. Either 
we convert CAL into a string and produce 

=intdenot <>FL CAL-string 

or we introduce a new type of definition and produce: 

=int <>FL CAL. 

The latter seems simpler. It does not make any difference for the ALICE code, since 
both would result in: 

!NT valref CAL. 

The last fixed causes more problems. It introduces an inconvenient tag # FL which 
should presumably be entered in the tag-list with the definition of some table prior to 
all other tables. But if we look more closely we see that only > ! # FL is used: it gives 
the value of the virtual right limit of the zero-th table and at the end of the program 
it is set to the minimum virtual address minus 1 (ALICE symbol MNA). So a single tag 
suffices. 

But there is no reason to postpone the initialization of > ! # FL to the end of the 
program. We can start by making a new defref # [N] and generate a definition: 

=manfcon #[NJ MNA . 

This suggests that last fixed can be represented by an integer variable N last fixed 
such that: 

# [N last fixed] = >![last fixed] . 

The same applies to >![prev lst] which turns into #[N prev lstj. This brings us to 
the following actions. 

For each table-head with tag FL and calibre CAL we obtain four new secret 
defrefs NI to N 4 and generate the following definitions: 

=+ 
=int 
=+ 

#[NI] # [N last fixed] # [N2] 
#[N2] CAL 
#[N3] #[N last fixed] #[N4] 
#[N4] >>FL #[N last fixed] 

If the tag is still free, a declaration-info of the form 

(TABLE, line number, NI, N3, NI, N last fixed, N2) 

is appended to it. N prev lst is set to N last fixed, N last fixed to N3 and N virt size to 
N4. 

In the case of an external-table with string STR the last definition is replaced by 

=extsize #[N4] STR 

and the first entry in the declaration-info is EXTERNAL rather than TABLE. 



88 

Remarks: 
o The definitions for N3 and N4 together calculate the max-limit and the virtual

size. The form of the definition of N 3 is chosen to match those in 5.2.2.1.5 and 
5.2.2.1.6. 

o The variable last fixed which refers to a stack or a table has been replaced by 
N last fixed which refers to an integer. 

o The > >FL field has been set provisionally to >![last fixed], the value that 
should result from a missing or bad filling-list-pack. 

5.2.2.1.4. Stack-heads without size-estimate 
These are treated like table-heads except for the declaration-info which will be: 

(STACK, line number, NI, N3, NI, N last fixed, N2). 

5.2.2.1.5. Stack-heads with absolute-sizes 

Again the question arises what to do about #AST. As before only >!#AST is 
ever used but its definition 

>!#AST= >![lastfixed] 

cannot be generated until the very end of the program. So here we have the problem 
in full bloom and there seems to be no way out but to introduce a secret tag #AST, 
generate a definition in the beginning 

#[N] #AST, 

and use N as starting value of N last ast. At the end of the program we then act as if 
we had seen an ALEPH constant-description for #AST, which results in the 
declaration-info of the form 

(CONSTANT, line number, N last fixed) 

to be appended to it. 

This is not too messy a solution, since #AST is not really a tag but only a pointer 
to a global-info-block (5.2.1) which may have NIL for pointer-to-string. So in scanning 
the tag-list we will never meet it. 

The processing of an absolute-size stack-head is then straightforward. If the SIZ 
expression is not of the form # [N], we generate an intermediate definition to make it 
so. We then grab three secret defrefs NI to N3 and generate 

=+ 
=int 
=+ 

#[NI] #[N last astj #[N2] 
#[N2] CAL 
#[N3] #[N last ast] SIZ 

If the tag is still free, a declaration-info of the form 

(STACK, line number, NI, N3, NI, N last ast, N2) 

is appended to it. N prev lst is set to N last ast, N last ast to N 3 and N virt size to 
SIZ. 



89 

5.2.2.1.6. Stack-heads with relative-sizes 

When we read 5.1.2.1.4.1.3 we meet #RST, which could be handled in the same 
fashion as #AST as far as its >!#RST aspect is concerned. The text, however, 
mentions various other defrefs to be attached to an RST tag and consequently to 
#RST. These other defrefs are 

sumsize!RST, 
virtsize!RST, 
virtleftover!RST and 
sizeleftover! RST. 

Of these, virtsize!RST is used for local calculations only; the others are used 
locally and in one other place: the description of the next relative-size stack. So they 
need not be stored with the declaration of the present relative-size stack and can 
remain global, to be used and then reset by the next relative-size stack description. 

We shall need four globals, N last rst, N last sumsize, N last sizeleftover and 
N last virtleftover, such that: 

# [N last rst} = >![last rst}, 
# [N last sumsizej = sumsize![last rst}, 
# [N last sizeleftover} = sizeleftover![last rst}, and 
# [N last virtleftoverj = virtleftover![last rst}. 

Their initializations can be achieved by a combination of existing tricks: 

o N last rst starts as the number of a definition equating it to the pointer to a 
global-info-block of a secret tag # RST, which at the end of the program will 
be set according to a constant-description equating that tag to # [N last ast}; in 
other words, it is 'indirectly initialized' to N last ast. 

o N last sumsize starts as the number of the definition of 0 (which is 0 (5.1.2.1.9)), 

o N last sizeleftover is 'indirectly initialized' to N last sumsize, as with N last rst 
above, 

o N last virtleftover is likewise 'indirectly initialized' to a secret defref NI for 
which the definition 

#[NI} manifest constant(MXA) #[N last ast} 

is generated. 

Processing a relative-size stack-head is then done as follows. If the expression in 
the relative-size, SJZ, is not of the form # [N}, it is made to be so. We then grab 
eight secret defrefs NI to NB and generate 

=+ #[NI} # [N last rst} #[N2} 
=int #[N2} CAL 
=+ #[NJ} # [N last rst} #[N4} 

=X #[N4} #[N5} SIZ 
=/ #[N5} # [N last virtleftoverj # [N last sizeleftoverj 

#[N6} # [N last virtleftover} # [N4} 
=+ #[N7} # [N last sumsizej SIZ 

#[NB} # [N last sizeleftoverj SIZ 



90 

If the tag is still free, a declaration-info of the form 

(STACK, line number, NI, N3, NI, N last rst, N2) 

is appended to it. Set 

N prev lst to N last rst, 
N last rst to N 3, 
N virt size to N4, 
N last virtleftover to N6, 
N last sumsize to N7, and 
N last sizeleftover to NB. 

5.2.2.1.7. Filling-list-packs 

When reading 5.1.2.1.4.2 we see that the counter n is no longer necessary since its 
actions are covered by the general creation of secret defrefs. N last pointer is initial
ized to N prev lst and offset is initialized to 0. 

For single- or compound-blocks offset is increased by CAL. 

For each string-denotation of length K we 'update' N last pointer (see below). We 
then process the increase caused by the string-denotation. We grab two defrefs N 1 and 
N2, generate 

=strlength 
=+ 

#[Ni} K 
#[N2} #[Nlastpointerj #[NI} 

and set N last pointer to N2. 

N last pointer is "updated" as follows: if offset equals 0, N last pointer is already 
updated; if not, we grab two defrefs Ni and N2, generate 

=int 
=+ 

#[NI} offset 
#[N2} #[N last pointer] #[Ni} 

and set N last pointer to N2 and offset to 0. (The new = int operator comes in handy 
here.) 

For each pointer-initialization with tag PNT we update N last pointer and append 
the declaration-info 

(CONSTANT, line number, N last pointer) 

to the tag. 

Finally, at the end of the filling-list-pack we update N last pointer as described 
above and set the max-limit field of the list declaration-info to N last pointer. 

For an absolute-size stack with tag AST a definition of the form 

#[NI} # [N last ast] # [N last pointer] 

is generated to indicate the number of 'fallow' addresses in the list-area (ALICE 

Manual 3.2.2.1). 

The defref indicating the number of virtual addresses is # [N virt size]; the 
corresponding valref is needed for the ALICE list-area. 

Note that the updating of N last pointer implements the optimization for offset 0 
as described in 5.1.2.1.9. 



91 

5.2.2.1.8. Expressions 

Expressions consist of terms, bases and plain-values. For terms and bases we gen
erate straightforward definitions as described in 5.1.2.1.6, 5.1.2.1.9, and 5.1.2.1.10. 
None of these will ever use a secret defref of which the definition has yet not been 
produced. Plain-values come in four kinds: 

integral-denotations, 
character-denotations, 
constant-tags and 
table-limits. 

Constant-tags and table-limits are themselves defrefs (they might be undefined or 
misdefined). Integral- and character-denotations produce definitions of the form 

=intdenot 
=chardenot 

#[N] string 
# [N] character. 

5.2.2.1.9. Constant-sources 

Constant-sources are plain-values; see above. 

5.2.2.1.10. The grammar of the definition list 

Definitions come in the following forms: 

operator: operands: 
#[N] de/ref 

{ =+, =-, 
= X, =/ } #[NJ de/ref de/ref 

=int #[NJ integer 
=intdenot #[N} string 
=chardenot #[N} character 
=str/ength #[N} integer 
=manfcon #[N} symbol 
=extsize #[N} string 

and defrefs come in three forms: 

TAG 
<<TAG, <>TAG, >>TAG 
#[NJ 

This grammar completely satisfies the requirements formulated in the last few 
paragraphs of section 5.2.2 (except for the new operator =int, the processing of which 
is trivial). It even exhibits two more properties that might be utilized. We see that the 
defref to be defined is always of the form # [Nj, and we know that this N is the serial 
number of the definition. This means that the # [Njs are superfluous. If we leave 
them out, the definitions turn into expressions, which fact we can emphasize by also 
omitting the =-sign from the operator. The Ns in defrefs, in declaration-infos and in 
the intermediate (5.1.2.1.7) text must then be regarded as expression numbers. 

It seems, however, inadvisable to change our terminology at this point. We shall 
therefore continue to call definitions definitions and leave the =-sign in. 



92 

Moreover, the forms !<TAG and >!TAG no longer occur as defrefs. It is satisfy
ing to see that the notion 'defref exactly reduces to the notion 'plain-value', where the 
# [Nj originates from naming integral-denotations and character-denotations. 

5.2.2.2. Sort-values 

Little needs to be added in this stage to the algorithm described in 5.1.2.2. 

The elements of the translation table are of the form (de/ref, valrej), where the 
de/ref is defined in a definition. We know now, however, that all defrefs defined in 
definitions are of the form # [Nj. This suggests that the translation table can be kept 
as a consecutive list of valrefs, their positions in the list providing the defrefs. (The 
table is used exclusively for translating defrefs into valrefs, not vice versa). Since val
refs start from 1, 0 can be used to indicate that the corresponding definition has not 
yet been processed (step 5.1.2.2.1.3.1). 

In 5.1.2.2.1.2. l a definition is marked UNDER CONSIDERATION; thereafter some actions 
occur which result in an entry in the translation table and the removal of the present 
definition. Since the position of a definition has become relevant, this removal cannot 
be taken seriously. A new mark REMOVED might be introduced but it appears that the 
UNDER CONSIDERATION mark can figure as such: 

o If a definition is marked UNDER CONSIDERATION (step 5.1.2.2.1.2.1) its entry in the 
translation table will certainly be filled (5.1.2.2.1.2.5) and it will certainly be 
removed (5.1.2.2.1.2.6). 

D If the entry for a definition is filled (5.1.2.2.1.3.1) its UNDER CONSIDERATION mark 
will not be examined (5.1.2.2.1.3.3). 

In other words, as soon as the entry is filled, the UNDER CONSIDERATION mark ceases 
to have a meaning. 

Incorrect definitions are replaced by a valref of zero, which originates from the 
definition (5.1.2.1.9) 

#0 = 0. 

We now arrive at the following algorithms. 

5.2.2.2.1. The reader 

It requires two counters, number of defrefs and number of valrefs, both starting at 
zero. For each definition in the definition list (actually on the definition file) a 
definition of the form 

(FALSE, operator, operandi, operand2) 

is created and number of defrefs is increased by one. If the operator is not =, 
number of valrefs is also increased by one. 

When all reading is done, a translation table is created with number of defrefs 

entries, all zero. 



93 

5.2.2.2.2. The driver 

The algorithm has a global variable last tag (for error messages only), initially set 
to nil. As long as the definition list still contains a definition of which the first field is 
FALSE, process that definition. 

Otherwise, the process is finished and the definition list can be discarded. 

5.2.2.2.3. Processing a definition D with serial number N 

1) set the first field of D to TRUE. 

2) if the operator is '= ', obtain a valref v I for operand!. 
3.1) if the operator is '=int', make a new valref vl and generate 

/NT vl,operandl 

3.2) similar actions for '=intdenot'. 
3.3) similar actions for '=chardenot'. 
3.4) similar actions for '=str/ength'. 
3.5) similar actions for '=manfcon'. 
3.6) similar actions for '=extsize'. 
4.1) if the operator is '= +', obtain valrefs v2 and v3 for operand2 and operand3 

respectively, make a new valref vl and generate 

ADD vl,v2,v3 

4.2) similar actions for '= - '. 
4.3) similar actions for'= X'. 
4.4) similar actions for '=I'. 

5) set the N-th entry in the translation table to vl. 
6) yield the valref v 1. 

5.2.2.2.4. Obtaining a valref V for a defref DR 

1) if DR is of the form TAG set last tag to TAG and check if the TAG has a 
declaration-info the first field of which is CONSTANT. If so, set M to the third field; 
otherwise, give an error message with last tag and line number, and set M to the 
defref of zero, 

2) if DR is of the form <<TAG, <>TAG or >>TAG, set last tag to TAG and 
check if the TAG has a declaration-info the first field of which is TABLE. If so set M 
to the indicated field; otherwise give an error message with last tag and line 
number and set M to the defref of zero, 

3) if the M-th entry in the translation table is non-zero, yield the valref found there; 
4) otherwise, consider the M-th definition; 

4.1) if its first field is TRUE, give an error message with last tag and present line 
number, and yield the valref of zero; 

4.2) otherwise, the definition is proper; process it and yield the valref thus 
obtained. 

5.2.2.2.5. Conclusion 

This concludes the information-collecting phase of the design of sort-values and 
therewith that of create-values. 



94 

5.2.3. Further design, stage 3 

As in 5.1.3, the stage 3 design results for the rest of the compiler are not presented 
in this book. 



95 

6. MODIFICATIONS TO ALICE 

6.1. Inconsistencies in the ALICE definition 

ALICE is defined three times in the ALICE Manual [BOHM 77]; once in paragraph 
2.5, where a regular grammar is given which produces the ALICE-macros in any order, 
regardless of their interrelationship; once in paragraphs 3.1 to 3.4, which contain a 
context-free grammar interspersed with semantics and explanations; and once in para
graph 3.5, where all bits of grammar from paragraphs 3.1 to 3.4 are collected into one 
grammar. All three definitions differ in small points; these differences do not impair 
the understandability. For implementation, however, it is necessary that there be one 
grammar. 

The regular grammar was disregarded since the implementation was based on a 
context-free grammar (for error-checking purposes). Fortunately the context-free 
grammars complemented each other. The numerous inconsistencies in names (e.g., 
ext-table-decl is sometimes called extemal-table-decl) were solved in favour of the 
shorter name. All declarations missing from the distributed grammar (e.g., those for 
values, data, list-type, sp, etc.) could easily be supplemented. The few remaining errors 
were solved as follows. 

o Output-gate-creation is obligatory in ALICE Manual 3.3.5 and optional in ALICE 
Manual 3.5. It was made obligatory for two reasons: 

o Its mirror image input-gate-creation is obligatory in both grammars. 
o It is the philosophy of ALICE to be as explicit as possible, so it is better to 

indicate an empty gate by creating one of size 0 than by not creating it. 
A macro processor for ALICE will benefit from this. 

o The exit-value in exit in ALICE Manual 3.5 is specified as a valref only: the repr 
is missing. This is wrong: since the value must be accessible at run-time, it must 
be addressable through a repr and there must be a constant-source for it. 

These changes resulted in a grammar which was declared the context-free grammar 
intended in the ALICE Manual. The further sections in this chapter treat shortcomings 
of and modifications to this grammar. 

6.2. Shortcomings of ALICE 

In the course of the design of the compiler a number of difficulties with ALICE were 
observed. Most of these were very easy to correct, but four problems required further 
investigation. 

Minor points included: 

o The standard externals set elem and string length had the same internal 
representation STL; set elem was renamed SEL. 

o Some symbols were missing, e.g., the one to be used in the translation of a tran
sport. 

o Everything connected with external constants was missing. 

o The grammar (inadvertently) did not allow an ext-table-decl when there is no 
list-area. In a first attempt to correct this, all components of lists were made 
optional (the II indicate optionality): 



96 

lists: 
(list areas), 
(ext table decls), 
(list administrations). 

However, since data is defined: 

data: 
(constant sources), 
(variable decls), 
(lists), 
(files). 

there are now two ways to describe the absence of lists and the grammar is 
ambiguous. A correct solution is obtained by treating the components of lists 
on the same footing as those of data: 

data: 
(constant sources), 
(variable decls ), 
(list areas), 
(ext table decls), 
(list administrations), 
(file administrations). 

which also rids us of a superfluous rule files. 

o It was found unrealistic to keep the user-pragmats (and comments) out of the 
formal grammar of ALICE. 

o A number of symbols were missing from extag (i.e., from the list of standard 
externals), e.g., for delete, unqueue to, etc. 

o Only those constants that do not get their values in the ALEPH program or post
lude need to have a symbol as a manifest-constant. Thus, no symbol is required 
for TRUE, FALSE, etc. 

o There is a slight irregularity in the definition of the unstack-and-retum macro. 
It is the only macro that is directly generated in more than one place, and used 
with more than one meaning (in unstack-and-retum-true and unstack-and
retum-false ). The distinction is made by a parameter (true-symbol versus false
symbol): this is the only place where the grammar prescribes a fixed parameter. 
The anomaly is solved by splitting the unstack-and-retum macro into two. 

o The translation of a 'dummy' affix (ALEPH Manual 3.4) requires the 
store-w _reg-sequence in restore-from-output-gate to be optional. 

o Some machines allow a more efficient calling sequence for non-recursive calls 
than for recursive ones. In such cases the hardware places the return informa
tion in a fixed place somewhere near the rule-head. The 'success tail/fail tail' 
must have access to it, so the corresponding macros need the repr of the rule. 

The four more serious problems are discussed in the following paragraphs. 



97 

6.3. ALICE is not of type LL(l) 

There is no direct reason why the grammar of ALICE should be an LL(l) grammar. 
The stream of ALICE macros is intended to be processed macro by macro, in a finite 
state fashion; and the regular grammar of the macro stream is clearly of type LL(l), 
since each macro is identified by a unique initial symbol. 

There are, however, good indirect reasons for the grammar to be of the type 
LL(l). 

o It allows the ALICE processor to parse easily the macro stream according to the 
context-free grammar. In this way the circumstances of each occurrence of 
each macro are known, which can be useful for code optimization. 

o It is advantageous during development to be able to check the ALICE stream 
against its context-free grammar. 

Fortunately the ALICE grammar is almost of type LL(l). The only problem is 
caused by production rules starting with load-addr-in-a_reg. 

o It is not possible (on an LL(l)-basis) to determine the presence (or length) of 
the load-list-element-in-v _reg-sequence in store-w _reg-in-list-element. 

o It is not possible to distinguish between copy-vat-to-input-gate and copy-addr
to-input-gate in copy-to-input-gate. 

o It is not possible to discern the end of copies-to-input-gate in extension. 

We shall now treat the first two problems; since the grammar and semantics of the 
extension in ALICE Manual 3.3.8.2.3 are clearly incomplete, the treatment of the third 
problem is better combined with the design of a correct extension sequence (6.5). 

The grammar of load-indexed-element-in-v _reg and its complement store-w _reg
in-indexed-element (incorrectly named store-w _reg-in-list-element in the ALICE 
Manual) is not as clean as would be desirable. It causes implementation problems for 
the implementer who wants to use registers for the gate and a subroutine for index 
checking and indexing. The implementer then has the choice either 

o to identify v_reg with the machine register which holds the top of the gate, and 
have several different subroutines for indexing via the various gate registers, or 

o to identify v _reg with a fixed machine register, known to the indexing routine, 
and fill the gate register afterwards. 

Neither of the alternatives is really attractive. The problem clarifies when we intro
duce, just for the sake of argument, an index register i_reg. An indexed input param
eter with n (nested) indices could then produce: 

load simple in i _reg, 

followed by (n - 1) times 

load addr in a_ reg, 
load i with list elem from i_reg, 

followed by 

load addr in a_ reg, 
load v with list elem from i_reg. 

A similar output parameter would need: 

load simple in i _reg, 

followed by (n -1) times 



98 

load addr in a_ reg, 
load i with list elem from i _reg, 

followed by 

load addr in a reg, 
store w _reg in list elem under i _reg. 

This approach provides the user with exact information about which register to 
use. A practical disadvantage is that it requires part of the grammar to be duplicated 
with i_reg instead of v _reg. To avoid this we introduce a symbol index-symbol with 
the meaning: from now on all references to v_reg actually reference i_reg. The sym
bol end-index-symbol switches this interpretation off. We then get: 

load indexed element in v _reg: 
load index sequence, 
load list element in v _reg. 

store w _reg in indexed element: 
load index sequence, 
store w _reg in list element. 

load index sequence: 
index symbol, el, 
load simple in v _reg, 
(load list element in v_reg sequence), 
end index symbol, el. 

store w _reg in list element: 
load addr in a_ reg, 
store w list element symbol, sp, integer, el. 

A similar reasoning applies to copy-addr-to-input-gate. Normally a_reg is used to 
access objects, but here it only serves as an intermediate register for an address on its 
way to the gate, a function for which v _reg might be more appropriate. It seems fair 
to indicate this odd usage of a_reg to the implementer: 

copy addr to input gate: 
copy address symbol, el, 
load addr to a_ reg, 
copy a_ reg to input gate. 

This also solves the first two LL(l) problems. 

6.4. The calling mechanism 

The parameter passing in ALICE is described in terms of an (abstract) gate, onto 
which the input parameters are loaded by the caller, from which they are fetched by 
the called rule, onto which the called rule writes its output parameters, and from 
which the caller extracts the results. The details are such that the system supports two 
implementation techniques, one in which the role of the gate is played by registers (to 
be called 'scheme A ') and one in which the gate is mapped directly on the correct 



99 

positions in the stack frame of the called rule ('scheme B '). 
Scheme A works perfectly, but scheme B causes problems. In order to under

stand why this is so we have to look at the information necessary for implementation. 
For each scheme we shall consider four items: the call of rule S in rule R , the rule 
head of S ('rule entry'), the rule tail of S ('rule exit'), and the restore by the caller in 
R. 

For scheme A we have: 

call of S: 
some values - gate registers, 
link to rule S . 

rule head of S : 
. allocate formals and locals of S, 
gate registers - some formals. 

rule tail of S : 
some formals - gate registers, 
deallocate formals and locals of S, 
unlink to caller. 

restore in R : 
gate registers - some locations. 

(What return information is provided in the 'linking' to the rule and where it is stored 
is left unspecified here, under the pro".iso that it can be used in the 'unlinking' to the 
caller.) 

For scheme B we get: 

call of S: 
allocate formals and locals of S, 
some values - some formals of S, 
link to S. 

rule head of S : 
empty. 

rule tail of S : 
unlink to caller. 

restore in R : 
some formals of S - some locations, 
deallocate formals and locals of S . 

It appears that R has to know the number of locals of S, as they are indeed pro
vided in the target-stack-frame-macro (ALICE Manual 3.3.6). The ALEPH compiler, 
however, cannot reasonably provide this information: 



100 

o The calculation of the number of locals is a tricky affair, since implicit locals 
may be needed (e.g., to implement the 'spoil and fail' effect described in ALEPH 
Manual 3.7). The presence of implicit locals can only be detected when the rule 
is fully analyzed, which may be after the call. The problem can be solved, but 
only at the expense of another pass over the text. 

o If the call is to a separately compiled rule, the number of locals is unknown. 
Now separate compilation is not a feature of ALEPH as described in the ALEPH 
Manual, but it would be nice to add it in a simple form, and if calls to locally 
and separately compiled rules differ too greatly, complications arise. 

It has been suggested that the problems with scheme B can be solved by having 
the caller allocate the formals only (and fill them as need be). The locals will then be 
allocated by the called rule. A consequence of this is that each calling sequence 
involves 2 allocations and 2 deallocations, which seems exaggerated. 

This technique, however, allows a simple optimization. If the maximum number of 
formals ever to be allocated in any 'call of X' in R is known in advance, the neces
sary space can be allocated in the rule head of R once and for all. These location are 
called the 'actuals' of R . 

The calling sequence is then (scheme C): 

call of S: 
some values - actuals of R , 
link to S. 

rule head of S : 
allocate locals and actuals of S 

(actuals of R ::;::. formals of S ). 

rule tail of S : 
deallocate locals and actuals of S 

(formals of S ::;::. actuals of R ), 
unlink to caller. 

restore in R : 
actuals of R - some locations. 

(The symbol ::;::. is used to denote 'reinterpretation', as opposed to - which means 
'copying'.) 

We are now in a position to reassess the information needed in the four steps. 
At the call we need the number of input parameters. 
At the rule head we need (number of formals + number of locals) and (number of 

locals + number of actuals). 
At the rule tail we need the same plus the number of output parameters. 
At the restore we need nothing. 

This means that the target-stack-frame disappears from the call sequence. If we 
now introduce an input-gate-creation-macro in ext-call, the parameter treatment in 
call and ext-call is sufficiently similar that ext-call can be used for a call to a 
separately compiled rule. 

There is one place where a call occurs outside a rule-body, viz., in the root, as the 
initial call by the main program. The root must set up an environment equal to that 



101 

of a normal rule, so it must be given information about the number of parameters 
(always 0), the number of locals (also always 0) and the number of actuals (equal to 
the number of parameters in the affix-form in the root). The root-macro has been 
extended to this effect. 

It should be noted that scheme C produces less code than scheme B : there is one 
allocation/ deallocation for each rule rather than for each call. 

Some thought has been given to machines on which indirect addressing is cumber
some and undesirable. On such machines one would like to place the formals and 
locals of each rule in fixed locations. This causes no problem if the rule is non
recursive (scheme DI): 

call of S: 
some values ...., input formals of S, 
link to S. 

rule head of S : 
empty. 

rule tail of S : 
unlink. 

restore in R : 
output formals of S ...., some locations. 

If, however, S is recursive, the formals may be occupied already, and the use of a 
gate is unavoidable (scheme D 2): 

call of S: 
some values ...., gate, 
link to S. 

rule head of S : 
if formals of S in use: formals and locals ...., stack, 
gate ...., input formals of S. 

rule tail of S : 
output formals of S ...., gate, 
if formals and locals stacked: stack ...., formals and locals, 
unlink. 

restore in R : 
gate ...., some locations. 

It should be noted that almost any other conceivable parameter passing mechan
ism can be implemented by having the assembler store the necessary information 
before the rule entry, after the rule exit or at the program end, and picking it up 
dynamically. 

It is interesting to see that in a certain sense the 3 above schemes A , B and C are 
the only ones. If we assume that any calling sequence must consist of the following 5 



102 

indivisible actions: 

a : values ~ gate 
b: link 
e : allocate formals 
d: allocate locals 
e : gate ~ formals, 

then there are 120 possible permutations. Now e cannot occur before a, nor before e 
(gate or formals not yet available); and b cannot precede a (values no longer avail
able). This reduces the number to 25. For reasons of efficiency we are now interested 
in subsequences that can be contracted. There are 3 such subsequences: 

values ~ formals, ae ~ 
ed ~ 
de~ 

allocate formals and locals, 
allocate locals and formals. 

We realize that ed and de are essentially the same, which lowers the number of 
different sequences to 20. This gives the following table: 

number of sequences: 
number of sequences with ae : 
number of sequences with ed: 
number of sequences with both: 

20 
5 
3 
1 (scheme B = edaeb) 

Up to now we have neglected the problem, explained above, that the number of 
the locals required is not available before the actual linking, so that d cannot precede 
b. Introduction of this restriction changes the picture drastically: 

number of sequences: 
number of sequences with ae : 
number of sequences with ed: 
number of sequences with both: 

8 
1 (scheme C = eaebd) 
1 (scheme A = abede) 
0 

The remaining 6 sequences (abeed, aebde, aebed, aeebd, eabde and eabed) are 
mostly stupid variations of scheme A or C; anyway, they do not contain any 
interesting contractible sequences. 

6.5. The extension sequence 

The extension sequence as stated in ALICE Manual 3.3.8.2.3 causes immediate 
problems both for the compiler writer and for the implementer. 

o What values should the compiler generate for the formals in copies-to-input
gate? 

o What code should be generated for an ALEPH extension in which one source is 
transported to more than one selector? 

o How can the extension sequence be implemented on a machine without regis
ters, i.e, under scheme C? At best the implementer is forced to allocate the gate 
somewhere in memory, as if it consisted of registers. 

To gain a better insight in the problem we shall write down the steps needed under 
scheme A and C. For scheme A we have: 



values - gate, 
addr of stack administration - a_reg, 
extend stack and update stack administration (using a _reg), 
gate - stack block 

(including multiple transports~ using a_ reg). 

103 

This is the basic sequence as supported by the ALICE Manual. It corresponds closely 
to the semantics (ALEPH Manual 3.4.3): first the values are calculated, then the stack 
is extended, then the block obtained is filled. 

If we have, however, a machine without registers, and want to avoid a simulated 
gate in memory, the calculated values must be stored directly in the stack block, 
which must be available by then. Note that the max-limit of the stack should not yet 
reflect this situation. Thus for scheme C we get: 

addr of stack administration - a_ reg, 
extend stack and save a_reg in s_reg, 
values (calculated using a_reg) - stack block (using s_reg), 
update stack administration (using s_reg). 

We see that we need a special stack register s _reg for storing the values in the block 
and for the subsequential updating of the stack administration. The a_reg cannot 
serve, since it may be needed in calculating the values. 

This code can be improved slightly by always having an empty block on top of the 
stack (the presence of which does not show in its max-limit): 

addr of stack administration - s_reg, 
values (calculated using a_reg) - stack block (using s_reg), 
update administration (using s_reg), 
extend stack (using s_reg). 

Unfortunately the sequences for scheme A and scheme C have little in common. 
Moreover it would be nice not to deviate too much from the code for a call. We 
should like to use the existing copies-to-input-gate and restores-from-output-gate. 

A certain measure of unification can be reached by the following sequence: 

addr of stack administration - s_reg, 
values - gate (copies to input gate), 
extension part 1, 
gate - stack block (restores from output gate), 
extension part 2. 

(1) 
(2) 
(3) 
(4) 
(5) 

The exact meaning of each step under the various schemes is now easy to see, except 
for steps 2 and 4 under scheme C. Step 2 should store each value in exactly one 
location in the stack block; step 4 should spread them out, if necessary. 

This determines the meaning of the fonnals in copies-to-input-gate and extension
copies: 

o The first integer is the position-on-gate, i.e., the number of the field-transport in 
the ALEPH text. 

o The second integer is the position-on-stack, i.e., the position in the stack block 
of one of the selectors in the field-transport. 
The gate is filled and unloaded stack-wise. The first fonnal in restores-from
output-gate is identical to the last one in copies-to-input-gate. 



104 

This means that the notion extension-copies is now obsolete and that the 
extension-call can rightfully obtain the symbol EXC. 

Example: the translation of the extension (ALEPH Manual 3.4.3): 

* 3 - ect, 5 - set - ors * lst 

could be: 

step 2: L VC 23,38 
CVR 1,2 
LVC 51,17 
CVR 2,1 

step 4: LDW 2,1 
sws 1 
sws 3 
FRW 
LDW 1,2 
SWS2 
FRW 

$scheme A: 
$ 3 ~ v_reg 
$ v_reg - gl 
$5~v_reg 

$ v_reg - g2 

$ g2 ~ w_reg 
$ w_reg - sel 
$ w_reg- ors 

$ gl ~ w_reg 
$ w_reg - ect 

scheme C: 
3 ~ v_reg 
v_reg ~ w_reg - ect 
5 ~ v_reg 
v_reg ~ w_reg - sel 

sel ~ w_reg 

w_reg - ors 

ect ~ w_reg 

The above change also removes the last LL(l) conflict in the ALICE grammar (6.7). 

6.6. A new ALICE instruction? 

The practical use of ALEPH, especially for the implementation of finite-state 
machines [JONKERS 78], has led to the wish for an optimized translation of the 
dynamically last affix-form in an actual-rule. Under certain circumstances the resulting 
call can be implemented by abandoning the caller and replacing it by the called rule, 
i.e., by swapping. 

The details are best understood when we examine the calling sequence of a call of 
S in R which has been called by Q, under the following assumptions: 

o the call of S in R is dynamically the last call in R , 
o R and S have the same number of formals, 
o R and S have output formals in the same positions, where an 'output formal' 

is any formal-variable (ALEPH Manual 3.3.1) that ends in >, 
o the actual-affixes in the call of S in the output positions are the corresponding 

formal-affixes of R . 
These assumptions together form the 'swap condition'. 

The dynamically last call of S in R which has been called by Q involves the fol
lowing steps in scheme A (gate in registers): 



Q R S 
some values - gate, 
link to S, 

allocate formals and locals of S, 
gate - input formals of S, 
doS, 
output formals of S - gate, 
deallocate formals and locals of S, 
unlink, 

gate - some locations, 
output formals of R - gate, 
deallocate formals and locals of R , 
unlink, 

gate - some locations. 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 

105 

Under the 'swap condition' the 'some locations' in (9) are exactly the 'output for
mals of R' in (10), with the consequence that (9) and (10) cancel out. Now the latest 
place where the formals and locals of R can still be used is (1). The sequence (11, 12) 

can therefore be moved upwards to after (1), where (12) coalesces with (2). We thus 
arrive at the following swap sequence under scheme A : 

Q R&S 
some values - gate, 
deallocate formals and locals of R , 
unlink & link to S , 
allocate formals and locals of S , 
gate - input formals of S, 
do S, 
output formals of S - gate, 
deallocate formals and locals of S, 
unlink, 

gate - some locations. 

(1) 
(11) 
(2, 12) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(13) 

We see that what happens inside S (sequence (3-8)) has not changed, so S need 
never know it was called in an unusual way. 

It should be noted that this optimization hinges on the fact that S cannot, by 
itself, access the formals of R . In ALEPH a rule can only access the globals and its 

own formals and locals. As a consequence, the corresponding optimization is not 
immediately valid in ALGOL 60 or ALGOL 68 (unless deeper analysis shows that there is 
no danger). 

The optimization is less clear in scheme C : 



106 

Q R S 
some values-+ actuals of R, (I) 
link to S , (2) 

allocate locals and actuals of S 
(actuals of R ~ formals of S), (3) 

. do S, (4) 
deallocate locals and actuals of S 

(formals of S ~ actuals of R ), (5) 
unlink, (6) 

actuals of R -+ some locations, (7) 
deallocate locals and actuals of R 

(formals of R ~ actuals of Q ), (8) 
unlink, (9) 

actuals of Q -+ some locations. (10) 

Under the swap condition the 'some locations' in (7) are the 'formals of R '. We 
can again move (7,8) upwards, but only if we make the appropriate changes inside S: 

Q R!S 
some values -+ actuals of R , 
actuals of R -+ formals of R , 
deallocate locals and actuals of R 

(formals of R ~ actuals of Q ), 
unlink & link to S , 
allocate locals and actuals of S 

(actuals of Q ~ formals of S ), 
do S, 
deallocate locals and actuals of S 

(formals of S ~ actuals of Q ), 
unlink, 

actuals of Q -+ some locations. 

(1) 
(7) 

(8) 
(2,9) 

(3Q) 
(4) 

(5Q) 
(6) 
(10) 

A problem lies in (3Q) and (5Q): S assumes the actuals of Q to be its (S 's) for
mals, which is acceptable, provided that the number of formals of S be not greater 
than the number of actuals of Q . And indeed, because of the swap condition, the 
number of formals of S is equal to that of R , which in turn is less than or equal to 
the number of actuals of Q, so that no conflict can arise. 

We are tempted to contract (1) and (7) into 

some values -+ formals of R , (1,7) 

to make the sequence look more like a normal calling sequence. There is, however, a 
problem here: one of the values may be a formal of R , and since the transport in 
(1,7) is actually a sequence of transports cross-effects may occur, as in the following 
example: 

FUNCTION gcd + >a+ >b + c>: 
b=O,a-+c; 
less + a + b, gcd + b + a + c; $ !!! 
divrem + a + b + ? + a, :gcd. 

It seems unreasonable to require the compiler to check this: the loss from not 



107 

checking is small, and the properties resulting from the check are not easily formu
lated in terms of ALICE concepts. 

If implementing a swap in scheme C is already more difficult than in scheme A , 
the idea breaks down completely in schemes D 1 and D 2. The rule Q , which is com
pletely unaware of rule S, will never be able to take the formals of S for those of R . 
This has the interesting consequence that whatever form the swap-instruction in ALICE 
may take, the full calling sequence must still be provided. Thus the swap feature 
reduces to an add-on property of the calling sequence, and it is left to the ALICE pro
cessor to either implement or ignore the swap. 

Thus we arrive at the following modification of ALICE. Both the call and ext-call 
macro sequence are supplied with an unstack-and-swap-option whose presence indi
cates that the above short-cut is allowed. 

To keep the semantics of ALICE self-contained the semantics of the macro must be 
explained in ALICE terms. The presence of an unstack-and-swap in a call or ext-call 
means that: 

o the true- and false-addresses of this call are the addresses of the success- and 
fail-tail of the rule; 

o for each restore-to-output-gate in the success-tail of the called rule there is an 
identical restore-to-output-gate in the success-tail of the calling rule, and vice 
versa; 

o for each such restore-to-output-gate with position-on-gate G and position-on-
stack S there is a sequence 

Ioadw symbol, sp, G, S, el, 
storew stack var symbol, sp, S, el, 
free w _reg symbol, el 

in the restores-from-output-gate in this call. 

6.7. The ALICE grammar 

The above changes have resulted in the following grammar. 

$ALICE grammar: 820517. 
$ An ALICE program is a sequence 
$ of macros, comment lines, and 
$ pragmat lines. 

$A macro has the form: 

$macro: 
$ macro name, 
$ (sp, parameters), el. 
$ macro name: 
$ ALICE terminal symbol. 
$ parameters: 
$ parameter, (co, parameters). 
$ parameter: 
$ string; 
$ integer; 

$ character; 
$ ALICE terminal symbol. 

$An ALICE-terminal-symbol is a 
$ sequence of three letters. 
$ A string is represented as an exact 
$ copy of the ALEPH string, 
$ including the surrounding quotes. 

$ A comment line is a terminal 
$ production of comment, which see. 
$ It should be ignored. 

$ A pragmat line is a terminal 
$ production of pragmat, which see. 
$It may, in principle, occur between 
$ any pair of macro lines. A portable 



108 

$ program should not contain any 
$ pragmat lines. 

$ ALICE-terminal-symbols with 
$ their representations 

$macro-names: 
add symbol; 
begin file adm symbol; 
call id symbol; 
call end symbol; 
class box id symbol; 
class box end symbol; 
class begin symbol; 
class end symbol; 
char denotation symbol; 
constant source symbol; 
comment symbol; 
communication symbol; 
copy address symbol; 
copy a_ reg symbol; 
copy from input gate symbol; 
copy v _reg symbol; 
divide symbol; 
end file adm symbol; 
end list symbol; 
end index symbol; 
end symbol; 
end values symbol; 
exit symbol; 
ext constant decl symbol; 
ext fcall symbol; 
ext scall symbol; 
ext table length symbol; 
ext table decl symbol; 
ext call end symbol; 
ext scall id symbol; 
ext fcall id symbol; 
extension id symbol; 
extension start symbol; 
extension call symbol; 
extension end symbol; 
ext rule decl symbol; 
fail tail id sy\Dbol; 
fallow symbo}l 
fcall symbol; 
free w _reg symbol; 
index symbol; 

$'add 
$ bfa 
$ell 
$ cle 
$ cbi 
$ cbe 
$ csb 
$ cse 
$ chd 
$ css 
$ xxx 
$ cmm 
$cad 
$ car 
$ cig 
$ cvr 
$ dvd 
$ efa 
$ els 
$ eix 
$end 
$ eva 
$ ext 
$ ecd 
$ ef c 
$ esc 
$ etl 
$ etd 
$ ece 
$ esi 
$ efi 
$ exi 
$ exs 
$ exc 
$ exe 
$ erl 
$ fti 
$ flw 
$ fcl 
$ frw 
$ ind 

input gate symbol; $ igt 
int symbol; $ int 
int fill symbol; $ itf 
jump symbol; $ jmp 
label symbol; $ lab 
list adm symbol; $ ldm 
list symbol; $ lst 
loada global symbol; $ lag 
loada stack var symbol; $ las 
loadv constant symbol; $ lvc 
loadv limit symbol; $ lvl 
loadv list elem symbol; $ lvi 
loadv stack var symbol; $ lvs 
loadv variable symbol; $ lvv 
loadw symbol; $ ldw 
manifest constant symbol; $ men 
multiply symbol; $ mul 
rule id symbol; $ rli 
numerical symbol; $ num 
output gate symbol; $ ogt 
pointer symbol; $ ptr 
pragmat symbol; $ prg 
program id symbol; $ pid 
restore to output gate symbol; $ rog 
root symbol; $rut 
source line symbol; $ srl 
scall symbol; $ scl 
stack frame symbol; $ sfr 
status symbol; $ sts 
storew variable symbol; $ swv 
storew list element symbol; $ swi 
storew stack var symbol; $ sws 
string length symbol; $ sin 
string fill symbol; $ str 
subtract symbol; $sub 
success tail id symbol; $ sti 
unstack and return true symbol; $ unt 
unstack and return false symbol; $ unf 
unstack and swap symbol; $ unw 
variable symbol; $ var 
zone bounds symbol; $ znb 
zone value symbol; $ znv 

$ delimiters: 
space symbol; $ ' ' 
comma symbol; $ , 
end of line; $ medium-dependent 

$parameters: 



109 

max int symbol; $ mxi right clear symbol; $ rcl 
min int symbol; $ mni is elem symbol; $ is! 
int size symbol; $ isz is true symbol; $ itr 
word size symbol; $ wsz is false symbol; $ isf 
max char symbol; $ mxc set elem symbol; $ sel 
max string length symbol; $ msl clear elem symbol; $ell 
new line symbol; $ nln extract bits symbol; $ exb 
same line symbol; $sin first true symbol; $ ftr 
new page symbol; $·npg pack bool symbol; $ pkb 
rest line symbol; $ rln unpack bool symbol; $ upb 
numerical-tag symbol; $ num to ascii symbol; $ tsc 
pointer-tag symbol; $ ptr from ascii symbol; $ fsc 

pack string symbol; $ pks 
comma-tag symbol; $corn unpack string symbol; $ups 
space-tag symbol; $ spc string elem symbol; $ ste 
min addr symbol; $ mna string length-tag symbol; $ stl 
max addr symbol; $ mxa compare string symbol; $ems 

unstack string symbol; $ uns 
transport symbol; $ trp previous string symbol; $ pvs 
add-tag symbol; $add may be string pointer symbol; $ myp 
subtr symbol; $sub was symbol; $was 
mutt symbol; $ mul next symbol; $ nxt 
divrem symbol; $ div previous symbol; $ prv 
plus symbol; $ pls list length symbol; $ ls! 
minus symbol; $ min unstack symbol; $ utk 
times symbol; $ tms unstack to symbol; $ ust 
incr symbol; $ inc unqueue symbol; $ unq 
deer symbol; $dee unqueue to symbol; $ uqt 
less symbol; $ les scratch symbol; $ scr 
lseq symbol; $ lsq delete symbol; $de! 
more symbol; $ mor get line symbol; $ gin 
mreq symbol; $ mrq put line symbol; $ pin 
equal symbol; $ eql get char symbol; $ gch 
noteq symbol; $ ntq put char symbol; $ pch 
random symbol; $md put string symbol; $ pst 
set random symbol; $sm get int symbol; $ gnt 
set real random symbol; $ srr put int symbol; $ pnt 
sqrt symbol; $ sqr get data symbol; $ gdt 
pack int symbol; $ pki put data symbol; $ pdt 
unpack int symbol; $ upi back file symbol; $ bkf 
date symbol; $ dte 
time symbol; $ tim $ Other primitives used as parameters: 
bool invert symbol; $ biv string; 
bool and symbol; $ bnd $ character sequence delimit-
bool or symbol; $ bor $ ed by quotes; quotes in the 
bool xor symbol; $ xor $ string are represented by 
left circ symbol; $lei $quote-images ("") 
left clear symbol; $ lcl character; 
right circ symbol; $ rci $ except space and comma 



110 

integer. 
$ unsigned digit sequence 

ALICE program: 
program id symbol, sp, 
string, el, $ program title 
status information, 
values, 
end values symbol, el, 
data, 
communication area, 
rules, 
end symbol, sp, 
string, el. $ program title 

data: 
(constant sources(, 
[ext constant decls), 
(variable decls), 
(list areas)., 
(ext table decls], 
(list administrations), 
(file administrations). 

rules: 
ext rule decls, 
rules and root. 

sp: space symbol. 
co: comma symbol. 
el: end of line. 

status information: 
status symbol, sp, 
integer, co, 

$ maximum of all 
$ size-of-input-gates and 
$ size-of-output-gates 

integer, co, 
$ number of values 

integer, co, 
$ number of variable-decls 

integer, co, 
$number of 
$ file-administrations 

integer, co, 

$ number of breathing lists 
integer, co, 

$ number of non-breathing lists 
integer, co, 

$background: 
$ 0: No lists on background 
$ 1 : Lists on background 

integer, el. 
$ dump; sum of 
$ 1: rule dump 
$ 2: global dump 
$ 4: member dump 

values: 
value, (values]. 

value: 
value definition; 
calculation. 

value definition: 
int denotation; 
manifest constant; 
char denotation; 
string length; 
ext table length. 

int denotation: 
int symbol, sp, 
location, co, integer, el. 

manifest constant: 
manifest constant symbol, sp, 
location, co, manco, el. 

manco: 
new line symbol; 
same line symbol; 
rest line symbol; 
new page symbol; 
max char symbol; 
max string length symbol; 
word size symbol; 
max int symbol; 
min int symbol; 
int size symbol; 
comma-tag symbol; 
space-tag symbol; 



min addr symbol; 
max addr symbol; 
numerical-tag symbol; 
pointer-tag symbol. 

char denotation: 
char denotation symbol, sp, 
location, co, 
character, el. 

string length: 
string length symbol, sp, 
location, co, integer, el. 

ext table length: 
ext table length symbol, sp, 
location, co, 
string, el. $ the ALEPH string 

calculation: 
operator, sp, location, co, 
valref, co, valref, el. 

operator: 
add symbol; 
subtract symbol; 
multiply symbol; 
divide symbol. 

location: 
integer. 

valref: 

$ This integer denotes where to put a 
$ certain value in the table the 
$ ALICE processor builds. The 
$ location will be referred to by 
$ valrefs. 

integer. 
$ A valref references the location of 
$ an already defined value in the 
$ table the ALICE processor is 
$ building up. 

$Data: 
constant sources: 

constant source, 

(constant sources]. 

constant source: 
constant source symbol, sp, 
repr val pair, el. 

repr val pair: 
repr, co, valref. 

repr: 
integer. 

$ A repr either represents an 
$ ALICE object uniquely (>0) 
$ or it indicates the absence 
$ of an ALICE object ( = 0). 

ext constant decls: 
ext constant decl, 

(ext constant decls]. 

ext constant decl: 
ext constant decl symbol, sp, 
repr, co, string, el. 

$ the ALEPH string 

variable decls: 
variable decl, (variable decls). 

variable decl: 
variable symbol, sp, 
repr val pair, co, 
repr, co, $ of next variable-decl 
string, el. 

$ the ALEPH tag in quotes 

list areas: 
list area, 
(list areas]. 

list area: 
list symbol, sp, 
list area info, el, 
(list fillings), 
end list symbol, sp, 
list area info, el. 

111 



112 

list area info: 
repr, co, $ of the list 
list type, co, 
valref. 

$ number of virtual addresses 

list fillings: 
list filling, (list fillings). 

list filling: 
int fill symbol, sp, valref, el; 
string fill symbol, sp, string, el; 
fallow symbol, sp, valref, el. 

$ 'fallow' stands for uninitialized 
$ space to be grabbed for a stack 
$ with an absolute-size-estimate. 

ext table decls: 
ext table decl, (ext table decls). 

ext table decl: 
ext table decl symbol, sp, 
list info, co, 
string, el. $ the ALEPH string 

list administrations: 
list administration, 

(list administrations). 

list administration: 
list adm symbol, sp, 
list info, el. 

list info: 
repr, co, $ of the list 
list type, co, 
valref, co, $ virtual min 
valref, co, $ virtual max 
valref, co, $ actual min 
valref, co, $ actual max 
valref, co, $ calibre 
repr, co, $ of next list-info or 0 
string. $ the ALEPH tag in quotes 

"'\ 
list type: 

integer. 
$sum of: 

$ 1 : background pragmat 
$ 2: breathing 

file administrations: 
file administration, 

(file administrations). 

file administration: 
begin file adm symbol, sp, 
file info, el, 
(pointer area), 
(numerical area), 
end file adm symbol, sp, 
file info, el. 

file info: 
repr, co, 
file type, co, 
repr, co, 

$ next file-administration or 0 
string. $ the ALEPH string 

file type: 
integer. 

$sum of 
$ 1: datafile 
$ 2: input 
$ 4: output 

pointer area: 
pointer symbol, sp, 
repr, el, $ of a list-info 
(pointer area). 

numerical area: 
numerical symbol, sp, 
valref, co, $ lower bound 
valref, el, $ upper bound 
(numerical area). 

communication area: 
communication symbol, sp, 
repr, co, $ first list-info 
repr, co, 

$ first file-administration 
repr, co, $ first variable-decl 



string, el, $ ALEPH program title 
status information. 

ext rule decls: 
ext rule decl, (ext rule decls). 

ext rule decl: 
ext rule decl symbol, sp, 
repr, co, stag, el. 

stag: 
string; $ the ALEPH string 
ex tag. 

ex tag: 

$ If the external is a standard 
$ external, the stag is an extag. 
$ The externals of a portable 
$ program must be standard 
$ externals. 

transport symbol; 
add-tag symbol; 
subtr symbol; 
mult symbol; 
divrem symbol; 
plus symbol; 
minus symbol; 
times symbol; 
incr symbol; 
deer symbol; 
less symbol; 
lseq symbol; 
more symbol; 
mreq symbol; 
equal symbol; 
noteq symbol; 
random symbol; 
set random symbol; 
set real random symbol; 
sqrt symbol; 
pack int symbol; 
unpack int symbol; 
date symbol; 
time symbol; 
bool invertl symbol; 
bool and symbol; 
bool or symbol; 
bool xor symbol; 

left circ symbol; 
left clear symbol; 
right circ symbol; 
right clear symbol; 
is elem symbol; 
is true symbol; 
is false symbol; 
set elem symbol; 
clear elem symbol; 
extract bits symbol; 
first true symbol; 
pack bool symbol; 
unpack bool symbol; 
to ascii symbol; 
from ascii symbol; 
pack string symbol; 
unpack string symbol; 
string elem symbol; 
string length-tag symbol; 
compare string symbol; 
unstack string symbol; 
previous string symbol; 
may be string pointer symbol; 
was symbol; 
next symbol; 
previous symbol; 
list length symbol; 
unstack symbol; 
unstack to symbol; 
unqueue symbol; 
unqueue to symbol; 
scratch symbol; 
delete symbol; 
get line symbol; 
put line symbol; 
get char symbol; 
put char symbol; 
put string symbol; 
get int symbol; 
put int symbol; 
get data symbol; 
put data symbol; 
back char symbol; 
back data symbol; 
back line symbol; 
back file symbol. 

rules and root: 

113 



114 

(rule decls), root, (rule decls). 

rule decls: 
rule decl, (rule decls). 

root: 
root symbol, sp, 
integer, co, 

$ number of actuals of call 
string, el, $ program title 
source line, 
affix form, 
exit. 

affix form: 
call; 
ext call. 

rule decl: 
rule head, rule body, rule tail. 

rule head: 
rule id, 
stack frame, 
(copies from input gate). 

rule id: 
rule id symbol, sp, 
rule triple, co, 
string, el. 

$ the ALEPH rule heading 

rule triple: 
repr, co, rule type, co, recursion. 

rule type: 
integer. 

$ 0: cannot fail 
$ I: can fail 

recursion: 
integer. 

$ 0: not recursive 
$ I: recursive 

stack frame: 
stack frame symbol, sp, 

stack frame sizes, el. 

stack frame sizes: 
integer, co, $ number of actuals 
integer, co, $ number of locals 
integer. 

$ maximum number of actuals in 
$ any call or ext-call in this rule 

rule tail: 
success tail, 
(fail tail). 

success tail: 
success tail id, 
output gate creation, 
(restores to output gate), 
unstack and return true. 

success tail id: 
success tail id symbol, sp, 
repr, co, 
rule triple, el. 

output gate creation: 
output gate symbol, sp, 
size of output gate, el. 

size of output gate: 
integer. 

unstack and return true: 
unstack and return true symbol, sp, 
stack frame sizes, el. 

fail tail: 
fail tail id, 
unstack and return false. 

fail tail id: 
fail tail id symbol, sp, 
repr, co, 
rule triple, el. 

unstack and return false: 
unstack and return false symbol, sp, 
stack frame sizes, el. 



$ Gate handling in rules: 
copies from input gate: 

copy from input gate, 
!copies from input gate). 

copy from input gate: 
copy from input gate symbol, sp, 
formal, el. 

formal: 
position on gate, co, 

position on stack. 

position on gate: 
integer. 

position on stack:· 
integer. 

restores to output gate: 
restore to output gate, 
!restores to output gate). 

restore to output gate: 
restore to output gate symbol, sp, 
formal, el. 

$ Rule bodies: 
rule body: 

statements. 

statements: 
statement, !statements). 

statement: 
call; 
ext call; 
primitive. 

primitive: 
label definition; 
jump; 
source line; 
exit; 
class box; 
class; 
extension. 

call: 
call id, 

lunstack and swap), 
input gate creation, 
!copies to input gate), 
scall or fcall, 
!restores from output gate), 
call end. 

call id: 
call id symbol, sp, rule triple, el. 

unstack and swap: 
unstack and swap symbol, sp, 
stack frame sizes, el. 

input gate creation: 
input gate symbol, sp, 
size of input gate, el. 

size of input gate: 
integer. 

scall or fcall: 
scall symbol, sp, repr, el; 
fcall symbol, sp, repr, co, 
false address, el. 

call end: 
call end symbol, sp, 
true address, el. 

false address: 
repr. $ of a label 

true address: 
repr. $ of a label 

ext call: 
ext call id, 
lunstack and swap), 
input gate creation, 
!copies to input gate), 
ext scall or ext fcall, 
!restores from output gate), 
ext call end. 

ext call id: 
ext scall id; 
ext fcall id. 

115 



116 

ext scall id: 
ext scall id symbol, sp, 
repr, co, stag, el. 

ext fcall id: 
ext fcall id symbol, sp, 
repr, co, stag, co, 
false address, el. 

ext scall or ext fcall: 
ext scall symbol, sp, 

repr, co, stag, el; 
ext fcall symbol, sp, 

repr, co, stag, co, 
false address, el. 

ext call end: 
ext call end symbol, sp, 
true address, el. 

jump: 
jump symbol, sp, repr, el. 

source line: 
source line symbol, sp, 

line number, el. 

line number: 
integer. 

class box: 
class box id symbol, el, 
load val in v _reg, 
class box end symbol, sp, 
true address, el. 

$ the repr of a class 

class: 
class begin symbol, sp, 
repr, el, 
zones, 
class end ~mbol, el. 

zones: 
zone bounds, [zones]; 

zone value, [zones]. 

zone bounds: 
zone bounds symbol, sp, 
minbound, co, maxbound, co, 
true address, el. 

minbound: 
repr val pair. 

maxbound: 
repr val pair. 

zone value: 
zone value symbol, sp, 
repr val pair, co, 
true address, el. 

extension: 
extension id, 
input gate creation, 
copies to input gate, 
extension call, 
restores from output gate, 
extension end. 

extension id: 
extension id symbol, el, 
load addr in a_ reg, $ stack adm 
extension start symbol, el. 

extension call: 
extension call symbol, el. 

extension end: 
extension end symbol, sp, 
true address, el. 

exit: 
exit symbol, sp, 
repr val pair, el. 

label definition: 
label symbol, sp, repr, el. 



$ Affix handling: 
copies to input gate: 

copy to input gate, 
(copies to input gate). 

copy to input gate: 
copy val to input gate; 
copy addr to input gate. 

copy val to input gate: 
load val in v _reg, 
copy v _reg to input gate. 

load val in v _reg: 
load simple in v _reg; 
load indexed element in v _reg. 

load simple in v _reg: 
load constant in v _reg; 
load variable in v _reg; 
load stack var in v_reg; 
load limit in v _reg. 

copy v _reg to input gate: 
copy v _reg symbol, sp, formal, el. 

copy addr to input gate: 
copy address symbol, el, 
load addr in a_ reg, 
copy a _reg to input gate. 

load addr in a_ reg: 
load global addr in a_reg; 
load stack var in a_ reg. 

copy a_reg to input gate: 
copy a_ reg symbol, sp, formal, el. 

load constant in v _reg: 
loadv constant symbol, sp, 
repr val pair, el. 

load variable in v _reg: 
Ioadv variable symbol, sp, 
repr, el. ' 

load limit in v _reg: 

load addr in a_reg, 
loadv limit symbol, sp, 
limit type, el. 

limit type: 
integer. 

$ 0: left 
$ I: right 
$ 2: calibre 

load stack var in v _reg: 
loadv stack var symbol, sp, 
position on stack, el. 

load indexed element in v _reg: 
load index sequence, 
load list element in v _reg. 

load index sequence: 
index symbol, el, 
load simple in v _reg, 

117 

(load list element in v _reg sequence), 
end index symbol, el. 

load list element in v _reg sequence: 
load list element in v _reg, 
(load list element in v _reg sequence). 

load list element in v _reg: 
load addr in a_ reg, 
loadv list elem symbol, sp, 
integer, el. 

$ 0: right-most element 
$ i: (i-1 )-th right-most element 

load global addr in a_reg: 
loada global symbol, sp, 
repr, el. 

load stack var in a_reg: 
loada stack var symbol, sp, 
position on stack, el. 

restores from output gate: 
restore from output gate, 
(restores from output gate). 



118 

restore from output gate: 
copy gate val to w _reg, 
(store w_reg sequence), 
free w_reg. 

copy gate val to w _reg: 
loadw symbol, sp, formill, el. 

store w reg sequence: 
stor; w reg, (store w reg sequence). - -

store w _reg: 
store w _reg in variable; 
store w _reg in indexed element; 
store w_reg in stack var. 

store w _reg in variable: 
storew variable symbol, sp, repr, el. 

store w _reg in indexed element: 
load index sequence, 
store w _reg in list element. 

store w _reg in list element: 
load addr in a _reg, 
storew list element symbol, sp, 
integer, el. 

store w _reg in stack var: 
storew stack var symbol, sp, 
position on stack, el. 

free w_reg: 
free w_reg symbol, el. 

$Miscellaneous: 
pragmat: 

pragmat symbol, sp, 
string, co, 

$ the ALEPH tag in quotes 
integer, co, 

$ 0: no pragmat-value 
$ 1: pragmat-value was an integer 
$ 2: pragmat-value was a tag 
$ 3: pragmat-value was a string 

string, el. $the pragmat-value 

comment: 
comment symbol, sp, 
string, el. $ to be ignored 



119 

7. REFERENCES 

(AHO & ULLMAN 72] A.V. Aho & J.D. Ullman, The Theory of Parsing, Translation 
and Compiling, Vol. I, Prentice-Hall, 1972. 

(AHO & ULLMAN 78] A.V. Aho & J.D. Ullman, Principles of Compiler Design, 
Addison Wesley Publ. Comp., 1978. 

[BAUER & EICKEL 74] F.L. Bauer & J. Eickel (Eds.), Compiler Construction, An 
Advanced Course, Lecture Notes in Computer Science 21, Springer Verlag Ber
lin, 1974. 

[BAYER et al. 81] M. Bayer et al., Software Development in the CDL2 Laboratory, in 
[HUNKE 81]. 

[BOHM 74] A.P.W. Bohm, Affixgrammatica's, afstudeerverslag (Affix Grammars, MSc. 
thesis), TH Delft, Delft, 1974, in Dutch. 

[BOHM 77] A.P.W. Bohm, ALICE: An Exercise in Program Portability, IW 91177, 
Mathematical Centre, Amsterdam, 1977. 

[BOHM 78] A.P.W. Bohm, The Installation of ALICE on the PDPl 1/45 under UNIX, 
IW 94178, Mathematical Centre, Amsterdam, 1978. 

[BOSCH, GRUNE & MEERTENS 73] R. Bosch, D. Grune & L. Meertens, ALEPH, A 
Language Encouraging Program Hierarchy, in A. Gunther et al. (Eds.), Inter
national Computing Symposium 1973, North-Holland Publ. Co., 1974; also 
IW 9173, Mathematical Centre, Amsterdam, 1973. 

(BOURNE, BIRRELL & WALKER 75] S.R. Bourne, A.D. Birrell & l.W. Walker, Z-code, 
an intermediate object code for ALGOL 68, The Computing Laboratory, Cam
bridge, 1975. 

[BROWN 77] P.J. Brown (Ed.), Software Portability, An Advanced Course, Cambridge 
University Press, 1977. 

[CATTELL 80] R.G.G. Cattell, Automatic Derivation of Code Generators from 
Machine Descriptions, ACM Trans. Program. Lang. Syst. 2, 173-190, 1980. 

[CLEAVELAND & UZGALIS 77] J. Craig Cleaveland & R.C. Uzgalis, Grammars for 
Programming Languages, Elsevier Scientific Publ. Co., Amsterdam, 1977. 

[COMPASS 79] COMPASS Version 3 Reference Manual, #60492600, Control Data 
Corporation, Sunnyvale, Calf., 1979. 

[CROWE 72] D. Crowe, Generating Parsers for Affix Grammars, Comm. ACM 15, 
728-734, 1972. 

[CSIRMAZ 77] Csirmaz Laszl6, Az ALEPH programozasi nyelv (The ALEPH Program
ming Language), I. es II. fiizet, No. 17/1977, Mathematical Institute of the 
Hungarian Academy of Sciences, Budapest, 1977, in Hungarian. 

(DAHL, DIJKSTRA & HOARE 72] 0-J. Dahl, E.W. Dijkstra & C.A.R. Hoare, 



120 

Structured Programming, Academic Press, London, 1972. 

(DEHOTIAY et al. 76) J.P. Dehottay, H. Feuerhahn, C.H.A. Koster & H.M. Stahl, 
Syntaktische Beschreibung von CDL2, Forschungsbericht Technische 
Universitat Berlin, 1976, in German. 

[DEREMER 71) F.L. DeRemer, Simple LR(k) grammars, Comm. ACM, 14, 453-460, 
1971. 

[VAN DUK 82) F. van Dijk, The Implementation of a Machine-Independent ALEPH 
Compiler, to be published. 

[DIJKSTRA 75) E.W. Dijkstra, Guarded Commands, Nondeterminacy and Formal 
Derivation of Programs, Comm. ACM 18, 453-457, 1975. 

[DIJKSTRA 76) E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976. 

[EARLEY & STURGIS 70) J. Earley & H. Sturgis, A Formalism for Translator Interac
tions, Comm. ACM 13, 607-617, 1970. 

[FEUERHAHN & KOSTER 78) H. Feuerhahn & C.H.A. Koster, Static Semantic Checks 
in an Open-ended Language, in P.G. Hibbard & S.A. Schuman (eds.), Con
structing Quality Software, North-Holland Publ. Comp., 1978. 

[FLORIJN & ROLF 81) G. Florijn & G. Rolf, PGEN - A General-Purpose Parser 
Generator, IW 157/81, Mathematical Centre, Amsterdam, 1981. 

[FLOYD 63) R.W. Floyd, Syntactic Analysis and Operator Precedence, J. ACM 10, 
316-333, 1963. 

[GLANDORF, GRUNE & VERHAGEN 78) R. Glandorf, D. Grune & J. Verhagen, AW
grammar of ALEPH, IW 100178, Mathematical Centre, Amsterdam, 1978. 

(GRUNE, MEERTENS & VAN VLIET 73) D. Grune, L.G.L.T. Meertens & J.C. van Vliet, 
Grammar-handling Tools Applied to ALGOL 68, IW 5173, Mathematical Cen
tre, Amsterdam, 1973. 

(GRUNE, BOSCH & MEERTENS 74) D. Grune, R. Bosch & L.G.L.T. Meertens, ALEPH 
Manual, IW 17174, Mathematical Centre, Amsterdam, 1974. 

[GRUNE 75) D. Grune, ALEPH, een grammaticale aanpak van programmacorrectheid 
(ALEPH, A Grammatical Approach to Program Correctness), in J.W. de 
Bakker, Colloquium Programmacorrectheid, MC Syllabus 21, Mathematical 
Centre, Amsterdam, 1975, in Dutch. 

[GRUNE 77) D. Grune, Choosing a Tag-list Algorithm for a Compiler, with Special 
Application to the ALEPH Compiler, Software - Practice & Experience 9, 575-
593, 1979; also IW 89177, Mathematical Centre, Amsterdam, 1977. 

[GRUNE 81) °'Grune, From VW-grammar to ALEPH, in J.W. de Bakker & J.C. van 
Vliet, Algorithmic Languages, Proceedings of the International Symposium on 
Algorithmic Languages, North-Holland Publ. Comp., Amsterdam, 1981; also 
IW 162/81, Mathematical Centre, Amsterdam, 1981. 



121 

[HILL 72) I.D. Hill, Wouldn't it be nice if we could write computer programs in ordi
nary English, or would it?, Computer Bull. 12, 306-312, 1972. 

[HOPCROFf & ULLMAN 79) J.E. Hopcroft & J.D. Ullman, Introduction to Automata 
Theory, Languages and Computation, Addison-Wesley Puhl. Comp., 1979. 

[HDNKE 81) H. Hiinke, Software Engineering Environments, North-Holland Puhl. 
Comp., 198 l. 

(JOHNSON & LESK 78) S.C. Johnson & M.E. Lesk, Language Development Tools, Bell 
Systems Technical J., 57, 2155-2175, 1978. 

[JONKERS 78) H.B.M. Jonkers, A Finite State Lexical Analyzer for the Standard 
Hardware Representation of ALGOL 68, IW 98178, Mathematical Centre, 
Amsterdam, 1978. 

(KERNIGHAN & RITCHIE 78) B.W. Kernighan & D.M. Ritchie, The C Programming 
Language, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1978. 

[KNUTH 68) D.E. Knuth, Semantics of Context-Free Languages, Math. Systems 
Theory 2, 127-145, 1968. 

[KNUTH 71) D.E. Knuth, Top-Down Syntax Analysis, Acta lnformatica J, 79-110, 
1971. 

[KOK 77] G. Kok, Programmeerkursus in de taal ALEPH (Programming course for the 
language ALEPH), Report 25-77-207, Subfaculteit Psychologie, University of 
Amsterdam, Amsterdam, 1977, in Dutch. 

[KOSTER 65) C.H.A. Koster, On the construction of ALGOL-procedures for generat
ing, analysing and translating sentences in natural languages, MR 72, 
Mathematical Centre, Amsterdam, l 965. 

[KOSTER 7la] C.H.A. Koster, A Compiler Compiler, MR 127171, Mathematical Cen
tre, Amsterdam, l 97 l. 

[KOSTER 7lb] C.H.A. Koster, Affix Grammars, in J.E.L. Peck (Ed.), ALGOL 68 
Implementation, North-Holland Puhl. Co., Amsterdam, 1971. 

[KOSTER 72) C.H.A. Koster, Towards a Machine-Independent ALGOL 68 Translator, 
MR 129/72, Mathematical Centre, Amsterdam, 1971. 

[KOSTER 74) C.H.A. Koster, Using the CDL compiler, in [BAUER 74). 

[KDHLING 78) P. Kiihling, Affix-grammatiken zur Beschreibung von Programmier
sprachen, Diss. D83, Technische Universitiit Berlin, 1978. 

[LEVERETT et al. 80) B.W. Leverett et al., An Overview of the Production-Quality 
Compiler-Compiler Project, Computer 13, 38-49, 1980. 

"\ . 
[LEWIS II, ROSENKRANTZ & STEARNS 76) P.M. Lewis II, D.J. Rosenkrantz & R.E. 

Stearns, Compiler Design Theory, Addison-Wesley Puhl. Comp., 1976. 

(LINGER, MILLS & WITT 79) R.C. Linger, H.D. Mills & BJ. Witt, Structured 



122 

Programming: Theory and Practice, Addison-Wesley Puhl. Comp., 1979. 

(MARCOTIY & LEDGARD 76] M. Marcotty & H.F. Ledgard, A Sampler of Formal 
Definitions, Comp. Surveys 8, 191-276, 1976. 

(MEDER 80] H. Meijer, An Implementation of Affix Grammars, in N.D. Jones (Ed.), 
Semantics-Directed Compiler Generation, Lecture Notes in Computer Science 
94, Springer Verlag' Berlin, 1980. 

[NOS/BE 79] NOS/BE Version 1 Reference Manual, #60493800, Control Data Cor
poration, St. Paul, Minn., 1979. 

[RICHARDS 77] M. Richards, Portable Compilers, in [BROWN 77]. 

(RITCHIE & THOMPSON 74] D.M. Ritchie & K. Thompson, The UNIX Time-sharing 
System, Comm. ACM 17, 365-375, 1974. 

(SHERIDAN 59] P.B. Sheridan, The Arithmetic Translator-Compiler of the IBM FOR
TRAN Automatic Coding System, Comm. ACM 2, 9-21, 1959. 

[SINTZOFF 67] M. Sintzoff, Existence of a Van Wijngaarden grammar for every recur
sively enumerable set, Annales de la Societe Scientifique de Bruxelles 81, 115-
118, 1967. 

(STAHL 78] H.-M. Stahl, Portability and Efficiency in Using an Open-Ended 
Language, Report #9, Informatir.a/Computer Graphics, Nijmegen University, 
The Netherlands, 1978. 

[TANENBAUM, KLINT & BOHM 77] A.S. Tanenbaum, P. Klint & W. Bohm, Guidelines 
for Software Portability, Software - Practice & Experience 8, 681-698, 1978; 
also IW 88177, Mathematical Centre, Amsterdam, 1977. 

[WAITE 75] W.M. Waite, Implementing Software for Non-numeric Applications, 
Prentice-Hall Series in Automatic Computation, Prentice-Hall, 1975. 

[WAIT 77] D.A. Watt, The Parsing Problem for Affix Grammars, Acta Inf. 8, 1-20, 
1977. 

[WICHMANN 77] B.A. Wichmann, How to Call Procedures, or Second Thoughts on 
Ackermann's Function, Software - Practice & Experience 7, 317-329, 1977. 

[VAN WIJNGAARDEN 65] A. van Wijngaarden, Orthogonal design and description of a 
formal language, MR 76, Mathematical Centre, Amsterdam, 1965. 

[VAN WIJNGAARDEN 74] A. van Wijngaarden, The generative power of two-level 
grammars, in J. Loecks (Ed.), Automata, Languages and Programming, Lec
ture Notes in Computer Science 14, Springer Verlag Berlin, 1974. 

[VAN WIJNGAARDEN 75] A. van Wijngaarden et al. (Eds.), Revised Report on the 
Algorithmic Language ALGOL 68, Acta Informatica 5, 1-236, 1975; also MC 
Tract 50, Mathematical Centre, Amsterdam, 1976; also SIGPLAN Notices 12, 
(5), 5-70, 1977. 

[VAN WIJNGAARDEN 81] A. van Wijngaarden, Languageless Programming, in J. K. 



123 

Reid (Ed.), Proceedings of the IFIP/TC2/WG2.l Working Conference on the 
Relations between Numerical Computation and Programming Languages, 
Boulder, North-Holland Puhl. Comp., 1981; also IW 181/81, Mathematical 
Centre, Amsterdam, 1981. 

[WILLIS 81] R.R. Willis, AIDES: Computer Aided Design of Software Systems II, in 
[HUNKE 81]. 

[WULF & SHAW 73] W. Wulf & M. Shaw, Global Variable Considered Harmful, SIG
PLAN Notices 8, (2), 28-34, 1973. 

[WULF et al. 75] W. Wulf et al., Design of an Optimizing Compiler, American 
Elsevier Puhl. Comp., New York, 1975. 



124 

8.SUMMARY 

This book reports on many aspects of the ALEPH project. The design and implemen
tation of a programming language, even of a small one, requires work to be done on 
many subjects: semantics, syntax, lexical appearance, data structures, in- and output, 
parsing, error-recovery, run-time system, and portability, to mention a few. To master 
this complexity we need structure, and indeed part of the work went into structuring 
the rest of the work. This is reflected in this book, which deals partly with design and 
implementation techniques and partly with the design and implementation itself; this 
theme is expounded in 1.3, 4.2, 4.2.3, 4.4.2 and 4.4.3. 

ALEPH is designed to foster good programming, to be simple and efficient, and to 
yield portable programs; its main target field is non-numeric programming (1.1). It is 
based on the analogy between formal grammars and programs [KOSTER 71 a, 
GRUNE 75]. The frame-work of a two-level grammar (particularly of the variants 
'VW-grammar' (2.3) and 'affix-grammar' (2.4)) is considered as a programming 
language (3.3.1). This language is then subjected to implementability requirements, in 
accordance with the design criteria (3.3.2). Of the ALEPH data structures, 'stacks' are 
of special interest (3.5.1). Some compromises in the design of the language are 
described in 3.6. 

The portability of a program is endangered by a variety of problems [TANENBAUM, 
KLINT & BOHM 77]. Many of them cannot materialize in an ALEPH program; the oth
ers are treated in 3.4. The greatest portability problem in a compiler is the machine
dependence of the code it generates ( 4.2.2); the ALEPH compiler avoids the problem by 
generating ALICE, a strictly machine-independent (ALEPH-related) intermediate code 
(4.4) [BOHM 77]. 

The existence of a well-defined intermediate code has had a profound influence on 
the design of the compiler (chapter 4). The design of the compiler was factorized into 
two stages: first an inventory was made of all information needed by the ALICE code, 
and then ways were devised to extract this information from the ALEPH text. The 
structure of ALICE allows this information to be split up into groups in a natural way. 
This technique and its consequences are discussed in 4.2; part of the resulting design 
of the compiler is shown in chapter 5. F. van Dijk used the design to build, in ALEPH, 
a compiler from ALEPH to ALICE; a subsequent· processor from ALICE to COMPASS 
implements ALEPH on the Control Data Cyber. 

The resulting compiler reflects the structure of ALICE. Rather than scanning and 
adjusting the input several times until the desired code results, the compiler reads the 
ALEPH program one single time and distributes the information it finds over several 
streams, which correspond to the ALICE sections. These streams are then processed (in 
the order dictated by ALICE) into the ALICE translation of the ALEPH program (4.3.1). 

The use of ALICE as a strict target interface in the design of the compiler put 
higher demands on ALICE than it could meet. The techniques used in the design of 
ALICE were analysed and sharpened into the 'parallel-script' technique (4.4.3) which 
was then used to improve ALICE (chapter 6). 



125 

11. INDEX 

Notions from the ALICE grammar can be found in 6.7; they are not included in this 
index. 

A 

affix: 2.4, 3.1, 3.3, 3.3.1.3, 3.3.3, 3.3.4, 
3.5 

affix grammar: 1.1, 2, 2.4, 3.1, 3.3, 
3.3.1.2, 3.3.1.3, 3.3.1.4, 3.3.2, 
3.3.2.3, 3.3.3, 3.3.4, 3.3.5, 3.5 

affix rule: 3.3, 3.3.5 
affixer: 3.3. 7 
affix-passing mechanism: 3.3.1.4, 3.3.2.1, 

3.3.2.2, 3.3.3, 3.3.3.1, 3.3.4 
ALGOL 60: 4.1, 4.2.2, 6.6 
ALGOL 68: 1.1.1, 2.3, 3.1, 3.3.1.2, 

3.3.2.3, 3.3.4, 3.4.5, 3.5. l, 5.1, 6.6 
aliasing: 3.3.3.1 
ALICE: 1.1.2, 3.2.2, 3.4.1, 3.4.6, 4.2.2, 

4.2.2.1, 4.4, 6 
alternative: 2, 3.3 
ampersand: 5.1 
associated function: 3.3.1.3, 3.3.2.4 

B 

backtracking: 1.1, 2.2, 3.3.2.3, 3.3.2.5, 
3.3.2.5.1, 3.3.3.1, 3.3.4, 4.3.3 

blind alley: 2.3, 3.3 
block: 3.5.1 
bootstrapping: 3.4.1, 3.4.7, 4.5 
bottom-up parsing: 3.1, 3.3.2 
bound affix: 3.3.1.3 

c 
C: 3.4.5 
call-by-name: 3.3.1.2 
call-by-reference: 3.3.3.1 
call-by-value: 3.3.3.1 
CDL: 1.1, 1.5, 3.1, 3.2.2, 3.3.1.4, 3.3.2, 

4.1, 4.2.2 
CDL2: 3.1, ~2.2, 3.3.1.4, 3.3.8 
Central Theorem: 3.3.2.3, 3.3.2.4, 3.3.3, 

3.3.8 
character code: 3.4.3 

charfile: 3.3.4 
classification: 3.6 
COMPASS: 1.2, 4.1 
compiler: 1.2, 3.4.5, 3.4.6, 3.4.7, 4.1, 

4.2.1, 4.2.2, 4.2.3, 4.3, 5 
compound-member: 3.6 
constant-source: 5.1.2.1.2, 5.1.2.1.2.2 
context-free grammar: 2, 2.3, 3.1, 

3.2.1.1, 3.3.1.1, 3.3.1.2, 3.3.2.5, 
4.4.3, 6.1, 6.3 

copy-maybe-restore: 3.3.3.1, 4.1 
copy-restore: 3.3.3. l 
Cyber: 1.2, 3.4.5, 4.1, 4.2.1, 4.4.1, 4.4.2, 

4.4.3 

D 

data type: 3.3.5, 3.5 
declaration-info: 5.1.2.1.2.2, 5.2, 5.2.1, 

5.2.2.1.1 
definition: 5.1.2.1.3, 5.1.2.2.1.2, 5.2.2, 

5.2.2.2.l 
definition list: 5.1.2.1.10, 5.2.2.1.10, 

5.2.2.2.1 
defref: 5.1.2, 5.1.2.2. l, 5.2.2, 5.2.2.1.10 
derived affix: 2.4, 3.3.1.3, 3.3.3 
design technique: 1.2, 1.3, 3.3, 4.2.1, 

4.2.2. l, 4.2.3, 4.4, 4.4.2, 4.4.3, 5 
divrem: 3.3. 7 

E 

efficiency: 1.1.1, 1.1.2, 3.3.2.3, 3.3.3.1, 
3.3.8, 3.5.1, 3.6, 4.3.1, 6.4 

element: 3.5.1 
EL-Xl: 3.1 
EL-X8: 4.1 
entrance key: 3.3.2.3, 3.6 
extended affix grammar: 3.3.1.3 
extension: 3.5. i, 4.5.2, 6.5 
external: 3.3, 3.3.2.2, 3.3.2.4, 3.3.2.5, 

3.3.6, 3.4, 3.4.2, 3.4.3, 3.4.7, 3.5, 
4.4.1 



126 

false-address: 4.2.3 
file: 3.4.5, 3.5 

F 

flow-of-control: 3.3.2.l, 3.3.2.3, 3.3.8 
formal grammar: l. l.2, 2, 3.3.4 
FORTRAN: l.l.l, 4.2.2, 4.2.2.2 
free affix: 3.3.1.3 

G 

gate: 4.4.l, 4.4.2, 6.4, 6.5 

H 

heap-generator: 3.5. l 
hypemotion: 2.3, 3.3 
hyper-rule: 2.3, 3.3 

I 

index checking: 6.3 
information stream: 4.3, 4.3.l, 4.3.3 
information-collecting phase: 3.4. 7, 

4.2.2.l, 5.2.2 
information-processing phase: 3.4.7, 

4.2.2.l, 5.2.2 
inherited affix: 2.4, 3.3.1.3, 3.3.3, 3.6 
initialization: l.l, 3.3.3, 3.3.8 
in-out affix: 3.3.3. l 
interface: 3.3, 3.4.6, 4.2.2, 4.2.2.1, 4.4.l, 

5.2.2 
invisible production: 3.3, 3.3. l.l 

J 

job-control language: 3.4.7 

L 

left-hand-side: 2 
LL(l): 2.2, 3.3. l.2, 3.3.2.3, 3.3.2.5, 

3.3.2.5.l, 4.3.2, 4.3.3, 4.4.3, 6.3 

M 

machine description: 4.2.2 
machine-independent intermediate code: 

4.2.2, 4.4, 4.4.2 
member: 2 
memory requirements: 3.4.4, 3.4.7, 

4.2.l, 4.3. l 
metanotion: 2.3, 3.3, 3.3.4 
metarule: 2.3, 3.3 
multi-exit loop: 3.3.2.3 

N 

No cure - no pay principle: 3.3.2.5, 
3.3.3.1 

0 

operating system: 3.4.5, 3.5. l 
orthogonality: 3.3 

p 

parallel-script technique: 4.4.2, 4.4.3, 6 
parse tree: 2.1 
parser: 3.1, 4.3, 4.3.1, 4.3.3, 4.4.3 
parsing problem: 2.2, 2.4, 3.3. l.2, 

3.3.2.3 
PDPll/45: 4.2.2, 4.4.2, 4.4.3 
phrase-structure grammar: 2.3, 3.3. l.l 
pointer: 3.5.l 
portability: l.l.l, 3.2.2, 3.3.6, 3.4, 4.2.1, 

4.2.2 
pragmat: 3.4, 3.4.2, 3.4.4, 5.2.1, 6.2 
primitive predicate: 2.4, 3.3, 3.3.1.3, 

3.3.1.4, 3.3.2, 3.3.2.2, 3.5 
production rule: Z 

R 

recognition problem: 2.2 
redundancy: 3.2. l.2, 3.3.2.5 
regular grammar: 4.4.3, 6.1, 6.3 
right-hand-side: 2 



rule-type checking: 3.2.1.2 

s 
secret defref: 5.1.2.1.6, 5.2.2.1.1 
sentential form: 2.1 
separate compilation: 6.4 
side effects: 3.3.2.5, 3.3.8 
spoil and fail effect: 3.6, 6.4 
stack: 3.5, 3.5.1, 4.3.1, 5.1.2.1.4 
static semantic check: 1.1.1 
status-information: 5.1.1 
string: 3.5 
success/failure: 3.3, 3.3.2.3, 3.3.2.4, 

3.3.2.5, 3.3.7 
swap instruction: 4.4.3, 6.6 

table: 3.5 
tag-list: 5.2.1 
TCOL: 4.4.2 
T-diagram: 4.5 

T 

top-down parsing: 3.1, 3.3.1.2, 3.3.2, 
3.3.2.3 

translation table: 5.1.2.2.1, 5.2.2, 5.2.2.2 
true-address: 4.2.3 
two-colour VW-grammar: 3.3.1.1, 

3.3.1.2, 3.3.2.2 

u 
unstack: 3.5.1 

v 
valref: 5.1.2, 5.1.2.2.1 
values: 5.1.2 
variable: 3.3.3.1, 3.3.4, 3.6 
virtual address space: 3.4.4 
VW-grammar: 2, 2.3, 2.4, 3.1, 3.3, 

3.3.1.1, 3.3.1.2, 3.3.1.3, 3.3.2.2, 3.3.4 

w 

127 

well-formedness: 2.4, 3.3.1.3 





ALEPH MANUAL 

R. Bosch 
D. Grune 

L.G.L.T. Meertens 

Fourth printing 



130 ALEPH Manual 

0. PREFACE 

ALEPH (acronym for 'A Language Encouraging Program Hierarchy') is a high-level 
language designed to provide the programmer with a tool that will effectively aid him 
in structuring his program in a hierarchical fashion. The syntactic and semantic sim
plicity of ALEPH leads to efficient object code [WICHMANN 77], so that the loss of 
efficiency usually incurred in structured programming is avoided. ALEPH is suitable 
for any problem that suggests top-down analysis (parsers, search algorithms, combina
torial problems, artificial intelligence problems, etc.). 

Chapter one of this Manual gives a tutorial introduction into the way of thinking 
who is used in ALEPH. It addresses itself to computer users that have some experience 
with algorithms and grammars. It must not be concluded from these prerequisites that 
ALEPH should not be taught to the novice programmer. On the contrary, ALEPH intro
duces him to a discipline of thought that is lacking in many other languages. 

Chapter two treats the ALEPH program in general terms. Chapter three through six 
contain a complete description of ALEPH. 

Chapter three treats the flow-of-control. Chapter four treats the data-types. Exter
nals, i.e., standard-operations and communication with the outside world, are treated 
in chapter five. Chapter six describes the pragmats. 

The representations of 'symbols' and example programs are given in chapters seven 
and eight. 

An ALEPH compiler exists, which translates ALEPH programs into ALICE programs 
in a machine-independent fashion. ALICE [BOHM 77] is a simple linear code designed 
to aid the installation of ALEPH on new systems. The ALEPH compiler is available in 
both ALEPH and ALICE. An ALICE transformer to COMPASS for the Cyber 170 is also 
available. The compile- and count-pragmats have not been implemented. 

This is the fourth printing of the ALEPH Manual. Many paragraphs have been 
rephrased to remove inconsistencies; the paragraph numbers have been kept identical 
throughout all printings. Since the third printing in 1977 the following modifications 
have been made. 

3.4.3: the sources in an extension are evaluated before the stack is extended. This 
prevents the extension * st[> >st] ~ st * st from pushing uninitialized data on the 
stack st. 

3.5: no match in calibre is required between a formal and an actual list if the 
former is explicitly declared with zero selectors, rather than with one selector. This 
criterion is clearer and prevents the misapplication of some standard externals. 

5.2.5: the standard externals back char, back data and back line are deleted since 
their limited usefulness in no way justifies the effort needed in their implementation. 

6.1: to be effective a macro-pragmat must occur before the pertinent rule
declaration. This modification greatly increases the efficiency of the translation pro
cess. 

6.1, 6.2: all pragmats to switch off run-time checking have been deleted. 



ALEPH Manual 131 

1. AN INFORMAL INTRODUCTION TO ALEPH 

In this chapter we shall gradually develop a small ALEPH program and intersperse 
it liberally with annotations and arguments. This introduction is intended to give 
some insight into the use of the language ALEPH and to display its main features in a 
very informal way. 

1.1. A grammar 

The problem we shall treat is the following. We want to write a program that 
reads a series of arithmetic expressions separated by commas, calculates the value of 
each expression while reading it, and subsequently prints the value. The expressions 
will contain only integers, plus-symbols, times-symbols and parentheses: an example 
might be 'l5X(l2+3X9)'. 

First we put the requirements for the input to our program in the more tran
sparent and clearer form of a context-free grammar. This grammar shows exactly 
which symbol we will accept in which position. 

input: expression, input tail. 
input tail: comma symbol, input; empty. 
expression: term, plus symbol, expression; term. 
term: primary, times symbol, term; primary. 
primary: left parenthesis, expression, right parenthesis; integer. 
integer: digit, integer; digit. 
empty: • 

The rule for input can be read as: input is an expression followed by an input-tail, 
whereas the rule for primary can be read as: a primary is either 

o a left-parenthesis followed by an expression followed by a right-parenthesis, or 
o an integer. 

This grammar shows clearly that for instance '15 X + 3' will not be accepted as an 
expression. The 'X' can only be followed by a term, which always starts with a pri
mary, which in turn either starts with an integer or a left-parenthesis, but never with 
a'+'. 

1.2. Rules 

We shall now write a collection of rules in ALEPH, one for each rule in the gram
mar. For the grammar rule for expression we shall write an ALEPH rule that, when 
executed, reads and processes an expression and yields its result. This ALEPH rule 
looks as follows: 

ACTION expression + res> - r: 
term+ res, 

(is symbol + I+ I, expression + r, plus + res + r + res; 
+). 

This can be read as: an expression, which must yield a result in res and uses a 
(local) variable r is (we are now at the colon) a term which will yield a result in res, 
followed either (we are now at the left parenthesis) by a plus-symbol followed by an 
expression which will yield its result in r after which the result in res and the result in 
r will be added to form a new result in res, or (we are at the semicolon now) by 



132 ALEPH Manual 

nothing. We see that this is the old meaning of the grammar rule for expression, 
sprinkled with some data-handling. The data-handling tells what is to be done to get 
the correct result: we could call it the semantics of an expression. If we remove these 
paraphernalia from the ALEPH rule we obtain something very similar to the original 
grammar rule: 

ACTION expression 1: 
term, (is symbol + I+/, expression 1; + ). 

This rule, while still correct ALEPH, does no data handling and, consequently, will 
not yield a result; it could for example be used to skip an expression in the input. 

We now direct our attention back to the ALEPH rule expression and consider what 
happens when it is 'executed'. First, term is executed and will yield a result in res: it 
does so because we shall define term so that it will. Then we meet a series of two 
alternatives separated by a semicolon (either a this or a that). First an attempt is 
made to execute the first alternative by asking is symbol + I+ I. This is a question 
(because we shall define it so) which is answered positively if indeed the next symbol 
is a '+' (in which case the '+' will be discarded after reading) or negatively if the 
next symbol is something else. 

If is symbol + I+ I 'succeeds' the remainder of the first alternative is executed, 
expression + r is called (recursively), yielding its result in r and subsequently 
plus + res + r + res is called, putting the sum of res and r in res. The call of 
expression + r works because we just defined what it should do. plus is a name 
known to the compiler and has a predefined meaning. However, if we are dissatisfied 
with its workings we could define our own rule for it. Now this alternative is finished, 
so the parenthesized part is finished, which brings us to the end of the execution of 
the rule expression. 

If is symbol + I+ I 'fails' the second alternative is tried: the part after the semi
colon. This alternative consists of a + which is a dummy statement that always 
succeeds. Without further action we reach the end of the rule expression. 

The above indicates the division of responsibilities between the language and the 
user. The language provides a framework that controls which rules will be called 
depending on the answers obtained from other rules. The user must fill in this frame
work, by defining what actions must be performed by a specific rule and what ques
tions must be asked. These definitions will again have the form of rules that do some
thing (to be defined by the user) embedded in a framework that controls their order 
(supplied by the language). It is clear that this process must end somewhere. It can 
end in one of two ways. 

It may turn out that the action needed is supplied by ALEPH: there are three basic 
primitives in the language, the copying of a value, the test for equality of two values 
and the extension of a stack by a fixed number of given values. Often, however, these 
three primitives are not sufficient to express the action needed; the rule is then subdi
vided into other rules. There are, however, cases where this is not desirable (or not 
possible). In such cases the rule is declared 'external' and its actions must be specified 
in a different way, often in the assembly language of the machine used. By specifying 
a rule as 'external' we leave the realm of machine-independent semantics. A number 
of external rules are predefined by the compiler, including the rule plus used above. 
This set of rules will suffice for most applications. 



ALEPH Manual 133 

We shall now pay some attention to the exact notation (syntax) of the rule expres
sion. All rules have the property that when they are called they are either guaranteed 
to succeed or they may fail. The word ACTION indicates that a call of this rule is 
guaranteed to succeed. The name of the rule is expression and res is its only formal 
'affix' (parameter). The + serves as a separator (it 'affixes' the affix to the rule). The 
right arrow-head (>) indicates that the resulting value of res will be passed back to 
the calling rule. This means that expression has the obligation to assign a value to res 
under all circumstances: res is an output parameter, guaranteed to receive a value. If 
the text of the rule does not support this claim, the compiler will discover thus and 
issue a message. The +-sign and the term 'affix' stem from the theory of affix gram
mars on which ALEPH is based [KOSTER 7lb, WATT 77]. 

The - r specifies r as a local affix (local variable) of the rule and the colon closes 
the left hand side. The + in term + res appends the actual affix res to the rule term, 
the comma separates calls of rules. The parentheses group both alternatives into one 
action. The + between slashes (indicating 'absolute value') represents the integer 
value of the plus-symbol in the code used. The semicolon separates alternatives, which 
are checked in textual order. As said before, the stand-alone + denotes the dummy 
action that always succeeds. The period ends the rule. 

The following approximate translation to ALGOL 68 may be helpful: 

PROC expression = (REF !NT res) VOID: 
BEGIN !NT r; 

term(res); 
IF is symbol(" + ") 
THEN expression(r); plus(res, r, res) 
ELSE SKIP 
FI 

END 

1.3. Further rules 

In view of the above the rule for term should not surprise the reader: 

ACTION term + res> - r: 
primary + res, 

(is symbol + IX/, term + r, times + res + r + res; + ). 

Now we are tempted to render the rule for primary as: 

ACTION primary + res>: 
is symbol + /(/, expression + res, is symbol+ /)/; 
integer + res. 

but here the compiler would discover that we did not specify what should be done if 
the second call of is symbol fails. If that happens, we would have recognized, pro
cessed and skipped a left-parenthesis and a complete expression, to find that the 
corresponding right-parenthesis is missing. This means that the input (which is a pro
duction of input) is incorrect; we now decide that we shall not do any error recovery, 
so we give an error message and stop the program. The correct version of the ALEPH 
rule primary is then: 



134 ALEPH Manual 

ACTION primary + res>; 
is symbol+ /(/, expression + res, 

( is symbol + /)/; 
error + no paren 

); 
integer + res. 

Here the two alternatives between parentheses behave like one action that will 

always succeed: either the right parenthesis is present in the input, or an error will be 

signalled. no paren is a constant that will be specified later on. 

Writing the rule for integer is a trickier problem than it seems to be. For a 

comprehensive account on how to obtain correct and incorrect versions the reader is 

referred to [KOSTER 7la]. We shall confine ourselves to giving one correct version. It 

consists of two rules and is about as complicated as is necessary. 

ACTION integer+ res>: 
digit + res, integer 1 + res; 
error + no int, 0 ~ res. 

ACTION integer 1 + >res> - d: 

digit + d, times + res + JO + res, plus + res + d + res, integer 1 + res; 

+. 

The rule integer asks for a digit. If present, its value will serve as the initial value 

of res. The value of res is then passed to integer 1. If no digit is present an error mes

sage will result and res will get the dummy value 0. This is necessary to ensure that 

integer will assign a value to res under all circumstances (because of the right arrow

head after res). The right arrow in 0 ~ res designates the assignation of the value on 

the left to the variable on the right, one of the primitive actions in ALEPH. 

The rule integer 1 processes the tail of the integer. If there is such a tail it starts 

with a digit, so the first alternative asks digit + d. If so, a new result is calculated 

from the previous one and the digit d by making res equal to res X 10 + d and 

integer 1 is called again (to see if there are more digits to come). If there was no digit, 

we will have processed the whole integer and res contains its value. 

The right arrow-head in front of res means that the calling rule will have assigned 

a value to this formal affix just before calling integer 1, i.e. res is 'initialized'. The 

right arrow-head after res again indicates that the resulting value will be passed back 

to the calling rule. 

A more convenient way of reading an integer is provided by the (standard) exter

nal rule get int. 

1.4. Input 

The above forms the heart of our program. We shall now supply it with some 

input and output definitions. For the input we need a file to obtain the input symbols 

from, which we shall call reader; let us suppose that this file is called "SYSIN" some

where in the surrounding operating system (e.g. on a control card). Furthermore we 

shall use a global variable buff which will contain the first symbol not yet recognized. 

Comment starts with a $. 



ALEPH Manual 

$Input 
CHARFILE reader = >"SYSIN". 
VARIABLE buff= I I. 

135 

The variable buff is initialized with the code for the space symbol (there being no 
uninitialized variables in ALEPH). We are now in a position to give two rule definitions 
that were still missing. 

PREDICATE is symbol + >n: buff= n, get next symbol. 

PREDICATE digit+ d>: 
=buff= 
[IOI: 191}, minus +buff+ IOI + d, get next symbol; 
[: ], -. 

These require some further explanation, mainly concerning the notation. The word 
PREDICATE indicates that is symbol is not an action but a question, or more pre
cisely a 'committing' question as opposed to a 'non-committal' question. A non
committal question is a question that, regardless of the answer it yields, makes no glo
bal changes, does not do anything irreversible. A committing question is a question 
that, when answered positively, does make global (and often irreversible) changes, as 
specified by the programmer. To give an example, 'Are there plane tickets for New 
York for less than $ 100?' is a non-committal question, whereas 'Are there plane tick
ets for New York for less than $ 100? Ii' so, I want one' is a committing question. 

In the case of is symbol the (committing) question is: 'Is the symbol in buff equal 
to the one I want? If so, advance the input and put the next symbol in buff.' The form 
buff = n is a test for equality and is one of the primitive operations in ALEPH. 
get next symbol will be defined below. 

Again the right arrow-head in front of the formal affix n indicates that the calling 
rule will have assigned a value to it; the absence of a right arrow-head to the right of 
the n indicates that the value of n (which may have been changed!) will not be passed 
back to the calling rule. 

The rule for digit (again a 'predicate') shows another feature of ALEPH, the 
'classification'. For certain classes of values of buff one alternative will be chosen, for 
other classes a different alternative will be chosen. The classes are presented inside the 
square brackets. Thus, for values of buff that lie between the code for 'O' and the code 
for '9' the first alternative will be chosen. For all other values the dummy question 
that always fails ( - ) will be executed. The rule digit is equivalent to 

PREDICATE digit 1 + d>: 
between + IOI + buff+ 191, minus + buff+ IOI + d, get next symbol. 

assuming that between + IOI + buff+ 191 succeeds if and only if 
IOI ..;;,:; buff ..;;,:; 19 I. In complicated cases a classification is easier to write and will in 
general produce more efficient object code. The classification is analogous to case 
statements in ALGOL 68 and other programming languages. 

All the arithmetic used here on symbols is based on the (possibly machine
dependent) assumption that the numerical codes associated with the symbols 'O' 
through '9' are a set of consecutive integers in ascending order. The numerical value 
of a digit symbol can then indeed be obtained by subtracting the code for 'O' from its 



136 ALEPH Manual 

numerical value. 

One more input rule must be supplied: 

ACTION get next symbol: 
get char + reader + buff, 

( (buff = I I; buff = new line), get next symbol; 
+ 

); 
stop --+ buff. 

CONSTANT stop= -1. 

get char is an (external) rule known to the compiler. It tries to read the next sym
bol from the file identified by its first formal affix (here reader). If there is a symbol it 
puts it in its second formal affix (here buff); if there is no symbol it fails. In the latter 
case buff is given the value stop, which is defined in a 'constant declaration' to be - J. 

If get char does yield a symbol and if it is a space or a new-line, get char is called 
again. We use nested parenthesizing here. This definition of get char implies that we 
have decided that spaces and new-lines are allowed in the input in all positions (a 
decision that was not yet present in the initial grammar). 

1.5. Output 

The output is as follows: 

$Output 
CHARFILE printer = "SYSOUT">. 

ACTION print integer+ >int: 
out integer + int, put char + printer + new line. 

ACTION out integer + >int - rem: 
divrem + int + JO + int + rem, plus + rem + IOI + rem, 

(int = O; out integer + int), 
put char + printer + rem. 

The rule put char is known to the compiler, as is divrem. The call of the latter has 
the effect that int is divided by 10, the quotient is placed back in int and the 
remainder in rem. This splits the number into its last digit and its head; if this head 
(now in int) is not zero it must be printed first, which is effected by the recursive call 
of out integer. Subsequently, the last digit is printed through a call of put char. This is 
a simple but inefficient way of printing a number. A more convenient way of printing 
an integer is provided by the (standard) external rule put int. 

For the printing of error-messages we shall need some string handling. Strings do 
not constitute a special data type in ALEPH: they are handled, like all other compli
cated data types, by putting them in 'stacks' and 'tables' and are operated upon by 
suitably defined rules (generally defined by the programmer but sometimes predefined 
in the system). 

The error handler takes the following form: 



$ Error-message printing 
ACTION error + >er: 

ALEPH Manual 

put char + printer + new line, 
put string + printer + strings + er, EXIT 1. 

TABLE strings = 
( "Right parenthesis missing": no paren, 

"Integer missing": no int 
). 

137 

The table strings contains two strings, stored and packed in a way suitable to our 
machine; they can be reached under the names no paren and no int. The call of 
put string takes the formal affix er, looks in the table strings under the entry 
corresponding to er and transfers the string thus found to the file identified as printer. 

When the construction EXIT 1 is executed the program will be terminated and the 
I will be passed to the operating system as an indication of what went wrong. This is 
by no means the normal program termination: normal program termination ensues 
when all work is done. 

1.6. Starting the program 

The rule for reading an expression (expression) and the one for printing an integer 
(print integer) can now be combined into the rule input (see the grammar at the begin
ning of this chapter). 

ACTION input - int: 
expression + int, print integer + int, 

(is symbol + !,!, input; + ). 

This rule combines the rules for input and input-tail. Instead of translating empty 
by + we could make a test to see whether we have indeed reached the end of the file: 

(buff = stop; error + no end) 

We now remember our convention that buff contains the first symbol not yet 
recognized, and realize that buff must be initialized with the first non-space symbol of 
the input: 

ACTION initialize: get next symbol. 

ACTION read expressions and print results: initialize, input. 

The reader will have noticed that until now we have only defined rules that will do 
something if they are executed (called) and which will then call other rules. He may 
have wondered whether ALEPH contains any directly executable statements at all. The 
answer is yes, but only one (per program). In our example it has the following form: 

ROOT read expressions and print results. 

We now indicate the end of our program: 

END 



138 ALEPH Manual 

When the program is run the rule read expressions and print results is executed. 
This rule calls initialize, which through a call of get next symbol puts the first non
space symbol in buff; when initialize is done, input is called which calls expression 
which in turn executes term, etc. After a while input, which is called repeatedly, will 
find is symbol + /,/ to fail, it is done, and so is read expressions and print result. The 
call specified in the ROOT instruction is finished: this constitutes the normal program 
termination. 

We could give the 'rule declarations' and 'data declarations' in any other order and 
the effect would still be the same. The END, however, must be the last item of the 
program. 

This brings us to the end of our sample program. 

1.7. Some details 

Although the rule put string used above is known to the compiler, it is useful to 
see, as an additional example, how it looks when expressed in ALEPH. We first propose 
the preliminary version put string 1. 

ACTION put string 1 + ""file + table[} + >string - count: 
0 ~ count, next 1 + file + table + string + count. 

ACTION next 1 + ""out + tbl[J + >str + >cnt - symb: 
string elem + tbl + str + cnt + symb, put char + out + symb, 

incr + cnt, next 1 + out + tbl + str + cnt; 
+. 

The double set of quotation marks ("") indicates that the corresponding actual 
affix will be a file, the square brackets indicate that the corresponding actual affix will 
be a table. We see that the only thing put string 1 does is to create an environment 
for next 1 to run in. next 1 starts by calling string elem. This (standard) rule considers 
the string in tbl designated by str and determines whether this string has a cnt-th sym
bol. If so, it puts it in symb; if not, it fails. If the call fails, we know we have reached 
the end of the string and we are done. Otherwise the symbol is transferred to the file 
identified by out, the counter cnt is increased by I (through the external rule incr) and 
next 1 is called again with the same affixes. Like at the first call of next 1, the value 
of cnt is the position in the string of the symbol to be processed. 

The recursive call of next 1 is a case of trivial right-recursion; moreover all actual 
affixes are the same as the formal affixes (which are left of the colon). In this case the 
recursive call is equivalent to a straightforward jump: it does not even necessitate 
parameter transfers. For this case there is a shorthand notation: a name of a rule pre
ceded by a colon denotes the re-execution of that rule with the affixes it had upon its 
initial call (of course this is only allowed inside that same rule and only if the recur
sion is trivial right-recursion). Now we can write a simplified version: 

ACTION put string 2 + ""file + table[] + >string - count: 
0 ~ count, next 2 + file + table + string + count. 



ALEPH Manual 

ACTION next 2 + ""out + tbl[] + >str + >cnt - symb: 
string elem + tbl + str + cnt + symb, 

put char + out + symb, incr + cnt, : next 2; 
+. 

139 

The gain is twofold. We no longer have to write a tail of affixes which only convey 
the information 'same as' before', and, more important, the rule next 2 is now called 
only in one place (in put string 2). This means that we could as well explicitly have 
written it there. We now replace the call of next 2 in put text 2 by the definition of 
next 2: we parenthesize the rule, substitute for each formal affix its corresponding 
actual affix and remove the formal affixes: 

ACTION put string + ""file + table[] + >string - count: 
0 ~count, 

(next - symb: 

). 

string elem + table + string + count + symb, 
put char + file + symb, incr + count, :next; 

+ 

Note that this mechanism of replacing a call of a rule by its (slightly modified) 
definition is not applied here for the first time. We have been using it tacitly from the 
very first sample rule in 1.2. There the rule expression is a contraction of: 

and 

ACTION expression 1 + res>: 
term + res, expression tail 1 + res. 

ACTION expression tail 1 + >res> - r: 
is symbol + I+/, expression 1 + r, plus + res + r + res; 
+. 

which, according to the above recipe, would yield: 

ACTION expression 2 + res> : 
term + res, 

(expression tail 2 - r: 

). 

is symbol + I+/, expression 2 + r, plus + res + r + res; 

+ 

In a sense this is a more appropriate form than the one given in 1.2: now the r 

occurs where it belongs, that is, in the position of a local affix of the parenthesized 
part only. To obtain the exact version in 1.2 one must start from: 

ACTION expression 3 + res> - r: 
term + res, expression tail 3 + res + r. 

and 

ACTION expression tail 3 + >res> + r>: 
is symbol + I+ I, expression 3 + r, plus + res + r + res; +. 



140 ALEPH Manual 

2. INTRODUCTION TO THE MANUAL 

2.1. Interface with the outside world 

The solution of a problem by means of a computer implies that a sequence of 
actions be specified that, when executed, lead to the desired result. In ALEPH the 
actions in this sequence may be obtained from four sources: 
a. the framework of the language (supplied by the compiler), 
b. the program (supplied by the programmer), 
c. the standard externals (standard definitions of actions, to be supplied by the com

piler if the need arises), 
d. the programmer-defined externals (definitions of actions supplied by the program

mer but not belonging to the program; for example, precompiled code or 
machine code). 

The framework of ALEPH is treated in chapter 3, the program is treated in section 
3.1 and the externals are treated in chapter 5. 

The data needed in solving the problem at hand come from four sources: 
a. the data descriptions in the program, 
b. the input file(s), 
c. the predefined constants in the compiler (e.g., the maximum value an integer can 

have), 
d. the programmer-defined external values (in the rare case that these values cannot 

be normally defined in the program, as for example computer-generated binary 
tables of considerable size). 

The data descriptions and the input files are explained in chapter 4, and the exter
nals in chapter 5. 

The results can be passed back to the outside world along two paths: 
a. as output files, 
b. as a single integer (the termination state of the program) which is made available 

to the operating system upon termination of the program, indicating in some way 
the outcome of the program. 

The output files are described in section 4.2. The termination state is described in 
3.1 and in 3.6. In some operating systems it can be used to control the further course 
of events, in other operating systems it may only indicate whether the program pro
ceeded satisfactorily or broke off because of some irrecoverable error. 

2.2. The syntactical description 

The syntax of ALEPH is given in the form of a context-free grammar. The notation 
in this grammar follows a well-known scheme: the part on the right hand side of a 
syntax rule defines the possible productions of the notion on the left hand side. The 
right hand side consists of one or more alternatives, separated by semicolons, of 
which only one alternative applies in a given case. Sometimes one or more notions in 
an alternative are enclosed in square brackets: this indicates that the given notions 
may or may not be present, i.e., they are optional. 

The terminal symbols of the grammar, together with their representations, are 
listed in 7.2; all except four end in -symbol. A notion that ends in -tag produces tag. 
Such a notion then contains a hint as to exactly which tags are allowed by the context 
conditions. A full VW-grammar incorporating all context conditions was prepared by 



ALEPH Manual 141 

R. Glandorf, D. Grune and J. Verhagen [GLANDORF, GRUNE & VERHAGEN 78]. 

Constituents of the grammar are printed in bold; programs and program frag

ments are printed in script. 

3. PROGRAM LOGIC 

3.1. General 

3.1.1. The program 

Syntax: 

program: 
(information sequence], root, (information sequence], end symbol. 

information sequence: 
information, (information sequence]. 

information: 
declaration; pragmat. 

root: 
root symbol, affix form, point symbol. 

declaration: 
rule declaration; 
data declaration; 
external declaration. 

The syntax of program can be verbalized as: 'A program is a sequence of declara
tions and pragmats, followed by an end-symbol; in this sequence exactly one root 
must occur.' The order in which the declarations and the root appear is immaterial. 
The position of some pragmats is significant (6.1 ). 

Example of a program: 

CHARFILE output= "PRINTER">. 
ROOT put char + output + I 31. 
END 

in which the first line is a data-declaration, the second is the root and the third con
tains the end-symbol. For other examples see chapter 8. 

The execution of a program starts with the processing of all of its data-declarations, 
in such order that no data item is used before its value has been calculated. If no such 

order exists an error-message is given. 

Example: the data-declarations 

CONSTANT p = q. 
CONSTANT q = 3. 

are processed in reverse order, whereas the data-declarations 

CONSTANTp = q. 
CONSTANT q = 2 - p. 

will result in an error-message. 



142 ALEPH Manual 

A large part of the processing of the data-declarations will normally be performed 
during compilation. 

After all constants, variables, stacks, tables and files have thus been established, 
the affix-form in the root is executed (3.5) as the sole directly executable instruction in 
the program. If this affix-form reaches its normal completion, the program finishes 
with a termination state of 0. If the execution of the affix-form stops prematurely, the 
program finishes, but now with a termination state possibly different from 0. If the 
stop is due to an exit instruction (3.6), the termination state is specified by this 
instruction. If the stop is due to a run-time error the termination state is -1. 

3.1.2. The use of tags 

A tag is a sequence of letters and digits, the first of which is a letter. All tags 
defined by rule-declarations, pointer-initializations, constant-descriptions, variable
descriptions, table-heads (except those in field-list-packs), stack-heads (except those in 
field-list-packs), file-descriptions, external-rule-descriptions and external-constant
descriptions must differ from each other. 

3.2. Rules 

The declarations and applications of 'rules' constitute the mechanism for control
ling the logical flow of the program. The rule-declaration defines what is to be done if 
the rule is called, whereas the application (in an affix-form) indicates that the rule is to 
be called. 

A rule, when called, will either succt:ed or fail, according to criteria to be given in 
this manual and summarized in 3.9.2. 

3.2.1. Rule-declarations 

Each rule in the program must be declared exactly once, either in a rule
declaration or in an external-rule-description (for the latter see 5). 

Syntax: 

rule declaration: 
typer, rule tag, !formal affix sequence], actual rule, point symbol. 

typer: 
action symbol; function symbol; predicate symbol; question symbol. 

rule tag: 
tag. 

Example of a rule-declaration: 

ACTION put string + ""file + table[] + >string - count: 
0 ~count, 

(next - symb: 

). 

string elem + table + string + count + symb, 
put char + file + symb, incr + count, :next; 

+ 

Here the typer is ACTION, the rule-tag is put string, the formal-affix-sequence is 
+ ""file + table[] + >string and the actual-rule is the rest, excluding the point but 



ALEPH Manual 143 

including the - count:. 

A rule-declaration defines the actual-rule to be of the type designated by typer, to 
be identified by the rule-tag and to have the formal affixes given by its formal-affix
sequence. 

There are four types of rules: predicates, questions, actions and functions, each 

designated by the corresponding typer symbol. These four types arise from the fact 
that rules are differentiated on the basis of two mutually independent criteria: 
a. a rule will either always succeed or be capable of failing, depending on the logical 

structure of the actual-rule, 
b. a rule, when succeeding, may or may not have side-effects, again depending on 

the logical structure of the actual-rule. 

These criteria are elaborated upon in 3.9. 

A rule is a "predicate" if it can fail and has side-effects (the restrictions on the 
structure of rules prevent these side-effects from becoming effective if the rule fails). 

A rule is a "question" if it can fail and has no side-effects. 

A rule is an "action" if it will always succeed and has side-effects. 

A rule is a "function" if it will always succeed and has no side-effects. 

The type of a rule is checked against the logical construction of the actual-rule; if 
an action or function is found to be able to fail, an error message is given; in all other 
cases, if a discrepancy is found a warning is given. 

Examples. 
In each of the following examples the beginning of a rule-declaration is given, 

together with a summary of what the rule does. From this explanation it follows why 
the rule was declared with the given type. 

PREDICATE digit + d>: if the next character in the input file is a 
digit, it is delivered in d, the input file is 
advanced by one character (side-effect) 
and digit succeeds; otherwise it fails. 

QUESTION is digit + >d: if dis a digit the rule succeeds, otherwise 
it fails. 

ACTION skip up to point: the input file is advanced until the next 
character is a point. 

FUNCTION plus + >x + >y + sum>: the sum of x andy is delivered in sum. 

3.2.2. Actual-rules 

An actual-rule mentions the variables local to it and specifies one or more alterna
tives. 

Syntax: 



144 ALEPH Manual 

actual rule: 
(local affix sequence), colon symbol, rule body. 

rule body: 
alternative series; classification. 

alternative series: 
alternative, (semicolon symbol, alternative series). 

alternative: 
last member; member, comma symbol, alternative. 

Example of an actual-rule: 

- d: 
digit + d, times + res + 10 + res, 

plus + res + d + res, integer 1 + res; 
+ 

Here the local-affix-sequence is - d, one alternative is 

digit + d, times + res + 10 + res, 
plus + res + d + res, integer 1 + res 

and + is another; plus + res + d + res is a member and + is a last-member. 
When an actual-rule is executed (through a call (3.5) of the rule of which it is the 

actual-rule), the following takes place. 
First space is made available on the run-time stack for the local-affixes, one loca

tion for each local-affix (see 3.3.3). Subsequently its rule-body is executed. 
The execution of a rule-body implies the execution of its alternative-series or of its 

classification. 

The execution of an alternative-series starts with a search to determine which of its 
alternatives applies in the present case. The applicable alternative is the (textually) 
first alternative whose 'key' succeeds. The "key" of an alternative is its first member 
or, if it has no member, its terminator. Thus, the key of the first alternative is exe
cuted: if it succeeds, the first alternative applies. Otherwise the key of the second 
alternative is executed: if it succeeds, the second alternative applies, etc. If none of the 
keys succeeds, the alternative-series fails. 

The alternative found applicable is then elaborated further. Its key has already 
been executed. Now the rest of its members and last-member are executed in textual 
order until one of two situations is reached: 

either all its members and its last-member have succeeded, in which case the 
alternative-series succeeds as well, 

or a member or last-member fails: any (textually) following members or last
member in this alternative will not be executed and the alternative-series fails. 

If the alternative-series succeeded, the actual-rule succeeds; if it failed, the actual
rule fails. 

For the execution of a classification see 3.8. 

After the result of the actual-rule has thus been assessed, the space for the local
affixes is removed from the run-time stack. 



ALEPH Manual 145 

Restrictions. 
An alternative-series must satisfy the following restrictions: 

a. If the key of an alternative cannot fail (3.9.2), the alternative must be the last 
one. This restriction ensures that all alternatives can, in principle, be reached. 
Violation of this restriction causes an error message. 

b. If an alternative contains a member that has side-effects (see 3.9.l) this member 
may not, in the same alternative, be followed by a member that can fail (see 
3.9.2). 
This restriction ensures that the side-effects of a member cannot materialize if the 
member fails; this in turn ensures that the tests necessary to determine the appli
cable alternative in an alternative-series do not interfere with each other. 
Violatiori of this restriction causes a warning. The user is urged either to recon
sider the formulation of his problem or convince himself that the side-effects 
caused have no ill consequences. 

3.2.3. Members 

Members are the units of action in ALEPH. This action is a primitive operation, a 
call of a rule, or consists in its turn of other actions. 

Syntax: 

member: 
affix form; operation; compound member. 

last member: 
member; terminator. 

Example of a member: 

(declaration sequence option - type - idf: 
declaration + type + idf, enter + type + idf, 

: declaration sequence option; 
+ 

) 

This member is a compound-member, declaration + type + idf is an affix-form, 
: declaration sequence option is a last-member, as is +. 

The notion last-member has been introduced in the syntax to ensure that a termi
nator will only occur last in an alternative. 

3.3. Affixes 

Formal and actual affixes constitute the communication between the caller of a 
rule and the rule called. Local affixes are a means for creating variables which are 
local to a given rule-body. 

3.3.1. Formal-affixes 

Syntax: 



146 
ALEPH Manual 

formal affix sequence: 
formal affix, (formal affix sequence). 

formal affix: 
formal affix symbol, formal. 

formal: 
formal variable; formal stack; formal table; formal file. 

formal variable: 
(right symbol), variable tag, (right symbol). 

formal table: 
(formal field list pack), table tag, sub bus. 

formal stack: 
sub bus, (formal field list pack), stack tag, sub bus. 

sub bus: 
sub symbol, bus symbol. 

formal field list pack: 
open symbol, (field list), close symbol. 

formal file: 
quote image, file tag. 

Example of a formal-affix-sequence: 

+ "''file + table[] + >string 

The formal-affix-sequence defines the number and types of the formal-affixes of the 
rule it belongs to. 

A formal-variable describes a variable. If the formal-variable starts with a right
symbol the variable has obtained a value from the calling rule; it has the attribute INI
TIALIZED. Otherwise it has the attribute UNINITIALIZED at the beginning of each alterna
tive in the actual-rule. 

If the formal-variable ends in a right-symbol its value will be passed back to the 
calling rule: it must have the attribute INITIALIZED at the end of each alternative of the 
actual-rule which does not end in a jump, exit or failure-symbol. 

A formal-stack describes a stack. If the formal-field-list-pack is absent, the formal
stack is supposed to have one selector: the tag of this selector is the same as the tag 
of the formal-stack itself. For example, the formal-affix []list[] has the same meaning 
as [](list)list[J. 

A formal-table describes a table. If the formal-field-list-pack is absent, the formal
table is supposed to have one selector: the tag of this selector is the same as the tag 
of the formal-table itself. 

A formal-file describes a file. 

All variable-, stack-, table- and file-tags in a formal-affix-sequence must be 
different. They must also be different from the rule-tag that precedes the formal-affix
sequence. 



ALEPH Manual 147 

3.3.2. Actual-affixes 

Actual-affixes occur in affix-forms which cause the call of a rule. Each actual-affix 
corresponds to a formal-affix of that rule. 

Syntax: 

actual affix sequence: 
actual affix, (actual affix sequence). 

actual affix: 
actual affix symbol, actual. 

actual: 
source; list tag; file tag. 

Example of an actual-affix-sequence: 

+ 5Jl + /?/ + alpha + beta•gamma[p] + <>list + ? 

In this example 5JJ is an integral-denotation, !?/ is a character-denotation, alpha 
may be a file-tag, beta•gamma[p] may be a stack-element, <>list is a calibre and ? is 
a dummy-symbol. 

Actual affixes derive their exact meanings from the corresponding formal-affixes. 
The interrelations are discussed in 3.5 (affix-forms) and in 3.4 (transports). 

3.3.3. Local-affixes 

Syntax: 

local affix sequence: 
local affix, (local affix sequence). 

local affix: 
local affix symbol, local variable. 

local variable: 
variable tag. 

Example of a local-affix-sequence: 

- count 

A local-variable describes a variable. Space for this variable is reserved on the 
run-time stack upon entry of the actual-rule or compound-member of which it is part. 
On exit from that actual-rule or compound-member this space is removed. 

A local-variable has the attribute UNINITIALIZED at the beginning of each alternative 
of the actual-rule or compound-member. Its attribute must be INITIALIZED at the end of 
at least one alternative. 

All variable-tags in a local-affix-sequence L must be different. Furthermore, all 
variable-tags in L must be different from: 
a. all the rule.-tags, if any, and all variable-tags in the local-affix-sequences, if any, of 

all the compound-members, if any, in which L is contained, 
b. the rule-tag and all variable-, stack-, table- and file-tags in the formal-affix

sequence, if any, of the rule-declaration in which L occurs. 



148 ALEPH Manual 

3.4. Operations 

Syntax: 

operation: 
transport; identity; extension. 

transport: 
source, variable directive sequence. 

source: 
constant; variable. 

constant: 
plain value; table element. 

plain value: 
integral denotation; character denotation; constant tag; limit. 

integral denotation: 
!integral denotation), digit. 

character denotation: 
absolute symbol, character, absolute symbol. 

variable: 
variable tag; stack element; dummy symbol. 

table element: 
!selector, of symbol), table tag, sub symbol, source, bus symbol. 

stack element: 
!selector, of symbol), stack tag, sub symbol, source, bus symbol. 

variable directive sequence: 
variable directive, !variable directive sequence). 

variable directive: 
to token, variable. 

to token: 
minus symbol, right symbol. 

identity: 
source, equals symbol, source. 

extension: 
of symbol, field transport list, of symbol, stack tag. 

field transport list: 
field transport, !comma symbol, field transport list). 

field transport: 
source, selector directive sequence. 

selector directive sequence: 
selector directive, !selector directive sequence). 

selector directive: 
to token, selector. 

Example of a transport: 



ALEPH Manual 

pnt - sef*list[q] - offset - ors*list[offset] 

Example of an identity: 

ect*list[pnt] = nil 

Example of an extension: 

* pnt - set, nil - ect - ors * list 

3.4.1. Transports 

149 

A transport can be considered a function, i.e., it has no (inherent) side-effects and 
will always succeed. 

Its execution starts with the evaluation of its source. A source is evaluated as fol
lows. 

If the source is an integral-denotation, its value is the numerical value of the 
sequence of digits, considered as a number in decimal notation. 

If the source is a character-denotation, its value is the numerical value of the char
acter in the code used. 

If the source is a constant-tag or a variable-tag, its value is the value of the con
stant or variable identified. If a formal or local variable is identified, it must have the 
attribute INITIALIZED. 

If the source is a stack-element or a table-element, its value is determined as fol
lows (see also 4.1.5 and 4.1.6). 

The source between the sub-symbol and the bus-symbol is evaluated and its value 
is called P . We call the stack-tag or table-tag in front of the sub-symbol T, and the 
(global or formal) list identified by it L. We now consider the block in L that has an 
address equal to P (if no such block exists, there is an error); it is called B. Subse
quently a selector S is determined: if the of-symbol is present, S is the selector in 
front of it; if the of-symbol is absent, S is T. (As an example, list[p] is equivalent to 
list*list[p].) S must be a selector of L. Now, the value of the stack-element or table
element is the value in the block B identified by the selector S. 

If the source is a limit, its value is described in 4.1. 7. 

If the source is a dummy-symbol, there is an error. 

The value of the source is called V. Next the variable-directives of the transport 
are executed in textual order. A variable-directive is executed as follows. 

If its variable is a variable-tag, V is put in the location of the variable identified. If 
a formal or local variable is identified, this variable has the attribute INITIALIZED in the 
rest of the alternative in which the transport appears. 

If its variable is a stack-element, the source between the sub-symbol and bus
symbol is evaluated and its value is called P. We call the stack identified by the 
stack-tag L. We now consider that block in L that has an address equal to P (if no 
such block exists, there is an error); it is called B. Subsequently a selector S is deter
mined: if the of-symbol is present, S is the selector in front of it; if the of-symbol is 
absent, S is the stack-tag. S must be a selector of L. Now V is put in the location 
in the block B identified by the selector S. 



150 ALEPH Manual 

If the variable is a dummy-symbol, the variable-directive is a dummy action. 

Examples: 

0-+ ent-+ res 

p -+ /ist[q] -+ q 

now ent and res are both zero 

the value of p is put in the location identified by list•list[q] and 
in (the location of) q 

p-+ q-+ /ist[q] the value of p is put in (the location of) q and then in the loca
tion identified by list•list[q] which is now the same as/ist•list[p] 

list[p] -+ p -+ /ist[p] the value of list•list[p] is put in p and then put in list•list[p] 
using the new value of p, with the result that now list•list[p] 
contains a pointer to itself 

3.4.2. ldentitys 

An identity can be considered a question, i.e., it has no side-effects and may either 
succeed or fail. 

Both its sources are evaluated as described above. If the two values are numeri
cally equal the identity succeeds, otherwise it fails. 

If the values represent numerical results the identity tests equality. If the values 
represent pointers to blocks in lists the identity tests whether the two blocks pointed 
at are the same, not whether they are equal (as this might imply complicated com
parison criteria). 

3.4.3. Extensions 

An extension can be considered as an action, i.e., it has side-effects and will always 
succeed. 

Call the stack identified by the stack-tag S. The selectors that appear in the 
field-transport-list must be selectors of S. 

First the sources in the field-transports are evaluated as described in 3.4. I and 
their values remembered. Subsequently the stack S is extended to the right with one 
block B of empty locations (whence the name 'extension'); the number of locations in 
the block is equal to the calibre of S. Next the field-transport(s) are executed; a 
field-transport is executed by putting the value remembered for its source in the 
location(s) in B identified by its selectors. 

No more than one value may be put in a given location in B; at the end of the 
extension all locations in B must have been given a value; if the stack is formal, the 
calibre of the actual stack must be equal to that of the formal stack. 

Example: given a stack st declared as [j(sel, eel, ors)st: then the extension 

* 3 -+ eel, 5 -+ sel -+ ors * st 

will add the block (5, 3, 5) to stand >>st will be 3 higher than it was before. 

3.5. Affix-forms 

Syntax (see also 3.3.2): 

affix form: 
rule tag, !actual affix sequence). 

Example: 



ALEPH Manual 151 

string elem + tbl + str + cnt + symb 

When an affix-form is executed, the rule identified by the rule-tag in the affix-form 
is called, as follows. 

Relationships are set up between the actual-affixes as supplied by the affix-form 
and the formal-affixes as supplied by the rule-declaration. The correspondence 
between actual and formal affixes is decided from their order: the first actual 
corresponds to the first formal, the second actual to the second formal, and so on. 
The number of actuals must be equal to the number of formals. 

The actual corresponding to a formal-table must be a list-tag identifying a (global 
or formal) stack or a (global or formal) table. All actions performed on the formal 
are executed directly on the actual. If the formal has a field-list the calibres of the for
mal and actual must be equal; the selectors may differ. If the formal has no field-list, 
no calibre match is required. Regardless of mismatches, the value delivered by the 
calibre ('<>list') is the calibre of the global list to which the formal-table 
corresponds, directly or indirectly. 

The actual corresponding to a formal-stack must be a stack-tag identifying a (glo
bal or formal) stack. All actions performed on the formal are executed directly on the 
actual. If the formal has a field-list the calibres of the formal and actual must be 
equal; the selectors may differ. If the the formal has no field-list, no calibre match is 
required. Regardless of mismatches, the value delivered by the calibre is the calibre 

of the global stack to which the formal-stack corresponds, directly or indirectly. 

The actual corresponding to a formal-file must be a file-tag identifying a (global or 
formal) file. All actions performed on the formal are executed directly on the actual. 

First the copying part of the affix mechanism is put into operation: for each formal 
which is a formal-variable starting with a right-symbol, a transport is executed with 
the actual as its source and the variable-tag of the formal as its variable. 

Subsequently, the actual-rule in the rule identified above is executed (see 3.2.2). If 
this actual-rule succeeds, the affix-form succeeds; if it fails, the affix-form fails. 

If the affix-form succeeds the restoring part of the affix mechanism will be exe
cuted: for each formal that is a formal-variable ending in a right-symbol, a transport is 
executed with the variable-tag of the formal as its source and the actual as its variable, 
in the order in which the affixes appear. 

Example: 

Suppose the following rules are defined: 

QUESTION if a: $ Some question $. 
QUESTION if b: $Another question $. 
FUNCTION give value 1 + n>: 1 __,.. n. 
FUNCTION give value 2 + n>: 2 __,.. n. 
ACTION use value + >n: print + n. 
ACTION print + >n: $Some actual-rule that prints the value of 'n' $. 

In the actual-rule 



152 ALEPH Manual 

- Joe: 
if a, give value 1 + Joe, use value + Joe, print + Joe; 
if b, give value 2 + Joe, use value + Joe 

Joe has the attribute UNINITIALIZED at the colon and likewise at the first comma, INITIAL

IZED at the second comma because of the restoring done by the call of give value l, 
and keeps the attribute INITIALIZED until the end of the alternative. Its value can be 
copied over to use value and print. At the beginning of the second alternative it still 
has the attribute UNINITIALIZED (still UNINITIALIZED, not again UNINITIALIZED, since, if the 
beginning of the second alternative is reached, the initialization in the previous alter
native will not have taken place). It keeps the attribute UNINITIALIZED until the call of 
give value 2 after (and by) which it obtains the attribute INITIALIZED. Its subsequent 
application in use value is correct. 

The actual-rule 

- Joe: if a, use value + Joe, give value 1 + Joe, print + Joe 

is incorrect. Joe still has the attribute UNINITIALIZED at the first comma and is then used 
as a source in the copying done by the call of use value. 

3.6. Terminators 

Syntax: 

terminator: 
jump; exit; success symbol; failure symbol. 

jump: 
repeat symbol, rule tag. 

exit: 
exit symbol, expression. 

Examples of terminators: 

: order 
EXIT 16 
+ 

Jumps. 
The rule-tag after the repeat-symbol may be the rule-tag of the rule in which the 

jump occurs or the rule-tag of (one of) the compound-member(s) in which the jump 
occurs. 

A jump to the rule-tag of a rule is an abbreviated notation of a call to that rule, 
with actual affixes that correspond to the original actual affixes. The abbreviation is 
only allowed if, after the execution of the call, no more members in the rule can be 
executed. This condition ensures that there will be no need for the 'recursive call' 
mechanism to be invoked. 

Example: 
The rule: 

ACTION bad 1: a, (b; :bad 1), e; +. 
is incorrect: after returning from :bad 1 the affix-form e will be executed. If the , e is 



ALEPH Manual 153 

removed, the rule is correct. Likewise the rule: 

QUESTION bad 2: (a, b, :bad 2); c. 

is incorrect: after unsuccessful returning from :bad 2 the affix-form c will be executed. 
If the parentheses are removed, the rule is correct. 

A jump to the rule-tag of a compound-member C causes this compound-member to 
be re-executed. The precise meaning can be assessed by decomposing (see 3.7) the rule 
until C turns into a rule. Then the above applies. 

Exits. 
The execution of an exit causes the entire program to be terminated. The termina

tion state is equal to the value of the expression in the exit. An exit is a function. 

Success- and failure-symbols. 
The execution of a success-symbol always succeeds, the execution of a failure

symbol always fails. Neither has side-effects. 

3.7. Compound-members 

Compound-members serve to turn a (composite) rule-body into a single member. 

Syntax: 

compound member: 
open symbol, (local part, colon symbol), rule body, close symbol. 

local part: 
rule tag, (local affix sequence); local affix sequence. 

Example: 

(order - n: 

) 

less + y + x, x ~ n, y ~ x, n ~ y; 
x = y, get next int + x, : order; 

+ 

A compound-member is an abbreviated notation for the call of a rule. Loosely 
speaking, the rule that is called has the same meaning as the rule-body of the 

compound-member and has all its non-globals as formal affixes. The call then calls 
that rule with these non-globals as actual affixes. The following statement expresses 
this more precisely. 

A rule-declaration for the rule that is called can be derived from the compound
member C in the following way: 
a. the open-symbol and close-symbol are removed, 
b. a point-symbol is placed after the rule-body, 
c. if the local-part, colon-symbol is absent, a colon-symbol is placed in front of the 

rule-body, 
d. if the rule-tag is missing, a rule-tag is placed in front that produces a tag that is 

different from any other tag in the program, 



154 ALEPH Manual 

e. a formal-affix-sequence is constructed (see below) and inserted after the rule-tag, 
f. the 'type' of the rule-body is determined (see 3.9) and the corresponding typer 

(see 3.2.1) is placed in front of the rule-tag. 

The formal-affix-sequence mentioned in e above is constructed as follows: 
a. a list is made of all tags in the rule-body that do not refer to global items and do 

not occur in the local-affix-sequence of C, if present, 
b. if the list is empty the formal-affix-sequence is empty, 
c. for each tag in the list, if the corresponding item 

I. is used as a source (either directly or through the affix mechanism) and is 
used as a variable (either directly or through the affix mechanism), it is 
entered into the formal-affix-sequence preceded and followed by a right
symbol, 

2. is used as a source (either directly or through the affix mechanism), it is 
entered into the formal-affix-sequence preceded by a right-symbol, 

3. is used as a variable (either directly or through the affix mechanism), it is 
entered into the formal-affix-sequence followed by a right-symbol, 

4. is used as a stack-tag (or table-tag), it is entered into the formal-affix
sequence as a formal-stack (or formal-table) with the same field-list-pack as 
that of the corresponding (formal or actual) stack (or table), 

5. is used as a actual-affix where a file is required, it is entered into the formal
affix-sequence as a formal-file, 

d. the items in the formal-affix-sequence are preceded by formal-affix-symbols. 

Example: 
For the compound-member 

(a[p] = 0, 0 - a[q]; plus + m + p + q) 

where m is global, the rule-declaration runs: 

ACTION zzgrzl + [J(a)a[J + >p + >q>: 
a[p] = 0, 0 - a[q]; plus + m + p + q. 

and the call is: 

zzgrzl + a + p + q 

This also implies that, if a compound-member fails, the changes it made to formal 
and local variables do not become effective. Compare 

o-n, 
( (I - n, -); 

n = 0, do something 
) 

with 

o-n, 
( spoil and fail + n; 

n = 0, do something 
) 

where 



ALEPH Manual 

QUESTION spoil and fail+ n>: 1 - n, -. 

Both cases behave in exactly the same way: the rule do something will be called. 

The rule-tag, if any, of a compound-member C must be different from: 

155 

a. the rule-tags, if any, and all the variable-tags in the local-affix-sequences, if any, 
of all the compound-members, if any, in which C occurs, 

b. the rule-tag and all ·the variable-tags, stack-tags, table-tags and file-tags in the 
formal-affix-sequence, if any, of the rule-declaration in which C occurs. 

3.8. Classifications 

A classification is similar to an alternative-series in that both specify a series of 
alternatives, only one of which will eventually apply. The difference is twofold: in a 
classification exactly one alternative applies (as opposed to one or zero in an 
alternative-series), and the choice of the pertinent alternative is based on a single run
time value (as opposed to the successive execution of keys). Classifications allow fast 
selection of alternatives at the cost of a less versatile selection mechanism. 

Syntax: 

classification: 
classifier box, class chain. 

classifier box: 
box symbol, classifier, box symbol. 

classifier: 
source. 

class chain: 
class, semicolon symbol, class chain; last class. 

class: 
area, comma symbol, alternative. 

area: 
sub symbol, zone series, bus symbol. 

zone series: 
zone, !semicolon symbol, zone series). 

zone: 
!expression), up to symbol, !expression); expression; list tag. 

last class: 
class; alternative. 

Example 1: 

(n: get + char, 

) 

(=char= 

) 

[IOI : 191 ], dgt - type; 
[la/ : /z/; /al + cap: /z/ + cap], ltr - type; 
[!+!;/-/;IX/; Ill}, op- type; 
[O; 127], : n; 

err - type 



156 

Example 2: 

=tag= 

ALEPH Manual 

[var dee/], handle variable + tag; 
[macro dee/], handle macro call + tag; 
[rout dee/], handle routine call + tag; 

handle bad tag + tag 

The execution of a classification starts with the evaluation of the source in its 
classifier-box. The resulting value is called V. Now the areas in the classification are 
searched in textual order for an area in which V belongs. If such an area is found, 
the alternative following it applies and is executed (see 3.2.2). If there is no such area, 
the last-class must be an alternative, which then applies and is executed. Otherwise 
there is an error. 

V belongs in a given area if it belongs in any of its constituent zones. Whether V 
belongs in a given zone is determined as follows. 

If the zone is an expression E then V belongs in that zone if it is equal to the 
value of E. 

If the zone contains an up-to-symbol it is designated by two boundaries. The left 
boundary L is the value of the expression in front of the up-to-symbol or, if it is 
missing, the value of min int. The right boundary R is the value of the expression 
after the up-to-symbol or, if it is missing, the value of max int. V belongs to the given 
zone if L :s;;; V :s;;; R . 

If the zone is a list-tag, this list-tag must identify a global (not formal) list. V 
belongs in the zone if it is an address in the virtual address space ( 4.1.4) of the list. 

Areas may coincide partially or totally; the textually first area takes precedence. 

The exact size and location of all zones is known at compile time; this information 
can be utilized by the compiler. 

A classification can fail if at least one of its alternatives can fail, it has side-effects 
if at least one of its alternatives has side-effects. 

3.9. Criteria for side-effects and failing 

When a list of conditions is given in this paragraph, the requirements for this list 
are fulfilled if at least one of the conditions is fulfilled. 

3.9.1. Criteria for side-effects 

In essence a rule "has side-effects" if it changes global information. 

A rule has side-effects if its rule-body has side-effects. 

A rule-body (i.e., an alternative-series or a classification) has side-effects if it con
tains at least one member that has side-effects. 

A member has side-effects if 
1. it is an affix-form that has side-effects, 
2. it is a transport that has side-effects, 



ALEPH Manual 157 

3. it is an extension or 
4. it is a compound-member the rule-body of which has side-effects. 

An affix-form has side-effects if 
I. the rule called is an action or a predicate or 
2. the restoring part of the affix mechanism (see 3.5) causes a transport that has 

side-effects. 

A transport has side-effects if (one of) its variable(s) identifies a global variable or 
is a stack-element. 

3.9.2. Criteria for failure 

A member can fail if 
I. it is an affix-form the rule of which is a predicate or question, 
2. it is an identity or 
3. it is a compound-member the rule-body of which can fail. 

A terminator can fail if 
I. it is a failure-symbol ( - ) or 
2. it is a jump to a rule or compound-member that can fail. 

A rule-body can fail if its alternative-series or classification can fail. 

An alternative-series can fail if 
I. the key of its last alternative can fail or 
2. it contains an alternative that contains a member or terminator, other than its 

key, that can fail. 

A classification can fail if it contains a member that can fail. 

4. DATA 

The basic way of representing information in ALEPH is through integers. There are 
four integer-based data types: 

o integers ('constants'), 
o locations that contain integers ('variables'), 
o ordered lists of integers ('tables'), and · 
o ordered lists of locations that contain integers ('stacks'). 

Integers used in data declarations can be given in the form of expressions. 

The basic way of routing information into and out of the program is through files. 
There are two types of files: 

o 'charfiles', files containing only integers that correspond to characters, and 
o 'datafiles', files containing pointers to prescribed stacks and tables and/ or 

integers in a prescribed range. 

There are three primitive actions on integer-based data: transports, identitys and 
extensions. Additional integer handling can be done through externals. 

There are no primitive actions on files: all file handling is done through externals. 

Syntax of data-declaration: 



158 

data declaration: 
constant declaration; 
variable declaration; 
stack declaration; 
table declaration; 
file declaration. 

ALEPH Manual 

4.1. Integer-based data 

Since all integer-based data can be initialized through expressions, these will be 
treated first. 

4.1.1. Expressions 

Syntax: 

expression: 
(plus minus), term; expression, plus minus, term. 

term: 
(term, times by), base. 

base: 
plain value; expression pack. 

expression pack: 
open symbol, expression, close symbol. 

plus minus: 
plus symbol; minus symbol. 

times by: 
times symbol; by symbol. 

Examples: 

-3 + 5 *byte size 
line width! 2 
((le/ + 1) *char size + In/ + 1) *char size + !di + 1 

The value of an expression is the integral value that results from evaluating the 
expression according to the standard rules of algebra. 

The result of an integer division n = pi q (q =I= 0) is a value n such that 
p - n X q is non-negative and minimal (so, e.g., 7 / 3 = 2, 7 / ( - 3) = - 2, 
( - 7) / 3 = - 3 and ( - 7) / ( - 3) = 3). 

A constant-tag defined in a user-defined external-constant-declaration cannot be 
used in an expression. 

The list-tag in a min-limit or max-limit (see 4.1.7) used in an expression must iden
tify a (global) table, i.e., limits of stacks cannot be used in expressions. 



ALEPH Manual 159 

4.1.2. Constants 

A "constant" consists of a constant-tag and an integral value. The relation 
between tag and value is set up through a constant-declaration and cannot be changed 
afterwards. 

Syntax: 

constant declaration: 
constant symbol, constant description list, point symbol. 

constant description list: 
constant description, [comma symbol, constant description list). 

constant description: 
constant tag, equals symbol, expression. 

constant tag: 
tag. 

Example: 

CONSTANT mid page = line width/2, line width = 144. 

The value of the expression must not depend on the constant-tag being declared. 
That is, 

CONSTANTp = q, q = 2 - p. 

is not allowed. 

Constants can be used in expressions and in sources. 

4.1.3. Variables 

A "variable" consists of a variable-tag and a location; the location may or may not 
contain a value. If it contains a value the variable "has" that value. The contents of a 
location may be changed. Once a location has obtained a value it can never become 
empty again. 

A global variable is declared in a variable-declaration. 

A formal variable originates from a formal-affix-sequence. 

A local variable originates from a local-affix-sequence. 

Syntax of variable-declaration: 

variable declaration: 
variable symbol, variable description list, point symbol. 

variable description list: 
variable description, [comma symbol, variable description list). 

variable description: 
variable tag, equals symbol, expression. 

variable tag: 
tag. 

Examples: 



160 ALEPH Manual 

4.1.4. The address space 

In addition to constants and variables, lists of constants ('tables') and lists of vari
ables ('stacks') exist. Stacks and tables together are called "lists". The items in these 
lists are identified by unique addresses which are represented by integral values. These 
values range from a (large) negative number to a (large) positive number: this range is 
called the "address space". 

The lists are described as running from left to right. 

Example: 
On a 16-bit machine the address space could be thought of as a list of 216 (65536) 

locations, the addresses of which run from -215 (-32768) at the left to 215 -1 
(32767) at the right. The question whether all these locations actually exist in memory 
is at this point immaterial: it is only the addressability of a location that is secured 
here. 

For a given program the address space is divided into chunks, one for each list. 
Consequently, an address uniquely identifies not only a location but also the list it 
belongs to. A chunk of address space belonging to a list is called its "virtual address 
space". Generally only a part of the virtual address space is in use: this part is called 
the "actual address space". From the language specifications it follows that an actual 
address space is always a contiguous list of locations or values. 

The user has no direct control over the way in which the address space is divided 
and addresses are assigned. This is done as follows: 
a. Deleted; see 5.2.4 for nil and nil table. 
b. For each table or stack without size-estimate L the size of its actual address 

space is calculated from its filling-list and L is given a virtual address space of 
exactly the same size. 

c. For each stack with an absolute-size a virtual address space of that size is 
reserved. 

d. The remainder of the virtual address space is distributed over the rest of the 
stacks, proportionally to their relative-sizes. 

For each list L the right-most address in its virtual address space is called "virtual 
max limit", the left-most address in its virtual address space minus one plus the 'cali
bre' of L is called "virtual min limit"; the size of its actual address space is calculated 
from its filling-list and the actual address space is positioned at the left end in the vir
tual address space. The 'max limit' of L is made equal to the right-most address in 
the actual address space; the 'min limit' of L is made equal to the 'virtual min limit'. 

If the actual address space has length zero, the 'max limit' of L is equal to the 
'min limit' minus the 'calibre' of L. 

The virtual and actual address space of a table are fixed (and equal) for the dura
tion of the program. 

Example: 
Suppose a virtual address space of 5 bits, i.e. the addresses range from -16 to 15. 

If the following declarations (see 4.1.5 and 4.1.6) occur in the program: 

TABLE powers = (1, 10, 100, 1000). 
STACK[= 5 =]digits= (0), 

[ 30] stack, 
[ 50] (num, denom) rationals = ((355, 113): pi, (191, 71): e). 



ALEPH Manual 161 

the virtual address space could have the following layout: 

address: contents: belongs to: selector: pointer: 

-16 nil 
-15 I powers powers <<powers 
-14 10 II II 

-13 JOO II II 

-12 1000 II >>powers 
-11 0 digits digits <<digits, >>digits 
-10 II II 

-9 II II 

-8 II II 

-7 II II >>stack 
-6 stack stack <<stack 
-5 II II 

-4 II II 

-3 II 

-2 II 

-1 II II 

0 " II 

1 " " 
2 355 rationals num 
3 113 II denom < <rationals, pi 
4 191 " num 
5 71 " denom > >rationals, e 
6 " num 
7 " denom 
8 " num 
9 II denom 

10 II num 
11 " denom 
12 " num 
13 " denom 
14 II num 
15 " denom 

(For the notation used see 4.1.5 through 4.1. 7). 

ALEPH allows the user to extend a stack towards the right (raising the 'max limit') 
through an extension (3.4.3); to remove items from the right of a stack through a call 
of unstack, unstack n, scratch or delete (5.2.4) after which the discarded address space 
can be reclaimed (but not the values in it) through an extension; and to remove items 
from the left of a stack through a call of unqueue or unqueue n (5.2.4) after which the 
discarded address space is irrevocably lost. 

Through the use of these features a stack can be operated in stack fashion ('add to 
right end' /'remove from right end') or in queue fashion ('add to right end' /'remove 
from left end'). Queue-operation consumes virtual address space but in most imple
mentations virtual address space will be virtually unlimited. 



162 ALEPH Manual 

Usually an actual address space corresponds to a physical space that is in the phy
sical memory of the computer used. The physical space is completely invisible to the 
user except perhaps in efficiency considerations. Parts of it may be in main memory, 
managed by some re-allotment scheme, parts of it may be on background memory. 

4.1.5. Tables 

Tables originate from table-declarations. 

Syntax: 

table declaration: 
table symbol, table description list, point symbol. 

table description list: 
table description, (comma symbol, table description list). 

table description: 
table head, equals symbol, filling list pack. 

table head: 
(field list pack], table tag. 

table tag: 
tag. 

field list pack: 
open symbol, field list, close symbol. 

field list: 
field, (comma symbol, field listJ. 

field: 
selector chain. 

selector chain: 
selector, (equals symbol, selector chain). 

selector: 
tag. 

filling list pack: 
open symbol, filling list, close symbol. 

filling list: 
filling, (comma symbol, filling list). 

filling: 
single block; compound block; string filling. 

single block: 
expression, (pointer initialization). 



ALEPH Manual 

compound block: 
expression list proper pack, (pointer initialization). 

pointer initialization: 
colon symbol, constant tag. 

expression list proper pack: 
open symbol, expression list proper, close symbol. 

expression list proper: 
expression, comma symbol, expression list. 

expression list: 
expression, (comma symbol, expression list). 

string filling: 
string denotation, (pointer initialization). 

string denotation: 
quote symbol, (string item sequence), quote symbol. 

string item sequence: 
string item, (string item sequence). 

string item: 
non quote item; quote image. 

quote image: 
quote symbol, quote symbol. 

Examples: 

TABLE messages = 
( "tag undefined": bad tag, 

). 

"wrong number of parameters": wrong parameter, 
"quote '"' where not allowed": bad quote 

TABLE hexadec = 
( IOI, Ill, 121, 131, 141, 151, 161, 171, 

181, 191, la/, lb/, /cl, !di, le/, If/ 
). 

TABLE (wind, next) four winds= 
( (north wind, east): north, 

(east wind, south): east, 
(south wind, west): south, 
(west wind, north): west 

). 

4.1.5.1. The table-head 

163 

A "table" is a sequential list of integral values. For referencing purposes these 
values are numbered sequentially. The numbers which can be used as addresses are 
chosen by the compiler and are unique to the given table, i.e., no two integral values 
in tables have the same address. The right-most item in the table has the largest 
address, which is known as the 'max limit' of the table. The left-most item has the 
smallest address, the smallest address minus one plus the calibre is known as the 'min 



164 ALEPH Manual 

limit' of the table. Consequently the number of values in the table is 'max limit' 
'min limit' + 'calibre'. 

If the field-list-pack is missing, a field-list-pack of the form: 

open symbol, table tag, close symbol 

where the table-tag is the same as that of the table-head, is supposed to be present. 
For example: 

TABLE messages = ... 

means 

TABLE (messages) messages = ... 

4.1.5.2. The field-list-pack and the filling-list 

The following applies to tables and stacks alike. 
All tags in a field-list-pack must differ one from another. 
The "calibre" C of a list is the number of fields in the field-list-pack. The list is 

considered to be subdivided into blocks of length C; this implies that 'max limit' -
'min limit' is an integral multiple of C. The address of the right-most item in a block 
is considered the address of that block. Each value in a block can be referenced 
through a selector: the fields in the field-list-pack correspond, in that order, to the 
values in the block. A field is identified by one of its selectors. 

The values in the list are specified in the filling-list-pack. Each filling in the 
filling-list-pack corresponds to one or more blocks in the list: the first block produced 
by the filling-list-pack corresponds to the left-most block in the list, and so on. 

If the filling is a single-block, the calibre of the list must be 1. It gives rise to one 
block; the value in the block is the value of the expression. If a pointer-initialization 
is present the constant-tag in it is defined as having the value of the address of the 
block. 

If the filling is a compound-block, the number of expressions in it must be equal to 
the calibre of the list. The values in the block are the values of the expressions. If a 
pointer-initialization is present the constant-tag in it is defined as having the value of 
the address of the block. 

If the filling is a string-denotation, the calibre of the list must be 1. It gives rise to 
one or more blocks of one value each that describe the given string in a machine
dependent way. If a pointer-initialization is present the constant-tag in it is defined as 
having the value of the largest address in the generated list of blocks. 

The string denoted by a string-denotation consists of the characters which are the 
representations of its string-items, if any, except that for each quote-image the 
representation of the quote-symbol is taken. Spaces are considered string-items, new
line control characters are not, since the dividing into lines is done through the 
charfile-handling externals (see 5.2.5). 

Example 1: 
The table-declaration for four winds (example 3 above) gives rise to the following 

list: 

address: selector: value: 



ALEPH Manual 

wind north wind 
north next east 

wind east wind 
east next south 

wind south wind 
south next west 

wind west wind 
west next north 

and wind* four winds [next *four winds [west]} has the value north wind. 

Example 2: 
The table-declaration 

TABLE strings= ("abcdefg 11 : letters, "01234": digits) 

could in some version on some computer generate: 

address: selector: value: 
strings 13 14 15 16 

" 17202100 
letters " 00 07 00 02 

" 01 02 03 04 
05 00 00 00 

digits " 00 05 00 02 

165 

A table-tag can be used in a table-element or a limit, or as an actual in an affix
form, or to indicate a zone in a classification or file-description. 

4.1.6. Stacks 

Stacks originate from stack-declarations. 

Syntax: 

stack declaration: 
stack symbol, stack description list, point symbol. 

stack description list: 
stack description, [comma symbol, stack description list). 

stack description: 
stack head, (equals symbol, filling list pack). 

stack head: 
(size estimate), (field list pack), stack tag. 

size estimate: 
relative size; absolute size. 

relative size: 
sub symbol, expression, bus symbol. 

absolute size: 
sub symbol, box symbol, expression, box symbol, bus symbol. 

stack tag: 
tag. 

Examples: 



166 ALEPH Manual 

ST A CK [ = line width =] (char) print line. 

STACK [40] (tag pnt, left, right) id/ list = 
$ the following filling-list-pack describes a binary tree 
$ containing the standard identifiers of ALGOL 60. 

( (exp st, cos, sign): exp, 
(abs st, nil, arctan): abs, 

). 

( arctan st, nil, nil): arctan, 
(cos st, abs, entier): cos, 
( entier st, nil, nil): en tier, 
(In st, nil, nil): In, 
(sign st, In, sin): sign, 
(sin st, nil, sqrt): sin, 
(sqrt st, nil, nil): sqrt 

A "stack" is a (possibly empty) sequential list of locations that contain integral 
values. The structure of this list and its addressing scheme is parallel to that of a 
table. The initial values in the locations are determined by the filling-list-pack in a 
way analogous to that used for tables. The 'max limit' is equal to the address of the 
right-most location, the 'min limit' is equal to the address of the left-most location 
minus one plus the 'calibre' of the stack. Again these values are chosen by the com
piler and are unique to the given stack. 

The values of the expressions in the size-estimates must not depend, directly or 
indirectly, on the value of any contstant-tag defined in a pointer-initialization. 

The values in the locations in a stack can be altered by transporting (3.4) a value 
into an element of that stack. For ways of changing the size of a stack, see 4.1.4. 

A stack-tag can be used in a stack-element, a limit or an extension, or as an actual 
in an affix-form, or to designate a zone in a classification or file-description. 

4.1.7. Limits 

Syntax: 

limit: 
min limit; max limit; calibre. 

min limit: 
min token, list tag. 

max limit: 
max token, list tag. 

calibre: 
calibre token, list tag. 



list tag: 
stack tag; table tag. 

min token: 
left symbol, left symbol. 

max token: 

ALEPH Manual 

right symbol, right symbol. 
calibre token: 

left symbol, right symbol. 

Examples: 

<<stack, >>table, <>blocked 

167 

A min-limit (max-limit, calibre) has the value of the 'min limit' ('max limit', 'cali
bre') of the list identified by the list-tag. 

The value of a limit is a constant in that it cannot be changed by a transport. 
However, the values of the min-limit and the max-Iimit of a stack may change as a 
consequence of actions which change the size of that stack. The values of the min
limit and the max-limit of tables and of the calibres of all lists are invariable. 

4.2. Files 

Files originate from file-declarations. They can be prefilled by the operating system 
(input files) or postprocessed by the operating system (output files) or both (I/O files) 
or neither (scratch files). 

Syntax: 

file declaration: 
file typer, file description list, point symbol. 

file typer: 
charfile symbol; datafile symbol. 

file description list: 
file description, !comma symbol, file description list). 

file description: 
file tag, !area), 

file tag: 
tag. 

Examples: 

equals symbol, !right symbol), string denotation, !right symbol). 

CHARFILE printer = "output">, backward lines = >"qelet,invert". 

DATAFILE tagfile[tag; link; 0:} = >"systags">, 
bin[0:4095} = "12row,bin">, overflow[:) = "~qxz". 

A file-description declares a "file" of the type designated by the file-typer. If the 
first right-symbol is present, the file is prefilled by the operating system (but it may 
still be empty); if the second right-symbol is present, the file will be postprocessed by 
the operating system (but it may be empty). 

The (implementation-dependent) string-denotation must contain enough informa
tion to enable the operating system to manipulate the file in the desired way. It might 



168 ALEPH Manual 

for example contain: the external file name, allocation information, the names of rou
tines to do the prefilling and postprocessing, etc. 

ALEPH contains no explicit file handling statements: all file handling is done 
through (standard) externals (see 5.2.5). When a file is used for writing, each item 
offered must belong in the area given in the file-description; when a file is used for 
reading, each item delivered will belong in the given area. If no area is supplied, the 
area [ : j is assumed. 

Files are read and written sequentially. They can be reset to the beginning of the 
file and be reread or rewritten. The file ends after the last item written or else after 
the last item produced by the preprocessing. 

4.2.1. Charfiles 

A "charfile" is a list of "lines". A 'line' consists of a control integer and a (possi
bly empty) sequence of characters. Characters are values in the area [O:max char], 
control integers are values outside that area. Four control integers are predefined in 
the compiler (see 5.2.5): new line, same line, rest line and new page. These control 
integers can be used by the pre- and post-processing to reconcile the system require
ments with the ALEPH requirements. If the file is eventually postprocessed towards a 
printer, lines of the type new line will be printed on new lines, those of the type 
same line will be printed over the previous line and those of type new page will be 
printed on the first line of a new page; rest line serves administration purposes only. 
Analogous effects should be defined for other devices, as far as the analogy will 
stretch. 

Example: 
A file containing 

a&b=h&a 

would consist of two lines: 

new line, 
same line, 

/al, /&/, !bi, /=/, lb/, /&/, la/ 
I I, I I, I /, I I. 

The standard externals allow two ways of processing a charfile. 
a. linewise: each call of PREDICATE get line + ""charfile + [}stack[} + cint> 

puts the next line on stack (the last character on the line is the right-most item in 
the stack) and yields the control integer in cint. It will fail if there is no next line. 

b. characterwise: each call of PREDICATE get char + ""charfile + char> yields 
the next item from the charfile (control integers and characters alike). It will fail 
if there is no next item. 

The area in the file-description of a charfile pertains to the values of the characters 
only. If present, the area must only specify values that belong in [O:max char], e.g. 
[0:1]. 

4.2.2. Datafiles 

A "datafile" is a list of "data-items". A data-item consists of an integer value and 
an indication about its meaning. This indication is either NUMERICAL, in which case the 
integer value stands for itself, or is the name of a list, in which case the integer value 
is an offset from the left end of that list. 



ALEPH Manual 169 

A data-item is written on a datafile by a call of 
ACTION put data + "''file + >item + >type. The data-item is constructed from 
the item- and type-parameters and from the area in the file-description of the file in 
the following way. 

If the type is numerical, there must be a zone in the area which is not a tag identi
fying a list, such that the value of item belongs in that zone. The data-item then con
sists of the value of item and the indication NUMERICAL. 

If the type is pointer, the value of item must be an address in the virtual address 
space of a list whose list-tag is a zone in the area. The data-item then consists of the 
offset from the left end of that list and the name of the list. 

A data-item is read from a datafile by a call of 
PREDICATE get data+ ""file+ item> + type>. If there is still a data-item on 
file, it is read and the item and type are reconstructed from it (see above). If there are 
no more data-items on the datafile, the predicate fails. 

Datafiles can be used to transfer information from one ALEPH-program to another. 
Pointers to lists which are in different positions in both programs are adjusted 
automatically during the transfer. 

Note: in practice it is not necessary to record the list name with every item. It is 
enough to have one bit per item and one translation table for the whole file. 

Example: 
Suppose the file-declaration: 

DATAFILE tagfile[tag; list; 0:] = >"systags">. 

Then put data for this file can be visualized as: 

ACTION put data + ""file + >item + >type: 
$For 'file' = 'tag file' only: 

type = pointer, 
( = item = 

); 

[tag], minus + item + <<tag + item, 
write data item + item + tag name; 

[list], minus + item + <<list + item, 
write data item + item + list name; 

error + bad item 

type = numerical, 
( = item = 

); 

[O: ], write data item + item + NUMERICAL," 

error + bad item 

error + bad type. 

Here the (imaginary) write data item + >val + >ind would write a data-item 
consisting of val and ind on the file tag file. 



170 ALEPH Manual 

5. EXTERNALS 

External rules, tables and constants can be used in the same way as internally 
declared rules, tables and constants. An external rule differs from an 'internal' rule in 
that its body is not given in the program but is instead obtained from external 
sources. In the same way the values of external tables and constants are obtained 
from external sources. The necessary information can be supplied by the user through 
external means ('user' externals, section 5.1) in which case the name of the item and 
some of its properties must be declared in the program, or it i:s supplied automatically 
by the compiler ('standard' externals, section 5.2) in which case there is no explicit 
declaration at all. 

5.1. User externals 

Syntax: 

external declaration: 
external rule declaration; 
external table declaration; 
external constant declaration. 

external rule declaration: 
external symbol, typer, external rule description list, point symbol. 

external rule description list: 
external rule description, 

(comma symbol, external rule description list). 
external rule description: 

rule tag, [formal affix sequence), equals symbol, string denotation. 

external table declaration: 
external symbol, table symbol, 

external table description list, point symbol. 
external table description list: 

external table description, 
[comma symbol, external table description list). 

external table description: 
table head, equals symbol, string denotation. 

external constant declaration: 
external symbol, constant symbol, 

external constant description list, point symbol. 
external constant description list: 

external constant description, 
[comma symbol, external constant description list). 

external constant description: 
constant tag, equals symbol, string denotation. 

Example: 



ALEPH Manual 

EXTERNAL FUNCTION convert to hash + t[} + >p + h> 
"subr, convertt''. 

EXTERNAL TABLE conv 2 ebcdic = "addr, conv2ebc". 
EXTERNAL CONSTANT max ebcdic = "cons, maxebcdi". 

171 

An external-rule-description defines a rule to be of the type given by the preceding 
typer, to be known internally under the name given by the r!Jle-tag and externally by 
the string-denotation, and to have affixes as shown by the formal-affix-sequence. A 
call to such a rule will result in implementation-dependent actions; it is the 
implementer's responsibility to see to it that these actions are in accordance with the 
type of the rule and that no side-effects will occur when a call of the rule fails. 

An external-table-description defines a table to be known internally under the 
name given by the table-tag in the table-head and externally by the string-denotation, 
and to have the selectors given by the field-list-pack. An application of this table will 
result in implementation-dependent actions. 

An external-constant-description defines a constant to be known internally under 
the name given by the constant-tag and externally by the string-denotation. An appli
cation of this constant will result in implementation-dependent actions. 

5.2. Standard externals 

Standard externals can be used in all programs without further notice. Their 
names can be redeclared by the user. 

5.2.1. Integers 

For those data considered to be integers, the following standard externals are 
available. 

• CONST ANT zero, one, max int, min int, int size. 
zero has the value 0, one has the value 1. max int has the value of the largest 
integer in the given implementation, and min int has the value of the smallest 
(most negative) integer in the given implementation. int size is the number of 
decimal digits necessary to represent max int. 

• FUNCTION add + >a + >b + head> + tail>. 
The double-length sum of a and b is given in head and tail: 
a + b = head X (max int + J) + tail, such that lheadJ is minimal. 

• FUNCTION subtr + >a + >b + head> + tail>. 
The double-length difference of a and b is given in head and tail: 
a - b = head X (max int + J) + tail, such that !head! is minimal. 

• FUNCTION mult + >a + >b + head> + tail>. 
The double-length product of a and b is given in head and tail: 
a X b = head X (max int + 1) + tail, such that !head! is minimal. 

• FUNCTION divrem + >a + >b + quot> + rem>. 
The quotient and remainder of the integer division of a by b is given in quot 
and rem: a = b X quot + rem, such that rem is non-negative and minimal. b 
must not be zero. 



172 ALEPH Manual 

• FUNCTION plus + >a + >b + c>. 
The sum of a and b is given in c. 

• FUNCTION minus + >a + >b + c>. 
The difference of a and b (i.e., a - b) is given in c. 

• FUNCTION times + >a + >b + c>. 
The product of a and b is given in c. 

• FUNCTION incr + >x>. 
The value of x is increased by 1. 

• FUNCTION deer + >x>. 
The value of x is decreased by 1. 

• QUESTION less + >p + >q. 
Succeeds if p is less than q, fails otherwise. 

• QUESTION lseq + >p + >q. 
Succeeds if p is less than or equal to q, fails otherwise. 

• QUESTION more + >p + >q. 
Succeeds if p is more than q, fails otherwise. 

• QUESTION mreq + >p + >q. 
Succeeds if p is more than or equal to q, fails otherwise. 

• QUESTION equal + >p + >q. 
Succeeds if p is equal to q, fails otherwise. It is identical to 'p = q'. 

• QUESTION noteq + >p + >q. 
Succeeds if p is not equal to q, fails otherwise. 

• ACTION random + >p + >q + r>. 
A pseudo-random number between p and q is given in r: p ,,;;;;; r ,,;;;;; q. The 
value of r is derived from an element in a uniformly distributed sequence of 
random numbers. The next call of random will derive its output value from the 
next number in that sequence, etc. 

• ACTION set random + >n. 
n determines in some way the position in the sequence of random numbers 
mentioned above, from which the next call of random will obtain its output 
value. 

• ACTION set real random. 
The position in the sequence of random numbers used by random is determined 
in an unpredictable way. 

• QUESTION sqrt + >a + root> + rem>. 
If a is non-negative, sqrt succeeds; the square root and remainder of a are 
yielded such that a = root X root + rem, and rem is non-negative and 
minimal. Otherwise it fails. 



ALEPH Manual 173 

• FUNCTION pack int +from[] + >n + int>. 
The right-most n elements in the list from must be integer values corresponding 
to characters that correspond to digits. The digits thus indicated are considered 
as the decimal notation of an integer, and the value of this integer is yielded in 
int. A check on integer overflow is performed. 
Example: if the 4 right-most elements of st are: 

IOI, 121, 171, I 31 

then a call of pack int + st + 4 + res will assign the value 273 to res. 

• ACTION unpack int + >int + []st[]. 
The absolute value of int is written in decimal notation in int size digits, and st 

is extended with the integer values of the digits thus obtained, in left-to-right 
order. 

The following externals are recommended. 

• FUNCTION date +year> + month> + day>. 
The year, month and day are yielded in year, month and day. 

• FUNCTION time + amount>. 
If two calls of time yield amount I and amount 2 respectively, then 
amount 2 - amount I is in some way indicative for the time spent by the pro
gram between these two calls. 

5.2.2. Words 

For those data that are considered to be arrays of bits (words), the following stan
dard externals are available. 

• CONSTANT word size. 
The bits in a word are numbered (from left to right) from word size - 1 to 0. 

• CONSTANT false, true. 
The value of false is 0, that of true is 1. 

• FUNCTION boo! invert + >a + b>. 
A word is yielded in b that contains a 1 in those positions where a contains a 0, 
and a 0 otherwise. 

• FUNCTION boo! and + >a + >b + c>. 
A word is yielded in c that contains a 1 in those positions where both a and b 
contain a 1, and a 0 otherwise. 

• FUNCTION boo! or + >a + >b + c>. 
A word is yielded in c that contains a 1 in those positions where either a or b 
or both contain a 1, and a 0 otherwise. 

• FUNCTION boo! xor + >a + >b + c>. 
A word is yielded in c that contains a 1 in those positions where a and b differ, 
and a 0 otherwise. 

• FUNCTION left circ + >x> + >n. 
The bit-array in x is shifted n positions to the left; bits leaving the word on the 
left are re-introduced on the right. It is required that 0 ,,;;;; n ,,;;;; word size. 



174 ALEPH Manual 

• FUNCTION left clear + >x> + >n. 
The bit-array in x is shifted n positions to the left; bits leaving the word on the 
left are discarded and Os are introduced on the right. It is required that 
0 ,,;;;; n ,,;;;; word size. 

• FUNCTION right circ + >x> + >n. 
The bit-array in x _is shifted n positions to the right; bits leaving the word on 
the right are re-introduced on the left. It is required that 0 ,,;;;; n ,,;;;; word size. 

• FUNCTION right clear + >x> + >n. 
The bit-array in x is shifted n positions to the right; bits leaving the word on 
the right are discarded and Os are introduced on the left. It is required that 
0 ,,;;;; n ,,;;;; word size. 

• QUESTION is elem + >x + >n. 
Succeeds if the n-th bit in x is a 1, fails otherwise. It is required that 
0 ,,;;;; n < word size. 

• QUESTION is true + >x. 
Succeeds if x contains at least one 1, fails otherwise. 

• QUESTION is false+ >x. 
Succeeds if x contains only Os, fails otherwise. 

• FUNCTION set elem + >x> + >n. 
The n-th bit in x is made equal to 1. It is required that 0 ,,;;;; n < word size. 

• FUNCTION clear elem + >x> + >n. 
The n-th bit in x is made equal tu 0. It is required that 0 ,,;;;; n < word size. 

• FUNCTION extract bits + >x + >n + y>. 
A word is yielded in y that contains copies of the right-most n bits in x in the 
corresponding positions, and Os in the remaining positions, if any. It is required 
that 0 ,,;;;; n ,,;;;; word size. 

• QUESTION first true + >x + n>. 
If x contains at least one 1, first true succeeds and yields the position of the 
left-most I in n. Otherwise it fails. 

• FUNCTION pack boo!+ from[] + >n + word>. 
The right-most n bits of word are filled as follows. If the element in from with 
address >>from - i contains at least one 1, bit i of word is set to 1, and oth
erwise to 0, for 0 ,,;;;; i < n. The remaining bits in word, if any, are 0. It is 
required that 0 ,,;;;; n < word size. 

• ACTION unpack boo! + >word+ []st[j. 
The stack st is extended with word size blocks of one location each, the location 
with address > >st - i containing a copy of the i-th bit in word, for 
0 ,,;;;; i < wordsize. 

5.2.3. Strings 

For those data that are considered to be strings and characters the following exter
nals are available. 



ALEPH Manual 175 

• CONST ANT max char. 
max char has the maximum integer value that corresponds to a character. 

• FUNCTION to ascii + >c + d>. 
d is given the integer value that corresponds in ASCII-code to the character 
that corresponds to c in the code used. It is required that 0 ..;;; c ..;;; max char. 

• FUNCTION from ascii + >c + d>. 
d is given the integer value that corresponds in the code used to the character 
that corresponds to c in ASCII. It is required that 0 ..;;; c ..;;; 127. 

• ACTION pack string +from[] + >n + []to[]. 
The right-most n elements of from must be values that correspond to charac
ters. These characters are packed, in some way, into some number m of values, 
and the stack to is extended with m blocks of one location each, containing 
these values. The packed format thus obtained is the same as that used for stor
ing strings in lists (see 4.1.5). The 'pointer' to the string is the address of the 
right-most element. So, after a call of pack string, the limit >>to is the pointer 
to the resulting packed string. 

• ACTION unpack string +from[] + >p + []to[}. 
The pointer p must point into the list from and be the address of a packed 
string. This string is unpacked yielding a sequence of m character values, and 
the stack to is extended with m blocks of one location each, containing these 
values in left-to-right order. 

• QUESTION string elem + text[] + >p + >n + c>. 
The pointer p must point into text and be the address of a packed string. If this 
string has an n-th character (counting from 0), its value is yielded in c and 
string elem succeeds; otherwise it fails. 

• FUNCTION string length + text[] + >p + n>. 
The pointer p must point into text and be the aJdress of a packed string. The 
number of characters in this string is yielded in n. 

• FUNCTION compare string + tl[] + >pl + t2[] + >p2 + trit>. 
The pointer pl must point into tl and be the address of a packed string, sl. 
The pointer p2 must point into t2 and be the address of a packed string, s2. 
These two strings are compared in some way: if sl is smaller than 
(lexicografically comes before) s2, trit is set to - 1; if they are equal, trit is set 
to O; otherwise trit is set to 1. 

• ACTION unstack string + []st[}. 
The 'max limit' of st must point into st and be the address of a packed string. 
The blocks containing this string are removed from st. 

• ACTION previous string + t[] + >pnt>. 
The pointer pnt must point into t and be the address of a packed string; it is 
made to point to the (possibly non-existing) block just preceding the string. 

• QUESTION may be string pointer + text[] + >p. 
Succeeds if p points into text and can be interpreted as the address of a packed 
string. Otherwise it fails. 



176 ALEPH Manual 

5.2.4. Lists 

For lists the following externals are available. 

• CONSTANT nil. 
nil is a value that points into the standard table nil table. 

• TABLE nil table. 
Contains one entry, nil, pointed at by nil. 

• QUESTION was + ()a[] + >p. 
Succeeds if p points into a, fails otherwise. 

• FUNCTION next + ()a[] + >p>. 
The calibre of a is added top. 

• FUNCTION previous + ()a[] + >p>. 
The calibre of a is subtracted from p. 

• FUNCTION list length + ()a[] + l>. 
The number of elements in a is yielded in 1. 

• ACTION unstack + []()st[]. 
The stack st must contain at least one block. The right-most block of st is 
removed. Its locations can be reclaimed by an extension, its contents are lost. 

• ACTION unstack to + []()st[] + >pnt. 
Zero or more blocks are removed from the right hand side of st, so that the 
'max limit' of st becomes equal to pnt. If this cannot be done, an error message 
follows. 

• ACTION unqueue + []()st[]. 
The stack st must contain at least one block. The left-most block of st is 
removed. Its (virtual) locations and its contents are lost. 

• ACTION unqueue to + []()st[] + >pnt. 
Zero or more blocks are removed from the left hand side of st, so that the 'min 
limit' of st becomes equal to pnt. If this cannot be done, an error message fol
lows. 

• ACTION scratch + []()st[]. 
All blocks in st are removed. Their locations can be reclaimed through exten
sions, their contents are lost. 

• ACTION delete + []()st[]. 
All blocks in st are removed, as in a call of scratch. Moreover, the run-time 
system will disregard st until a possible subsequent extension on st. Conse
quently, the remaining stacks may get better service, but reactivating st may be 
expensive. 

5.2.5. Files 

The following standard externals on files are available. 

• CONSTANT new line, same line, new page. 
These constants are predefined values to be used as control integers for 
'charfiles'. Their intended meanings are 'print on new line', 'print again on 
same line' and 'print on first line of next page' respectively, as far as meaningful 
for the charfile and as far as implementable in the system. 



ALEPH Manual 177 

• CONSTANT rest line. 
rest line acts as a dummy control integer and is used by get line, put line and 
put char. 

• PREDICATE get line+ ""file+ [}st[} + cint>. 
The file file must be a charfile. If the file is exhausted, get line fails. Otherwise 
the next item in file is read; if it is a control integer, it is assigned to cint, other
wise cint is set to rest line. Then zero or more characters are read from file until 
the end of the line. The stack st is extended with these characters in left-to

right order. 

• ACTION put line + ""file + a[} + >cint. 
The file file must be a charfile; a must only contain values that correspond to 
characters. If cint is not rest line, a line with control integer cint is written on 
file file, containing the characters in a in left-to-right order. Otherwise the char
acters in a are appended to the last line written on file. 

• PREDICATE get char + ""file + char>. 
The file file must be a charfile. If the file is not exhausted, the next character or 
control integer is read and delivered in char. Otherwise get char fails. 

• ACTION put char + ""file + >char. 
The file file must be a charfile. The value of char must either correspond to a 
character or be a control integer. This character or control integer is written on 
file file, except the control integer rest line, which is ignored. 

• ACTION put string + ""file + text[] + >p. 
The file file must be a charfile; the pointer p must point into text and be the 
address of a packed string. This string is written on the file file. 

• PREDICATE get int + '"'file + int>. 
The file file must be a charfile. A call of get int will read and skip any number 
of spaces and control integers on file until it either reaches the end of the file, in 
which case it fails, or finds a digit, plus-sign or minus-sign. It will then read 
and collect one or more digits until a non-digit is found: this non-digit is not 
read. The value of this stream of digits considered as a signed decimal number 
is given in int. 
A subsequent call of get char will yield the non-digit mentioned. If the above 
cannot be performed, an error message is given. 
This rule involves backtrack. It is not intended for use in programs that handle 
input very carefully; it is meant to provide an easy means for reading numbers. 

• ACTION put int + ""file + >int. 
intsize + 1 characters are appended to the last line on file, which must be a 
charfile. These characters are: zero or more spaces, the sign of int and the char
acters of the decimal representation of the absolute value of int without leading 
zeroes. 

• CONSTANT numerical, pointer. 
These constants are predefined values that can be used as type indications in 
datafiles. For their meanings see 4.2.2. 

• PREDICATE get data + ""file + data> + type>. 
The file file must be a datafile. If the file is not exhausted, the next data-item is 
read, its value delivered in data and its type in type. Otherwise it fails. For a 
more detailed description see 4.2.2. 



178 ALEPH Manual 

• ACTION put data + ""file + >data + >type. 
The file file must be a datafile. A data-item is written on the file, consisting of 
the value data and the type type. For a more detailed description see 4.2.2. 

• PREDICATE back file + "''file. 
If there is not yet a last item read, back file fails. Otherwise it succeeds and the 
file is repositioned to beginning of the file. 

6. PRAGMATS 

Pragmats are used to control certain aspects of the compilation ('compiler
pragmats') and to supply implementation-dependent information to the machine
dependent part of the compiler ('user-pragmats'). The exact position of a compiler 
pragmat in the program may be significant. 

Syntax: 

pragmat: 
pragmat symbol, pragmat item list, point symbol. 

pragmat item list: 
pragmat item, !comma symbol, pragmat item list!. 

pragmat item: 
tag; 
tag, equals symbol, pragmat value; 
tag, equals symbol, pragmat value list pack. 

pragmat value: 
tag; 
integral denotation; 
string denotation. 

pragmat value list pack: 
open symbol, pragmat value list, close symbol. 

pragmat value list: 
pragmat value, !comma symbol, pragmat value list!. 

Example: 

PRAGMAT title = "aleph compiler", 
background = (numb adm, history), 
macro = (convert 1 to 2 comp/, set all bits). 

Before the meaning of a pragmat is determined, it is preprocessed: all pragmat
value-list-packs are removed in the following way. 

For every pragmat-value-list-pack which is preceded by an equals-symbol preceded 
by a tag, the equals-symbol and tag are removed and inserted in front of each 
pragmat-value in the pragmat-value-list-pack. 

Subsequently all open-symbols and close-symbols are removed. 

Thus the pragmat-item background= (numb adm, history) has the same meaning as 



ALEPH Manual 179 

background = numb adm, background = history, 

All pragmat-items now consist either of a single tag or of tag, equals-symbol fol

lowed by a tag, integral-denotation or string-denotation. They are divided into two 

groups according to the first tag: 'compiler-pragmats', affecting the compiler and 

'user-pragmats'. 

6.1. Compiler-pragmats 

The tags background, compile, count, dump, first col, last col, macro and title iden

tify "compiler-pragmats". 

• background = list-tag 
The identified list will be kept on background memory if possible and neces

sary. The position of this pragmat is immaterial. 

• compile = tag 
The tag can be: 

off: subsequent program text will be interpreted in the following sense: 

a. the rule-body of a rule-declaration, the rule-tag of which is used in 

normally compiled text will be interpreted as dummy, 

b. a rule-declaration the rule-tag of which is not used in normally com-
piled text will be ignored, 

c. a data-declaration will be ignored, 

d. a pragmat-item other than compile = on will be ignored. 
Injudicious application of this pragmat can render a correct program 

incorrect. 

on: normal compilation is resumed. 

all: subsequent pragmat-items of the form compile = off will have no effect. 

The standard option is on. 

• count = tag 
The tag can be: 

rule: a counter is kept for each subsequent rule and compound member. 
The initial value of the counter is O; it is incremented by 1 for every 
entrance to its rule or compound member. The counters are printed 

at program termination. 

member: same as for rule, except that a counter is kept for every member. 

off: no counters are kept for subsequent program text. 
The standard option is off. 

• dump =tag 
The tag can be: 

global: upon error termination a symbolic dump of all global variables and 

stacks will be printed. 

rule: upon error termination a symbolic dump of the run-time stack will 

be printed. 



180 

• 

• 

• 

• 

ALEPH Manual 

member: upon error termination the number of the current member (as deter-
mined by the compiler) will be printed. 

The position of this pragmat in the program is immaterial. The standard 
option is member. 

first col = integral-denotation 
Call the value of the integral-denotation i. The first i - I characters on subse
quent program lines are ignored. This alignment can be revoked in another 
first col pragmat. An initial pragmat first col = 1 is assumed. 

last col = integral-denotation 
Call the value of the integral-denotation i. All characters beyond the i -th posi
tion on subsequent program lines are ignored. This alignment can be revoked 
in another last col pragmat. An initial pragmat last col = 72 is assumed. 

macro = rule-tag 
The rule-tag must identify a non-recursive rule. Calls of this rule will be imple
mented through textual substitution rather than by subroutine call. The rule-tag 
may not be the rule-tag of the affix-form of the root. This pragmat must occur 
before the declaration of the affected rule. 

title = string-denotation 
The string-denotation is the title of the program. The default title is empty. 

6.2. External-pragmats 

Deleted. 

6.3. User-pragmats 

Pragmats not identified in 6.1 are considered "user-pragmats" and are transferred 
to the implementation-dependent part of the compiler. 

7. THE REPRESENTATION OF PROGRAMS 

7 .1. The program 

The program produced by the notion program consists of a series of terminal sym
bols. Into this program comments may be inserted in the following way. 

The program is considered as a sequence of the following units: 

tags, 
integral-denotations, 
character-denotations, 
string-denotations and 
symbols not occurring in one of the above. 

Spaces may be added in front of all these units and inside tags and integral
denotations. 

Long comments may be added in front of all these units. A long comment consists 
of a dollar-sign ($), followed by zero or more characters which are not dollar-signs, 
followed by a dollar-sign. 

Short comments may be added in front of all units except tags and integral
denotations. A short comment consists of a sharp-sign ( #) followed by zero or more 



ALEPH Manual 181 

letters, digits and spaces. 

In the program thus obtained all symbols are expanded into characters as 

described in 7.2 (e.g., root-symbol turns into ROOT). 

The program text is then divided into lines in such a way that no comment is 

spread over two or more lines. If a line ends with a dollar-sign from a long comment, 

this dollar-sign may be omitted. In other words: long comments start with a dollar

sign and end at a dollar-sign or at the end of the line; short comments start with a 

sharp-sign and end at the first character which is not a letter, a digit or a space, or at 

the end of the line. 

Depending on the pragmats first col and last col (see 6.l) a number of characters 

must be added before each line or may be added behind each line. 

7.2. The characters 

Almost all terminal symbols of the ALEPH grammar are notions that end in -sym

bol. The exceptions are tag, digit, character and non-quote-item. A tag is represented 

by a non-empty sequence of small letters and/or digits, the first of which is a small 

letter; two tags are equal if their representations consist of equal sequences. A digit is 

represented by one of the digits 0 ... 9. A character is represented by any character in 

the available character set except the new-line control character. A non-quote-item has 

as its representation any representation of character with the exception of the 

representation of the quote-symbol. 

The representations of the other terminal symbols can be found in the following 

table. 

symbol 

absolute-symbol 
action-symbol 
actual-affix-symbol 
box-symbol 
bus-symbol 
by-symbol 
charfile-symbol 
close-symbol 
colon-symbol 
comma-symbol 
constant-symbol 
datafile-symbol 
dummy-symbol 
end-symbol 
equals-symbol 
exit-symbol 
external-symbol 
failure-symbol 
formal-affix-symbol 
function-symbol 
left-symbol 
local-affix-symbol 
minus-symbol 

representation 

I 
ACTION or ACT 

+ 

J 
I 
CHARFILE 
) 

CONSTANT or CST 
DATAFILE 
? 
END 

EXIT 
EXTERNAL 

+ 
FUNCTION or FCT 

< 



182 ALEPH Manual 

of-symbol 
open-symbol 
plus-symbol 
point-symbol 
pragmat-symbol 
predicate-symbol 
question-symbol 
quote-symbol 
repeat-symbol 
right-symbol 
root-symbol 
semicolon-symbol 
stack-symbol 
sub-symbol 
success-symbol 
table-symbol 
times-symbol 
up-to-symbol 
variable-symbol 

* 
( 

+ 

PRAGMAT 
PREDICATE or PRED 
QUESTION or QU 
II 

> 
ROOT 
; 
STACK 
[ 
+ 
TABLE 

* 

V AR/ABLE or VAR 

8. EXAMPLES 

8.1. Towers of Hanoi 

$Towers of Hanoi. 
CHARFILE print = "output">. 

ACTION move tower + >length + >from + >via + >to: 
length= O; 
deer + length, move tower + length + from + to + via, 

move disc + from + to, 
move tower + length + via + from + to. 

ACTION move disc + >sl + >s2: 
put char + print + sl, put char + print + s2, 

put char +print + I I. 

ROOT move tower + 6 + /al + lb/ + /cl. 

END 

8.2. Printing Towers of Hanoi 

$ Towers of Hanoi, full printing of the towers. 
CHARFILE print = "output">. 



ALEPH Manual 

STACK [1] a, [l] b, [1] c. 

CONST ANT size = 5. 

ACTION move tower + >length + []from[] + []via[] + []to[]: 

length = O; 
deer + length, move tower + length +from + to + via, 

move disc + from + to, print towers, 

move tower + length + via + from + to. 

ACTION move disc + []stl[] + []st2[]: 

* stl [> >stl] - st2 * st2, unstack + stl. 

ACTION print towers - In: 

size - In, 
(lines: 

). 

In = O; 
print disc + a + In, print disc + b + In, 

print disc + c + In, put char + print + new line, 

deer + In, :lines 

ACTION print disc + []st[] + >line - index: 

minus + line + 1 + index, plus + index + < <st + index, 

( was + st + index, print actual disc + st[index]; 

print blank disc 
). 

ACTION print actual disc + >nmb - spc: 

minus + size + nmb + spc, 
repeat + spc + I I, repeat + nmb + /*/, repeat + 1 + /*/, 

repeat + nmb + /*/, repeat + spc + I /. 

ACTION print blank disc: 
repeat + size + I /, repeat + 1 + I /, repeat + size + I I. 

ACTION repeat + >cnt + >sb: 
cnt = O; 
put char + print + sb, deer + cnt, :repeat. 

ACTION play towers - n: 

size - n, 
(fill a: n = O; deer + n, * n-a * a, :fill a), 

print towers, move tower + size + a + b + c. 

183 



184 ALEPH Manual 

ROOT play towers. 

END 

8.3. Symbolic differentiation 

$Symbolic differentiation, problem III in 'Machine Oriented 
$Languages Bulletin', MOLB 3.1.2, 1973. 

CHARFILE out= "output">. 

STACK [JOO] (op, left, right) expr. 

TABLE operator = 
("+":plus op, " - ": min op, "*": tim op, "!": div op, 
"In": In op$ ln(j) is represented as 0 "In" f $, 
"pow": pow op$ pow(j, g) is represented asf"pow" g $). 

STACK [JO} const = (0: c zero, 1: cone, 2: c two). 

STACK [1} var = ("x": x var). 

ACTION derivative + >e + de> - f - df - g - dg - nl - n2 - n3: 
was + const + e, c zero - de; 
was + var + e, c one - de; 
left*expr[ej - f, right*expr[e} - g, 

derivative + f + df, derivative + g + dg, 
( = op*expr[e} = 

[plus op}, gen node +plus op + df + dg + de; 
[min op}, gen node + min op + df + dg + de; 
[tim op}, 

gen node + tim op + f + dg + nl, 
gen node + tim op + df + g + n2, 
gen node + plus op + nl + n2 + de; 

[div op}, 
gen node + tim op + df + g + nl, 
gen node + tim op + f + dg + n2, 
gen node + min op + nl + n2 + nl, 
gen node + pow op + g + c two + n2, 
gen node + div op + nl + n2 + de; 

[In op}, gen node + div op + dg + g + de; 
[pow op}, 

gen node + min op + g + cone + nl, 
gen node + pow op + f + nl + nl, 
gen node + tim op + df + g + n2, 
gen node + tim op + n2 + nl + nl, 
gen node + In op + c zero + f + n2, 
gen node + tim op + n2 + dg + n2, 
gen node + pow op + f + g + n3, 



). 

ALEPH Manual 

gen node + tim op + n2 + n3 + n2, 
g~n node + plus op + nl + n2 + de 

ACTION print expr + >e - zz: 
was + canst + e, put int + out + const[e]; 
was + var + e, put string + out + var + e; 

op*expr[e] - zz, 
( = zz = 

). 

[plus op; min op; tim op; div op], 
put char + out + /( /, 
print expr + left *expr[e], 
put char + out + /)/, 
put string + out + operator + zz, 
put char+ out+ /(/, 
print expr + right*expr[e], 
put char + out + /)/; 

put string+ out + operator + zz, put char + out + /(/, 
( equal + zz + paw op, 

+ 
), 

print expr + left*expr[e], 
put char + out + /,/; 

print expr + right*expr[e], put char + out + /)/ 

ACTION test - el - e2 - e3: 
gen node +paw op + x var + x var + el, $ pow(x, x) 

print expr + el, nl, 
derivative + el + e2, print expr + e2, nl, 
derivative + e2 + e3, print expr + e3, nl, 
gen node + div op + x var + x var + el, $ xlx 

print expr + el, nl, 
derivative + el + e2, print expr + e2, nl, 
derivative + e2 + e3, print expr + e3, nl. 

ACTION gen node + >op + >left + >right + res>: 

* op - op, left - left, right - right * expr, 
> >expr - res. 

ACTION nl: put char + out + new line. 

ROOT test. 

END 

185 



186 ALEPH Manual 

8.4. Quicksort 

ACTION quicksort + >from + >to + [Ja[] 
- left - middle - right - a middle: 

$ 
$ This rule sorts the elements in the stack 'a' from 'from' to 
$ 'to' in ascending ord,er. The algorithm used is a variation of 
$ 'quicksort', C.A.R. Hoare, Computer J. 5, 10-15, 1962. 
$ 

mreq + from + to; 
$ The area to be sorted is not empty; 
$ it is split into three parts: left, middle and right. 
$ The middle contains one or more equal elements. 
from - left, random + from + to + middle, to - right, 

a[middle] - a middle, 
(split: 

), 

(push right: 

), 

more + left + to; 
more + a[left] + a middle; 
incr + left, : push right 

(push left: 

), 

more + from + right; 
more + a middle + a[right]; 
deer + right, : push left 

(less + left + right, 
( - elem: 
a[/eft] - e/em, a[right] - a[leftj, elem - a[right] 
), 
incr + left, deer + right, : split; 

less + middle + right, 
a[right] - a[middle], a middle - a[right], 
deer + right; 

more + middle + left, 
a[left] - a[middle], a middle - a[left], incr + left; 

+) 

quicksort + from + right + a, quicksort + left + to + a. 

8.5. Permutations 

$ 'next perm' considers the right-most 'n' elements of 'st' 
$ as a permutation and replaces them by the elements of the next 
$ permutation in lexicographical order. If there is no next 
$permutation, 'next perm' fails. 



ALEPH Manual 

PREDICATE next perm + >i + [Jst[J - p: 
less + i + > >st, plus + i + I + p, 

( next perm + p + st; 
less + st[i] + st[p], simple perm + i + st 

). 

ACTION simple perm + >i + [Jst[J - p - q: 
$ the right-most 'i' elements of 'st' do have a next permutation, 
$ but the right-most 'i-1' don't. 

>>st - q, 
(find new ith elem: 

less + st[q] + st[i], deer + q, :find new ith elem; 

+ 
), swap + st + i + q, 
plus + i + I + p, > >st - q, 
(invert perm tail: 

mreq + p + q; 
swap + st + p + q, incr + p, deer + q, :invert perm tail 

). 

ACTION swap + [jst[] + >il + >i2 - elem: 
st[il] - elem, st[i2] - st[il], elem - st[i2]. 

STACK st =(I JI, 121, 131, 141). 

ROOT display perms + st. 

ACTION display perms + [Jst[J: 
put line + output + st + new line, 

(next perm + < <st + st, :display perms; + ). 

CHARFILE output = "output">. 

END 

9. REFERENCES IN THE MANUAL 

[BOHM 77] A.P.W. Bohm, ALICE: An Exercise in Program Portability, IW 91177, 
Mathematical Centre, Amsterdam, 1977. 

187 

[GLANDORF, GRUNE & VERHAGEN 78] R. Glandorf, D. Grune & J. Verhagen, AW
grammar of ALEPH, IW 100178, Mathematical Centre, Amsterdam, 1978. 

[KOSTER 7la] C.H.A. Koster, A Compiler Compiler, MR 127171, Mathematical Cen
tre, Amsterdam, 1971. 

[KOSTER 7lb] C.H.A. Koster, Affix Grammars, in J.E.L. Peck (Ed.), ALGOL 68 
Implementation, North-Holland Pub!. Co., Amsterdam, 1971. 



188 ALEPH Manual 

[WA TI 77] D .A. Watt, The Parsing Problem for Affix Grammars, Acta Inf. 8, 1-20, 

1977. 

[WICHMANN 77] B.A. Wichmann, How to Call Procedures, or Second Thoughts on 
Ackermann's Function, Software - Practice & Experience 7, 317-329, 1977. 

10. INDEX 

The main references are in bold, references to the syntax are in italic. 

A 

absolute-size: 4.1.4, 4.1.6 
action: 3.2.1 
actual: 3.3.2 
actual address space: 4.1.4 
actual-affix: 3.3.2 
actual-affix-sequence: 3.3.2 
actual-rule: 3.2.2, 3.5 
add: 5.2.1 
address space: 4.1.4 
affix grammars: 1.2 
affix mechanism: 3.5 
affix-form: 3.5, 3.5, 3.9.1 
ALEPH compiler: 0 
ALGOL 68: 1.2, 1.4 
ALICE: 0 
alternative: 3.2.2 
alternative-series: 3.2.2, 3.9.2 
area: 3.8, 3.8, 4.2, 4.2.2 

back file: 5.2.5 
background: 6.1 
bits: 5.2.2 

B 

block: 3.4.1, 3.4.3, 4.1.5.2 
boo/ and: 5.2.2 
boo/ invert: 5.2.2 
boo/ or: 5.2.2 
boo/ xor: 5.2.2 

c 
calibre: 3.4.3, 4.1.4, 4.1.5.2, 4.1.6 
calibre: 4.1. 7 
calibre match: 0, 3.4.3, 3.5 

call: 3.2.2, 3.2.3, 3.3, 3.3.2, 3.5, 3.6, 3.7, 
5.1 

character: 7.2 
character-denotation: 3.4, 3.4.1 
charfile: 4, 4.2.1, 5.2.5 
classification: 3.8, 3.8, 3.9.2 
clear elem: 5.2.2 
comment: 7.1 
compare string: 5.2.3 
COMPASS: 0 
compile: 6.1 
compiler-pragmat: 6.1 
compound-block: 4.1.5, 4.1.5.2 
compound-member: 3.6, 3.7, 3. 7 
constant: 1.3, 3.4.1, 4, 4.1.1, 4.1.2, 

4.1.5.2, 4.1.7, 5.1, 5.2.5 
constant-declaration: 4.1.2 
constant-description: 4.1.2 
constant-tag: 3.4.1, 4.1.2 
context-free grammar: 2.2 
control integer: 4.2.1, 5.2.5 
count: 6.1 

D 

data-declaration: 3.1.1, 4 
datafile: 4, 4.2.2, 5.2.5 
data-item: 4.2.2 
date: 5.2.1 
deer: 5.2.1, 8.1, 8.2, 8.4, 8.5 
delete: 4.1.4, 5.2.4 
digit: 3.4.1, 7.2 
divrem: 5.2.1 
dollar-sign: 7.1 
dummy-symbol: 3.4. I 
dump: 6.1 



ALEPH Manual 189 

E 

equal: 5.2.1, 8.3 
error: 3.2.2 
execution: 1.2, 3.1.1 
exit: 3.3.l, 3.6, 3.6 
expression: 4.1.1 
extension: 1.2, 4.1.4, 5.2. l, 5.2.2, 5.2.3, 

5.2.5 
extension: 0, 3.4, 3.4.3 
external-constant-declaration: 5.1 
external-constant-description: 5.1 
external-declaration: 5.1 
external-rule-description: 5.1 
extract bits: 5.2.2 

F 

failure: 3.2.2, 3.9.2 
failure-symbol: 3.3.1, 3.6 
false: 5.2.2 
field: 4.1.5 
field-list: 4.1. 5 
field-list-pack: 4.1. 5 
field-transport: 3.4 
field-transport-list: 3.4 
file: 3.3.1, 3.5, 4, 4.2, 5.2.5 
file-declaration: 4.2 
file-description: 4.2 
file-tag: 4.2 
filling: 4.1.5, 4.1.5.2 
filling-list: 4.1.4, 4.1.5 
filling-list-pack: 4.1.5 
first col: 6.1, 7 .1 
first true: 5.2.2 
formal: 3.3.1 
formal-affix: 3.3.1 
formal-affix-sequence: 3. 3.1 
formal-file: 3.3.1, 3.5 
formal-stack: 3. 3.1, 3.5 
formal-table: 3.3.1, 3.5 
formal-variable: 3.3.1 
from ascii: 5.2.3 
function: 3.2.1 

G 

get char: 4.2.1, 5.2.5 
get data: 4.2.2, 5.2.5 
get int: 5.2.5 
get line: 4.2.1, 5.2.5 
grammar: 1.1, 2.2 

I 

identity: 1.2 
identity: 3.4, 3.4.2 
implementation-dependency: 4.2, 5.1, 6, 

6.3 
incr: 5.2.1, 8.4 
INITIALIZED: 3.3. l, 3.3.3, 3.4.1, 3.5 
int size: 5.2.1 
integer: 4, 4.1.1, 4.1.2, 4.1.4, 4.2.2, 5.2.1 
integer division: 4.1.1, 5.2.1 
integral-denotation: 3. 4, 3.4.1 
introduction: 1 
is elem: 5.2.2 
is false: 5.2.2 
is true: 5.2.2 

J 

jump: 3.3.1, 3.6, 3.6 

key: 3.2.2, 3.8 

last col: 6.1, 7.1 
last-member: 3.2.3 
left circ: 5.2.2 
left clear: 5.2.2 
less: 5.2.1, 8.4, 8.5 
limit: 3.4. l 
limit: 4.1. 7 
line: 4.2.1, 5.2.5 

K 

L 

list: 3.4.1, 3.8, 4.1.4, 4.1.5.2, 4.1.7, 4.2.2, 
5.2.3, 5.2.4, 6.1 

list length: 5.2.4 
list-tag: 4.1.7 



190 ALEPH Manual 

local-affix: 3.2.2, 3.3.3 
local-affix-sequence: 3.3.3 
location: 3.2.2, 3.4.1, 3.4.3, 4, 4.1.3, 

4.1.4, 4.1.6, 5.2.4 
long comment: 7.1 
/seq: S.2.1 

macro: 0, 6.1 
max char: S.2.3 
max int: S.2.1 

M 

max limit: 4.1.4, 4.1.5.1, 4.1.5.2, 4.1.6 
max-limit: 4.1.7 
may be string pointer: S.2.3 
member: 3.2.2, 3.2.3, 3.9.l, 3.9.2 
min int: S.2.1 
min limit: 4.1.4, 4.1.5.1, 4.1.5.2, 4.1.6 
min-limit: 4.1. 7 
minus: S.2.1, 8.2 
modifications: 0 
more: S.2.1, 8.4 
mreq: S.2.1, 8.5 
mult: S.2.1 

N 

new line: 4.2.1, S.2.S, 8.2 
new page: 4.2.1, S.2.S 
new-line: 4.1.5.2 
next: S.2.4 
nil: S.2.4 
nil table: S.2.4 
non-quote-item: 7.2 
noteq: S.2.1 
numerical: 4.2.2, S.2.S 

one: S.2.1 
operation: 3.4 

pack boo/: S.2.2 

0 

p 

pack int: S.2.1 
pack string: S.2.3 
parameter: 1.2 
plain-value: 3.4 
plus: S.2.1, 8.2, 8.5 
pointer: 4.2.2, S.2.S 
pointer-initialization: 4.1.5, 4.1.5.2, 4.1.6 
postprocessing: 4.2, 4.2.1 
pragmat: 6 
pragmat-item: 6 
predicate: 3.2.1 
prefilling: 4.2, 4.2.l 
previous: S.2.4 
previous string: S.2.3 
printer: 4.2.1 
program: 3.1.1 
put char: S.2.S, 8.1, 8.2, 8.3 
put data: 4.2.2, S.2.S 
put int: S.2.S 
put line: S.2.S, 8.5 
put string: S.2.S, 8.3 

Q 

question: 3.2.1 
question, committing: 1.4 
question, non-committal: 1.4 
queue: 4.1.4 
quote-image: 4.1.5, 4.1.5.2 

R 

random: S.2.1, 8.4 
re-allotment: 4.1.4 
relative-size: 4.1.4, 4.1. 6 
rest line: 4.2.1, S.2.S 
right circ: S.2.2 
right clear: S.2.2 
right-recursion: 1.7 
root: 3.1.1, 6.1 
rule: 1.2, 1.3, 3.2, 3.2.1, 3.2.3, 3.3, 3.3.2, 

3.5, 3.6, 3.7, 3.9.1, 5.l, 6.1 
rule-body: 3.2.2, 3.9.1, 3.9.2 
rule-declaration: 3.2.1 
rule-tag: 3.2.1 
run-time stack: 3.2.2, 3.3.3 



ALEPH Manual 191 

s 
same line: 4.2.l, 5.2.5 
scratch: 4.1.4, 5.2.4 
selector: 3.3.l, 3.4.l, 3.5, 4.1.5.2 
selector: 4.1.5 
set elem: 5.2.2 
set random: 5.2.1 
set real random: 5.2.1 
sharp-sign: 7.1 
short comment: 7.1 
side-effects: 3.2.2, 3.9.1 
single-block: 4.1.5, 4.1.5.2 
size-estimate: 4.1.4, 4.1.6 
source: 3.4 
spoil and fail: 3.7 
sqrt: 5.2.1 
square brackets: 2.2 
stack: 1.2, 1.5, 3.3. l, 3.4.3, 3.5, 4, 4. l.l, 

4.1.4, 4.l.5.2, 4.1.6, 4.l.7, 4.2.l, 
5.2.2, 5.2.3, 5.2.4, 5.2.5, 6.1, 8.4 

stack-declaration: 4.1.6 
stack-element: 3.4, 3.4. l 
stack-head: 4.1.6 
stack-tag: 4.1.6 
string: l.5, 5.2.3 
string elem: 5.2.3 
string length: 5.2.3 
string-denotation: 4.1.5, 4.l.5.2 
string-item: 4.1.5 
subtr: 5.2.1 
success: 3.2.2, 3.9.2 
success-symbol: 3.6 

T 

table: l.5, 3.3.l, 3.5, 4, 4. l.4, 4. l.5, 
4.1.5.1, 4.l.5.2, 4.l.7, 5.l, 5.2.4 

table-declaration: 4.1. 5 
table-element: 3.4, 3.4. l 
table-head: 4.1.5 
table-tag: 4.1.5 
tag: 2.2, 3. l.2, 3.3.l, 3.3.3, 3.7, 4. l.5.2 
tag: 7.2 
term: 4.1.1 
termination state: 2.1, 3. l.l, 3.6 
terminator: 3.2.2, 3.6, 3.9.2 
time: 5.2.1 

times: 5.2.1 
title: 6.1 
to ascii: 5.2.3 
transport: l.2 
transport: 3.4, 3.4.1, 3.5, 3.9. l 
true: 5.2.2 
typer: 3.2.1 

unpack boo/: 5.2.2 
unpack int: 5.2.1 

u 

unpack string: 5.2.3 
unqueue: 5.2.4 
unqueue to: 5.2.4 
unstack: 4. l.4, 5.2.4, 8.2 
unstack n: 4.l.4 
unstack string: 5.2.3 
unstack to: 5.2.4 
user-pragmat: 6.3 

v 
variable: l.2, 1.4, 3.2.2, 3.3, 3.3.l, 3.3.3, 

3.4.l, 3.7, 4, 4.1.3, 6.1 
variable: 3.4 
variable-declaration: 4.1. 3 
variable-description: 4.1. 3 
variable-directive: 3.4 
variable-tag: 3.4.1, 4.1.3 
virtual address space: 3.8, 4.1.4 
virtual max limit: 4.1.4 
virtual min limit: 4.1.4 
VW-grammar: 2.2 

was: 5.2.4, 8.2, 8.3 
word: 5.2.2 
word size: 5.2.2 

zero: 5.2.1 
zone: 3.8, 3.8 

w 

z 





MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and almost fixed points. 1963. 
2 A.R. Bloemena. Sampling from a graph 1964. 
3 G. de Leve. Generalized Markovian decision processes, part 
/: model and method. 1964. 
4 G. de Leve. Gen~ralized Mai'kovian decision processes, part 
II: probabilistic background 1964. 
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 

7 W.R. van Zwet. Convex transformations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 

9 P.C. Baayen. Universal morphisms. 1964. 

10 E.M. de Jager. Applications of distributions in mathematical 
physics. I %4. 
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 
i\;65"." Wijngaarden. Formal properties of newspaper Dutch. 

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. 1%6. 
15 R. Doornbos. Slippage tests. 1%6. 
16 J.W. de Bakker. Formal definition t,,programmi"[; 
~a91f'ges with an application to the de mition of AL OL 60. 

17 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part I. 1%8. 
18 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part 2. 1968. 
19 J. van der Slot. Some properties related to compactness. 
1968. 

· 20 P.J. van der Houwen. Finite difference methods for solving 
partial differential equations. 1968. 
21 E. Wattel. The compactness operator in set theory and 
topology. 1968. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, 
part I. 1968. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. 1968. 
24 J.W. de Bakker. Recursive procedures. 1971. 
25 E.R. Paerl. Representations of the Lorentz group and projec
tive geometry. 1969. 
26 European Meeting 1968. Selected statistical papers, part I. 
1968. 
f ~6~~ropean Meeting I %8. Selected statistical papers, part 11. 

28 J. Oosterhoff. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoeff. Error detecting decimal codes. 1969. 
30 H. Brandt Corstius. Exercises in computational linguistics. 
1970. 
31 W. Molenaar. Approximations to the Poisson, binomial and 
hypergeometric distribution functions. 1970. 

32 L. de Haan. On regular variation and its application lo the 
weak convergence of sample extremes. 1970. 

33 F.W. Steutel. Preservation of infinite divisibili~y under mix
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeek, N.S. K.roonenberg. Cardinal func
tions in topology. 1971. 
35 M.H. van Emden. An analysis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. 
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper. 
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 lnfom1atica 
Symposium 1971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 

40 H.C. Tijms. Analysis of(s,S) inventory models. 1972. 
41 A. Verbeek. Superextensions of topological spaces. 1972. 
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). f972. 

43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. 1973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 

45 A.A. Balkema. Monotone transformations and limit laws. 
1973. 
46 R.P. van de Riel. ABC ALGOL. a portable language for 
formula manipulation systems, part I: fhe language. 1973. 

47 R.P. van de Riel. ABC ALGOL. a portable language for 
formula manipulation systems, part 2: the compiler. 1973. 

48 F.E.J. K.ruseman Aretz, P.J.W. ten Hagen, H.L. 
Oudshoorn. An ALGOL 6() compiler in ALGOL 60, text of the 
MC-compiler for the EL-X8. 1973. 
49 H. Kok. Connected orderab/e spaces. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Smtzoff. C.H. Lindsey, LG.LT. Meertens. R.G. 
Fisker (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov p01en1ial 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic ana!ysis, part I. 1974. 
55 M. Hall, Jr .. J.H. van Lint (eds.). Combinatorics, part I: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations, partitions and combinatorial 
geometry. 1914. 
57 M. Hall, Jr .. J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistks. 1975. 

59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Gobel. Queueing models involving buffers. 1975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1975. 

65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1915. 
66 H.G.J. Pijls. Logically convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing b_1,. enumerative methods. 1977. 

70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non~periodic Lame 
functions and their applications in the theory of conical 
wave guides. 1977. 
73 D.M.R. Leivant. Absoluteness ofinJuitionistic logic. 1979. 

74 H.J.J. te Riele. A theoretical and computational study of 
generalized aliquot sequences. 1976. 

75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1976. 

77 W.C.M. Kallenberg. Asymptotic optimali(Y of likelihood 
ratio lests in expnnentialfamilies. I 978. 
78 E. de Jongc, A.CM. van Rooij. lntroduclwn to Ru:s::. 
spaces. 1977. 
79 M.C.A. van Zuijlen. Emperical distributions and rank 
statistics. 1977. 
80 P. W. Hemker. A numerical study of stiff two-point boundary 
problems. 1977. 
81 K.R. Apt. J.W. de Bakker (eds.). Foundations of computer 
science II, part I. 1976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science 1 /, part 1. 1976. . 

83 L.S. van Benthem Jutting. Checking Landau's 
"Grund/agen" in the AUTOMATH system. 1979. 
84 H.L.L. Busard. The translation of lhe elements of Euclid 
from the Arabic into Latin~}' Hermann of Carinthia (?), books 
vii-xii. 1977. 
85 J. van Mill. Supercompactness and Wallman spaces. 1977. 

86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming S}'Slem for operations on vectors and matrices over arbi
trary fields and of variable size. 1978. 

88 A. Schrijver. Matroids and linking ~ystems. 1977. 
89 J.W. de Roever. Complex Fourier transfomiation and 
analytic functionals with unbounded carriers. 1978. 



90 L.P.J. Groenewegen. Characterization of optimal strategies 
in dynamic games. 1981. 
91 J.M. Geysel. Transcendence infields of positive characteris
tic. 1979. 
92 P.J. Weeda. Finite generalized Markm' programming. 1979. 
93 H.C. Tijms. J. Wessels (eds.). Markov decision theor,,·. 
1977. . 

94 A. Bijlsma. Simultaneous approximmions in transcendental 
number theory. 1978. 
95 K.M. van Hee. Bayesian control of Markov chains. 1978. 
96 P.M.B. Vitftnyi. Lindenmayer systems: structure, languages, 
and growth functions. 1980. 
97 A. Federgruen. Markovian conlrol problems; functional 
equations and algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic (vpe. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan. P. van Emde Boas 
(eds.). Interfaces between computer science and operations 
research. 1978. 
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap. part 
/. 1979. 
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. 

:~~8~. van Dulst. Reflexive and superrejlexive Banach spaces. 

103 K. van Harn. Classifying infinite(y divisible distributions 
by functional equations. 1978. 
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zabili(v. 1979. 
105 R. Helmers. Edgeworth expansions for linear.combinations 
of order statistics. 1982. 
:8~9~. Schrijver (ed.). Packing and covering in combinatorics. 

107 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979. 
108 J.W. de Bakker. J. van Leeuwen (eds.). Foundatwns of 
computer science Ill, part J. 1979. 
109 J.W. de Bakker. J. van Leeuwen (eds.). Foundations of 
computer science JJJ, part 2. 1979. · 
110 J.C. van Vliet. ALGOL 68 transput, part I: historical 
review and discussion of the implementation model. 1979. 
111 J.C. van Vliet. ALGOL 68 transput, part 11: an implemen
tation model. 1979. 
112 H.C.P. Berbee. Random walks with srarionary· increments 
and renewal theor;·. 1979. 
113 T.A.B. Snijders. Asymptoric optima/i~)' rheor;· for testing 
problems wirh restricted alternatives. 1979. 
114 A.J.E.M. Janssen. Application of the Wigner distriburion 10 
harmonic analysis of generalized stochaslic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures //. 
part I. 1979. 
116 P.C. Baayen. J. van Mill (eds.). Topological structures 11, 
part 2. 1979. 
117 P.J.M. Kallenberg. BranchinK processes with continuous 
slate space. 1979. 
118 P. Groeneboom. Large deviations and asymptotic efficien
cies. 1980. 
119 F.J. Peters. Sparse matrices and substructures, wilh a novel 
implementation offinite element algorithms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circularion. 1980. 
121 W.H. Haemers. Eigenvalue techniques in design and graph 
theory. 1980. 
122 J.C.P. Bus. Numerical so/Wion of sysretru of non/inear 
equarions. 1980. 

! ~~ol.' Yuhasz. Cardinal functions in topologr - Jen years later. 

124 R.D. Gill. Censoring and s1ochas1ic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approach. 1980. 
126 G. van der Hoek. Reduclion methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. Combinatory reduction sysrems. 1980. 
128 A.J.J. Talman. Variable dimension fixed point a/gorilhms 
and triangulations. 1980. 
129 G. van der Laan. Simplicialfixedpoint algorithms. 1980. 
130 P.J.W. ten Hagen. T. Hagen. P. Klint, H. Noot, H.J. 
Sint, A.H. Veen. JLP: intermediate language for pictures. 
1980. 

131 R.J.R. Back. Correcmess presening program refinements: 
proof theOI)' and applications. 1980. 
132 H.M. Mulde~ The inter,alfunction of a graph. 1980. 
133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981. 
134 J.C. van Vliet, H. Wupler (eds.). Proceedings interna
tional conference on ALGO 68. 1981. 
135 J.A.G. Groenendijk. T.M.Y. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language. part /. 1981. 
136 J.A.G. Groenendijk. T.M.Y. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the stud1· of language, part II. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathemalical models of epidemics. 1981. 
139 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and near(r optimal strategies for Markov 
decision processes and Markov games. 198 l. 
140 J.H. van Geldrop. A mathematical theory of pure 
exchange economies without the no-critical-point hypothesis. 
1981. 
141 G.E. Welters. Abel-Jacohi isogenies(or certain trpes of 
Fano threefolds. 1981. · 
142 H.R. Bennett, D.J. Lutzer (eds.). Topologl' and order 
structures, part I. 1981. 
143 J.M. Schumacher. Dynamic feedback in finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eijgenraam. The solution of inilial value problems using 
interval arithme1ic; formulation and analysis of an algorithm. 
1981. 
145 A.J. Brentjes. Multi-dimensional continued fraction a/go· 
rithms. 1981. 
146 C.V.M. van der Mee. Semigroup and factori;arion 
methods in transport theory. 1981. · 
147 H.H. Tigelaar. ldent!flcation and informath•e sample si;e. 
1982. 
148 L.C.M. Kallenberg. Unear programming and.finite Mar
kovian control problems. 1983. 
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg. 
W.K. Vietsch (eds.). From A 10 Z. proceedings of a ~Jmposium 
in honour of A. C Zaanen. 1982. 
150 M. Veldhorst. An ana(vsis of sparse matrix storage 
schemes. 1982. 
151 R.J.M.M. Does. Higher order asymptoricsfor simple linear 
rank statistics. 1982. 

:~~2?.F. van der Hoeven. Projections of lawless sequences. 

153 J.P.C. Blanc. Af;plication of the theory of boundary value 
proh/ems in the ana ysis of a queueing mode{ with paired ser· 
vices. 1982. 
154 H.W. Lenstra. Jr.. R. Tijdeman (eds.). Computational 
methods in number theory, part I. 1982. 
155 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Computational 
merhods in number theory·. part 11. 1982. 
156 P.M.G. Apers. Query: processing and data allocation in 
distributed database sysrems. 1983. 
157 H.A.W.M. Kneppers. The covariant classification l!f two
dimensional smoorh commUlalive formal gro_ups over an alge
braical(J' closed field of posirive cfwracterisllc. 1983. 
158 J.W. de Bakker. J. van Lecuwen (eds.). Foundations of 
compwer science IV, distributed systems, part I. 1983. · 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed sysrems, part 2. 1983. 
160 A. Rezus. Abstract A UTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on rhe metaplectic group. 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of the 
second kind w;th applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
wilh continuous time parameler. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen
;~~~~ rechniques, with an application to garbage collection. 

167 W.H.M. Zijm. Nonnegative matrices in {{rnamic program
ming. 1983. 
168 J.H. Evertse. Upper bound~ for the numbers of solutions <?f 
diophantine equarions. 1983. 
169 H.R. Bennett. D.J. Lutzer (eds.). Topology and order 
strucrures, part 2. 1983. 



CW/ TRACTS 
I D.H.J. Epema. Surfaces with canonical hyperplane sections. 
1984. 
2 J.J. Dijkstra. Fake topdogical Hilbert spaces and characteri
zationr of dimension in terms of negligibility. 1984. 
3 A.J. van der Schaft. System theoretic descriptions of physical 
systems. 1984. · 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approach. 1984. 
5 B. Hoogenboom. Intertwining functions on compact Lie 
groups. 1984. 
6 A.P.W. Bllhm. Dataf/ow computation. 1984. 
7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoom. Algorithms and approximations for queue· 
ing systems. 1984. 
9 C.P.J. Koymans. Models of the lambda calculus. 1984. 
IO C.G. van der Laan, N.M. Temme. Calculation of special 

functions: the gamma {unction. the exponential integrals and 
error-like functions. J 984. 
~~::~~~~=-~~-Controlled Markov processes; time-

12 W.H. Hundsdorfer. The numerical solution ofnon/inear 
~'//ls~nitial value problems: an analysis of one step methods. 

13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. 1985. 
15 F.J. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic partial 
differential operators: a case-study in Fourier integral opera
tors. 1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham
iltonian systems. 1985. 
18 A.D.M. Kester. Some large deviation results in stalislics. 
1985. 
19 T.M.V. Janssen. Foundations and ap[lications of Montague 
1~~6.mer, part I: Philosophy, framewor. , computer science. 

20 B.F. Schriever. Order dependence. 1986. 
21 D.P. van der Vecht. Inequalities for stopped Brownian 
motion. 1986. 




