
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

D. GRUNE

I W 76/77

TOWARDS THE DESIGN OF A SUPER-LANGUAGE OF ALGOL 68
FOR THE STANDARD PRELUDE

Prepublication

~
MC

JANUARI

2e boerhaavestraat 49 amsterdam

BlBLIOTHEEr(M1\THFMATISCH CENTRI !hfi

PJunted a.t .the Ma.thema.uc.ai. Centlte, 49, 2e Boetr.ha.a.vu.tlc,aa;t., Am6.telr.dam.

The Ma.thema.uc.ai. Centlte, 6ou.nded .the 11-.th 06 FebJtu.aJty 1946, -iA a non
pJto 6U .ln&,ti;tu,t,i.o n a,,i.m,i.ng a.t .the pJtomoilo n o 6 pWte ma.thema.ue6 and .lt6
appUc.a.t.lon&. 1.t -iA .6pon&oJted by .the Ne:thelll.a.nc:16 GoveJtnment .thJtough .the
Nethelll.a.nc:16 OJtgan.lza.uon 6oJt .the Advanc.ement 06 PU/Le RueaJtc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68Al5

ACM-Computing Reviews-categories: 4.12, 4.22

Towards the Design of a Super-language of ALGOL 68
*)

for the Standard Prelude

by

Dick Grune

ABSTRACT

Some problems are examined which arise in the design of an

Unabridged Machine-Independent Standard Prelude for ALGOL 68 in a

form which can be handled by a compiler. Two of these problems,

one concerned with the character set and the other with SIZETY

declarations, are examined in depth and tentative solutions are

given.

KEYWORDS & PHRASES: ALGOL 68, language design, standard prelude,

portability.

*)This paper is not for review~ it is meant for publication elsewhere.

1. Introduction.
Generally a program is allowed to use certain identifiers

which have not been declared in the program, but are somehow
known to the system. Examples include the trigonometric func
tions, square root, etc., and they come under different names
like "intrinsic functions" or "standard externals".

1

Generally they are known to the user because their names
appear in a list in the manual, with explanations; they are
known to the compiler because the same list has been built into
it, with references to run-time routines.

In the ALGOL 68 Report the situation is slightly different.
The list and the explanations are both there, but are supplied
as a sequence of declarations in a super-language of ALGOL 68;
these declarations constitute the "Standard Prelude".

Now it would no doubt be possible to use the procedure out
lined above and just incorporate all this information in the
compiler, a technique which has worked well for FORTRAN, PL/I,
etc.

For ALGOL 68, however, the approach has clear disadvan
tages, mainly caused by the fact that we want to provide the
implementer with a machine-independent system. We are in the
unfortunate position of not knowing what features will be
available in his installation (e.g., whether or not he has a
window symbol (I), or how many~ bytes ~e is going ~o have).
Consequently we would not know what to incorporate 1n the com
piler. Even if he cares to tell us he would be in trouble if
he changed his mind afterwards.

Moreover, the information about "standard" facilities is
supplied in a more explicit and algorithmic form than in any
other language, and it would be nice to utilize this by actual
ly implementing the super-language of the Standard Prelude.

This approach would also simplify some problems with the
transput part of the standard prelude. A standard prelude is an
excellent way of providing large parts of the run-time system,
which must otherwise be supplied through a different mechanism
that might look conspicuously like a standard prelude.

The super-language of ALGOL 68 in which the standard
prelude is written is described in RR 10.1.3 in terms of textu
al substitution. This textual substitution often cannot be per
formed in actual practice (long, etc.). And there are cases
where the text of the preluaeTs correct, but highly impracti-

2

cal (defin~tion of* on integers).

One could, in spite of these difficulties, formalize syntax
and semantics of these substitutions in a fashion similar to
the rest of the report, and then incorporate these features in
the compiler. This would place a heavy burden on the compiler
(and designer), but the text of the standard prelude could be
used as it stands.

But it seems advantageous to slightly modify the syntax and
semantics so as to ease implementation and aid portability, at
a minimum of expense in flexibility.

We try to reach this goal by judicious application of a few
tools:

- macro-preprocessing (to solve some problems of machine
dependency,

- small changes to the identification mechanism (for "long
sin",etc.),

- a general escape mechanism for most of the other problems.

The resulting super-language should be easy to implement
and allow easy changes and extensions to the standard prelude,
both at the language support level and at the local level.

2. Selecting the Problems.
Among the many files that will eventually constitute the

Mathematical Centre Machine-Independent ALGOL 68 Compiler,
there will be a file containing in some form the Unabridged
Machine Independent Standard Prelude, henceforth to be called
the UMISP.

When supplying a UMISP we are immediately forced to consid
er the character set to distribute it in. The character set
implied by the Report is not included in any standard character
set. We could, however, define a suitable eight-bit extension
of ASCII 128, and use it for distribution purposes. The reci
pient would then be confronted with the task of weeding from
the UMISP the declarations of those operators that could never
occur in his system.

To avoid endless discussion and implementation problems we
decree that the UMISP be punched in the 60 character Hardware
Representation Set as described by H.J. Boom and w. Hansen [1]
(to be called 60RS), which every ALGOL 68 installation will
have to have.

This UMISP in 60RS must, among other things, contain:
- a. all operator symbols which are not represented in 60RS,

- b. invisible declarations,
c. an indeterminate number of copies of declarations and
code (especially in the transput),

- d. an infinity of names (long long ••• sin),
- e. a few things that for fundamental reasons cannot be

written in ALGOL 68 (e.g. the "funny" generator in RR
10.3.5.k),

- f. replacement code for text that is correct ALGOL 68, but
unacceptable in a reasonable implementation (for example,
the declarations of mode file, op (int, int) int~, ...) ,

- g. strings that cannot be punched in 60RS (" \Ee" in RR
10 10.3.3.2.a).

3

In order to appreciate the difficulties, consider the
plight of someone receiving our portable ALGOL 68 compiler. He
receives one standard package (tape) of files, and expects to
be able to produce from this, by a reasonable effort, an ALGOL
68 system adapted to his local circumstances. He has a (not
too ample) superset of 60RS, routines for integer and real ar
ithmetic, can plunder complex arithmetic from the FORTRAN run
time system, has nothing for long real, but has a student work
ing on it. And our Standard Preluaemechanisrn should be flexi
ble enough to work for him rather than against him.

We first made an inventory of the problems by reading the
standard prelude and making notes of all features of which it
was not obvious that they would easily fit into a UMISP. This
resulted in nine pages of grim reading.

The problems can be grouped together in many ways, all
rather unsatisfactory. One especially unattractive way is al
ways open: to find an ad-hoc solution to each and every prob
lem: but we hope to do better.

Being thus confronted with an unstructured mass of problems
we decided to select problems of which we expect that their
solution will create order in the chaos.

The selected problems are:
- the actual character set is unknown beforehand, and the

necessity to change it may arise after the compiler has
been installed,

- the number of distinct long's and short's is unknown be
forehand, and will very!ITely change after the compiler
has been installed.

3. The Character Set.
Oncethei cornp1ler1S installed it should be able to make

full use of the local character set: it would be silly (and
confusing) to have an< symbol and not be able to use it. So
the compiler must be aEle to read an< and know what it is; it
can only have obtained this knowledge-by reading the standard
prelude. But this standard prelude is in 60RS and does not
contain< • Moreover, the compiler is code-independent too,
cannot have the representation of< built-in, and would not
even know to expect it when readinij a defining operator.

4

So the first information the code-independent compiler
lacks is knowledge about what constitutes a defining operator.
A list of these should be supplied to the compiler, on a file
in the local character code that we shall call the Representa
tion File. Having read this file the compiler knows what is a
defining operator, and it could exploit this knowledge in read
ing the UMISP, but for the fact that the UMISP is in 60RS, and
does not contain~ directly.

We know, however, that the UMISP is, as the name says, una
bridged and contains declarations for< , I , etc., in some
form. So we can apply a program (somefhing like a macro
processor) which reads the Representation File and subsequently
converts the embryonic declarations in the UMISP into full
fledged declarations in the local character code, at the same
time deleting anything which cannot be expressed in the local
code.

Such a converter can be very simple. Essentially it has
only two tasks, to convert longhand operators into local short
hand, and to skip text conditionally. It could react to key
words starting with./ and know character constant denotations
starting with .=, the values of which it obtains from the
Representation File.

The declaration of e.g. the window-symbol operator on bits
could read (in the UMISP):

./ifce .=wop .=w = {int a, bits b) bool: (& of b) [a]; ./fi

where 'ifce· means 'if character exists·. The converter would
produce from this:

op I = (int a, bits b) bool: (I of b} [a];

It is clear that this example is pertinent only as far as
the window sy~bol is concerned: all other problems in the ori
ginal declaration are still present.

5

The standard prelude contains 19 different characters that
are not represented in 60RS, viz., 16 operators, backslash, low
ten and lower-case e for the input of reals. Each of these can
be assigned a single letter and be known to the converter as
.=<letter>.

This scheme solves the problem of the machine-dependent
character set: the compiler first acquaints itself with the lo
cal character set by reading the Representation File, then
creates a local version of the standard prelude, and through
reading it acquaints itself with the locally available opera
tors.

Of course this need not be the actual sequence of events
upon compilation of each and every program. A separate con
verter could create the Local Standard Prelude, and the com
piler could precompile this LSP into a set of tables in some
internal form that would later serve to inform the compiler of
the standard operators whenever translating an actual program.

4. The SIZETY problem.
Whencons1dering the form of a SIZETY operation definition

in the UMISP several approaches come to mind, none of which
work. All solutions fail because the user may write:

long long sin(leng leng 3.0)

in an environment in which 'real lengths' equals 1~ no tech
nique which is confined to the prelude mechanism only can cope
with this.

Some solutions seemed very attractive at first and it is
useful to show here why they don't work.

- Proposal: let the Representation File contain values for
'real lengths', 'int shorths', etc., and let the converter
generate the appropriate declarations.
Objection: programs like the one above cannot be handled.

- Proposal: introduce a genuine

Lint = union(int, long int, •••)

Objection: this would legalize forms like 'long sin(3.l) •
or 'long 3.1 + 3.1· and have adverse effects on the run
timeefficiency. The technique may prove usable in the
transput section.

- Proposal: let the first scan of the compiler find out the
maximum number of long's used in the program under con
sideration. It can then generate all declarations that

could ever be used in this program. The information neces
sary for this generation could be provided by the standard
prelude.
Objection: operator identification has not yet been done
when the maximum number of long's is going to be deter
mined. This makes cases lik_e __

leng if b then x else y fi

harq to handle (increase all SIZE counters by one?).

We are forced to make changes to the compiler itself, more
specifically to the identification mechanism, which must be
generalized to comprise SIZETY declarations. This immediately
raises an important question. These changes will no doubt ex
tend the power of the language considerably. Should this new
facility be made available to the user? If so, we can stick to
the exact form of the Report and allow declarations like

op*= (~ compl a,~ real b) ~ compl: a*~ compl(b)

6

both in the standard prelude and in user programs. The answer
to this question will strongly affect the details of the design
of the extension.

At first sight the reasonable answer seems to be "yes". The
user who is developing a matrix-handling package will certainly
be grateful to us, and in general it is good practice to res
trict system privileges to a minimum.

Upon closer inspection, however, some unpleasant phenomena
come to light.

- Well-forrnedness.
If the user is allowed to define his own L-modes,

checking well-formedness is awkward and can depend on the
number of long's in the application. Example:

mode u = union(int, long long int)
mode~ yech = unlon(~, rerunion(~, ~ int))

Now L yech is well-formed for all numbers of long's except
0 and ~The standard prelude itself does not contain such
monstrosities.

- Equivalencing.
New mo~es will be created during operator identifica

tion in this scheme. These modes can, in devious ways, be
eauivalent to other modes, and this equivalence may be
essential for the identification of other operators. So
mode equivalencing and operator inentification must form a

•SCH CENTRUM
81BLIOTHEEK MATHEMATi-

--/\i\/1S1~HD/.\\v1---

7

single integrated block, a prospect we do not relish.
It can be objected that this situation will occur what

ever we decide: a construction like

leng if b then x else' y fi

will give rise to new modes when the operator leng is iden
tified. But the crux lies in the words "in devio'iis ways".
The user can (and will) concoct examples that need the full
power of mode equivalencing, by using unions of L-modes.
However, if the L-modes are restricted to those of the
standard prelude~ mode equivalencing is almost trivial and
can easily be handled during operator identification. The
hardest case is the lengthening and shortening of L compl.

- Generality.
Once we give the user the possibility to declare modes

like the L yech above, we are forced by the spirit of ALGOL
68 to allow modes that depend on two or more SIZETY parame
ters, e.g., Ll L2 yecchh. This might be useful, but it is a
bit beyond the scope of this subject.

- Independence.
The concept of 'independence of properties of declara

tions' as used in RR 7.1 becomes unclear. It is hard to de
cide whether or not the following two declarations should
be dependent.

(a) £E www = (Lint a) Lint: a:
(b) op www = (Int a) int:-=a~

If (a) is visible when we try to identify the operator
www in www 1, it should be identified, and likewise for
T6f: thismeans that (a) and (b) cannot co-exist in the
same range and that they must be considered dependent.

If, however, (a) is in an outer range and {b) in an
inner range, and we try to identify www in www long 1, we
find that (b) should not render (a) Tiiaccessible;-I'n other
words, that they should be independent.

The standard prelude itself does not raise this prob
lem, since it does not contain declarations that are equal
ly similar as (a) and (b).

These considerations force us to reject the idea of L-modes
as a general feature. At the same time they indicate that the
use of L-modes in the standard prelude is essentially simpler
than the normal use of modes, and it would be nice to exploit
this simplicity. Some minor simplifications have already been
given under the headings "~ell-formedness" (no check neces
sary), "Equivalencing" (trivial for standard prelude modes) and
"Generality" (one SIZE parameter only), but the great bonus
comes from analyzing the problem mentioned under "Indepen-

8

dence".

The trouble with declarations (a) and (b) is that the modes
of their operands are firmly related for some "values" of the
L-parameter, in which case their properties are "not indepen
aent" in the sense of the Report. The standard prelude, of
course, does not contain any pair of declarations that is
dependent for some value of L. Thus there cannot be an applied
occurrence of an operator with L-mode operands that would iden
tify one declaration for one value of Land the other for
another value of L. But this means we-can afford to completely
disregard the number of long's and short's when doing the iden
tification. If we identicya declaration, then either it is the
correct one, or there is no identification possible. We see
that we can use the normal operator identification mechanism
for the standard prelude as well, if we are prepared to do some
additional checking.

Checking is required to catch cases like

comp! z;
z +:= struct(real re, long real im) (0, long 1)

where the right hand side reduces to struct(real re, real im)
upon reaching the standard prelude, and consequently the opera
tor+:= on compl in RR 10.2.3.11.f is identified.

The problem resembles the "false" operator identification
in

inti; real x;
rr-b thenx else i fi +:= 3.0

in a compiler that uses operator identification by H-function
as described by Hendrik Boom in [2] (which our compiler will).
Here the representative mode of the left hand side is ref real
and the operator+:= of RR 10.2.3.11.e is identified.,;:- -
separate check is then necessary to find out that i cannot be
coerced to ref real. Such a check can profitably be incorporat
ed in the coerc10T1mechanism. It can also catch falsely identi
fied ~-mode operators.

Thus the identification of standard prelude operators is
extremely simple: when reaching the standard prelude discard
all SIZETY information. The ~oercion process will then deter
mine the value of L from one of the L-mode operands and check
coercibility as usual. It can at the-same time determine which
of the different sources in the declaration applies in this
case.

This suggests declarations of the form:

('l real, 'l int) 'l real + =
r<0f: sourcel,-
[=0]: source 2,
[=l]: source 3,
[>l] : (long long real a, long long int b)

long long real: a+ long long real(b)

The source for L > 1 is correct if in this implementation both
'int lengths' and 'real lengths' equal 2, since then there is
no run-time difference between the data structures for ~ong
long real, long long long real, ••• (and likewise for 1n
tegersr:- -- - -.-- ---

Note that the+ in the last line can be identified without
reference to the value of L, and has indeed been so identified
during the translation of the standard prelude.

The UMISP will contain something like

op ('1 real, 'l int} '1 real + =
- ['<0, =0, >0]: (real a, int b) real: a + real (b)

and the user can extend this as he implements more lengths and
shorths.

9

Similar methods can be used for identifiers that start with
"l9ng". Again the "long"s are stripped when reaching the stan
dard prelude and identification proceeds as usual. Again a
check is necessary to prevent cases like "long sin(3.14)".

The indicated technique hinges on the fact that the stan
dard prelude does not contain declarations which become depen
dent when SIZETY information is disregarded. Upon closer scru
tiny it appears that in addition the standard prelude contains
no declarations which become dependent if PREF information is
disregarded. This implies that upon entering the standard
prelude we could strip off all ref's and proc's as well. It is
not clear whether this is an advantage. Itaoes make the iden
tification in the standard prelude simpler at the expense of
making it different.

5. Acknowledgement.
I am very grateful to Lambert Meertens for his many ideas,

his patient explanations of difficult points and his numerous
counterexamples.

10

6. References.
[11 Boom, H.J., w. Hansen, The Report on the Standard

Hardware Representation for ALGOL 68, ALGOL Bulletin 40.5,
1976; also available as IW 64/76, Mathematical Centre, Amster
dam, 1976.

[2] Boom, H.J., Note on Balancing in ALGOL 68, ALGOL Bul.
letin 36.4.1, 1973.

