
AFDELING INFORMATICA

stichting

mathematisch

centrum

D. GRUNE, R. BOSCH & L.G.L.T. MEERTENS
ALEPH MANUAL

IW 17/74

~
MC

JUNE

2e boerhaavestra_at 49 amsterdam

~UOTHEEK M/1THFM.'\TlSCH CP.N1 HUiv'l

AMSll.HDAM

PJun:ted a;t; ;the Ma.:t:hematic.ai.. Cen;t!r.e, 49, 2e BoeJLhaavu.tJz.aa:t, Amo;teJLdam.

The Ma.thematic.al.. Ce.ntlc.e, 6ou.nded ;the 11-;th 06 Febnu.aJr.y 1946, -l6 a. non­
pno6U -lM:tltu,,ti,on a,,lm,lng a.t ;the pJr..omo:tlon 06 pWl..e ma.thematiC6 a.nd La
a.ppUc.atioM. I;t -l6 .6pon6oJr..ed by ;the NdheJita.ndJ., GoveJLnmen:t ;tlviough ;the
Ndhvda.n.cif., Onga.nlzation. 6on ;the Adva.n.c.emen:t 06 PWl..e Ru ea.Jr..c.h (Z. W. 0),
by ;the, Munlc.-lpai..Uy 06 Am.t>;teJLdam, by ;the UnlveMUy 06 Amo;teJLdam, by
;the Fnee UnlveMUy a.t Amo;teJLdam, a.n.d by -ln.dr.L6:tJiiu.

ACM - Computing Reviews - category: 4.22, 4.12
AMS (MOS) subject classification scheme (1970): 68A15

IW17/74 AIBPH Manual

Abstract

AIBPH (acronym for "A :I.,anguage Encouraging Program Hierarchy") is
a high-level language - designed to provide the programmer with a
tool that will effectively aid him in structuring his program in
a hierarchical fashion. The syntax of AIBPH enables the compiler
to utilize the well-structuredness of the program for optimization
purposes. Thus the loss of efficiency usually incurred in
structured programming is avoided. AIBPH is suitable for
any problem that suggests top-down analysis (parsers, search
algorithms, combinatorial problems, artificial intelligence
problems, etc.) •

IW17/74 ALEPH Manual 0--1

0. Preface.

ALEPH (acronym for "A Language Encouraging Program Hierarchy11
) is

a high-level language-designed to provide the prograrmner with a
tool that will effectively aid him in structuring his program in
a hierarchical fashion. The syntax of ALEPH enables the compiler
to utilize the well-structuredness of the program for optimization
purposes. Thus the loss of efficiency usually incurred in
structured prograrmning is avoided. ALEPH is suitable for
any problem that suggests top-down analysis (parsers, search
algorithms, combinatorial problems, artificial intelligence
problems, etc.).

Chapter one of this Manual gives a tutorial introduction into
the way of thinking that is used in ALEPH. It addresses itself
to computer users that have some experience with algorithms and
grammars, though not necessarily with high-level languages. It must
not be concluded from these prerequisites that ALEPH should not be
taught to the novice prograrmner. On the contrary, ALEPH introduces
him to a discipline of thought that is lacking in many other
languages. Experiments in teaching ALEPH and its parent CDL have
proved to be successful (cf. C.H.A. Koster, Portable compilers
and the UNCOL concept in Proc. of IFIP Working Conf. on Machine
Oriented High Level Languages, Trondheim, 1973).

Chapter three through six contain a complete description of ALEPH.
Chapter three treats the flow-of-control. Chapter four treats the
data-types. Externals, i.e., standard-operations and communication
witt the outside world, are treated in chapter five. Chapter six
describes the prag]llB.ts.

The representation of symbols, examples and a summary of the
grammar are given in chapter seven, eight and nine, respectively.

The discipline of thought needed in ALEPH is different from that
needed in most other programming languages. We are very interested
in accounts of experience with ALEPH and we would be glad to
receive comments, suggestions and wishes.

This report is to be followed by a report on the implementation of
ALEPH. A working ALEPH compiler exists for the CYBER 73.

The text of this manual was justified by a text justifier -w:ri tten
in ALEPH; it is available on paper tape.

IW17/74 AIEPH Manual 1-1

1. Informal introduction.

In this chapter we shall gradually develop a small AIEPH program
and intersperse it liberally with annotations and arguments. This
introduction is intended to give some insight into the use of the
language AIEPH and to display its main features in a very informal
way.

1.1. 'Ihe problem we are going to tackle is the following. We want
to write a program that reads a series of arithmetic expressions
separated by commas, calculate the value of each expression while
reading it, and subsequently print the value. The expressions will
contain only integers, plus symbols., times symbols and parentheses:
an example might be 15 x (12 + 3 x 9).

First we put the requirements for the input to our program in the
more transparent and clear form of a grammar. This grammar shows
exactly which symbol we will accept in which position.

input: expression, input tail.
input tail: comma symbol, input; empty.
expression: term, plus symbol, expression; term.
term: primary, times symbol., term; primary.
primary: left parenthesis, expression, right parenthesis; integer.
integer: digit, integer; digit.

'Ihe rule for "input" can be read as:
"input" is

an expression followed by an input tail,
whereas the rule for "primary" can be read as:
a "priITEry11 is either

or

a left parenthesis followed by an expression followed by a
right parenthesis

an integer.

This grammar makes it clear that for instance 15 x + 3 will not be
accepted as an expression. The x can only be followed by a "term",
which always starts with a "primary", which in turn either starts
with an "integer" or a "left parenthesis", but never with a+.

1. 2. We shall now write a series of rules in AIEPH, one for each rule
in the grammar. For the grammar rule for "expression" we shall
write an AIEPH rule that, when executed, reads and processes an
expression and yields its result. This AIEPH rule looks as follows:

'action' expression+ res> - r:
term+ res.,

(is symbol+/+/, expression+ r, plus+ res+ r + res; +).

IW17/74 AI.EPH Manual 1-2

This can be read as: an expression, which must yield a result in
res and uses a variable r is (we are now at the colon) a term which
will yield a result in res, followed either (we are now at the left
parenthesis) by a + symbol followed by an expression which will
yield its result in rafter which the result in res and the result
in r will be added to form a new result in res, or (we are
at the semicolon now) by nothing. We see that this '""Is the old
meaning of the grammar rule for "expression", sprinkled with some
data-handling. This data-handling tells what is to be done to
get the coITect result: we could call it the semantics of an
"expression". If we remove these paraphernalia from the AI.EPH rule
we obtain something very similar to the original grammar rule:

'action' expression1: $ to avoid confusion with 11expression" $
term, (is symbol+/+/, expression1; +).

This rule, while it is still correct AI.EPH, does no data handling
and, consequentlY, will not yield a result; it could for example be
used to skip an "expression" in the input. Note that comments may
be added between$ and$.

We now direct our attention back to the AI.EPH rule "expression" and
consider what happens when it is executed (called). First, "term"
is executed and will yield a result in res: it does so because we
shall define "term" so that it will. Then we meet a series of two
alternatives seperated by a semicolon (either a this or a that).
First an attempt is rr:ade to execute the first alternativeby asking
"is symbol + /+/". This is a question (because we shall define it
so) which is answered positively if indeed the next symbol is a+
(in which case the+ will be discarded after reading) or negativelY
if the next symbol is something else. Again it does so because we
shall define it that way.

If "is symbol + /+/" succeeds (is answered positively) the
remainder of the first alternative is executed, "expression + r"
is called (recursiveiy), yielding its result in rand subsequently
"plus+ res+ r + res" is called, putting the sum of res and r
in res. The call of "expression + r" works because we just defined
what it should do. "plus 11 is a name known to the compiler and has
a predefined meaning. However, if we are dissatisfied with its
workings we could define our own rule for it. Now this alternative
is finished, so the parenthesized part is finished, which brings us
to the end of the execution of the rule "expression".

If "is symbol + /+/ 11 fails (is answered negative1Y) the second
alternative is tried: the part after the semicolon. This
alternative consists of a+ which is a dUITIIT.\Y statement that always
succeeds. Without further action we reach the end of the rule
"expression".

IW17/74 ALEPH Manual 1-3

The above indicates the division of responsibility between the
language and the user. The language provides a framework that
controls which rules will be called depending on the answers
obtained from other rules. The user must fill in this framework, by
defining what actions must be performed by a specific rule and what
questions must be asked. These definitions again will have the form
of rules that do something (to be defined by the user) embedded in
a framework that controls their order (supplied by the language).
It is clear that this process must end somewhere. It can end in one
of two ways.
It may appear that the action needed is supplied by ALEPH: there
are two very basic primitives in the language., the copying of a
value, and the test for equality of two values. Often, however,
these two primitives are not sufficient to express the action
needed. Normally the rule is then decomposed into other rules;
however, there are cases where this is not desirable (or not
possible). In such cases the rule is declared as 'external' and
its actions must be specified in a different way, generally in
the assembly language of the·machine used. By specifying a rule as
'external' we leave the realm of machine-independent semantics. A
number of external rules are predefined by the compiler, including
the rule "plus" used above. This set of rules will suffice for most
applications.

Now we shall pay some attention to the exact notation (syntax) of
the rule "expression". The word 'action' indicates that this rule
specifies an action to be performed, not a question to be asked.
"expression" is the name of the rule, "res" is its only formal
affix (parameter). The+ serves as a separator (it "affixesn the
affix to the rule). The right arrow-head (>) indicates that the
resulting value of "res" will be used by the calling rule. This
means that "expression" has the obligation to assign a value to
"res" under all circumstances: "res" is an output parameter,
guaranteed to receive a value. If the text 0f the rule does not
support this claim, the compiler will discover so and issue a
message. The +-sign and the term 'affix' stem from the theory of
affix grarmnars on which ALEPH is based [2].
The "-r" specifies "r" as a local affix (local variable) of this
rule and the colon closes the left hand side. The + in "term +
res" appends the actual affix "res" to the rule "term", the comma
separates subsequent calls of rules. The parentheses group both
alternatives virtually into one action. The + between slashes
(indicating absolute value) represents the integer value of the
plus symbol in the code used. The semicolon separates (mutually
exclusive) alternatives. As said before, the stand-alone+ denotes
the dummy action that always succeeds. The period ends the rule.

For the reader who is familiar with ALGOL-like languages the
following approxima.te translation to AIGOL 615 might be helpful:

IW17/74 ALEPH Manual

proc expression= (ref int res) void:
begin int r; term(res);

if is symbol("+") then expression(r); plus(res,r,res)
- else skip fi

end

An approxirrate PL/I version runs as follows:

EXPRESSION:
PROCEDURE(RES) RECURSIVE;

DECLARE(RES,R) FIXED BINARY;
CALL TERM(RES);

END· ,

IF IS SYMBOL('+') THEN
DO; CALL EXPRESSION(R);

CALL PLUS(RES,R,RES);
END; ELSE;

1-4

1.3. In view of the above the ALEPH rule for "term" should not surprise
the reader:

'action' term+ res> - r:
primary+ res,

(is symbol+ /x/, term+ r, times+ res+ r + res; +).

Now we are tempted to render the ALEPH rule for "primary" as:

'action' primary+ res>:
is symbol+/(/, expression+ res, is symbol+/)/;
integer+ res.

but here the compiler would discover that we did not specify what
should be done if the second call of "is symbol" fails. If
that happens, we would have recognized, processed and skipped
a left parenthesis and a complete expression, to find that the
corresponding right parenthesis is missing. This means that the
input is incorrect; we now decide that we shall not do any error
recovery, so we give an error message and stop the program. The
correct version of the ALEPH rule "primary" is then:

'action' prirrary + res>;
is symbol+/(/, expression+ res,

(is symbol+/)/;
error + no paren);

integer + res.

IW17/74 ALEPH Manual 1-5

Here the two alternatives between parentheses behave as one action
that will always succeed: either the right parenthesis is present
in the input., or an error will be signalled. "no paren" is a
constant that will be specified later on in this example.

Writing the rule for "integer" is a trickier problem than it seems
to be. For a comprehensive account on how to obtain correct and
incorrect versions of it the reader is referred to [1]. We shall
confine ourselves to giving one correct version. It consists of two
rules and is about as complicated as necessary.

'action' integer+ res>:
digit+ res, integer1 + res;
errcr + no int, 0 -> res.

'action' integer1 + >res> - d:
digit+ d, times+ res+ 10 + res,

plus+ res+ d + res, integer1 +res;+.

The rule "integer" asks for a digit. If present, its value will
serve as the initial value of "res". The value of "res" is then
passed to 11ir1teger1". If no digit is present an error message will
result and "res" will get the du:rrD.'ey value 0. This is necessary
to ensure that "integer" will assign a value to "res" under all
circumstances (necessary because of the right arrow-head after
"res"). The right arrow in 11 0 -> res" indicates the assignation
of the value on the left to the variable on the right, one of the
prirrative actions in AIEPH.
The rule "integer1" processes the tail of the integer. If there is
such a tail it starts with a digit, so the first alternative asks
"digit+ d". If so, a new result is calculated from the previous
one and the digit "d" by making "res" equal to "res x 10 + d" and
"integer1" is called again (to see if thE?re are more digits to
come). If there was no digit, we have processed the whole integer
and "res" contains its value.
The rule "integer1" is recursive; this should not worry the reader
since the compiler will discover that this is a case of trivial
right-recursion and will optimize it into a simple jump.
The right arrow-head in front of "res" means that the calling
rule will have assigned a value to this affix just before calling
"integer1", i.e. "res" is initialized. The right arrow-head after
"res" again indicates that the resulting value will be passed back
to the calling rule.

A more convenient way of reading an integer is provided by the
(standard) external rule "get int".

IW17/74 AIEPH lW..anual 1-6

1. 4. The above forms the heart of our program. We shall now supply
it with some input and output definitions. For the input we need
a file to obtain the input symbols from, which we shall call
"reader"; let us suppose that this file is called "SYSIN" somewhere
in the surrounding operating system (e.g. on a control card).
Furthermore we shall use a global variable "buff" which will
contain the first symbol not yet recognized.

$ input $
'charfile' reader= >11SYSIN".
'variable' buff=//.

The variable "buff" is initialized with the code for the space
symbol (there being no uninitialized variables in ALEPH). We are
now in a position to give two rule definitions that were still
missing.

'predicate' is symbol+ >n: buff= n, get next symbol.

'predicate' digit+ d>:
=buff=
[/0/: /9/], minus+ buff+ /0/ + d, get next symbol;
[],

'Ihese require some more explanation, mainly concerning the
notation. 'Ihe word 'predicate' indicates that "is symbol" is not an
action but a question., or more precisely a "committing" question
as opposed to a "non-committal" question. A non-committal question
is a question that, regardless of the answer it yields, makes no
global changes., does not do anything irreversible. A committing
question is a question that, when answered positively, does make
global (and often irreversible) changes, according to programmer
specification. To give an example., "Are there plane tickets for New
York for less than$ 100?11 is a non-committal question, whereas
"Are there plane tickets for New York for less than$ 100? If so, I
want one" is a committing question.
In the case of "is symbol" the (committing) question is: "Is the
symbol in "buff" equal to the one I want? If so, throw it away and
put the next symbol in 11buff11

•
11 The form "buff=n" is a test for

equality and is one of the primitive operations in ALEPH. "get next
symbol" will be defined below.

Again the right arrow-head in front of the formal affix "n"
indicates that the calling rule will have assigned a value to it;
the absence of a right arrow-head to the right of "n" indicates
that the calling rule will not use the value of "n".

IW17/74 ALEPH Manual 1-7

The rule for "digit" (again a 'predicate') shows another feature of
AIEPH, the classification. For certain classes of values of "buff"
one alternative will be chosen, for other classes a different
alternative will be chosen. The classes are presented inside the
square brackets. Thus, for values of "buff" that lie between the
code for 11011 and the code for 11911 the first alternative will be
chosen. For all other values the dumrcy question that always fails
(minus-sign) will be executed. The rule "digit" is equivalent to

'predicate' digit1 + d >:
between+ /0/ +buff+ /9/, minus+ buff+ /0/ + d,

get next symbol;-.

assuming that "between+ /0/ + buff + /9/" succeeds if and only if
/0/ <buff< /9/. In complicated cases a "classification" is easier
to v,,rrite and will in general produce more efficient object code.
The concept of "classification" is analogous to "case" statements
in ALGOL 68 and other programming languages.

All the arithmetic used here on symbols is based on the (hopefully
machine-independent) assumption that the numerical codes associated
with the symbols 11 011 through 11911 are a set of consecutive integers
in ascending order. The numerical value of a digit symbol can
then indeed be obtained by subtracting the code for 11 011 from its
numerical code.

One more input rule must be supplied:

'action' get next symbol:
get char+ reader+ buff,

((buff=//; buff= newline),
get next symbol;
+) ;

stop -> buff.

'constant' stop= -1.

"get char" is a(n external) rule known to the compiler. It tries
to read the next symbol from the file indicated by its first affix
(here "reader"); if there is a symbol it puts it in its second
affix (here "buff"), if there is no symbol it fails. In the latter
case "buff" is given the value "stop", which is defined in a
constant-declaration to be -1.
If 11get char" does yield a symbol and if this is a space or a
new-line, "get char" is called again. We use nested parenthesizing
here.
This definition of "get char" implies we have decided that spaces
and new-lines are allowed in the input in all positions (a decision
that was not yet present in the initial grammar).

IW17/74 AIEPH Manual 1-8

1. 5. The output is as follows:

$ output $
'charfile' printer= "SYSOUT">.

'action' print integer+ >int:
out integer+ int, put char+ printer+ newline.

'action' out integer+ >int - rem:
divrem +int+ 10 +int+ rem, plus+ rem+ /0/ + rem,
(int= O; out integer+ int), put char+ printer+ rem.

The rule "put char" is known to the compiler, as is "divrem". The
call of the latter has the effect that "int" is divided by ten, the
quotient is placed back in "int" and the remainder in "rem". This
splits the number into its last digit and its head; if this head
(now in "int") is not zero it must be printed first, which is
effected by the recursive call of "out integer". Subsequently, the
last digit is printed through a call of "put char". This is
a convenient though inefficient way of printing a number: here
the recursion is essential and will not be optimized out by the
compiler.

A more convenient way of printing an integer is provided by the
(standard) external rule "put int".

For the printing of errorrnessages we shall need some string
handling. Strings do not constitute a special data type in AIEPH:
they are handled, like all other complicated data types, by putting
them in ' stack's and 'table's and are operated upon by suitably
defined rules (generally defined by the programmer but sometimes
predefined in the system).

The error handler takes the following form:

$ errorrnessage printing$
'action' error+ >er:

put char+ printer+ newline,
put string+ printer+ strings+ er, 'exit' 1.

'table' strings= ("right parenthesis missing": no paren,
11 integer missing": no int) .

The table "strings" contains two strings, stored and packed in a
way suitable to our machine; they can be reached under the names
"no paren" and "no int". The call of "put string" takes the affix
"er", looks in the table "strings" under the entry corresponding to
"er" and transfers the string thus found to the file indicated as
"printer".

IW17/74 ALEPH Manual 1-9

When the construction 11 'exit' 111 is executed the program will be
terminated and the 1 will be passed to the operating system as
an indication of what went wrong. This is by no means the normal
program termination: normal program termination ensues when all
work is done.

1.6. The rule for reading an expression ("expression") and the one for
printing an integer ("print integer") can now be combined into the
rule "input" (see the grammar at the beginning of this chapter) .

'action' input - int:
expression+ int, print integer+ int,

(is symbol+/,/, input; +).

This rule combines the grarmnar rules for "input" and "input tail".
Instead of translating "empty" by 11 +", we could make a test to see
whether we have indeed reached the end of the file:

(buff= stop; error+ no end)

We now remember our convention that "buff" contain the first symbol
not yet recognized, and realize that "buff" must be initialized
with the first non-space symbol of the input:

'action' initialize: get next symbol.

'action' read expressions and print results: initialize, input.

The reader will have noticed that up until now we have only defined
rules that will do something if they are executed (called) and
which will then call other rules. He may have wondered whether
ALEPH contains any directly executable statements at all. The
answer is yes, but only one (per program). In our example it has
the following form:

'root' read expressions and print results.

We now indicate the end of our program:

'end'

When the program is run the rule "read expressions and print
results" is executed. This rule calls "initialize", which through
a call of "get next symbol" puts the first non-space symbol in
"buff"; when "initialize" is done, "input" is called which calls
"expression11 which in turn executes 11 term", etc .. After a while
"input", which is called repeatedly, will find "is symbol + /,/"
to fail, it is done and so is "read expressions and print result".
The call specified in the 'root' instruction is finished: this
q.onstitutes the norrral program termination.

IW17/74 ALEPH Manual 1-10

We could have given the rule-declarations and data-declaration in
any other order and the effect would still have been the same. The
'end'., however., must be the last item of the program.

This brings us to the end of our sample program.

1.7. Although the rule "put string" used above is known to the compiler,
it is useful to see, as an additional example, how it looks when
expressed in ALEPH. We first propose the preliminary version "put
string 111 •

'action' put string 1 +""file+ table[]+ >string - count:
0 -> count, next1 +file+ table+ string+ count.

'action' next1 +""out+ tbl[] + >str + >ent - symb:
string elem+ tbl + str + cnt + symb, put char+ out+ symb,

incr + cnt, next1 +out+ tbl + str + cnt; +.

The double set of quotation marks ("") indicates that the
corresponding actual affix will be a file, the square brackets
indicate that the corresponding actual affix will be a table.
We see that the only thing "put string 111 does is creating an
environment for "next1" to run in. "next1" starts by calling
"string elem". This (standard) rule considers the string in "tbl"
designated by "str" and determines whether this string has a
"cnt"-th symbol. If so, it puts it in "symb"; if not, it fails. If
the call fails, we know we reached the end of the string and we are
done. Otherwise the symbol is transferred to the file indicated by
"out", the counter 11cnt" is increased by 1 (through the external
rule "incr") and "next111 is called again with the same affixes.
Like at the first call of "next1", the value of "cnt" is the
position in the string of the symbol to be processed.
The recursive call of "next111 is again a case of trivial
right-recursion; moreover all actual affixes are the same as the
formal affixes (which are left of the colon). In this case the
recursive call is equivalent to a straightforward jump: it does
not even necessitate parameter transfers. For this case there is a
shorthand notation: a name of a rule preceded by a colon denotes
the re-execution of that rule with the affixes it had upon its
initial call (of course this is only allowed inside that same rule
and only if the recursion is trivial right-recursion) . Now we can
write a simplified version:

'action' put string 2 +""file+ table[]+ >string - count:
0 -> count, next2 +file+ table+ string+ count.

'action' next2 +""out+ tbl[] + >str + >cnt - symb:
string elem+ tbl + str + cnt + symb,

put char+ out+ symb, incr + cnt, : next2; +.

IW17/74 AIEPH Manual 1-11

The gain is twofold. Firstly we no longer have to write that tail
of affixes which only convey the information "same as before".
Secondly, what is more important, the rule "next2" is now called
only in one place (in "put string 2"), which means that we could
as well have written it there explicitly. We now replace the
call of "next2" in "put text2" by the definition of "next211

:

we parenthesize the rule, substitute for each forrral affix its
corresponding actual affix and then remove the formal affixes.

The final version is then:

'action' put string + '"'file + table[] + >string - count:
0 -> count,

(next - symb:
string elem+ table+ string+ count+ symb,
put char+ file+ symb, incr + count, :next;
+) •

Note that this mechanism of replacing a call of a rule by its
(slightly modified) definition is not applied here for the first
time. We have been using it tacitly from the very first sample rule
in 1.2 •• There the rule "expression" is a contraction of:

'action' expression1 + res>:
term+ res, expression tail1 + res.

and

'action' expression tail1 + >res> - r:
is symbol+/+/, expression1 + r, plus+ res+ r + res; +.

which, according to the above recipe, would yield:

'action' expression2 +res>:
term+ res,

(expression tail2 - r:
is symbol+/+/, expression2 + r, plus+ res+ r + res; +).

In a sense this is a more appropriate form than the one given in
2.2.: now the "r" occurs where it belongs, that is, in the position
of a local affix of the parenthesized part only. To obtain the
version of 2.2. exactly one must start from:

'action' expression3 + res> - r:
term+ res, expression tail3 +res+ r.

and

'action' expression tail3 +>res>+ r >:
is symbol+/+/, expression3 + r, plus+ res+ r +res;+.

IW17/74 AIEPH Manual 1-12

1. 8. References .

[1] Koster, C.H.A., A Compiler Compiler, MR 127/71, Mathematical
Centre, Amsterdam (1971).

[2] Koster, C.H.A., Affix-grammars, in ALGOL 6~ Implementation, ed.
J.E.L. Peck, North-Holland Publ. Co., Amsterdam (1971).

IW17/74 AIEPH Manual 2-1

2. The syntactical description.

Chapter 9 contains the complete syntax of AIEPH; excerpts of it are
used in this manual as a basis for the explanations . The notation
in the grammar follows a usual scheme: the part on the right
hand side defines the possible productions of the notion on
the left hand side. The right hand side consists of one or
more alternatives, separated by semicolons, of which only one
alternative applies in a given case. Sometimes one or more notions
in an alternative are parenthesized: this indicates that the given
rtotions may or may not be present, i.e., they are optional.

A notion that ends in "symbol" is a terminal syn,bol as listed in
7. 2. . A notion that ends in "tag" produces 'tag' • Such a notion
then contains a hint as to exactly which 'tag's are allowed by the
context conditions. This makes the syntax ambiguous, an ambiguity
that is again resolved by the context conditions.

Example:

tag: letter, tag tail.
tag tail: (letter or digit, tag tail) .

The solution of a problem by means of a computer implies that a
sequence of actions be specified that, when executed, leads to
the desired result. In ALEPH the actions in this sequence may be
obtained from four sources:

a. the framework of the language (supplied by the compiler),
b. the program (supplied by the programmer),
c. the standard externals (standard definitions of actions, to be

supplied by the compiler if the need arises),
d. the programmer-defined externals (definitions of actions supplied

by the programmer but not belonging to the program, for example,
precompiled code or machine code).

The framework of AIEPH is treated in chapter 3. , the program is
treated in section 3.1. and the externals are treated in chapter 5.

The data needed in solving the problem at hand come from four
sources:

a. the data descriptions in the program,
b. the input file(s),
c. the predefined constants in the compiler (e.g., the maximum value

an integer can have),
d. the programmer-defined external values (for the rare case that

these values cannot be normally defined in the program, as for
example computer-generated binary tables of considerable size).

The data descriptions and the input files are explained in chapter
lJ. , and the externals again in chapter 5 ••

IW17/74 ALEPH Manual 2-2

The results can be passed back to the outer world along two paths:
a. as output files,
b. as a single integer (the termination state of the program) that

is passed to the operating system upon termination of the program,
indicating in some way the outcome of the program.

The output files are described in section 4.2 •. The termination
state is described in 3.1. and in 3.6 .. In some operating systems
it can be used to control the further course of events, in
other operating systems it may only indicate whether the program
proceeded satisfactorily or broke off because of some irrecoverable
error.

The syntax presented in chapters 3 through 6 differs from the one
in chapter 9. It gives a phenomenological description, regardless
for instance of whether a given tag may be used in a given way; the
syntax in chapter 9 is more elaborate and implies restrictions on
the proper use of tags, although without enforcing them.

IW17/74 AIBPH IVIanual 3-1

3. Prog;r:am logic .

3.1. General.

3.1.1. The program.

Syntax:
program: (information sequence),

root, (information sequence), end symbol.
information sequence: information, (information sequence).
information: declaration; pragmat.
root: root symbol, affix form, point symbol.
declaration:

rule declaration; data declaration; external declaration.

The syntax of 'program' can be verbalized as: "A 'program' is a
sequence of 'declaration's and 'pragmat's, followed by an 'end
symbol'; in this sequence exactly one 'root' mu.st occur." The order
in which the 'declaration's and the 'root' appear is immaterial.
The position of some 'pragmat's is significant.

Example of a program:

'file' output = "PRINTER">.
'root' put char+ output+ /3/,
'end'

where the first line is a 'data declaration',
'root' and the third contains the 'end symbol'.
see chapter 8.

the second is the
For other examples

The execution of a 'program' starts with the processing of all of
its 'data declaration's, in such an order that never a data item is
used before its value has been calculated. If no such order exists
an error-message is given.

Example: the 'data declaration's
'constant' p = q.
'constant' q = 3.
are processed in reverse order, whereas the 'data declaration's
'constant' p = q.
'constant' q = 2 - p.
will result in an error-message.

A large part of the processing of the 'data declaration's will
normally be performed during compilation.

IW17 /74 ALEPH Manual 3-2

After all constants, variables, stacks, tables and files have thus
been established, the 'affix form' in the 'root' is executed as the
only directly executable instruction in the program. If this 'affix
form' reaches its normal completion, the program finishes with a
termination state of O. If the execution of the 'affix form' stops
prematurely, the program finishes, but now with a termination
state possibly different from 0. If the stop is due to an
'exit' instruction, the termination state is specified by this
instruction. If the stop is due to a run-time error the termination
state is· -1.

3.1.2. The use of 'tag's.
A 'tag' is a sequence of letters and digits, the first of which
is a letter. All 'tag's defined in 'rule declaration's, 'pointer
initialization's, 'constant description's, 'variable description's;
'table description's (except those in 'field list pack's), 'stack
description's (except those in 'field list pack's), 'file
description's, 'external rule description's, 'external table
description's and 'external constant description's must differ from
each other.

3.2. Rules.

The declarations and applications of 'rule's constitute the
mechanism for controlling the logical flow of the program. The
'rule declaration' defines what is to be done if the 'rule' is
called whereas the application (in an 'affix form,-)-indicates that
the 'rule' is to be called.

A rule., when called, will either succeed or fail, according to
criteria to be explained later.

3.2.1. Rule declarations.
Each rule in the program must be declared exactly once, either in
a 'rule declaration' or in an 'external rule description' (for the
latter see 5.).

Syntax:
rule declaration:

typer, rule tag, (formal affix sequence),
actual rule, point symbol.

typer: action symbol;
function symbol;
predicate symbol;
question symbol.

IW17/74 AIEPH Manual

Example of a 'rule declaration':

'action' put string+ ""file+ table[]+ >string - count:
0 -> count.,
(next - symb:

string elem+ table+ string+ count+ symb,
put char+ file+ symb, incr + count, :next;
+).

3-3

Here the 'typer' is "'action'", the 'rule tag' is "put string", the
'formal affix sequence' is "+ ""file +table[]+ >string" and the
'actual rule' is the rest, excluding the point but including the
"-count:".

A 'rule declaration' defines the 'actual rule' to be of the type
indicated by 'typer', to be known under the name 'rule tag' and to
have the formal affixes given by its 'formal affix sequence'.

There are four types of rules: predicates, questions, actions
and functions, each indicated by the corresponding 'typer' symbol.
These four types arise from the fact that rules are differentiated
on the basis of two mutually independent criteria:

a. a rule will either always succeed or be capable .of failing,
depending on the logical construction of the 'actual rule',

b. a rule, when succeeding, may or may not have side effects, again
depending on the logical construction of the 'actual rule'.

These criteria are elaborated upon in 3.9 ..

A rule is a predicate if it can fail and has side effects (the
restrictions on the construction of rules prevent these side
effects from becoming effective if the rule fails).

A rule is a question if it can fail and has no side effects.

A rule is an action if it will always succeed and has side effects.

A rule is a function if it will always succeed and has no side
effects.

The type of a rule is checked against the logical construction of
the actual rule; if an action or function is found to be able
to fail, an error message is given; in all other cases, if a
discrepancy is found a warning is given.

Examples.
In each of the following examples the beginning of a rule is given,
together with a comment indicating what the 'actual rule' does.
From this explanation it follows why the rule was declared with the
§iven type.

IW17/74 ALEPH Manual 3-4

'predicate' digit+ d>:
if the next symbol in the input file is a digit, it is delivered
in 'd', the input file is advanced by one symbol (side effect) and
'digit' succeeds; otherwise it fails.

'question' is digit+ >d:
if 'd' is a digit the rule succeeds, otherwise it fails.

'action' skip up to point:
the input file is advanced until the next symbol is a point.

'function' plus+ >x + >y + sum>:
the sum of 'x' and 'y' is delivered in 'sum'.

3 .2 .2. Actual rules.

An actual rule mentions the variables local to it and specifies one
or more alternatives.

Syntax:
actual rule: (local affix sequence), colon symbol, rule body.
rule body: alternative series; classification.
alternative series:

alternative, (semicolon symbol, alternative series).
alternative:

last member; menber, comma symbol, alternative.

Example of an 'actual rule' :

- d:
digit+ d, times+ res+ 10 + res,

plus+ res+ d + res, integer1 + res; +.

Here the 'local affix sequence' is "- d", one 'alternative' is
"digit+ d, times+ res+ 10 + res., plus+ res+ d + res, integer1
+ res" and "+" is another. 'Member's are for example "plus + res +
d + res" and"+".

When an 'actual rule'
'rule' of which it
place.

is executed (through a call (3.5.1.) of the
is the 'actual rule'), the following takes

First space is made available on the run-time stack for the
'local affix'es, one location for each 'local affix' (see 3.3.3.).
Subsequently its 'rule body' is executed.

'Ihe execution of a 'rule body' implies the execution of its
'alternative series' or of its 'classification'.

IW17/74 ALEPH Manual 3-5

The execution of an 'alternative series', starts with a search to
determine which of its 'alternative's applies in the present case.
The applicable 'alternative' is the (textually) first 'alternative'
that has a first 'member' that succeeds. Therefore, the first
'member' of the first 'alternative' is executed: if it succeeds,
the first 'alternative' applies. Otherwise the first 'member'
of the second 'alternative' is executed: if it succeeds, the
second 'alternative' applies, etc. If none of the first 'member's
succeeds, the 'alternative series' fails.
If the first 'member' is a 'terminator' (and then it is the only
member), the 'alternative' at hand applies; if the 'terminator'
succeeds, the 'alternative series' succeeds; if it fails the
'alternative series' fails and if it does neither, the question
whether the 'alternative series' succeeds or fails will not arise.
The 'alternative' found applicable is then elaborated further. Its
first 'member' has already been executed. Now the rest of its
members are executed in textual order until one of two situations
is reached:
Either all 'member's have succeeded, in which case the 'alternative
series' succeeds as well,
or a member fails: the (textually) following 'member's in this
'alternative' will not be executed and the 'alternative series'
fails.

If the 'alternative series' succeeded, the 'actual rule' succeeds;
if it failed, the 'actual rule' fails.

After the result
assessed, the space
stack.

Restrictions.

of the 'alternative series' has thus been
for the 'local affix'es is removed from the

An 'alternative series' must satisfy the following restrictions:

a. If the first 'member'
this 'alternative' must
that all 'alternative's
this restriction causes

of an 'alternative' cannot fail (3.9.2.),
be the last one. This restriction ensures
can, in principle, be reached. Violation of
an error message.

b. If an 'alternative' contains a 'member' that is backtrack-liable
(see 3.9.3.) this 'member' may not, in the same 'alternative', be
followed by a 'member' that can fail (see 3.9.2.).
This restriction ensures that the side effects of a 'member' cannot
materialize if the 'member' fails; this in turn ensures that the
tests necessary to determine the applicable 'alternative' in an
'alternative series' do not interfere with each other.
Violation of this restriction causes a warning. The user is urged
to either reconsider the formulation of his problem or convince
himself that the side effects caused have no ill consequences.

IW17/74 .ALEPH Manual 3-6

3.2.3. Members.

Members are the units of action in ALEPH.
primitive operation, a call of a rule, or
other actions.

Syntax:

This action is a
is again composed of

member: affix form; operation; compound member.
last member: member; terminator.

Example of a 'member' :

(declaration sequence option - type - idf:
declaration+ type+ idf, enter+ type+ idf,

declaration sequence option; +)

This 'member' is a 'compound member', "declaration+ type+ idf"
is an 'affix form' , 11

• declaration sequence option II is a 'last
member ' , as is 11 + 11

•

The notion 'last member' has been introduced in the syntax to
ensure that a 'terminator' will occur only as the last 'member' in
an 'alternative'.

3.3. Affixes.

Formal and actual affixes constitute the communication between the
caller of a 'rule' and the 'rule' called. Local affixes are a means
for creating variables that are local to a given 'rule body'.

3.3.1. Formal affixes.

Syntax:
formal affix sequence:

formal affix, (formal affix sequence).
formal affix: formal affix symbol, formal.
formal: formal variable; formal stack; formal table; formal file.
formal variable: (right symbol), variable tag, (right symbol).
formal table: (field list pack),table tag, sub bus.
formal stack: sub bus, (field list pack), stack tag, sub bus.
sub bus: sub symbol, bus symbol.
formal file: quote symbol, quote symbol, file tag.

Example of a 'formal affix sequence':

+ ""file + table[] + >string

The 'formal affix sequence' defines the number and types of the
'formal affix'es of the 'rule' it belongs to.

IW17/74 ALEPH Manual 3-7

A 'f orrnal variable' is considered as data of type 'variable' . If
the 'formal variable' starts with a 'right symbol 1 the variable
has obtained a value from the calling rule; it is "initialized".
Otherwise it has the attribute "uninitialized" at the beginning of
each alternative in the 'actual rule'.
If the 'formal variable' ends in a 'right symbol' its value will be
used by the calling rule: it must be "initialized" at the end of
the 'actual rule'.

A 'formal stack' is considered as data of type 'stack'. If the
'field list pack' is absent, the 'forrral stack' is supposed to
have one 'selector': the tag of this 'selector' is the same as the
tag of the 'forrral stack' itself. For example, the 'formal affix'
"[]list[]" has the same meaning as "[](list)list[]".

A 'formal table' is considered as data of type 'table'. If the
'field list pack' is absent, the 'formal table' is supposed to have
one 'selector': the tag of this 'selector' is the same as the tag
of the 'formal table' itself.

A 'formal file' is considered as data of type 'file'.

All 'tag's in a 'formal affix sequence' must
must also be different .from the 'rule tag'
'formal affix sequence'.

be different.
that precedes

They
the

3.3.2. Actual affixes.

'Actual affix'es occur in 'affix form's which cause the call of a
'rule'. Each 'actual affix' corresponds to a 'formal affix' of that
'rule'.

Syntax:
actual affix sequence: actual affix, (actual affix sequence).
actual affix: actual affix symbol, actual.
actual: source.

Example of an 'actual affix sequence':

+ 511 +/?/+alpha+ betaxgarmna[p] + <>list

In this example "51111 is an 'integral denotation', "/?/" is a
'character denotation', "alpha11 is a 'tag', "betaxgamma[p]" is an
'element' and "<>list" is a 'calibre'.

'Actual affix'es derive their exact meanings from the corresponding
'formal affix'es. The interrelations are discussed in 3.5. (affix
forms) and in 3.4. (transports).

IW17/74 AIEPH Manual 3-8

3.3.3. Local affixes.

Syntax:
local affix sequence: local affix, (local affix sequence).
local affix: local affix symbol, local variable.
local variable: variable tag.

Example of a 'local affix sequence':

- count

A 'local variable' is considered as data of type 'variable'. Space
for this 'variable' is reserved on the run-time stack upon entry
of the 'actual rule' or 'compound member' of which it is part.
This space is removed on exit from that 'actual rule' or 'compound
member'.
A 'local variable' has the attribute "uninitialized" at the
beginning of each 'alternative' of the 'actual rule' or 'compound
member'. Its attribute must be "initialized" at the end of at least
one 'alternative' that does not end in a 'jump'.

All 'tag's · in a 'local affix sequence' must be different.
Furthermore, all 'tag's in a 'local affix sequence' L must be
different from:

a. all the 'label's, if any, and all 'tag's in the 'local affix
sequence's, if any, of all the 'compound member's, if any, in which
Lis contained,

b. the 'rule tag' and all 'tag's in the 'formal affix sequence', if
any, of the 'rule declaration' in which L occurs.

3.4. Operations.

Syntax:
operation: transport; identity; extension.

transport: source, destination sequence.
source: integral denotation; character denotation; tag;

element; limit.
integral denotation: (integral denotation), digit.
character denotation: absolute symbol, character, absolute symbol.
element: (tag, of symbol), tag, sub symbol, source, bus symbol.
destination sequence: destination, (destination sequence).
destination: to token, tag; to token, element.
to token: minus symbol, right symbol.

identity: source, equals symbol, source.

extension: of symbol, field transport list, of symbol, tag.
field transport list: field transport,

(comrra symbol, field transport list).
, field transport: source, selector destination sequence.

selector destination sequence: selector destination,
(selector destination sequence).

IW17/74 ALEPH Manual

selector destination: to token, selector.

Example of a 'transport' :

pnt -> selxlistfqj ->offset-> orsxlist[offset]

Example of an 'identity' :

ectxlistLpnt] = nil

Example of an 'extension' :

x pnt -> sel, nil-> ect -> ors x list

3-9

3.4.1. Transports.
A 'transport' can be considered as a 'function', i.e., it has no
(inherent) side effects and will always succeed.

Its execution starts with the evaluation of its textually first
'source'.

A 'source' is evaluated as follows.

If the 'source' is an 'integral denotation', its value is the
numerical value of the sequence of 'digit's, considered as a number
in decimal notation.

If the 'source' is a 'character denotation', its value is the
numerical value of the 'character' in the code used.

If the 'source' is a 'tag', it must be the 'tag' of a global
constant or of a (global, formal or local) variable. In each case
the value of the 'source' is the value of the constant or variable.
Moreover, in case of a formal or local variable it must have the
attribute "initialized".

If the 'source' is an 'element', its value is determined as follows
(see also 4.1.5. and 4.1.6~). The 'source' between the 'sub symbol'
and the 'bus symbol' is evaluated and its value is called P. The
'tag' in front of the 'sub symbol' must be the tag of a (global
or formal) stack or table. We now consider the block in this stack
or table that has an address equal to P (if no such block exists,
there is an error); it is called B. Subsequently a selector is
determined: if the 'of symbol' is present, the selector is the
'tag' in front of it; if the 'of symbol' is absent, the selector
is the 'tag' in front of the 'sub symbol' (in other words: it is
the textually first 'tag' in the 'element'). Now, the value of the
'element' is the value in the block B indicated by the selector.

IW17/74 AIBPH Manual 3-10

If the 'source' is a 'limit', the tag of the 'limit' must be the
'tag' of a (global or formal) stack or table. The value of the 'min
limit' ('max limit', 'calibre') is the value of the "min limit"
("max limit", "calibre") of the corTesponding actual stack or
table. For these values see 4.1.7 ••

The value of the textually first 'source' is called V. Now the
first 'destination' of the 'transport ' is determined and V is
put in the location indicated. Next its second 'destination', if
present, is determined and Vis put in the location indicated, and
so forth.

A 'destination' is determined as follows.
If the 'destination' is a 'tag', this 'tag' must identify a global,
formal or local variable. In this case the value is put in
the location of the variable. If the 'destination' is the 'tag'
of a formal or local variable, this variable has the attribute
"initialized" in the rest of the 'member's in the 'alternative' in
which the I transport' appears.

If the 'destination' is an 'element', the 'source' between the 'sub
symbol' and 'bus symbol' is evaluated and its value is called P.
The 'tag' in front of he 'sub symbol' must be the tag of a global
or formal stack. We now consider the block in this stack that has
an address equal to P (if no such block exists, there is an erTor);
it is called B. Subsequently a selector is determined: if the
'of symbol' is present, the selector is the 'tag' in front of it.
Otherwise it is the 'tag' in front of the 'sub symbol'. (As an
example, list[p] is equivalent to list x list[p].) The value is now
put in the location in block B that is identified by the selector.

Examples:

0 -> cnt -> res $ now "cnt" and "res" are both zero

p -> list[q] -> q $ the value of "p" is put in the location
$ indicated by "listxlist[q]" and in
$ (the location of) q

p -> q -> list[q] $ the value of "p" is put in (the location
$ of) "q" and in the location indicated
$ by "listxlist[q]" which is now the same
$ as "listxlist[p]"

list[p] -> p -> list[p] $ the value of "listxlist[p]" is put in
$ "p" and then put in "listxlist[p]" using
$ the new value of "p11

, with the result
$ that now "listxlist[p]" contains a
$ pointer to itself

IW17 /7Lt

3.4.2.

AIEPH Manual 3-11

Identities.
An 'identity' can be considered as a 'question', i.e.,
side effects and may either succeed or fail.

it has no

Both its 'source's are evaluated as described above.
values are numerically equal the 'identity' succeeds,

If the two
otherwise it

fails.
If the values represent numerical results
equality. If the values represent pointers
tables, the 'identity' tests whether the
are the same, not whether they are equal
complicated comparison criteria).

Extensions.

the 'identity' tests
to blocks in lists or
two blocks pointed at

(as this might imply

An 'extension' can be considered as an 'action', i.e., it has side
effects and will always succeed.
The 'tag' after the second 'of symbol' must be that of a (global or
formal) stack, and the 'tag's that appear as 'selector destination'
in the 'field transport list' must be selectors of that stack.
First the stack is extended to the right with one block of empty
locations (whence the name "extension"); the number of locations in
this block is equal to the calibre of the stack.
Subsequently the first 'source' in the 'field transport list' is
evaluated as described in 3.4.1 •• Its value is put in the location
in the block just added that is identified by the first selector in
the 'selector destination sequence', then that value is put in the
location identified by the second selector (if present), and so
on. Next, the second 'source' is evaluated (if present) and its
value put in the location(s) indicated by its 'selector destination
sequence', and so on.
No more than one value may be put in a given location; at the end
of the 'extension' all locations in the added block must have been
given a value; if the stack is formal, the calibre of the actual
stack must be equal to that of the formal stack.

Example: given a stack "1st" declared as [](sel,ect,ors)lst:
then the 'extension'

x 3 -> ect, 5 -> sel -> ors x 1st

would add the block (5, 3, 5) to "1st" and 11 >>lst" would be 3
higher than it was before.

3.5. Affix forms.

Syntax:
affix form: rule tag, (actual affix sequence).$ see 3.3.2.

Example:

string elem+ tbl + str + cnt + syrnb

"When an 'affix form' is executed, the rule identified by the 'rule
tag' in the 'affix form' is called, as follows.

IW17/74 ALEPH Manual 3-12

Relationships are set up between the 'actual affix'es as supplied
by the 'affix form' and the 'formal affix'es as supplied by the
'rule declaration'. The correspondence between actual and formal
affixes is decided from their order: the fjrst actual corresponds
to the first formal, the second actual to the second formal, and so
on. The number of actuals must be equal to the number of formals.

The 'actual' corresponding to a 'formal table' must be a 'tag'
which is a (global or formal) stack or a (global or formal) table.
All actions performed on the 'formal' are executed directly on the
'actual' . If the 'formal I has a calibre larger than 1 the calibre
of the 'formal' and 'actual' must be equal; the names of the
selectors may differ. If the calibre of the 'formal' is 1, no match
is required. Regardless of mismatches, the value delivered by the
'calibre' ("<>tag") is the calibre of the global stack or table to
which the 'formal table' corresponds, directly or indirectly.

The 'actual I corresponding to a 'formal stack' must be a I tag'
that is a (global or formal) stack. All actions performed on the
'formal' are executed directly on the 'actual'. If the 'formal' has
a calibre larger than 1 the calibre of the 'formal' and 'actual'
must be equal; the names of the selectors may differ. If the
calibre of the 'formal' is 1, no match is required. Regardless
of mismatches, the value delivered by the 'calibre' (11<>tag")
is the calibre of the global stack to which the 'formal stack'
corresponds, directly or indirectly.

The 'actual' corresponding to a 'formal file' must be a 'tag' that
is a (global or formal) file. All actions performed on the 'formal'
are executed directly on the 'actual'.

First the copying part of the affix mechanism is put into
operation: for each 'formal' that is a 'formal variable' starting
with a 'right symbol', a 'transport' is executed with the 'actual'
as a 'source' and the 'formal' as a 'destination'.

Subsequently, the 'actual rule' in the rule identified above is
executed (see 3.2.2.). If this 'actual rule' succeeds, the 'affix
form' succeeds; if it fails, the 'affix form' fails.

If the 'affix form' succeeds the restoring part of the affix
mechanism will be executed: for each 'formal' that is a
'formal variable' ending in a 'right symbol' , a 'transport' is
executed with the 'formal' as a 'source' and the 'actual' as a
'destination', in the order in which the affixes appear.

IW17/74 AIEPH Manual

Example:

Suppose the following 'rule's are defined:
'question' if a:$ some question$.
'question' if b: $ another question$.
'function' give value 1 + n>: 1 -> n.
'function' give value 2 + n>: 2 -> n.
'action' use value+ >n: print+ n.
'action' print+ >n:

$ some actual rule that prints the value of n $.

In the 'actual rule'

- loc: if a, give value 1 + loc, use value+ loc, print+ loc;
if b, give value 2 + loc, use value+ loc.

3-13

"loc" is "uninitialized" at the colon and likewise at the first
conma, "initialized" at the second conma because of the restoring
done by the call of "give value1", and remains "initialized" until
the end of the 'alternative'. Its value can be copied over to
'use value' and 'print'. At the beginning of the second
alternative it is still "uninitialized" (still "uninitialized",
not again "uninitialized", since, if the beginning of the
second 'alternative' is reached, the initialization in the
previous 'alternative' will not have taken place). It rermins
"uninitialized" until the call of "give value 211 after (and by)
which it is "initialized". Its subsequent application in "use
value" is correct.

The 'actual rule'

- loc: if a, use value+ loc, give value 1 + loc, print+ loc.

is incorrect. "loc" is still "uninitialized" at the first conma and
is then used as a source in the copying done by the call of "use
value".

3. 6. Terminators.

Syntax:
temanator: jump; exit; success symbol; failure symbol.
jump: repeat symbol, rule tag.
exit: exit symbol, expression.

Examples of 'terminator's:

: order
'exit' 16
+

IW17/74 AIBPH Manual 3-14

Jumps.
The 'tag' after the 'repeat symbol' may be the 'tag' of the 'actual
rule' in which this 'jump' occurs or the 'tag' of (one of) the
'compound member' (s) in which this 'jump I occurs .

A 'jump' to the 'tag' of an 'actual rule' is an abbreviated
notation of a call to that rule, with actual affixes that
correspond to the original actual affixes. The abbreviation is only
allowed if, after the execution of the call, no more members in the
rule can be executed. This condition ensures that there will be no
need for the "recursive call" mechanism to be invoked.

Example:

The rule:

'action' bad1: a, (b; :bad1), c; +.

is incorrect: after returning from ":bad111 11c 11 will be executed. If
the ",c" is removed, the r4,le is correct. Likewise the rule:

'question' bad2: (a, b, :bad2); c.

is incorrect: after unsuccessful returning from ":bad2" "c" will be
executed. If the parentheses are removed, the rule is correct.

A 'jump' to the 'tag' of a 'compound member' C causes this
'compound member' to be re-executed. The precise meaning can be
assessed by decomposing (see 3.7.) the 'actual rule' until C turns
into an 'actual rule'. Then the above applies.

Exits.
The execution of an 'exit' causes the entire program to be
terminated. The termination state is equal to the value of the
'expression' in the 'exit'. An 'exit' is a 'function'.

Success and failure symbols.
The execution of a 'success symbol' always succeeds, the execution
of a 'failure symbol' always fails. They have no additional
effects.

3. 7 • Compound members.

'Compound member's serve to group a series of 'alternative's into a
single 'member'.

IW17/74 AIEPH Manual 3-15

Syntax:
compound member:

open symbol, (local part, colon symbol),
rule body, close symbol.

local part: rule tag, (local affix sequence); local affix sequence.

Example:

(order - n: less+ y + x, x -> n, y -> x, n -> y;
x = y, get next int+ x, : order; +)

A 'compound member' is an abbreviated notation for the call of
a rule. Loosely speaking, the rule that is called has the same
meaning as the 'rule body' of the 'compound member' and has all
its non-globals as formal affixes. The call then caJls that rule
with these non-globals as actual affixes. The following statement
expresses this more precisely.

A 'rule declaration' for the rule that is called can be derived
from the 'compound member' in the following way.

a. the 'open symbol' and 'close symbol' are removed,
b. a 'point symbol' is placed after the 'rule body',
c. if the 'local part, colon symbol' is absent, a 'colon symbol' is

placed in front of the 'rule body',
d. if the 'rule tag' is missing, a 'rule tag' is placed in front

that produces a 'tag' that is different from any other tag in the
program,

e. a 'formal affix sequence', if necessary, is constructed (see below)
and inserted after the 'rule tag'.,

f. the "type" of the 'rule body' is determined (see 3.9.) and the
corresponding 'typer' (see 3.2.1.) is placed in front of the 'rule
tag'.

The 'formal affix sequence' mentioned in e. above is constructed as
follows:

a. a list is made of all tags in the 'rule body' that do not refer
to global items and do not occur in the 'local affix sequence', if
present,

b. if the list is empty the 1forrral affix sequence' is not necessary,
c. for each tag in the list, if the corresponding item

1. is used as a "source" (either directly or through a call) avid is
used as a 11destination11 (either directly or through a call), it is
entered into the 'formal affix sequence' preceded and followed by a
'right symbol',
2. is used as a "source" (either directly or through a call), it
is entered into the 'formal affix sequence' preceded by a 'right
symbol',

IW17/74 AIEPH Manual 3-16

3. is used as a "destination" (either directly or through a call).,
it is entered into the 'formal affix sequence' followed by a 'right
symbol',
4. is used as a 'stack tag' (or 'table tag'), it is entered into
the 'formal stack' (or 'formal table') with the same 'field list
pack' as that of the corresponding (formal or actual) stack (or
table),
5. is used as an 'actual affix' where a file is required, it is
entered into the 'formal affix sequence' as a 'formal file',

d. the items in the 'formal affix sequence' are preceded by 'formal
affix symbol's.

Example:

For the 'compound member'

(a[p] = O, 0 -> a[q]; plus+ m + p + q)

where "m" is global, the 'rule declaration' runs:

'action' zzgrzl + [J(a)a[] + >p + >q>:
a[p] = o, 0 -> a[q]; plus+ m + p + q.

and the call is:

zzgrzl +a+ p + q

This also implies that, if a 'compound member' fails, the changes
it made to formal and local variables do not become effective.
Compare

0 -> r.., ((1 -> n, -) ;
n = O, do something)

with

where

0 -> n, (spoil and fail+ n;
n = a, do something)

'question' spoil and fail+ n>: 1 -> n, -

Both cases behave in exactly the same way: the rule "do something"
will be called.

The 'tag' in the 'label' in a 'compound member' C must be different
from:

a. the 'rule tag's, if any, and all the 'tag's in the 'local affix
sequence's, if any, of all the 'compound member's, if any, in which
C occurs,

b. the 'rule tag' and all the 'tag's in the 'formal affix sequence',
'if any, of the 'rule declaration' in which C occurs.

IW17/74 ALEPH Manual 3-17

3.8. Classifications.

A 'classification' is similar to an 'alternative series' in that
both specify a series of 'alternative's only one of which will
eventually apply. The difference is twofold: in a 'classification'
exactly 1 'alternative' applies (as opposed to 1 or O in
an 'alternative series'), and the choice of the pertinent
'alternative' is based on a single runti.t~e value (as opposed to
the successive execution of first members). 'Classification's allow
fast selection of 'alternative's at the cost of a less versatile
selection mechanism.

Syntax:
classification: classifier box, class chain.
classifier box: box symbol, source, box symbol.
class chain: class, semicolon symbol, class chain; last class.
class: area., comma symbol, alternative.
area: sub symbol, zone series, bus symbol.
zone series: zone, (semicolon symbol, zone series).
zone: (expression), up to symbol, (expression); expression; tag.
last class: class; alternative.

Example 1:

(n: get+ char,
(=char=

Example 2:

=tag=

[/0/ : /9/], dgt -> type;
[/a/: /z/; /a/+ cap : /z/ + cap], ltr -> type;
[!+/; /-/; /x/; ///],op-> type;
[O; 127], : n;
[0: 127], err-> type))

[var decl],
[macro decl],
[rout decl],

handle variable+ tag;
handle rr,acro call+ tag;
handle routine call+ tag;
handle bad tag+ tag

The execution of a 'classification' starts with the evaluation of
the 'source' in its 'classifier box'. The resulting value is called
V. Now the 'area's in the 'classification' are searched in textual
order for an 'area' in which V belongs. If such an 'area' is
found, the 'alternative' following it applies and is executed (see
3.2.2.). If there is no such 'area', the 'last class' must be an
'alternative', which then applies and is executed. Otherwise there
is an error.

V belongs in a given 'area' if it belongs in any of its constituent
'

1 zone 's. Whether V belongs in a given 'zone ' is determined as
follows.

IW17/74 ALEPH Manual 3-18

If the 'zone' is an 'expression' Ethen V belongs in that 'zone' if
it is equal to the value of E.
If the 'zone' contains an 'up to symbol' it is designated by two
boundaries. The left boundary Lis the value of the 'expression' in
front of the 'up to symbol' or, if it is missing, the value of "min
int". The right boundary R is the value of the 'expression' after
the 'up to symbol' or, if it is missing, the value of "max int". V
belongs to the given 'zone' if L < V < R.

If the 'zone' is a 'tag', this 'tag' must correspond to a global
(not formal) stack or table. V belongs in this 'zone' if it is an
address in the indicated stack or table.

'Area's may coincide partially or totally; the textually
'area' takes precedence. A warning is issued if the total
'area's do not cover the complete range from "min int"
int".

first
of the

to "max

When all 'zone's consist of 'expression's the exact size and
location of all 'zone's is known at compile time; this information
will be utilized by the compiler. When all 'zone's consist of
'tag's (identifying 'list's and 'table's) the relative positions of
all 'zone's are known at compile time (although their exact sizes
are not); again this information is utilized by the compiler. In
mixed cases slightly less efficient code may result.

Example:
If it is known that "ind" takes only values between O and 4, very
efficient code can be obtained by:

=ind=
[O], zero; [1], one; [2], two; [3], three; [4], four

as the applicable 'alternative' is selected directly; slightly less
efficient code would be generated for:

=ind=
[OJ, zero; [1], one; [2], two; [3], three; four

as this necessitates two comparisons to check for the last
'alternative'. On the other hand, the latter is defined for all
values of "ind" whereas the former is only defined for O <ind< 4.
Again, less efficient code is obtained by:

ind = o, zero;
ind = 1, one;
ind = 2, two;
ind = 3, three;
ind = 4, four

IW17/74 AI.EPH Manual 3-19

as tPis implies a sequence of comparisons. In contrast to the first
example the above 'rule body' is defined for all values of 11ind"
and as opposed to the second example it fails when "ind" does not
have a value in the range O through 4.

A 'classification' can fail if at least one of its 'alternative's
can fail, it has side-effects if at least one of its 'alternative's
has side-effects.

3.9. Criteria for side effects, failing and backtrack.

Where a list of conditions
requirements for this list
conditions is fulfilled.

3.9.1. Criteria for side effects.

is given in this paragraph, the
are fulfilled if at least one of the

In essence a 'rule' "has side effects" if it changes global
information.

A 'rule' has side effects if its 'rule body' has side effects.

A 'rule body' (i.e., an 'alternative series' or a 'classification')
has side effects if it contains at least one 'member' that has side
effects.

A 'member' has side effects if
1. it is an 'affix form' that has side effects,
2. it is a 'transport' that has side effects,
3. it is an 'extension',
4. it is a 'compound member' the 'rule body' of which has side

effects.

An 'affix form' has side effects if
1. the 'rule' called is of type 'action' or 'predicate',
2. the restoring part of the affix mechanism (see 3.5.) causes a

'transport' that has side effects.

A 'transport' has side effects if (one of) its destination(s) is a
global variable or a (stack) element.

3.9.2. Criteria to determine whether a 'member' or 'rule body' can fail.

A 'member' can fail if
1. it is an 'affix form' the 'rule' of which is of type 'predicate' or

'question' ,

IW17/74 AIEPH Manual

2. it is an 'identity',
3. it is a 'compound member' the 'rule body' of which can fail,
4. it is a 'failure symbol' (-).

A 'rule body' can fail if its 'alternative
'classification' can fail.

An 'alternative series' can fail if
1. the first 'member' of its last 'alternative' can fail,

series'

3-20

or

2. it contains an 'alternative' consisting of more than one 'member',
in which a 'member' other than the first can fail.

A 'classification' can fail if it contains a 'member' that can
fail.

3.9.3. Criteria for backtrack-liability.

A 'member' is backtrack-liable if it has side effects.

IW17/74 ALEPH Manual 4-1

4. Data.

The basic way of representing information in ALEPH is through
integers. There are four integer-based data types:
integers (constants),
locations that contain integers (variables),
ordered lists of integers (tables), and
ordered lists of locations that contain integers (stacks).
Integers used in data declarations can be given in the form of
expressions.

The basic way of routing information into and out of the program is
through files. There are two types of files:
charfiles, files containing only integers that correspond to
characters, and
datafiles, files containing pointers to prescribed stacks and
tables and/or integers in a prescribed range.

There are three primitive actions on integer-based data:
transports, identities and extensions. Additional integer handling
can be done through externals.

There are no primitive actions on files: all file handling is done
through externals.

Syntax of 'data declaration':

data declaration:
constant declaration; variable declaration;
stack declaration; table declaration;
file declaration.

4.1. Integer-based data.

Since all integer-based data can be initialized through
expressions, these will be treated first.

4.1.1. Expressions.

Syntax:
expression:

(plus minus), term; expression, plus minus, term.
term: (term, times by), base.
base: plain value; expression pack.
plain value:

integral denotation; character denotation; tag; limit.
integral denotation: (integral denotation), digit.
character denotation:

absolute symbol, character, absolute symbol.
expression pack: open symbol, expression, close symbol.

'plus minus: plus symbol; minus symbol.
times by: times symbol; by symbol.

IW17/74

Examples:
-3 + 5 x byte size
line width/2

AIEPH Manual

((/e/ + 1) x char size+ /n/ + 1) x char size+ /d/ + 1

4-2

The value of an 'expression' is the integral value that results
from evaluating the 'expression' according to the standard rules of
algebra. 'Ihe result of an integer division n = p/q (q =l= 0) is a
value n such that p > n x q and p - n x q is as small as possible
(so, 7/3=2, 7/(-3)==2, (-7)/3=-3 and (-7)/(-3)=3). The value of
an 'integral denotation' is the numerical value of the sequence of
'digit's, considered as a number in decimal notation. The value of
a 'character denotation' is the numerical value of the 'character'
in the code used. If a 'plain value' is a 'tag', it must be
a 'constant tag', defined in a 'constant declaration' or in
a 'pointer initialization' (a 'tag' defined in a user-defined
'external constant declaration' cannot be used as a 'plain value').
Its value may not depend on the 'expression' in which the 'constant
tag' occurs. That is,

'constant' p = q, q = 2 - p.
is not allowed.

The 'tag' of a 'limit' (see 4.1.7.) in an 'expression' must be the
'tag' of a (global) table, i.e., limits of stacks cannot be used in
expressions.

4.1.2. Constants.

A constant consists of a 'tag' and an integral value. The relation
between tag and value is set up through a 'constant declaration'
and cannot be changed afterwards.

Syntax:
constant declaration:

constant symbol, constant description list,
point symbol.

constant description list:
constant description,
(comma symbol, constant description list).

constant description: tag, equals symbol, expression.

Example:
'constant' mid page= line width/2, line width= 144.

Constants can be used in 'expression's and in 'source's.

4.1.3. Variables.

, A variable consists of a 'tag' and a location, the location may
or may not contain a value. If it contains a value the variable
'has' that value. The contents of a location may be changed. Once a

IW17/74 ALEPH Manual

location has obtained a value it can never become empty again.

A global variable is declared in a 'variable declaration'.

A formal variable originates from a 'forrral affix sequence'.

A local variable originates from a 'local affix sequence'.

Syntax of 'variable declaration' :
variable declaration:

4-3

variable symbol, variable description list, point symbol.
variable description list:

variable description,
(corrma symbol, variable description list).

variable description: tag, equals symbol, expression.

Examples:
'variable' tag pnt = nil, median code= (<<code+ >>eode)/2.
'variable' line cnt = O, page cnt = 0.

For each 'variable
tagged with the
'expression'.

description' a location is made available,
'tag' and filled with the value of the

Variables can be used in 'source's and in 'destination's. They
cannot be used in 'expression's.

4.1.4. The address space.

In addition to constants and variables there exist lists of
constants ("tables") and lists of variables (11stacks11). Stacks and
tables together are called "lists". The items in these lists are
identified by unique addresses which are represented by integral
values. These values range from a very large negative number to
a very large positive number: this range is called the "address
space".

The "lists" are described as running from left to right.

Example:
On a 16-bit machine the address space could be thought of as a list
of 2T16 (65536) locations, the addresses of which run from -2T15
(-32768) at the left to 2115-1 (32767) at the right. The question
whether all these locations actually exist in memory is at this
point irmnaterial: it is only the addressability of a location that
is secured here.

IW17/74

a.

b.

c.

d.

e.

AIEPH Manual 4-4

For a given program the address space is divided into chunks, one
for each list. Consequently, an address uniquely identifies not
only a location but also the list it belongs to. A chunk of address
space belonging to a list is called its "virtual address space".
Generally only a part of the virtual address space is in use:
this part is called the "actual address space". From the language
specifications it follows that an actual address space is always a
contiguous list of locations or values.

The user has no direct control
space is divided and addresses
follows:

over the way in which the address
are assigned. This is done as

One address is set aside and the 'external constant' "nil" is given
its value. Consequently 11nil" will never address any user item.
For each table T the size of its actual address space is calculated
from its 'filling list' and Tis given a virtual address space of
exactly the same size. The right-most address is called the "max
limit" of T, the left-most address minus one plus the "calibre" of
Tis called the "min limit" of T.
For each stack with an 'absolute size' a virtual address space of
that size is reserved.
The remainder of the virtual address space is distributed over the
rest of the stacks, proportionally to their 'relative size's.
For each stack S the right-most address in its virtual address
space is called "virtual max limit", the left-most address in its
virtual address space minus one plus the "calibre" of Sis called
"virtual min limit"; the size of its actual address space is
calculated from its 'filling list' and the actual address space is
positioned at the left end in the virtual address space. The "max
limit" of Sis made equal to the right-most address in the actual
address space; the "min limit" of Sis made equal to the "virtual
min limit".
If the actual address space has length zero, the "max limit" of S
is equal to the "min limit" minus the "calibre" of S.

example:
Suppose a virtual address space of 5 bits, i.e.
range from -16 to 15. If the following declarations
4 .1. 6.) occur in the program:

'table' powers= (1, 10, 100, 1000).
'stack' [= 5 =]digits= (0),

[30] stack,
[50] (num, denom) rationals=

((355, 113):pi, (191, 71):e).

the addresses
(see 4 . 1. 5 . and

IW17/74 ALEPH Manual 4-5

the virtual address space could have the following layout:

address contents belongs to selector pointer

-16 not actual nil
-15 1 powers powers <<powers
-14 10 II II

-13 100 II II

-12 1000 " " >>powers
-11 0 digits digits <<digits, >>digits
-10 not actual II II

-9 II II II II

-8 II II II "
-7 II II II II >>stack
-6 II II stack stack <<stack
-5 II II II II

-4 " II II II

-3 11 II II II

-2 II " II II

-1 II II " "
0 Ii II II II

1 II II II II

2 355 rationals num
3 113 II denom <<rationals, pi
4 191 II num
5 71 II denom >>rationals, e
6 not actual II num
7 II II II denom
8 II II II num
9 II II II denom

10 II II II num
11 fl II II denom
12 II II II num
13 II II II denom
14 II II II num
15 II II II denom

(For the notation used see 4.1.5. through 4.1.7).

ALEPH allows the user to extend a stack towards the right (raising
"max limit") through an 'extension' (3.4.3.); to remove items from
the right of a stack through a call of "unstack", "unstack n11

,

"scratch" or "delete" (5.2.4.) after which the discarded address
space can be reclaimed (but not the values in it) through an
'extension'; and to remove items from the left of a stack through a
call of "unqueue11 or "unqueue n11 (5.2.4.) after which the discarded
address space is irTevocably lost.

IW17/74 ALEPH Manual 4-6

Through the use of these features a stack can be operated in stack
fashion (add to "top"/rernove from "top") or in queue fashion (add
to "top"/remove from "bottom"). Queue-operation consumes virtual
address space but in most implementations virtual address space
will be virtually unlimited.

The virtual and actual address space of a table are fixed (and
equal) for the duration of the program.

Usually an actual address space corresponds to a physical space
that is in the physical memory of the computer used. The physical
space is completely invisible to the user except perhaps in
efficiency considerations. Parts of it may be in main memory,
managed by some re-allotment scheme, parts of it may be on
backgr'ound memory.

If the 'tag' of a table is not used in other constructs than
'limit' and 'zone', the values in the table will never be accessed,
and no physical space needs to be assigned to this table.

Example:
The 'table declaration':

'table' dummy= (O:nil1, O:nil2, O:nil3).

where the tag "dummy" does not occur anywhere else in the program,
declares 3 more nil-like constants and no physical space needs to
be reserved.

4,1.5. Tables.
Tables originate from 'table declaration's.

Syntax:
table declaration:

table symbol, table description list, point symbol.
table description list:

table description, (comma symbol, table description list).
table description: table head, equals symbol, filling list pack.
table head: (field list pack), tag.
field list pack: open symbol, field list, close symbol.
field list: field, (comma symbol, field list).
field: selector chain.
selector chain: selector, (equals symbol, selector chain).
selector: tag.

filling list pack: open symbol, filling list, close symbol.
filling list: filling, (comma symbol, filling list).
filling: single block; compound block; string filling.

, single block: expression, (pointer initialization).
compound block:

expression list proper pack, (pointer initialization).

IW17/74

4.1.5.1.

AIEPH Manual

pointer initialization: colon symbol, tag.
expression list proper pack:

open symbol, expression list proper, close symbol.
expression list proper:

expression, corrma symbol, expression list.
expression list: expression, (corrma symbol, expression list).
string filling: string denotation, (pointer initialization).
string denotation:

quote symbol, (string item sequence), quote symbol.
string item sequence: string item, (string item sequence).
string item: non quote item; quote image.
quote image: quote symbol, quote symbol.

Examples:
'table' messages=

("tag undefined": bad tag,
"wrong number of parameters": wr par,
"quote "" where not allowed" :bad qu).

'table' hexadec =
(/0/,/1/,/2/,/3/,/4/,/5/,/6/,/7/,
/8/,/9/,/a/,/b/,/c/,/d/,/e/,/f/).

'table' (wind, next) four winds=
((north wind, east): north,
(east wind, south): east,
(south wind, west): south,
(west wind, north): west).

4-7

A "table" is a sequential list of integral values. For referencing
purposes these values are numbered sequentially. The numbers which
can be used as addresses are chosen by the compiler and are unique
for the given table, i.e., no two integral values in tables have
the same address. The right-most item in the table has the largest
address, which is known as the "max limit" of the table. The
left-most item has the smallest address, the smallest address minus
one plus the calibre is known as the "min limit" of the table.
Consequently the number of values in the table is "max limit" -
"min limit"+ 11calibre 11

•

If the 'field list pack' is missing, a 'field list pack' of the
form:

open symbol, table tag, close symbol

where 'table tag' is the 'tag' of the table, is supposed to be
present. For example:

11 'table' messages II means 111 table' (messages) messages 11
•

4.1.5.2.
,The 'field list pack' and the 'filling list'.

IW17/74 ALEPH Manual 4-8

The following applies to tables and stacks alike.

All 'tag's in a 'field list pack' must differ one from another.

The "calibre" C of a list is the number of 'field's in the 'field
list pack'. The list is considered to be subdivided into blocks
of length C; this implies that "max limit" - "min limit" is an
integral multiple of C. The address of the right-most item in a
block is considered the address of that block. Each value in a
block can be referenced through a 'selector': the 'field's in the
'field list pack' correspond, in that order, to the values in the
block. A 'field' is indicated by one of its 'selectors'.

The values in the list are specified in the 'filling list pack'.
Each 'filling' in the 'filling list pack' corresponds to one or
more blocks in the list: the first block produced by the 'filling
list pack' corresponds to the left-most block in the list (the most
primitive block if the list is a stack), and so on.

If the 'filling' is a 'single block', the calibre of the list must
be 1. It gives rise to one block; the value in the block is the
value of the expression. If a 'pointer initialization' is present
the 'constant tag' herein is defined as having the value of the
address of the block.

If the 'filling' is a 'compound block', the number of 'expression's
in it must be equal to the calibre of the list. The values
in the block are the values of the expressions. If a 'pointer
initialization' is present the 'constant tag' herein is defined as
having the value of the address of the block.

If the 'filling' is a 'string denotation', the calibre of the list
must be 1. It gives rise to one or more blocks of one value each
that describe the given string in a machine-dependent way. If a
'pointer initialization' is present the 'constant tag' herein is
defined as having the value of the largest address in the generated
list of blocks.

The string denoted by a 'string denotation' is the 'string item
sequence' in which each 'quote image' is replaced by a 'quote
symbol'. A 'non quote item' is any symbol with the exception of
'quote symbol'. Spaces are considered symbols, new-line controls
are not, since the dividing into lines is done through the
charfile-handling externals (see 5.2.5.).

Example 1:
The 'table declaration' for "four winds" (example 3 above) gives
rise to the following list:

IW17/74 AIBPH Manual 4-9

address selector value
wind north wind

north next east
wind east wind

east next south
wind south wind

south next west
wind west wind

west next north

and "wind x four winds [next x four winds [west]]" has the value
"north wind11

•

Example 2:
The 'table declaration'

'table' strings= ("abcdefg": letters, 11 01234": digits)

could in some version on some computer generate:

address selector value
strings 13 14 15 16

II 17 20 21 00
letters II 00 07 00 02

!I 01 02 03 04
II 05 00 00 00

digits II 00 05 00 02

A 'table tag' can be used in a 'table element' or a 'limit', or
as an 'actual I in an 'affix form 1 , or to indicate a ' zone' in a
'classification'.

4 • 1. 6 • Stacks •

Stacks originate from 'stack declaration's.

Syntax:
stack declaration:

stack symbol, stack description list, point symbol.
stack description list:

stack description, (comma symbol, stack description list).
stack description: stack head, (equals symbol, filling list pack).
stack head: size estimate, (field list pack), tag.
size estimate: relative size; absolute size.
relative size: sub s;ymbol, expression, bus symbol.
absolute size:

sub symbol, box symbol, expression, box symbol, bus symbol.

IW17/74 ALEPH Manual

Examples:

'stack' [= line width=] (char) print line.

'stack' [40] (tag pnt, left, right) idf list=

$ the following 'filling list pack' describes a binary tree
$ containing the standard identifiers of ALGOL 60.

((exp st, cos, sign) : exp,
(abs st, nil, arctan): abs,
(arctan st, nil, nil) : arctan.,
(cos st, abs, entier): cos,
(entier st, nil, nil) : entier,
(ln st, nil, nil) : ln,
(sign st, ln, sin) : sign.,
(sin st., nil, sqrt) : sin,
(sqrt st, nil, nil) : sqrt).

4-10

A "stack" is a (possibly empty) sequential list of locations
that contain integral values. The structure of this list and its
addressing scheme is parallel to that of a table. The initial
values in the locations are determined by the 'filling list pack'
in a way analogous to that used for tables. The "max limit" is
equal to the address of the right-most location, the "min limit11

is equal to the address of the left-most location minus one plus
the "calibre" of the stack. Again these values are chosen by the
compiler and are unique to the given stack.

The values in the locations in a stack can be altered by
transporting (3.4.) a value into an 'element' of that stack. For
ways of changing the size of a stack, see 4.1.4 .•

A 'stack tag' can be used in a 'stack element', a 'limit' or an
'extension', or as an 'actual' in an 'affix form', or to indicate a
'zone' in a 'classification'.

4.1.7. Limits.

Syntax:
limit: min limit; max limit; calibre.
min limit: min token, tag.
max limit: max token, tag.
calibre: calibre token, tag.
min token: left symbol, left symbol
max token: right symbol, right symbol.
calibre token: left symbol, right symbol.

IW17/74 AIEPH Manual 4-11

Examples:
<<stack, >>table, <>blocked

A 'min limit' ('max limit', 1 calibre') has the value of the "min
limit" ("max limit", "calibre") of the list identified by the
'tag'.
'Ihe value of a 'limit' is a constant in that it cannot be changed
by an assignment. However, the 'min limit' and 'max limit I of a
stack may change as a consequence of actions that change the size
of that stack. 'Ihe 'min limit' and 'max limit' of tables and the
'calibre's of all lists are invariable.

4 .2. Files.

Files originate from 'file declaration's . 'Ihey can be prefilled
by the operating system (input files) or postprocessed by the
operating system (output files) or both (I/O files) or neither
(scratch files).

Syntax:
file declaration:

file typer, file description list, point symbol.
file typer: charfile symbol; datafile symbol.
file description list:

file description, (cormna symbol, file description list).
file description:

tag, (area), equals symbol,
(right symbol), string denotation, (right symbol).

Examples:

'charfile' printer= "output">, backward cards= >11qelet,invert".

'datafile' tagfile[tag; link; 0:] = >"systags">.,
bin cards[0:4095] = 1112row,bin">, overflow[:]= 11:f:??qxz".

A 'file description' declares a "file" of the type indicated by the
'file typer'. If the first 'right symbol' is present, the file
is prefilled by the operating system (but it may still be empty);
if the second 'right symbol' is present, the file will be
postprocessed by the operating system (but it may be empty).
'Ihe (implementation-dependent) 'string denotation' must contain
enough information to enable the operating system to manipulate the
file in the desired way. It might for example contain: the name of
a file control card, allocation information, the names of routines
to do the prefilling and postprocessing, etc .•

IW17/74 ALEPH Manual 4-12

ALEPH contains no explicit file handling statements: all file
handling is done through (standard) externals (see 5.2.5.). When
a file is used for writing., each item offered must belong in the
'area' given in the 'file description'; when a file is used for
reading., each item delivered will belong in the given 'area'. If no
'area' is supplied, the 'area' "[O:I11.ax char]" is assumed.
Files are read and written sequentially. They can be reset to the
beginning of the file and be reread or rewritten. Some files allow
"back-spacing", "back-lining" or "back-data-ing". The file ends
after the last item written or else after the last item produced by
the preprocessing.

4.2.1. Charfiles.
A "charfile" is a list of "line"s. A line consists of a control
integer and a (possibly empty) sequence of characters. Characters
are values in the 'area' "[O:max char]", control integers are
values outside that 'area' . Four control integers are predefined
in the compiler (see 5.2.5.): "new line", "same line", "rest line"
and "new page". These control integers can be used by the pre- and
post-processing to reconcile the system requirements with the ALEPH
requirements. If the file is eventually postprocessed towards a
printer, lines of the type "new line" will be printed on new lines,
those of the type "same line" will be printed over the previous
line and those of type "new page" will be printed on the first line
of the next page; "rest line'' serves administration purposes only.
Analogous effects should be defined for other devices, as far as
the analogy will stretch.

Example:
A file containing "a"b=b"a" would consist of two lines:

new line, /a/,/"/,/b/,/=/,/b/,/"/,/a/
same line,//,//,//,/_/.

The standard externals allow two ways of processing a charfile.
a. linewise: e.g . ., each call of "get line+ char file+ stack+ cint"

puts the next line on "stack" (the last item in the line is the
last item in the stack) and yields the control integer in "cint".
It will fail if there is no next line.

b. characterwise: e.g., each call of "get char+ charfile + char"
yields the next item from the "charfile" (control integers and
characters equally). It will fail if there is no next item.

The 'area' in the 'file description' of a charfile pertains to the
values of the characters only. If present, the 'area' must only
specify values that belong in "[O:max char]"., e.g. [0:1].

IW17/74 ALEPH Manual 4-13

4.2.2. Datafiles.
A "datafile" is a list of "data-item"s. A data-item consists of an
integer value and an indication about its meaning. This indication
is either "numerical" in which case the integer value stands for
itself, or is the name of a list in which case the integer value is
an offset from the left end of that list.
A data-item is written on a datafile by a call of "'action' put
data + 1111file + >item + >type". The data-item is constructed from
the item- and type-parameters and from the 'area' in the 'file
description' in the following way.
If the type is "numerical", there ITD.1st be a 'zone' in the area
which is not the name of a list, such that the value belongs in
that 'zone'. 'Ihe data-item then consists of the value of "item" and
the indication "numerical".
If the type is 11pointer", the value of "item" ITD.1st point into a
list that is a 'zone' in the area. The data-item then consists of
the offset from the left end of that list and the name of the list.

A data-item is read from a datafile by a call of "'predicate' get
data + '"'file + item> + type>". If there is still a data-item
on the datafile, it is read and the "item" and "type" are
reconstructed from it (see above). If there are no more data-items
on the datafile, the predicate fails.

Datafiles can be used
ALEPH-program to another.
positions in both programs
transfer.

to transfer information from one
Pointers to lists that are in different
are adjusted automatically during the

Note: in practice it is not necessary to record the list name
with every item. It is enough to have one bit per item and one
translation table for the whole file.

Example:
Suppose the 'file declaration':

'datafile' tag file[tag; list; O:] = >11systags 11>.
'Ihen "put data" for this file can be visualized as:

'action' put data+ ""file+ >item+ >type:
$ for file= tagfile only$
type= pointer,

(=item=
[tag], Illl.nus +item+ <<tag+ item,

write data item+ item+ tag name;
[list], minus+ item+ <<list+ item,

write data item+ item+ list name;
error+ bad item);

type= numerical,
(=item=
[O:], write data item+ item+ numerical;

error + bad item);
' error + bad type.

IW17/74 ALEPH Manual 4-14

Here the (imaginary) 111Arrite data item+ >val+ >ind" would write a
data-item consisting of "val" and "ind" on the file "tagfile".

IW17/74 ALEPH Manual 5-1

Externals.

External rules, tables and constants can be used in the same way as
internally declared rules, tables and constants. An external rule
differs from an "internal" rule in that its body is not given in
the program but is instead obtained from external sources. In the
same way the values of external tables and constants are obtained
from external sources. The necessary information can be supplied by
the user through external means ("user" externals, section 5.1.)
in which case the name of the item and some of its properties must
be declared in the program, or it is supplied automatically by the
compiler ("standard" externals, section 5.2.) in which case there
is no explicit declaration at all.

5.1. User externals.

Syntax:
external declaration:

external rule declaration;
external table declaration;
external constant declaration.

external rule declaration:
external symbol, typer,

external rule description list, point symbol.
external rule description list:

external rule description,
(corrrna symbol, external rule description list).

external rule description:
tag, (formal affix sequence),

equals symbol, string denotation.
external table declaration:

external symbol, table symbol,
external table description list, point symbol.

external table description list:
external table description,

(corrrna symbol, external table description list).
external t2ble description:

(field list pack), tag, equals symbol, string denotation.
external constant declaration:

external symbol, constant symbol,
external constant description list, point symbol.

external constant description list:
·external constant description,

(corrrna symbol, external constant description list).
external constant description:

tag, equals symbol, string denotation.

IW17/74 ALEPH Manual

Example:
'external' 'function' convert to hash+ t[] + >p + h> =

"subr, convertt".
'external' 'table' conv 2 ebcdic = "addr, conv2ebc 11

•

'external' 'constant' max ebcdic = "cons, maxebcdi".

5-2

An 'external rule description' defines a rule to be of the type
given by the preceding 'typer' , to be known internally under the
name given by the 'tag' and externally by the 'string denotation',
and to have affixes as shown by the 'formal affix sequence'. A call
to such a rule will result in implementation-dependent actions (see
"ALEPH Implementation", to be published by the Mathematical Centre,
Amsterdam) •

An 'external table description' defines a table to be known
internally under the name given by the 'tag' and externally by
the 'string denotation', and to have the selectors given by the
'field list pack'. An application of this table will result in
implementation-dependent actions.

An 'external constant description' defines a constant to be known
internally under the name given by the 'tag' and externally by the
'string denotation'. An application of this constant will result in
implementation-dependent actions.

5.2. Standard externals.

Standard externals can be used in all programs without further
notice. Their names can be redeclared by the user.
The workings of rules marked with a Pare affected by pragmats (see
chapter 6.), whereas rules marked with a. are not.

5.2.1. Integers.

For those data that are considered to be integers, the following
standard externals are available •

. 'constant' zero, one, max int, min int, int size.
"zero" has the value O, "one" has the value 1. "max int" has the
value of the largest integer in the given implementation, and "min
int" has the value of the smallest (most negative) integer in the
given implementation. "int size" is the number of decimal digits
necessary to represent "max int" •

• 'function' add+ >a+ >b +head>+ tail>.
The double-length sum of "a" and "b" is given in "head" and "tail":
a+ b = head x (max int+ 1) + tail, such that !head.I is minimal.

IW17/74 ALEPH Manual 5-3

. 'function' subtr +>a+ >b +head>+ tail>.
The double-length difference of "a" and "b" is
"tail": a - b = head x (max int+ 1) + tail,
minimal •

given in "head" and
such that lheadl is

. 'function' mult +>a+ >b +head>+ tail>.
The double-length product of "a" and "b" is given in "head" and
"tail": a x b = head x (max int + 1) + tail, such that I head I is
minimal •

• 'function' divrem +>a+ >b +quot>+ rem>.
The quotient and remainder of the integer division of 11a 11 by 11b11 is
given in "quot" and "rem": a= bx quot+ rem, such that "rem" is
non-negative and minimal. "b" must not be zero.

P 'function' plus+ >a+ >b + c>.
The sum of "a" and "b" is given in "c".

P 'function' minus+ >a+ >b + c>.
The difference of II a II and "b" (i.e. , a - b) is given in "c" .

P 'function' times+ >a+ >b + c>.
The product of "a" and 11b11 is given in "c".

P 'function' incr + >x>.
The value of "x" is increased by 1.

P 'function' deer+ >x>.
The value of "x" is decreased by 1 •

• 'question' less+ >p + >q.
Succeeds if 11p11 is less than "q", fails otherwise .

. 'question' lseq + >p + >q.
Succeeds if "p" is less than or equal to "q", fails otherwise •

. 'question' more+ >p + >q.
Succeeds if "p" is more than "q", fails otherwise .

• 'question' mreq + >p + >q.
Succeeds if "p" is more than or equal to "q", fails otherwise .

. 'question' equal+ >p + >q.
Succees if "p" is equal to "q", fails otherwise. It is identical to
"p=q".

IW17/74 ALEPH Manual 5-4

• 'question' noteq + >p + >q.
Succeeds if "p" is not equal to "q", fails otherv,,rise •

. 'action' random+ >p + >q + r>.
A pseudo-random number between "p" and "q" is given in "r": p<r<q.
The value of "r" is derived from an element in a circular sequence
of random numbers. The next call of "random" will derive its output
value from the next number in that sequence, etc ••

. 'action' set random+ >n.
"n" determines in some way the position in the circular sequence
of random numbers mentioned above, from which the next call of
"random" will obtain its output value .

. 'action' set real random.
The position in the circular sequence of random numbers used by
"random" is determined in an unpredictable way •

. 'question' sqrt+ >a+ root>+ rem>.
If "a" is non-negative, "sqrt" succeeds; the square root and
remainder of "a" are yielded such that a= root x root+ rem, and
"rem11 is non-negative and minimal. Otherwise it fails .

. 'function' pack int+ from[]+ >n + int>.
The right-most "n" elements in the list "from" must be integer
values corresponding to characters that indicate digits. The
digits thus indicated are considered as the decimal notation of an
integer, and the value of this integer is yielded in "int".
A check on integer overflow is performed.
Example: if the 4 right-most elements of "st" are:

/0/,/2/,/7/,/3/

then a call of "pack int+ st+ 4 + res" will assign the value 273
to "res" .

• 'action' unpack int+ >int+ []st[].
The absolute value of "int" is written in decimal notation in "int
size" digits, and "st" is extended with the integer values of the
digits thus obtained, in left-to-right order.

The following externals are recommended .

. 'function' date+ year>+ month>+ day>.
The year, month and day are yielded in "year", "month" and "day" .

• 'function' time+ amount>.
If two calls of "time" yield."amount1" and "amount2" respectively,

' then amount2 - amount1 is in sane way indicative for the time spent
by the program between these two calls.

IW17/74 ALEPH Manual 5-5

5.2.2. Words.

For those data that are considered to be arrays of bits (words),
the following standard externals are available •

. 'constant' word size.
The bits in a word are numbered (from left to right) from "word
size" - 1 to 0 •

. 'constant' false, true.
The value of "false11 is o, that of "true" is 1.

'function' bool invert+ >a+ b>~
A word is yielded in "b" that contains a 1 in those positions where
"a" contains a O, and a O otherwise .

• 'function' bool and+ >a+ >b + c>.
A word is yielded in "c" that contains a 1 in those positions where
both "a" and 11bt1 contain a 1., and a O otherwise .

. 'function' bool or+ >a+ >b + c>.
A word is yielded in "c" that contains a 1 in those positions where
either "a" or "b" or both contain a 1, and a O otherwise •

. 'function' bool xor +>a+ >b + c>.
A word is yielded in "c" that contains a 1 in those positions where
"a" and "b" differ, and a O otherwise.

P 'function' left circ + >x> + >n.
The bit-array in "x" is shifted "n" positions
leaving the word on the left are re-introduced
required that O .:s_ n .:s_ word size.

P 'function' left clear+ >x> + >n.

to the left;
on the right.

bits
It is

The bit-array in "x" is shifted
leaving the word on the left are
on the right. It is required that

11n11 positions to the left; bits
discarded and 0-s are introduced
O < n < word size.

P 'function' right circ + >X> + >n.
The bit-array in "x" is shifted "n" positions to the right;
leaving the word on the right are re-introduced on the left.
required that O.::. n .:s_ word size.

P 'function' right clear+ >x> + >n.

bits
It is

rl'he bit-array in "x" is shifted "n" positions to the right; bits
leaving the word on the right are discarded and 0-s are introduced
on the left. It is required that O < n < word size.

IW17/74 AIEPH Manual 5-6

P 'question' is elem+ >x + >n.
Succeeds if the "n"-th bit in 11x" is a 1, fails otherwise. It is
required that O < n < word size .

• 'question' is true+ >x.
Succeeds if "x" contains at least one 1, fails otherwise .

. 'question' is false+ >x.
Succeeds if "x" contains only 0-s, fails otherwise.

P 'function' set elem+ >x> + >n.
The "n"-th bit in "x" is made equal to 1. It is required that O < n
< word size.

P 'function' clear elem+ >x> + >n.
The "n"-th bit in "x" is made equal to 0. It is required that 0 < n
< word size.

P 'function' extract bits+ >X + >n + y>.
A word is yielded in "y" that contains copies of the right-most
"n" bits in "x" in the corresponding positions, and 0-s in the
remaining positions, if any. It is required that 0 < n < word size .

• 'question' first true+ >x + n>.
If "x" contains at least one 1_, "first true" succeeds and yields
the position of the left-most 1 in "n". Otherwise it fails .

. 'function' pack bool +from[]+ >n + word>.
The right-most "n" bits of "word" are filled as follows. If the
element in "from" with address 11 >>from - i" contains at least one
1, bit "i" of "word" is set to 1., and otherwise to 0, for 0 < i <
n. The remaining bits in "word", if any, are 0. It is required-that
0 :s_ n < word size, regardless of pragmats .

. 'action' unpack bool +>word+ []st[].
The stack "st" is extended with "word size" blocks of one location
each, the location with address 11 >>st - i" containing a copy of the
"i"-th bit in "word", for 0 < i < wordsize.

5.2.3. Strings.

For those data in stacks and tables that are considered to be
strings, the following externals are available •

• 'constant' max char.
"max char" has the maximum integer value that corresponds to a
character.

IW17/74 ALEPH Manual 5-7

• 'function' to ascii + >e + d>.
"d" is given the integer value
the character that corTesponds
required that O .:s_ c .:s_ max char .

that corresponds in ASCII-code
to "c" in the code used. It

to
lS

. 'function' from ascii + >c + d>.
"d" is given the integer value that corresponds in the code used to
the character that corresponds to "c" in ASCII. It is required that
0 .:::_ C ,:S_ 127 .

. 'action' pack string+ from[]+ >n + []to[].
The right-most "n" elements of "from" must be values that
correspond to characters. These characters are packed, in some way,
into some number "m" of values, and the stack "to" is extended
with "m" blocks of one location each., containing these values. The
packed format thus obtained is the same as that used for storing
'string's in lists (see 4.1.5), The "pointer" to the string is
the address of the right-most element. So, after a call of "pack
string", the 'limit' >>to is the pointer to the resulting packed
string.

P 'action' unpack string+ from[]+ >p + []to[].
The pointer "p" must point into the list "from" and be the address
of a packed string. This string is unpacked yielding a sequence
of "m" character values, and the stack "to" is extended with
"m" blocks of one location each., containing these values in
left-to-right order.

P 'question' string elem+ text[]+ >p + >n + c>.
The pointer "p" must point into "text" and be the address of a
packed string. If this string has an "n"-th character (counting
from 0), its value is yielded in "c" and "string elem" succeeds;
otherwise it fails.

P 'function' string length+ text[]+ >p + n>.
The pointer "p" must point into "text" and be the address
packed string. The number of characters in this string is
in "nn.

P 'function' compare string+ t1[] + >p1 + t2[] + >p2 + trit>.

of a
yielded

The pointer "p1 11 rffilst point into "t111 and be the address of a
packed string, s1. The pointer "p2" must point into "t211 and be
the address of a packed string., s2. These two strings are compared
in some way: if s1 is smaller than (lexicografically before) s2,
"trit" is set to -1; if they are equal, "trit" is set to O;
otherwise "trit" is set to 1.

P 'action' unstack string+ []st[].
The "max limit11 of "st11 must point into "st" and be the address of
a packed string. The blocks containing this string are removed from
,!'st".

IW17/74 AIEPH J.VJanual 5-8

. 'question' may be string pointer+ text[]+ >p.
Succeeds if "p" points into "text" and can be interpreted as the
address of a packed string. Otherwise it fails.

5.2.4. Lists.

For lists the following externals are available .

• 'constant' nil.
"nil" is a value that does not point into any list .

. 'question' was+ a[]+ >p.
Succeeds if "p" points into "a", fails otherwise .

. 'function' next+ a[]+ >p>.
The calibre of "a" is added to "p" .

. 'function' previous+ a[]+ >p>.
The calibre of "a" is subtracted from "p" .

. 'function' list length+ a[]+ l>.
The number of elements in "a" is yielded in 11111

•

• 'action' unstack+ []st[].
The stack "st" must contain at least one block. The right-most
block of "st" is removed. Its locations can be reclaimed by an
'extension', its contents are lost •

• 'action' unstack to+ []st[]+ >pnt.
Zero or more blocks are removed from the right
so that the "max limit" of "st" becomes equal
cannot be done, an error message follows •

. 'action' unqueue + []st[].

hand side
to "pnt".

of "st",
If this

The stack "st" must contain at least
of "st" is removed. Its (virtual)
lost •

one block. The left-most block
locations and its contents are

• 'action' unqueue to+ []st[]+ >pnt.
Zero or more blocks are removed from the left hand side of "st 11

, so
that the "min limit" of "st" becomes equal to 11pnt 11

• If this cannot
be done, an error message follows •

• 'action' scratch+ []st[].
All blocks in "st" are removed. Their locations can be reclaimed
through 'extension's, their contents are lost.

IW17/74 ALEPH Manual 5-9

. 'action' delete+ []st[].
All blocks in "st" are removed, as in a call of "scratch".
Moreover, the run-time system will disregard "st" until a possible
subsequent 'extension' on "st". Consequently, the remaining stacks
will get better service, but reactivating "st" will be expensive.

5.2.5. Files.

The following standard externals on files are available •

. 'constant' new line, same line, new page.
These constants are predefined values to be used as control
integers for 11charfiles11

• Their intended meanings are "print on new
line", "print again on same line" and "print on first line of next
page" respectively, as far as meaningful for the 'charfile' and as
far as implementable in the system •

. 'constant' rest line.
"rest line" acts as a dummy control integer and is used by "get
line", "put line 11 and 11put char" •

. 'predicate' get line+ ""file+ []st[]+ cint>.
The file "file" must be a charfile. If the file is exhausted, 11get
line" fails. Otherwise the next item in 11file" is read; if it is a
control integer, it is assigned to "cint", otherwise "cint" is set
to "rest line". Then zero or more characters are read from "file"
until the end of the line. The stack "st" is extended with these
characters in left-to-right order.

. 'action' put line + '"'file + a[] + >cint.
The file "file" must be a charfile; 11a" must only contain values
that correspond to characters. If "cint" is not "rest line", a line
with control integer "cint" is written on file 11file 11

, containing
the characters in "a" in left-to-right order. Otherwise the
characters in "a" are appended to the last line written on "file 11

•

. 'predicate' get char + ""file + char>.
The file "file" must be a charfile. If the file is not exhausted,
the next character or control integer is read and delivered in
"char". Otherwise "get char" fails .

. 'action' put char+ ""file+ >char.
The file "file" must be a charfile. The value of "char" must either
correspond to a character or be a control integer. This character
or control integer is written on file "file", except the control
integer "rest line", which is ignored.

IW17/74 ALEPH Manual 5-10

P 'action' put string + '"'file + text[] + >p.
The file "file" must be a charfile; the pointer
into "text" and be the address of a packed string.
written on the file "file" .

. 'predicate' get int + '"'file + int>.

"p II must point
This string is

The file "file" must be a charfile. A call of "get int" will read
and skip any number of spaces and control integers on "file" until
it either reaches the end of the file, in which case it fails,
or finds a digit, plus-sign or minus-sign. It will then read
and collect one or more digits until a non-digit is found:
this non-digit is not read. The value of this stream of digits
considered as a signed decimal number is given in "int".
A subsequent call of "get char" will yield the non-digit mentioned.
If the above cannot be performed, an error message is given.
This rule involves backtrack. It is not intended for use in
programs that handle input very carefully; it is meant to provide
an easy means for reading numbers.

. 'action I put int + 111'file + >int.
"intsize" + 1 characters are appended to the last line on "file",
which must be a charfile. These characters are: zero or more
spaces, the sign of "int" and the characters of the decimal
representation of the absolute value of "int" without leading
zeroes •

. 'constant' numerical, pointer.
These constants are predefined values that can be used as type
indications in datafiles. For their meanings see 4.2.2 ..

. 'predicate' get data + "" file + data> + type>.
The file "file" must be a datafile. If the file is not exhausted.,
the next data-item is read., its value delivered in "data" and its
type in "type". Otherwise it fails. For a more detailed description
see 4.2.2 ••

. 'action' put data + '"'file + >data + >type.
The file "file" must be a datafile. A data-item is written on the
file, consisting of the value "data" and the type "type". For a
more detailed description see 4.2.2 .•

The following four externals are reconmended.

. 'predicate' back char + ""file.
The file "file" must be a charfile. If the last item read was a
con.trol integer, or if there is no last item read, "back char"
fails. Otherwise it succeeds and the file is backspaced over one
character, i.e., a subsequent call of "get char" will yield the
last item read.

IW17/74 AIBPH Manual 5-11

. 'predicate' back data + '"'file.
The file 11file 11 must be a datafile. If there is not yet a last
item read, "back data11 fails. Otherwise it succeeds and the file
is backspaced over one data-item, i.e., a subsequent call of 11get
data" will yield the last item read.

. 'predicate' back line + '"'file.
The file 11file 11 must be a charfile. If there is not yet a last
item read., "back line" fails. Otherwise it succeeds and the file
is backspaced until a subsequent call of "get char" would read the
last control integer read •

• 'predicate' back file + ""file.
If there is not yet a last item read, 11back file11 fails. Otherwise
it succeeds and the file is backspaced or "back-data-ed11 until the
beginning of the file.

IW17/74 AIEPH Manual 6-1

6. Pragmats.

Pragmats are used for three purposes:
a. to control certain aspects of the compilation,
b. to control the functioning of certain standard externals,
c. to supply implementation-dependent inforrr.ation

machine-dependent part of the compiler.
The exact position of the pragmat in the program
significant.

Syntax:

pragmat: pragmat symbol, pragmat item list, point symbol.

and
to the

may be

pragmat item list: pragmat item, (comma symbol, pragmat item list).
pragmat item:

tag, equals symbol, integral denotation;
tag, equals symbol, string denotation;
tag, equals symbol, pragmat item;
pragmat item list pack.

pragmat item list pack:
open symbol, pragmat item list, close symbol.

Example:
1pragmat' title= "aleph compiler",

bounds= (taglist = off, numb adm = on),
macro= (convert 1 to 2 compl, set all bits).

Before the meaning of a 'pragmat' is determined, it is
preprocessed: all 'pragmat item list pack's are removed in the
following way.
For every 'pragmat item list pack' that is preceded by an 'equals
symbol' preceded by a 'tag', the 'equals symbol' and 'tag' are
removed and inserted in front of each 'pragmat item' in the
'pragmat item list pack'.
Subsequently all 'open symbol's and 'close symbol's are removed.

Thus the 'pragmat i tern' :

algol = (apl = (lisp, 2, pl= 1), snobol)

has the same meaning as:

algol = apl = lisp, algol = apl = 2,
algol = apl =pl= 1, algol = snobol.

All 'pragmat item's are now of the form 'tag, equals symbol,
pragmat item or int or string'. They are divided into three
groups according to the 'tag': compiler-pragmats, affecting the
t;ompiler; external-pragmats, affecting the standard externals; and
user-pragmats.

IW17/74 AIBPH Manual 6-2

6.1. Compiler-pragmats.

The 'tag' s "background", "bounds",
"dUltP", "first col", "last col",
compiler-pragmats.

. background = 1 tag'

"class",
"macro"

"compile", "count",
and "title" identify

The 'tag' must identify a list. The identified list will be kept on
background memory if possible and necessary.
The position of this 'pragmat' is irmnaterial .

• bounds= 'tag1' = 'tag2 1

The 'tag1' must identify a list. The 'tag2' can be:
"on":
subsequent 'element's of 'tag1' will be compiled with a dynamic
bound check (if necessary).
"off":
no such check is made.
The standard option is "on".
An 'element' of a formal table or stack will be compiled with a
bound check, unless at that point in the program no bound checks
would be compiled for any 'element' .

• class= 'tag'
The 'tag' can be:
"on":
subsequent 'classification's are compiled with a dynamic check that
determines if the value of its 'classifier' belongs in any area (if
necessary).
"off":
no such check is compiled.
The standard option is "on" .

• compile= 'tag'
The 'tag' can be:
"off":
subsequent program text will be interpreted in the following sense:
a. the 'rule body' of a 'rule declaration', the 'rule tag' of

which is used in normally compiled text will be interpreted as
dummy,

b. a 'rule declaration' the 'rule tag' of which is not used in
normally compiled text will be ignored,

c. a 'data declaration' will be ignored,
d. a 'pragmat item' other than "compile= on" will be ignored;
injudicious application of this pragmat can render a correct
program incorrect.

IW17/74 AIBPH Manual

"on":
normal compilation is resumed.
"all":

6-3

subsequent 'pragmat item's of the form "compile= off" will have no
effect.
The standard option is "on" •

• count= 'tag'
The 'tag' can be:
"rule11

:

a counter is kept for each subsequent "rule" and "compound member".
The initial value of the counter is O; it is incremented by 1 for
every entrance to its "rule" or "compound member". The counters are
printed at program termination.
"member":
same as for "rule", except that a counter is kept for every member.
"off":
no counters are kept for subsequent program text.
The standard option is "off" .

. dump = 'tag'
The 'tag' can be:
''global":
upon error termination a symbolic dump of all global variables and
stacks will be printed.
"rule 11

:

upon error termination a symbolic dump of the run-time stack will
be printed.
"member" :
upon error termination the number of the current member (as
determined by the compiler) will be printed.
The position of this pragmat in the program is imnaterial .

. first col= 'integral denotation'
Call the value of the 'integral denotation' i. The first i-1
characters on subsequent program lines are ignored. This alignment
can be revoked in another "first col" pragmat • .An initial pragmat
"first col= 111 is assumed •

• last col= 'integral denotation'
Call the value of the 'integral denotation' i. All characters
beyond the i-th position on subsequent program lines are ignored.
This alignment can be revoked in another "last col" pragmat . .An
initial pragmat "last col= 72" is assumed .

• macro= 'tag'
The 'tag' must identify a non-recursive rule. Calls of this rule
will be implemented through textual substitution rather than by
subroutine call.

IW17 /74 ALEPH Manual 6-4

6.2.

. title= 'string denotation'
The 'string denotation' is the title of the program.
The standard title is empty.

External-pragmats.
The 'tag's "overflow",
external -pragmats. They
standard externals that,
considerable tine .

"wrong bit" and "wrong string" identify
can be used to control those tests in the
in the average implementation, will need

. overflow= 'tag'
The 'tag' can be:
"on":
a run-time test is made to check that a resulting integral value
lies between "min int" and "max int".
"off":
no such test is made.
The standard option is "on".

This pra0]18.t affects the standard externals "plus",
"times", "incr" and 11decr" •

• wrong bit= 'tag'
The 'tag' can be:
"on":

"minus",

a run-time test is made to check that no non-existing bits in a
word are addressed.
"off":
no such test is made.
The standard option is "on".

This pragmat affects the standard externals "left circ", "left
clear", "right circ", "right clear", "is elem", "set elem", "clear
elem" and "extract bits" .

• wrong string= 'tag'
The 'tag' can be:
"on":
a run-time test is made to check that a pointer, purported to point
to a string in a given list, indeed does so.
"off":
no such test is made.
The standard option is "on".

This pra0]18.t affects the standard externals "unpack string",
"string elem", "string length", "compare string", "unstack string"
and "put string".

IW17/74 ALEPH Manual 6-5

6.3. User-pragrnats.

Pragmats not identified in 6.1 or 6.2 are considered user-pragmats
and are transferred to the machine-dependent part of the compiler.

,,

IW17 /74

7.

7 .1.

AlEPH Manual 7-1

The representation of programs.

The program.
The program produced by the notion 'program' consists of a series
of symbols. Into this program cormnents may be inserted in the
following way.
The program is considered as a sequence of the following units:

'tag's,
'integral denotation's,
'character denotation's,
'string denotation's and
'symbol's not occurring in one of the above.

Spaces may be added in front of all these units and inside 'tag's
and 'integral denotation's.
Long cormnents may be added in front of all these units. A long
comment consists of a dollar-sign($), followed by zero or more
characters which are not dollar-signs, followed by a dollar-sign.
Short cormnents may be added in front of all units except 'tag's and
'integral denotation I s. A short cormnent consists of a sharp-sign
(#) followed by zero or more letters, digits and spaces.

In the program thus obtained all symbols are expanded into
characters (e.g., 'variable symbol' turns into "'var'").
The program text is then divided into lines in such a way that no
cormnent is spread over two or more lines. If a line ends with a
dollar-sign from a long cormnent, this dollar-sign may be omitted.
In other words: long cormnents start with a dollar-sign and end at a
dollar-sign or at the end of the line; short comments start with a
sharp-sign and end at the first character that is not a letter, a
digit or a space, or at the end of the line.

Depending on the pragmats "first col" and "last col" (see 6.1.) a
number of characters must be added before each line or may be added
behind each line.

The characters.

symbol re2resentation
absolute symbol I
action symbol 'action' or 'act'
actual affix symbol +

box symbol =
bus symbol] or)
by symbol I

charfile symbol 'charfile'
close symbol)
colon symbol
COIJID:l symbol ,
constant symbol 'constant' or 'est'

IW17/74 ALEPH Manual

datafile symbol

end symbol
equals symbol
exit symbol
external symbol

failure symbol

'datafile'

'end'
=
'exit'
'external'

formal affix symbol +
function symbol 'function' or 'fct'

left symbol <
local affix symbol

minus symbol

of symbol
open symbol

plus symbol
point symbol
pragmat symbol
predicate symbol

question symbol
quote symbol

repeat symbol
right symbol
root symbol

semicolon symbol
stack symbol
sub symbol
success symbol

table symbol
times symbol

up to symbol

variable symbol

X
(

+

'pragrnat'
'predicate' or 1pred'

'question' or 'qu'
II

>
'root'

,
'stack'
[or (
+

'table'
X

'variable' or 'var'

7-2

IW17/74 ALEPH Manual 8-1

8. Exmgples.

,,

Example 1:

$ towers of hanoi $
1 charfile' print = "output">.

'action' move tower+ >length+ >from+ >via+ >to:
length = O;
deer+ length, move tower+ length+ from+ to+ via,
move disc+ from+ to, move tower+ length+ via+ from+ to.

'action' move disc+ >s1 + >s2:
put char+ print+ s1, put char+ print+ s2,
put char+ print+//.

'action' root: move tower+ 6 +/a/+ /b/ + /c/.

'root' root.

'end'

Example 2:

$ towers of hanoi, full printing of the towers$
'charfile' print= "output">.

'stack' [1] a, [1] b, [1] c.

'constant' size= 5.

'action' move tower+ >length+ []from[]+ []via[]+ []to[]:
length= O;
deer+ length, move tower+ length+ from+ to+ via,
move disc+ from+ to, print towers,
move tower+ length+ via+ from+ to.

'action' move disc+ []st1[] + []st2[]:
x st1[>>st1] -> st2 x st2, unstack+ st1.

'action' print towers - ln:
size-> ln,

(lines:
1n = O;
print disc+ a+ ln, print disc+ b + ln,
print disc+ c + ln, put char+ print+ new line,
deer+ ln, :lines).

'action' print disc+ []st[]+ >line - index:
minus+ line+ 1 + index, plus+ index+ <<st+ index,

IW17/74 AIEPH Manual

(was+ st+ index, print actual disc+ st[index];
print blank disc).

'action' print actual disc+ >nmb - spc:
minus+ size+ nmb + spc,
repeat+ spc +//,repeat+ nrnb + /x/, repeat+ 1 + /x/,
repeat+ nmb + /x/, repeat+ spc + / /.

'action' print blank disc:
repeat+ size+//, repeat+ 1 +//,repeat+ size+//.

'action' repeat+ >ent + >sb:
cnt = 0; put char+ print+ sb, deer+ cnt, :repeat.

'action' play towers - n:
size -> n.,

(fill a: n = 0; deer+ n, x n->a x a, :fill a),
print towers, move tower+ size+ a+ b + c.

'root' play towers.

'end'

Example 3:

$ symbolic differentiation, problem iii in "machine oriented
$ languages bulletin", molb 3.1.2 • ., (1973). $
'charfile' out= "output">.

'stack' [100] (op, left, right) expr.

8-2

'table' operator = ("+":plus op, "-":min op,"x": tim op, 11/":div op,
"ln": 1n op$ ln(f) is represented as 0 "ln" f $,
"pow": pow op$ pow(f, g) is represented as f "pow" g $).

'stack' [10] const = (0: c zero, 1: cone, 2: c two).

'stack' [1] var = ("x": x var).

'action' derivative+ >e + de> - f - df - g - dg - n1 - n2 - n3:
was+ const + e, c zero-> de;
was+ var+ e, cone-> de;
leftxexprle] -> f, rightxexpr[e] -> g,
derivative+ f + df., derivative+ g + dg,

(= opxexpr[e] =
[plus op], gen node+ plus op+ df + dg + de;
[min opj, gen node + min op + df + dg + de;
[tim op],

gen node+ tim op+ f + dg + n1,
gen node+ tim op+ df + g + n2,
gen node+ plus op+ n1 + n2 + de;

[div op].,

Thl17/74 A.IEPH Manual 8-3

gen node + t:iJn op + df + g + n1,
gen node+ tirn op+ f + dg + n2,
gen node+ min op+ n1 + n2 + n1,
gen node+ pow op+ g + c two+ n2,
gen node+ div op+ n1 + n2 + de;

[ln op], gen node+ div op+ dg + g + de;
[pow op],

gen node+ min op+ g +cone+ n1,
gen node+ pow op+ f + n1 + n1,
gen node+ tirn op+ df + g + n2,
gen node+ tim op+ n2 + n1 + n1,
gen node+ 1n op+ c zero+ f + n2,
gen node+ tim op+ n2 + dg + n2,
gen node+ pow op+ f + g + n3,
gen node+ tirn op+ n2 + n3 + n2,
gen node+ plus op+ n1 + n2 + de;

+).

'action' print ex.pr+ >e - zz:
was+ const + e, put int+ out+ const[e];
was+ var+ e, put string+ out+ var+ e;
opxexpr[ej -> zz,

(= zz =

) .

[plus op; min op; tirn op; div op],
put char+ out+/(/, print ex.pr+ left xexpr[e],
put char+ out+/)/, put string+ out+ operator+ zz,
put char+ out+/(/, print ex.pr+ rightxexpr[e],
put char+ out+/)/;

put string+ out+ operator+ zz, put char+ out+/(/,
(equal+ zz + pow op, print ex.pr+ leftxexpr[e],
put char+ out+/,/;+), print ex.pr+ rightxexpr[eJ,
put char+ out+/)/

'action' test - e1 - e2 - e3:
gen node+ pow op+ x var+ x var+ e1, $ pow(x, x) $

print ex.pr+ e1,
put char+ out+ new line,

derivative+ e1 + e2, print ex.pr+ e2,
put char+ out+ new line,

derivative+ e2 + e3, print ex.pr+ e3,
put char+ out+ new line,

gen node+ div op+ x var+ x var+ e1, $ x/x $
print ex.pr+ e1,
put char + out + new line,

derivative+ e1 + e2, print ex.pr+ e2,
put char+ out+ new line,

derivative+ e2 + e3, print ex.pr+ e3,
put char+ out+ new line.

,, action' gen node + >0p + > left + >right + res>:
x op-> op, left-> left, right-> rightx ex.pr,
>>ex.pr-> res.

IW17/74 ALEPH Manual

'root' test.

'end'

Example 4:

'action' quicksort +>from+ >to+ a[]
- left - middle - right - amiddle:

$
$ this rule sorts the elements in the stack "a" from "from11 to
$ "to" in ascending order. the algorithm used is a variation of
$ "quicksort"., computer j. 5 (1), 10-15 (1962)
$

mreq + from + to;
$ the area to be sorted is not empty:
$ it is split into three parts, left, middle and right.
$ the middle contains one or more equal elements
from-> left, random+ from+ to+ middle, to-> right,

a[middle] -> a middle,
(split:

(push right:
more+ left+ to;
more+ a[left] + a middle;
incr + left, : push right),

(push left:
more+ from+ right;
more+ a middle+ a[right];
deer+ right, : push left),

(less+ left+ right,
(- elem:

8-4

a[left] -> elem, a[right] -> a[left], elem-> a[right]),
incr + left, deer+ right, : split;

less+ middle+ right,
a[right] -> a[middle], a middle-> a[rightJ,
deer+ right;

more+ middle+ left,

+)
) ,

a[left] -> a[middle], a middle-> a[left], incr + left;

quicksort +from+ right+ a, quicksort +left+ to+ a.

Example 5:

$ "next perm" considers the right-most "n11 elements of "st"
$ as a permutation and replaces them by the elements of the next
$ permutation in lexicographical order. If there is no next
$ permutation, "next perm11 fails.

'question' next perm+ >n + []st[] - br - item - p - q:
$ find break point or fail:

IW17/74 AIEPH Manual

min int -> item, >>st -> br, minus + >>st + n + p,
(breakpoint:

lseq + br + P, -;

8-5

less+ st[br] + item; st[br] -> item, deer+ br, :breakpoint),
$ invert part after break point:
plus+ br + 1 + P, >>St-> q,

(invert:
lseq + q + p;
st[p] -> item, st[q] -> st[p], item-> stlq],

incr + p, deer+ q, :invert),
$ find the value of the first element which is
$ larger than that at the breakpoint:
stlbrJ -> item, br -> p,

(first: incr + p, (more+ st[p] + item; :first)),
$ and swap them:
st[p] -> st[br], item-> st[p].

IW17/74 AIEPH Manual

9. The grammar.

[syntax of aleph, 28-05-1974]

[7 .2. symbols]

open symbol
close symbol
absolute symbol
plus symbol
rrrinus symbol
times symbol
by symbol
left symbol
right symbol
equals symbol
point symbol
colon symbol
semicolon symbol
comma symbol
sub symbol
bus symbol
quote symbol
formal affix symbol
local affix symbol
repeat symbol
success symbol
failure symbol
box symbol
up to symbol
actual affix symbol
of symbol

L bold face symbols]
constant symbol
variable symbol
stack symbol
table symbol
charfile symbol
datafile symbol
predicate symbol
question symbol
action symbol
function symbol
external symbol
pragmat symbol
exit symbol
root symbol
end symbol

,,
[other primitives J
tag;

[(];
[)];
[I] ;
(+] ;
[-];
[X];

[I];
[<];
[>] ;
[=];
[.];
[];
[;] ;
[,] ;
[[];
[] '
[II] j

[+];
[-];
[];
[+] ;
[-];
[=] ;
[];
[+] ;
[X];

[3.7., 4.1.1., 4.1.5., 6]
[3.7., 4.1.1., 4.1.5., 6]
[4.1.1.]
[4.1.1.]
[4.1.1.]
[4.1.1.]
[4.1.1.]
[4.1.7.]
[3.1.1., 4.1.7., 4.2.]
[3.4., 4.1.5., e.a.]

[3.2.2., 4.1.5.]
[3.2.2., 3.8.]
[3.2.2., 3.8., e.a.]
[3.2.1., 3.5., 3.8., 4.1.6.]
[3.2.1., 3.5., 3.8., 4.1.6.]
(4.1.5.]
[3.2.1.]
[3.2.2.]
l 3.6. J
[3.6.]
[3.6.]
[3.8., 4.1.6.]
[3.8.]
[3.5.]
[3.2.3., 3.5.]

['constant', 'est'];
['variable', 'var'];
['stack'] ;

[4.1.2., 5.1.]
[4.1.3.]
[4.1.6.]

['table'] ;
[1 charfile'] ;
['datafile'];
['predicate', 'pred'];
['question', 'qu'];
['action' , 'act'] ;
[1 function 1 , 'fct'] ;
['external '] ;
['pragrr:at'] ;
[I exit I] j

['root'] ;
['end'] ;

[4.1.5 • ., 5.1.]
[4.2.]
[4.2.]
[3.2.1.]
[3.2.1.]
[3.2.1.]
[3.2.1.]
[5.1.]
[6.]
[3.6.]
[3.1.]
[3.1.]

[4.1.5., 6., e.a.]

9-1

IW17/74

digit;
character;
non quote item.

[3.1. the program]
program:

AIBPH Manual

[4.1.1.]
[4.1.1. J
[4.1.5.]

(information sequence), root, (information sequence), end symbol.
information sequence:

information, (information sequence).
information:

declaration; pragrrat.
root:

root symbol, affix form, point symbol.
declaration:

rule declaration;
data declaration;
external declaration.

[3.2.1. rule declarations J
rule declaration:

typer, rule tag, (formal affix sequence), actual rule, point symbol.
typer:

action symbol; function symbol; predicate symbol; question symbol.
rule tag:

tag.
formal affix sequence:

formal affix, (formal affix sequence).
formal affix:

formal affix symbol, formal.
formal:

formal variable; formal stack; formal table; formal file.
formal variable:

(right symbol), variable tag, (right symbol).
formal table:

(field list pack), table tag, sub bus.
formal stack:

sub bus, (field list pack), stack tag, sub bus.
sub bus:

sub symbol, bus symbol.
forrral file:

quote image, file tag.

[3.2.2. actual rules J
actual rule:

(local affix sequence), colon symbol, rule body.
local affix sequence:

local affix, (local affix sequence).
local affix:

local affix symbol, local variable.
local VGITiable:

variable tag.
rule body:

9-2

IW17/74 ALEPH Manual

alternative series; classification.
alternative series:

alternative, (semicoJ.on symbol, alternative series).
alternative:

last member; member, comma symbol, alternative.

[3.2.3. members]
J.ast member:

member; te:rIJ1inator.
member:

affix form; operation; compound member.

[3.4. operations]
operation:

transport; identity; extension.
transport:

source, destination sequence.
destination sequence:

destination, (destination sequence).
destination:

to token, variable.
to token:

minus symbol, right symboJ..
identity:

source, equals symbol, source.
extension:

of symbol, field transport list, of symbol, stack tag.
field transport list:

field transport, (comma symbol, field transport list).
field transport:

source, selector destination sequence.
selector destination sequence:

selector destination, (selector destination sequence).
selector destination:

to token, selector.

[3.5. affix forms]
affix form:

rule tag, (actual affix sequence).
actual affix sequence:

actual affix, (actual affix sequence).
actual affix:

actual affix symbol, actual.
actual:

source; list tag; file tag.
source:

constant; variable.
constant:

plain value; table element.
variable:

variable tag; stack element.
table element:

(selector, of symbol), table tag, sub symbol, source, bus syrrbol.

9-3

N17/74 AIEPH Manual

stack element:
(selector, of symbol), stack tag, sub symbol, source, bus symbol.

[3.6. terminators]
terminator:

jump; exit; success symbol; failure symbol.
jump:

repeat symbol, rule tag.
exit:

exit symbol, expression.

[3.7. compound merrbers]
compound member:

open symbol, (local part, colon symbol), rule body, close syrrbol.
local part:

rule tag, (local affix sequence); local affix sequence.

[3.8. classifications]
classification:

classifier box, class chain.
classifier box:

box symbol, classifier, box syrrbol.
classifier:

source.
class chain:

class, semicolon symbol, class chain; last class.
class:

area, corrrna symbol, alternative.
area:

sub symbol, zone series, bus symbol.
zone series:

zone, (semicolon symbol, zone series).
zone:

(expression), up to symbol, (expression); expression; list tag.
last class:

class; alternative.

[4. data declarations]
data declaration:

constant declaration;
variable declaration;
stack declaration;
table declaration;
file declaration.

[4.1.1. expressions]
expression:

(plus minus), term; expression, plus minus, term.
term:

(term, times by), base.
base: ,,

plain value; expression pack.
plain value:

9-4

IW17/74 ALEPH Manual

integral denotation; character denotation; constant tag; limit.
integral denotation:

(integral denotation), digit.
character denotation:

absolute symbol., character, absolute symbol.
expression pack:

open symbol, expression, close symbol.
plus minus:

plus symbol; minus symbol.
times by:

times symbol; by syrrbol.

[4.1.2. constant declarations]
constant declaration:

constant symbol, constant description list, point symbol.
constant description list:

constant description, (comma symbol, constant description list).
constant description:

constant tag, equals symbol, expression.
constant tag:

tag.

[4.1.3. variable declarations]
variable declaration:

variable symbol, variable description list, point symbol.
variable description list:

variable description, (comma symbol, variable description list).
variable description:

variable tag., equals symbol, expression.
variable tag:

tag.

[4.1.5. table declarations]
table declaration:

table symbol, table description list, point symbol.
table description list:

table description, (comma symbol, table description list).
table description: ·

table head, equals symbol, filling list pack.
table head:

(field list pack), table tag.
table tag:

tag.
field list pack:

open symbol, field list, close symbol.
field list:

field, (comma symbol, field list).
field:

selector chain.
selector chain:

selector, (equals symbol, selector chain).
selector:

tag.

9-5

IW17 /74 ALEPH Manual

filling list pack:
open symbol, filling list, close symbol.

filling list:
filling, (comna symbol, filling list).

filling:
single block; compound block; string filling.

single block:
expression, (pointer initialization).

compound block:
expression list proper pack, (pointer initialization).

pointer initialization:
colon symbol, constant tag.

expression list proper pack:
open symbol, expression list proper, close symbol.

expression list proper:
expression, comma symbol, expression list.

expression list:
expression, (comma symbol, expression list).

string filling:
string denotation, (pointer initialization).

string denotation:
quote symbol, (string item sequence), quote symbol.

string item sequence:
string item, (string item sequence).

string item:
non quote item; quote image.

quote image:
quote symbol, quote symbol.

[4.1.6. stack declarations]
stack declaration:

stack symbol, stack description list, point symbol.
stack description list:

stack description, (cornma symbol, stack description list).
stack description:

stack head, (equals symbol, filling list pack).
stack head:

size estimate, (field list pack), stack tag.
size estirrate:

relative size; absolute size.
relative size:

sub symbol, expression, bus symbol.
absolute size:

sub symbol, box symbol, expression, box symbol, bus symbol.
stack tag:

tag.

[4.1.7. limits]
limit:

min limit; rrax limit; calibre.
min limit:

min token., list tag.
max lirni t :

9-6

IW17/74

rmx token, list tag.
calibre:

calibre token, list tag.
list tag:

stack tag; table tag.
min token:

left symbol, left symbol.
max token:

right symbol, right symbol.
calibre token:

left symbol, right symbol.

[4.2. file declarations]
file declaration:

ALEPH Manual

file typer, file description list, point symbol.
file typer:

charfile symbol; datafile symbol.
file description list:

file description, (comma symbol, file description list).
file description:

file tag, (area),

9-7

equals symbol, (right symbol), string denotation, (right symbol).
file tag:

tag.

[5.1. external declarations]
external declaration:

external rule declaration;
external table declaration;
external constant declaration.

external rule declaration:
external symbol, typer, external rule description list, point symbol.

external rule description list:
external rule description,

(comma symbol, external rule description list).
external rule description:

rule tag, (formal affix sequence), equals symbol, string denotation.
external table declaration:

external symbol, table symbol,
external table description list, point symbol.

external table description list:
external table description,

(comma symbol, external table description list).
external table description:

(field list pack), table tag, equals symbol, string denotation.
external constant declaration:

external symbol, constant symbol,
external constant description list, point symbol.

external constant description list:
external constant description,

(@omma symbol, external constant description list).
external constant description:

constant tag, equals symbol, string denotation.

IW17/74

[6. pragmats]
pragmat:

ALEPH Manual

pragmat symbol, pragmat item list, point symbol.
pragmat item list:

pragmat item, (comma symbol, pragmat item list).
pragmat item:

tag, equals symbol, integral denotation;
tag, equals symbol, string denotation;
tag, equals symbol, pragmat item;
pragmat item list pack.

pragmat item list pack:
open symbol, pragmat item list, close symbol.

9-8

IW17/74 AIEPH Manual

10. Index.

absolute size: 4.1.4. 4.1.6.
action: 3.2.1. 3.4.3.
actual affix: 3.3.2. 3.5.
actual rule: 3.2.1. 3.2.2.
add: 5.2.1.
address space: 4.1.4.
affix form: 3.2.3. 3.5.
affix grammars: 1.2.
AIEPH: O.
ALGOL 68: 1.2.
alignment: 6.1.
alternative: 3.2.2.
area: 3.8. 4.2. 4.2.1.

4.2.2.
attribute: 3. 7.
back char: 5.2.5.
back data: 5.2.5.
back file: 5.2.5.
background: 6.1.
back line: 5.2.5.
backtrack-liable: 3,2.2.

3.9.3.
bits: 5.2.2.
block: 3.4.1. 3.4.3.

4.1.5.2.
bool and: 5.2.2.
bool invert: 5.2.2.
bool or: 5.2.2.
bool xor: 5.2.2.
bounds: 6.1.
calibre: 3.4.3. 4.1.4.

4.1.5.2. 4.1.6.
4.1. 7.

call: 3.2.2. 3.5.
CDL: 0.
character denotation: 3.4.

3.4.1. 4.1.1.
charfile: 4.2.1.
class: 3.8. 6.1.
classification: 3.8. 6.1.
clear elem: 5.2.2. 6.2.
corrment: 7.1.
compare string: 5.2.3. 6.2.
compile: 6 .1.
cornpiler-pragmat: 6.1.
compound block: 4.1.5.
compound member: 3.7. 6.1.
constant: 3,4.1. 4.1.2.

4.1. 7.
control integer: 4.2.1.
count: 6.1.
data: 2. 3.3.1.
data declaration: 4.

datafile:
data-item:
data types:

4.2.2.
4.2.2.
4.

date: 5 . 2 • 1.
declaration: 3.1.1.
deer: 5. 2 .1. 6. 2.

10-1

delete: 4.1.4. 5.2.4.
destination: 3.4. 3.4.1.
directly executable instruction:

3.1.1.
divrem: 5 .2 .1.
dollar-sign: 7.1.
dump: 6.1.
dynamic bound check: 6.1.
element: 3.4. 3.4.1. 4.1.4.

4.1.5. 4.1.6.
equal: 5 . 2. 1.
equality: 3.4.2.
error: 2. 3.1.1. 3.2.1.

3.2.2. 3.4.1. 3.8.
4.2.2. 5.2.5. 6.1.

execution: 3.2.2. 3.5.
'exit 1

: 3. 1. 1. 3. 6.
expression: 3.6. 4.1.1.

4.1.2. 4.1.3.
4.1.6.

extension: 3.4. 3.4.3.
4.1.4.

external constant: 5.1.
external-pragmat: 6.2.
external rule: 5.1.
external table: 5.1.
extract bits: 5.2.2. 6.2.
fail: 3.2.1. 3.9.2.
failure symbol: 3.6.
false: 5.2.2.
field: 3. 3 .1. 3. 4. 3. 4. 3.

4.1.5.
field transport: 3.4.
file: 4.2. 5.2.5.
filling: 4.1.4. 4.1.5.
first col: 6.1. 7.1.
first true: 5.2.2.
formal affix: 3.3.1. 3.5.

3.6.
from ascii: 5.2.3.
function: 3.2.1. 3.4.1.
get char: 4.2.1. 5.2.5.
get data: 4.2.2. 5,2.5.
get int: 5.2.5.
get line: 4.2.1. 5.2.5.
grammar: 1. 1. 2.
identity: 3.4. 3.4.2.

IW17/74 AIEPH Manual

incr: 5.2.1. 6.2.
indication: 4.2.2.
information: 3.1.1.
initialized: 3,3.1. 3.3.3.

3.4.1. 3.5. 3.7.
input file: 2. 4.2.
integer: 4. 5.2.1.
integer division: 4.1.1.

5.2.1.
integer overflow: 6.2.
integer value: 4.2.2.
integral denotation: 3.4.

3.4.1. 4.1.1.
int size: 5.2.1.
is elem: 5.2.2. 6.2.
is true: 5.2.2.
I/O file: 4.2.
Jump: 3.6.
last col: 6.1. 7.1.
left circ: 5.2.2. 6.2.
left clear: 5.2.2. 6.2.
less: 5.2.1.
limit: 4.1.4. 4.1.7.
line: 4.2.1.
list : 4 • 1. 4 • 5 • 2. 4 •
list length: 5.2.4.
local affix: 3.2.2. 3.3.3.
location: 3.2.2. 3,4.1.

3.4.3. 4. 4.1.3.
4.1.4. 4.1.6.
5.2.4.

long comnent: 7,1.
lseq: 5 • 2 • 1.
macro: 6.1.
max char: 5.2.3.
max int: 5.2.1. 6.2.
max limit: 4.1.4. 4.1.5.1.

4.1.5.2. 4.1.6.
4.1. 7.

may be string pointer: 5.2.3.
member: 3.2.2. 3.2.3.
min int: 5,2.1. 6.2.
min limit: 4.1.4. 4.1.5.2.

4.1.6. 4.1.7.
minus: 5.2.1. 6.2.
more: 5.2.1.
mreq: 5.2.1.
mult: 5.2.1.
new line: 4.2.1. 5.2.5.
new page: 4.2.1. 5.2.5.

, next : 5 . 2. 4.
nil: 4.1.4. 5.2.4.
non quote item: 4.1.5.

noteq: 5 . 2 .1.
numerical: 4.2.2. 5.2.5.
one: 5.2.1.

10-2

operating system: 2. 4.2.
operation: 3.2.3. 3.4.
output file: 2. 4.2.
overflow: 6.2.
P: 5.2.
pack bool: 5.2.2.
pack int: 5.2.1.
pack string: 5.2.3.
parameter: 1.2.
plus: 5.2.1. 6.2.
PL/I: 1. 2.
pointer: 4.2.2. 5.2.5.
pointer initialization:

4. 1.5.
pragrnat: 6.
predicate: 3.2.1.
previous: 5.2.4.
printer: 4.2.1.
program: 2. 3.1.1. 7.1.
put char: 5.2.5.
put data: 4.2.2. 5.2.5.
put int: 5.2.5.
put line: 5.2.5.
put string: 5.2.5. 6.2.
question: 3.2.1. 3.4.2.
question, committing: 1.4.
question, non-committal: 1.4.
queue: 4 .1. 4 •
quote image: 4.1.5.
random: 5.2.1.
recursion: 1.5.
relative size: 4.1.4. 4.1.6.
rest line: 4.2.1. 5.2.5.
results: 2.
right circ: 5.2.2. 6.2.
right clear: 5.2.2. b.2.
right-recursion: 1.3.
root : 3. 1. 1.
rule : 3. 2 • 6 . 1.
rule body: 3.2.2. 3.7.
rule declaration: 3.2.1.
same line: 4.2.1. 5.2.5.
scratch: 4.1.4. 5.2.4.
scratch file: 4.2.
selector: 3, 4. 3. 4 .1.

3.4.3. 4.1.5.
selector destination: 3.4.
semantics: 1.2.
set elem: 5.2.2. 6.2.
set random: 5.2.1.

IW17/74

set real random: 5.2.1.
sharp-sign: 7.1.
short comment : 7 . 1.

.ALEPH Manual

side effects: 3.2.1. 3,2.2.
3.4.1. 3.9.1.

single block: 4.1.5.
size estimate: 4.1.6.
source: 3.3.2. 3.4. 3,4.1.
sqrt: 5. 2 .1.
stack: 3,4.3. 4.1.4. 4.1.6.
standard externals: 2.
string: 5.2.3. 6.2.
string denotation: 4.1.5.

4.2.
string elem: 5.2.3. 6.2.
string filling: 4.1.5.
string item: 4.1.5.
string length: 5.2.3. 6.2.
structured programming: O.
sub bus : 3. 3. 1.
subtr: 5.2.1.
succeed: 3.2.1.
success symbol: 3.6.
syntax: 2.
table: 4.1.4. 4.1.5.
table head: 4.1.5.
'tag': 2. 3.1.2. 3.3.1.

3.3.3. 3.4.1. 3.7.
4.1.1. 5.1. 7.1.

termination state: 2. 3.1.1.
3.6.

terminator: 3.2.3. 3.6.
time: 5.2.1. 6.2.
times: 5 . 2 . 1.
title: 6.1.
to ascii: 5.2.3.
to token: 3.4.
transport: 3.4. 3.4.1. 3.5.

4.1.6.
true: 5 • 2. 2.
typer: 3.2.1.
unpack bool: 5.2.2.
unpack int: 5.2.1.
unpack string: 5.2.3. 6.2.
unqueue: 4.1.4. 5.2.4.
unqueue n: 4.1.4.
unqueue to: 5,2.4.
unstack: 4.1.4. 5.2.4.
unstack n: 4.1.4.
unstack string: 5.2.3. 6.2.
t:mstack to: 5.2.4.
user-prag]Ilat: 6.3.
variable: 3.3. 3.3.3.

3.4.1. 4.1.3.
virtual max limit: 4 .1. 4.
virtual min limit: 4.1.4.
was: 5.2.4.
word: 5.2.2.
word size: 5.2.2.
wrong bit: 6.2.
wrong string: 6.2.
zero: 5.2.1.
zone: 3. 8.
. : 5.2.

10-3

,;

