
AFDELING INFORMATICA

stichting

mathematisch

centrum

IN 7/74 APRIL

D. GRUNE, L.G.L.T. MEERTENS, J.C. van VLIET & R. van VLIET
REMARKS ON THE TRANSPUT SECTION OF THE REVISED REPORT ON
ALGOL 68

~
MC

2e boerhaavestraat 49 amsterdam

~THEE:< M/\.T!-ff:f'~.~-T/CCH c;::.-~ I"'"'''-':
AMSlc:,-\uAM

PJc1..nte.d a.t :the. Ma.thema.tic.a.l Ce.n:tll.e., 49, 2e. Boetr.haa.veti..tlta.a:t, Am.6:tetr.dam.

The. Ma.thema.tic.a.l Ce.n:tll.e., 6ou.nde.d :the. 11-:th 06 Fe.bll.u.cvc.y 1946, i.l, a. non
pll.o6U ino;t.i;tution a,lm,i.ng a.t :the. pll.omo:Uon 06 puJLe. ma.the.ma.ti.Cl> a.nd ..l:t6
a.ppUea.:Uovu.. I:t i.l, .6ponooll.e.d by :the. Ne.:thvita.nd.6 Govetr.nme.nt .th/Lough :the.
Ne.:thvita.nd.6 OJr.ga.niza.tion 6oll. .the. Adva.nc.eme.nt o 6 PUite Reti e.Mc.h (Z •. w. 0) ,
by .the. Mu.n,i.upa.U.ty 06 Am.6.tetr.da.m, by :the. Unive.MUy 06 Am.6.tetr.dam, by
.the. Fll.e.e. Unive.MUy a.t Am.6.tetr.dam, a.nd by indU6.tlueti.

AMS (MOS) subject classification scheme (1970): 68A15
ACM - Computing Reviews - category: 4.41, 5.24

Remarks on the transput section of the revised report on AiflOL 68

by

D. Grune, L.G.L.T. Meertens, J.C. van Vliet & R. van Vliet

ABSTRACT

This document is the deposit of a thorough study of the transput section of

the Revised Report on the Algorithmic Language AiflOL 68. It is especially

concerned with the topics 'positioning', 'lay-out routines' and 'mending'.

This report contains, amongst others, a complete set of routines on format

less transput. The document is intended to be discussed at the meeting of

the WG 2.1. Standing Subcommittee on AiflOL 68 Support, April 7-10, 1974 at

Cambridge (England).

During the past months., the ALGOL 68 group at the Mathematical
Centre have devoted the larger part of their time to studying
the transput section of the Report. This has resulted in the
unearthing of various phenomena., ranging from mildJy surprising
to severely shocking. Many of these were concerned with
insufficient_ checking after a call of an event routine. Since
then, a series of changes to the transput routines have been made
or proposed, intended to remove the worst of these phenomena.
In our opinion, this objective has only partially been reached;
although the checking is perfonned much more thoroughly now
(to some extent at the cost of the readability of the routines
concerned), the reaction if these checks fail is often still
surprising. In part A of the present document, this point is
elaborated upon. Other.remarks are given in parts B., C and D.

Since it was not clear to us how some of the objectionable
situations could be properly mended within·the present framework
of routines., (which are complicated enough as they stand,)
we have worked out our suggestions by desi@1ing ourselves a new
set of routines for checking, positioning and mending, whose use
is illustrated in put, get, put bin and get bin. 'Ille time has
failed us to try and bring this set again in line with the
present set of routines., although there seems to be some
functional similarity between, e.g • ., our ensure logical file and
the newly proposed check logical pos, or our ensure page and the
newly proposed get good file. (We have not studied in detail the
formatted transput routines either.)

Parts E., F and G contain., respectively., a summary of some
properties in which our routines differ from the present or
proposed system., the text of the routines, and a list of
pre- and postconditions associated with the routines that may
help in ascertaining their corTectness. We hope that our effort
may contribute to bringing .the transput section into good shape.

1

2

A. To loop, or not to loop?

In this section it is argued that, in order to allow the user
to supply a reasonable system of event routines, the following
requirement should be met:

If the user, through his mending, commits a crime
different from the one that caused the event routine
to be called, then this new crime will be signalled
also by the calling of an event routine.

Examples are given where the present system of transput
routines fails in this respect.

Consider the following situation:
. a transput routine is called;
• in the sequence of tests preceding the transput action,

an "event" is detected;
• the corresponding event routine is called and returns true;
. again an event (possibly the same one) is detected.

The question is, what reaction to choose in this situation:
a) to call again an event routine, and so on, with the risk
of a possibly infinite loop, or
b) to call undefined, even though the user's mending was perhaps
quite reasonable and would not have caused a loop.

It appears that we have conflicting desires, on the one hand the
desire to prevent loops, on the other hand the desire to allow any
reasonable way of mending. The AB version of the transput routines
contains some compromise between these two desires. For example,
the following cases may cause loops (cf. the thesis by R. G. Fisker):

• proc mend char error= (ref file f, ref char sugg) bool:
(sugg:= some unconvertible character; true)
when called from put char;
proc mend page= (ref file .f) bool:
(set(f, 1, 1, 81) ¢line ended A 7 page ended~; true),
proc mend line= (ref file f) bool:
(set(f, 1, 61, 1) ¢Page ended~true)
when called from get good· line/pag~

. proc mend line= (ref file f) bool:
(backspace(f); true)
when called from skip spaces in get.

In many other cases, loops are prevented. The philosophy used is:
"loops may only arise if the user, through his event routine,
commits a different crime and returns true" . Al though it is a
matter of taste whether in all three above cases the crimes
committed are indeed different, this seems a sensible requirement.
Nevertheless, the wish to allow any reasonable way of mending
still remains. In a letter to the editors, the ALGOL 68 group
of the Mathematical Centre have criticized the AB version of the
transput routines in this respect. A particularly unpleasant
consequence was the failure to accept as user mending for line

' end a call of newline (nota bene, the default mending) , when
line end was detected in get and another empty line happened
to follow in the file. As a reaction to this criticism,
other versions of the routines get good line and get good page
have been proposed, in a document labelled RGF/CHL 74-03-22.

It appears to us, however, that the solution suggested there
is rather ad hoc: further calls of event routines are allowed
only if either a different file has been assigned to the file
variable parameter, or if the current position has been
advanced to at least the next line (page). Suppose now that
a user wants to use the first 15 lines of his file as a
circular buffer, and that he supplies

3

E'.2£. rend line = (ref file f) bool:
(if line nurnber(f) = 15 then reset else new line fi(f); true),

or consider another user who, for reasons clear to him ifnot
to us, wishes to process his file (of one page) line by line
backwards, and therefore supplies

proc mend line= (ref file f) bool:
(set (f, 1, line nurnber(f) - 1, 1J; true) •

In either case, the proposed changes to get good line do not
suffice to help the user. Even in the case where the event
routine closely mimics the default mending, as in

proc mend line= (ref file .f) bool:
(if char nurnber(f) > O then new line(.f) else
set char nurnber(f, .1) fi; true),

a call of get may still result1n undefined being called.

In the system of routines described in the present document,
a prior version of which has been circulated among the
editors, loops can always arise when the event routines
return true, even if no attempt whatsoever has been made to
mend, the rationale behind this liberal (or unpaternalistic)
attitude being, that this is the safest way to guarantee
that no reasonable way of mending is excluded, that loops
cannot be prevented in general anyway, and that the user
who writes an event routine returning true better should
know what he is doing. If, however, a system is preferred
where the user is protected against himself, then this
should under the least possible number of circumstances
hinder the user who ·supplies a sophisticated set of event
routines that would not loop in the first place. Such a
system should be centred on the notion of different crime.
In order to sketch how this may be described, we show the
application to our routine ensure line.

Q£_? I I = (bool ok, ref bool was ok) bool:
(ok I true T:"was okTwas ok:= falseTundefined; skip),

prio II= 2;

proc ? ensure line = (•..) bool:
begin bool result, wok1, wok2, ref pos ocpos:= nil,

int op:= O, ol:= O;
while

if result:= ensure page(f, s, test, 0)
then

if ref pos cpos = current pos(f);
int p = p of cpos, 1 = 1 of cpos;

((cpos :f: ocpos) V pf opv l fol
I wok1:= wok2:= true; ocpos:= cpos; op:= p; ol:= .l);
(1 - lrnarg < 1 // wok1) A (1 < line bound(.f) II wok2)

then - -

4

This approach is, of course, more complicated than either
of the solutions to loop always and not to loop ever, but it
seems the only reasonable way to prevent the most striking
kind of loops. The user does, in general., not know under
what exact circumstances his event routines will be called,
nor can he find out inside the event routines. He can only
do his best to mend the situation and trust that if., in
doing so, he commits a different., though possibly similar
crime, this will be signalled to him in due time.

Under the present system, the user who cherishes such trust
is in for a few disappointments, apart from those mentioned above.
Consider, e.g.,

proc mend physical file= (ref file .f) bool:
(close(f); open(f, chain:= next of chain., channel(f)); true).

If the newly opened file happens, by accident, to be empty, theri
undefined is called, instead of again physical file mended.
The user who tries to mend his logical file end by

proc mend logical file= (ref file .f) bool:
(int p = page nurnber(f), 1 = line nurnber(f), c = char nurnber(f);
compute(next bunch); put(f, next bunch);
set(f, p, 1, .c))

may expect that this will work fine, but then he may be mistaken
also. If., e.g., put(f, next bunch) starts with newline or newpage.,
and f is compressible, then the continuation in, e.g., get char,
will detect line end and call undefined. Or logical file end was
detected from newline on an empty line and the next bunch
starts with newpage so that the current position is left
dangling two lines below the page end and the user will
presumably go on reading the very line that he intended to
skip - in any case, that he would have skipped, had
put(f, next bunch) preceded the call of logical file mended.

B. Brow movers

In this part, some examples are given that may shock
or surprise the user.

1. re: newpage/newline in RGF/CHL 74-03-22 •
. a) Suppose 1 of book bounds= 60, lpos = (1., 61., 1),

cpos = (1., 61., .0).

5

A call of get(f., new page) causes lpos to be moved to (2, 1, .1) •
. b) Suppose 1 of book bounds = 60, lpos = (1, 61, 1).,

cpos = (1, 30, 10)., f is a compressible file.
A call of put (f., new line) or put (f, new page) causes
transgression of bounds in text[1][61].

c) Suppose lpos is inside the current page of a compressible
file., at (1, 30, 40), say.
A call of put(f, new page) causes logical file mended
to be called., with an infinite loop if the yield of that
calling is true, and a call of undefined otherwise.

2. complementarity of input/ output

a) Suppose 1 of book bounds = 3.

begin string r1:= "ab", r2:= "c", r3:= ""., r4:= "def", q:= "?";
make tenn(f, .q);

end

reset(f); put(f., (newline, r1, q, newline, r2, q,
newline, r3, q, newline, r4, q));

reset(f); get(f, (newline, r1, q, newline., r2, q,
newline, r3., q, newline, r4, q))

This may well cause a call of logical file mended. 'Ihe
values assigned to the r's are:
r1:= "ab", r2:= '~c", r3:= "def", r4:= skip.
Explanation: When-r3 is written, the page is ended. Since
r3 yields an empty string, the net effect is nihil.
When r3 is to be read, however, the page end condition
is mended by default, so that r3 receives the string
written as r4. At the end of the physical file, it is
similarly possible to write an empty string, but an
attempt to read it back will cause a call of physical file
mended. In our routines., this problem has been solved
partially by requiring that even an empty string is put
on a valid line. This solution is only partial., since
on a compressible file a call of new page may cause a
previously valid line to cease its existence. A full
solution is only possible by introducing a flag line
empty., which, if true., indicates that the line
containing lpos may disappear if c of]pos = 1.
A side effect of requiring that the last line is valid
would be to set line empty to false., and new page may only
cut off the last line if line empty A c of lpos = 1.

6

.b) Suppose we have a flex[1: n] char tape1., containing,
among others, special characters new line char and
new page char. We write this tape to a compressible file,
as follows:

for i ton
do put"[f,
- (char c = tape1 [i] ; c = new page char I new page

l:c= new line char I new line
I .c))

od.
In order to get an image of the result (possibly intended
for paper tape) , we take into account the effect of line and
page end, and the fact that a call of new page may imply a
call of new line:

[1: large] char tape2; int m:= O; char last:= new page char;
proc store = ·(char .c) ·void: --
begin if c = new page char A last f new page char A

last f new line char then
store(new line char-Y-

fi · _,
tape2[m +:= 1]:= last:= c

end;
on line end(f, (ref file .f) void: (store(new line char); false);
on page end(f, (ref· file .f) ·void: (store(new page char); false);
for i ton ---- --
do put"[f.,
- (char c = tape1[i]; store(c); c = new page char I new page

l:c= new line char I new line
I c))

od.
Thisprocess is idempotent in the sense that if we repeat
the process after tape1:= tape2[1 : m], the result in tape2
is still the same.
We now expect to. get back the same image also by

m: = O; last:= new page char;
on logical file end(f, (ref file .f) void: finish);
reset (f); - --
do char cc;
-get(f, cc); store(cc)
od; finish: skip

If, however, the last character output was on the last
position of a line., then the new image tape2 will contain
one new line char more, even though on output this new line
has never, explicitly or implicitly, been given or detected.
The reason is that line end is detected before logical file
end, even if the logical file end is still on the same line.
To use a picture, where nl stands for new line and a stands
for any character:

I a l nl I a I a I a I a l a I a ! a } ~ ~i_[~
tle "logical"
file end

7

The dotted square should., in read mood., effectively not exist,
being beyond the logical file end. Under the present system.,
this situation is virtually undistinguishable from the one with

It appears to us that., in order to warrant complementary
behaviour on input, the logical file end detection should
take place before· physical file/page/line end detection.
This has been implemented in our system of routines .

. c) Suppose that the flip and flop character are 11111 and 11011 ,

respectively.
If we have

inti:= 13; bits b:= bin 13.,
then put(f, (i., .b")"'f"results in something like

If..!..!..!.. +13000000110111

so that get(f,, (i, .b)) will not work.
Now this is clearly a shame. Apart from the ·ref string-case,
which is an odd man out, there is no reason why input and
output should not be complen:entary in get and put. At present,
an additional ". 11 is inserted before a numeric value when
not at the be~mrl.ng of a line. This should be: an
additional · 11. ~ after a numeric value when not at the end
of a line. As long as only numeric values are transpu~
the difference is not visible, but as soon as numeric and
other values are interleaved, the difference becomes
apparent - to the bene f:i, t of the user. Of course, this
implies that in get, after a numeric value has been read.,
an additional ?11

•
11 has to be performed once.

This change is both so minor and simple to make and of such
great practical value, that we strongly advocate that it be
taken into consideration.

8

3. Premature decision in read sign.

Suppose we have a circular buffer containing signed integers.
The event routine corresponding to on logical file end is:
reset(f); true. Eventually, the logical file end is reached and
an attempt is made to read the next integer. The course of
events is as follows:

. the routine skip spaces is called and detects that no
spaces are present;

• the routine read sign is called, which detects that no
sign is present, so a default 11+11 is delivered;

. the routine read dig is called, resulting in a call of
get char(via !) to read the first digit;

• logical file mended will be called., whereupon the file
is reset, and get char might well yield a 11 +11

,
11

-
11 or 11

• ";

. char error mended is called with a· 11 011 as a suggestion -
to replace the erroneous character, which is a strange
result.

In our system, the above is prevented in a natural way.

4. Opening and closing files.

a) How to write to a book whose field putting is false.

Suppose we have two channels, A and B, via which the
book may be linked(present twice in the chainbfile) .
(put of A)(book) = true and (put·of .B)(book) = false.
Consider the following: -

<I: putting = false <I:

sarre

file f1, f2;
open(f1, 1111 , B);
open(f2, "", .A); ¢ putting = ·true, but still., reading

via f1 is possible <I:
close(f1); <I: putting= false, but writing is

still possible via f2 <I:
We th:i,nk it appropriate not to allow a book to be open for
reading and writing simultaneously in a defined way. To
accomodate this, we propose to introduce an integral field
users which counts the number of times the book is opened.
This field may then be inspected in the routine open(10.3.1.4 .. d).
10.3.1.1.bb - 1)(for writing ??? simultaneously. ->

if it has been opened for writing.
Moreover, a book contains an integral field
users which counts the number of times
the book is opened. A book cannot be
opened for writing as long as it is
opened on some other file.)It;

10. 3. 1. 1. a + 3 ~) -> , int users <I: the number of times
the book is opened <I:))(.

Further consequences are to be found in the proposed versions
of open, close, etc.

.b) Relinquished books.
{And Tom Thumb sprinkled crumbs.]

At range exit, files declared within the range being left, are
simply lost. If they were open, possibly no way of referencing
their books remains. What happens with those books sprinkled
on the heap? Obviously, the Report cannot specify this. A
similar situation arises when one of the routines open, establish
and create is called with an open file as parameter. Again, a
reference to a book is in imminent danger of being lost. In this
case, however, the Report suggests that the file first be closed
(thus closing all copies of the file as well). Would not it be
better to leave this situation unspecified as well?

.c) Pointless protection.

Upon closing, locking or scratching a· file, the book and the
text of the book are set to nil, presumably in order to protect
the book against illegal access. However:

a. this protection is superfluous., since none of the
transput routines acts on a file whose field opened
returns false;

b. this protection is incomplete, since possible copies of
the file being closed, locked or scratched still have their
fields referring to this book and this text.

Consequently, we omitted this attempt from our versions of
close, lock and scratch •

. d) Standout and stand.back.

For standout and standback, we have the following two
desiderata:

a. the corresponding books should be empty at the start of
the program;

b • they ought to be in write mood by default.
Therefore, both standout and stand.back should be created.,
instead of opened .

. e) Default read mood for newly opened files.

In most situations, a file is either in write mood., or in
read mood. If both yield false., the layout routines act as
if the file is in write mood. Obviously., the normal thing
after opening a file for which get possible is true, is to
read what has been written to the book of that file previously.
Now., a user may find out to his surprise that he is writing
on such a file, even though he has never explicitly indicated
so. A default set read mood in the routine open is therefore
suggested., and has been implemented in our system. (Nota bene.,
problems arise if our remarks on alternating reading and
writing in binary transput, and creating standout and standback,
are rejected; e.g., binary output on standback would become
illegal.)

9

10

f) How to reset a file if' reset possible.

Consider the following:
file f; open(f, 1111

, ch); • • • • ; close(f);
\.

irrplicit

open(f, 1111 , ch);
_,I

l'"" •
resetting.

This may be hard to irrplement. A possible solution is to call
lock if close is called and reset possible returns false.

g) Unwanted scope error.

If an associated file is closed or locked, a scope error
results in the present system., thus preventing associated
files from being chained in a chain of bfiles. We prefer
either to act as if the routine scratch was called
(implemented in our system) or to call undefined directly.

C. Binary trans put.

1. Alternation of char and bin mood.

At present, alternation of char and bin mood is allowed only
for random access files. At first glance, this restriction
seems sensible enough., since the operating system might have
difficulty in perfonning binary transput other than in
chuncks of ''words", corresponding to several c-positions.,
starting and ending on word boundaries • On second thought,
the operating system should be able to cope with such
situations., because the c of cpos may be shifted by an
arbitrary amount by means of space, backspace and set char
number. Therefore, we suggest that one of two courses
be taken:
Either make alternation of char and bin mood on sequential
access files defined, or
make calling space., backspace or set char number, and
possibly new line and new page, on sequential access files
in bin mood cause undefined to be called.

2. Alternation of read and write mood.

During character transput., reading and writing may be
alternated arbitrarily on random access files as well as
on sequential access files • During binary transput, however,
this alternation is not pennitted on sequential access files.
Since we could not find a reason for this restriction, we left
it out in our versions of put bin and get bin (or, more
precise., set write mood and set read mood).

11

12

D. Miscellaneous.

1. At present., get, when reading a numeric value, will skip
spaces in the following cases:
.i) before the first character;
ii) after a sign;
iii) after 11

10
11 or "e";

iv) before "i" or "I";
v) after "i" or "l" .

In all of these cases, transitions to a new line or page may
occur, except in case ii. This seems unnecessarily difficult
to teach. Therefore, we changed the routine read sign to
allow such transitions in case ii also.

2. Should not a pseudo-corrment in close and reset take into
account that in some systems the closing or resetting of a
file might imply something like writing a new line or new
page, e.g., because an end of record marker is written
before the end of file marker, which might be the way for
a compressible file to indicate new line also?

3. To increase clarity, one could add to 10.3.1.3.aa:

The routines, described in section 10.3 of this Report,
are never called with a file as parameter., but only with
a value of the mode specified by ref file. To some of the
subnames of such a value, new values may be assigned by
means of the routines provided (such as make conv., which
is used to assign a new conv field (10.3.1.3.dd)). The
other subnames (such as the one selected by cpos) are only
assigned to by routines for opening and closing files
(10.3.1..4); all of these subnames (except the one selected
by chan) refer to fields which are names. As a consequence,
when a copy is made of an open file, the fields referred to
by corresponding subnames of this group will be the same
name. An assignment to such a field (to the field itself,
not to the subname referring to the 'field), will thus
affect all copies of a given file in a like way.

4. For reasons of clarity:

10.3.1.3.bb + 10 Jtt • -'llf •
In general., read mood., write mood., char
mood and bin mood characterize the last
transput action performed on the file.
However., after "establishing" (10. 3.1. 4. cc).,
opening and "resetting" (10.3.1.6.j) a file,
default values are returned. 'il!.

5. 10.3.1.1.aa + 2 ~ may contain-> refers to a "text", i.e.,)C;

10.3.1.1.aa + 4)£ pages -> "pages" JIC;
10.3.:t:.1.aa + 4)(lines -> "lines")IE;

10.3.1.2.aa + 4 If. whose fields are -> comprising fields which are)(;
10.3.1.2.bb - 4 JC yields -> returns }I(;

10.3.1.2.bb + 2)(in a book-> in the text of a book)(;

6. As section 10.3.1.3.cc is intended to clarify the way in
which event routines may be used, do not emphasize the problem
of range structure ~hat much, only lightly touch upon it.
We propose:

10.3.1.3.cc + 19:33)(If he writes??? end.-> He has to write:
begin int n: = 0; file auxin:= int ape; ¢ this

is necessary, since the scope of the
routine (ref file file) bool: goto f
is smaller than the scope of intape ~
on logical file end(auxin, (ref file file)
bool: goto f) ;
do get(auxin, loc int); n +:= 1 od;
f: print(n) - - -

end. I(;

7. In the example after 10.3.1.3.hh, some errors have been made:

i. The variable n is not initialized, so:
10.3.1.3.hh + 5 ,S. int n -> int n:= 0 ,,..;

ii. n should be increased only after a nurrber has been read
succesfully;

iii. The program will call undefined since the event routine
returns true without mending the logical file end.
The simplest remedy seems to be:

10.3.1.3.hh + 14jicbool ???; ->)(;
10.3.1.3.hh + 16)((???)) -> goto end) lt;
10.3.1.3.hh + 17 IC. for??? od -> for i do get(f1, x[i]); n:= i od)(';
10.3.1.3.hh + 19)(reset ->end: reset)(;

8. The chain of backfiles may also be reorganized after -a call
of lock, so:

10.4.2 + 10)t closed-> closed o~ locked IC;

13

14

E. Some properties of the routines

1. Checks on events

If the 11requirerrent11 for the satisfactory execution of a transput
action is of the forrn test1 A test2 A ••• A testn, then this is
imp lerrented as :

action

(See also part A.)

♦

• •
.. . .

The tests are perforrred in a fixed order in each case, detennined by
• opened (no rrending possible);
• state OK (no mending possible);
• logical file OK (see B. 2 . .b);
• p of cpos OK;
• 1 of cpos OK;
• c of cpos OK.

Of course, on~those tests are perforrred that occur in the
requirement at hand. (For' set and set char number, no repetition
of tests· is made if the new cpos would be beyond lpos. They could
easily be brought in the same framework as the other routines,
but we have not attempted to do.so.)
All checks are performed explicitly, so that implicit tests (as in
the present book bounds, where the test catches some nasty cases,)
are no longer needed.

2. Default mending

In all cases, the default reaction to be taken if the event routine
returns false is determined before the event routine is called.
Consider a book with block shaped text. We can "linearize" the text
by the function
L(p, 1, .c) = ((p - .1) x line bound+ (1 - .1) x char bound+ c - 1,
so that we get, e.g.,

-1

3

7

11

15

19

-4

0

4

8

12

8

12

16

20

24

1

5

9

13

17

21

2

6

10

14

18

22

3

7

11

15

19

23

4 5

8 9

12 13

16 17

20 21

24 25

Now, if the current position is (p, 1, .c), and a default reaction
is chosen which would bring cpos to (p', l', c'), then
L(p, 1, .c) = L(p', l', c'). If no such choice is possible, then
undefined is chosen (see 4) • There is an exception to this if
1 = page bound + 1 and c f 1; such a position may, however,
only be reached by rreans of set.

3. The moods

For an open file, read mood f write mood. For a file which is
opened on a channel such that get possible., the default is
read mood (see B. 4 ~e) • Alternation of read/write mood in bin mood
is possible on sequential •files also (see c .. 2). The state when a
transput-action is performed or an event routine is called, is the
same as at or specified by the call. For example, put(f, (a, b., .c))
has the same rreaning as put(f, a); put(f, .b); put(f, .c);
Similarly, get(f, newline) cannot cause spaces to be written by
newline, nor can put(f, newline) fail because the logical file end

15

was encountered by newline., or leave part of the text undefined since a
switch to bin mood occurred. However, if write mood and
-, bin mood " -, char mood., and space (or, on an incompressible
file, newline or newpage) encounter the logical file end, then space
characters are written and char mood is set to true.

4. The layout routines

If the transformation of cpos by space, backspace, newline or
newpage is denoted by (p, 1, .c) -> (p', l', c'), then the
requirement (see 1) corresponding to this amounts to: (p., 1, .c) or
(p', l', c') is inside the text of the book. This, together with 2,
implies, e.g., that if the elaboration of get(f., loc char) is
' -----

16

defined and does not evoke user mending., then get(f, space) transforms
cpos in the same way. The routine set char number-requires validity
of the current line (1 < 1 < line bound) , so that
set char number(f, char-number(.f) - .1) behaves similar to backspace(f).

5. Put and get

If upb numeric to string(nuneric) > char bound, then put(f, numeric)
calls undefined without first giving a newline. A valid position
(1 < 1 < line bound, 1 < c < char bound + .1) is required by put(f, ".")
(see B.2 •. a). In get, next pos requires ..., logical file ended (see B.3).

F. The text of the routines

Opening and closing.

¢ the routines undefined, file available, idf ok, match and
false are omitted here¢

.a) proc establish = (ref file file,
string idf, channel chan, int p, 1., c) int:

begin down bfileprotect;
PRIM book book:=
--U,RIM flex [1 : p] flex [1 : l] flex [1 : c] char,

n:-;-1~, idf, true, .1);
if file available(chan) A (put of chan)(book) A

-estab of chan A -, (pos(p, 1, .c) be}ond max pos of chan) A

-, (ZosTI, 1, 1) bey1nd pos(p, 1, .c) A idf ok(idf)
then opened of file ~ gremlins I ~ bfileprotect) ;

file:= clean file; book of file:= book;
text of file:= text of book; chan of file:= chan;
conv of file:= (standconv of chan) "[5°ook) ;
(-, bin possible(file) I set char mood(file));
set write mood(file);
0

else ~ bfileprotect; undefined
fi

end· _,

.b) proc create = (ref file file, channel chan) int:
begin pos max pos = max pos of chan;

establish(file, skip, chan, p of max pos, 1 of max pos,
c of max pos)

end·-_,

c) proc open= (ref file file, string idf, channel chan) int:
begin down bfileprotect;

if file available(chan)
then ref ref bfile bf:= chainbfile; bool found:= false;
~fle(ref bfile (bf) :~: nil) A-, found

do - -.-
-if match(idf, chan, book of bf)

then found:= true -
else bf:= next of bf
fi

od;
if-, found
then ~ bfileprotect; undefined
else ref book book:= book of bf;

if putting of book v (putof chan)(book) A

-users of book > 0 -
then ~ bfileprotect; undefined
--r-in this case the book was already open for putting

or someone was reading and putting is requested
the system may either wait, or yield nonzero
(indicating unsuccessful opening) immediately¢

else ((put of chan)(book) I putting of book:= true) ;
~ers of book+:= 1; ref ref bfile(bf):= next of bf;

¢ remove bfile from chain cl! -

17

18

(opened of file I .!:!2. gremlins I .!:!2. bfileprotect) ;
file:= clean file; book of file:= book;
text of file:= text of book; chan of file:= chan;
conv of file:= (standconv of chan) "[book) ;
set defaults(file); -
0

fi
fi-

else .!:!2. bfileprotect; undefined
fi

encf."" _,

d) proc associate= (ref file file, ref[][][] char sss) void:
begin proc t = (ref book .a) bool: true; --

proc f = (ref book .a) bool: false;
channel chan = (t, t, t, t, f, f, f, bool: false,

pos : (max int, max int , max int) , skip, skip) ;
(opened of file I down bfileprotect ; .!:!2. gremlins) ;
file:= clean file;
book of file:= heap book:= (skip, (upb sss + 1, 1, .1),

skip, true, 1);
text of file:= sss; chan of file:= chan

end· - -_,

e) proc? set char mood= (ref file .f) void:
if 7 char mood of f
then if' bin mood off v set possible(.f)
---Etienref bool (char mood of .f) := true;

ref bool (bin mood of f):= fals_e_
else undefined -
fi fi __ _ _ ,

.f) proc ? set bin mood = (ref file f) void:
if' bin mood off
then if. bin possible(f) A (' char mood of f v set possible(f))
---Etien ref bool (char mood of .f) : = false;
~f bool (bin mood of f):= true
else undefined - .--
f:L fi __ _ _ ,

g) proc? set read mood= (ref file .f) void:
if ' read mood of f
then if get possible(f)
---Etienref bool (read mood off):= true;
~fbo ol(write mood of.f) := false
else undefined -
fi fi __ _ _ ,

h) proc? set write mood= (ref file f) void:
if' write mood off
then if put possible(.f)
--ri:i'enref bool (read mood of .f):= false;
~f bool (write mood of--Y) := true
else undefined - --
fi fi __ _

=..::!::.2...

i) proc clean file= file:
(skip, skip, skip, skip, skip,
heap bool:= false, heap bool:= false, heap bool:= false,
heap bool:= false, ~eap bool:= true,
heap pos : = (1, 1, 1 , 1111

, skip.,
false, false, false, false, false, false,
(ref file f, ref char.a) bool: false);.

j) proc set defaults= (ref file .f) void:
begin

if get possible(.f) then set read mood(f)
elif put possible(.f) then set write mood(.f)
else undefined --
fi· _,
ref bool (bin mood of .f):= false;
ref bool (char mood of f): = ' bin possible(.f);
current pos(.f) := (1,1, 1)

end;

k) proc close = (ref file f) void: disconnect(f,, chainbfile);

1) proc lock= (ref file .f) void: disconnect(f, lockedbfile);

19

m) proc scratch= (ref file .f) void: disconnect(f, loc ref bfile:= nil);

n) proc? disconnect= (ref file f, ref ref bfile bf) void:
begin ensure open(.f); ref bool (opened off):= false;

putting of book off:= false; users of book off-:= 1;
c lposriiay be set to a suitable value, e.g-:-; the beginning
- of the next line, page or at the end of the physical

file, inserting blanks or spaces if required c;
case text of f in -
---cr1extexTT:

down bfileprotect; bf:= PRIM bfile:= (book, bf);
:!:Y2_ gremlins

esac
ena::--_,

20

Position enquiries.

a) pr(c char number= (ref file .f) int:
ensure open(f); c of current pos(f));

b) pr(c line number= (ref file .f) int:
ensure open(f); 1 of current pos(f));

c) proc page number = (ref file .f) int:
(ensure open(f); p of current pos(f));

d) proc? current pos = (ref file .f) ref pos: cpos off;

e) proc ? logical pos = (ref file .f) ref pos: lpos of book of f;

f) mode? state= struct(bool char mood, bin mood, read mood);

g) proc? state= (ref file .f) state:
(char mood of f, bin mood of f, read mood of f) ;

h) proc? page bound= (ref file .f) int:
~ [] [][] char (text of f I (text t1): t1, (flextext t2): t2);

i) pr%c ? line bound = (ref file .f) int:
will only be called within a page specified by a valid
page number¢

~[][][]char (text off I (text t1): t1, (flextext t2): t2)
LP of current pos(f)J; --

j) ~? char bound = (ref file f) int:
¢ will only be called within a line specified by a valid

line number within a page specified by a valid page number¢
~[][][]char (text off I (text t1): t1, (flextext t2): t2)

LP of current pos(f)J[l of current pos(f-)];

k) proc? check logical pos = (ref file .f) void:
if ref pos cpos = current_ pos(f'Y:-pos lpos = logical pos(f);

cpos beyond lpos
then cpos:= lpos;
-(-..., (logical file mended of f) (f) undefined)
fi· -_,

1) pr%c? logical file ended= (ref file .f) bool:
will only be called with..., (cpos beyond lpos) ¢

begin pos cpos = current pos(f), lpos = logical pos(f);
p of cpos = p of lpos A 1 of cpos = 1 of lpos A
c of cpos = c of lpos - -

end·- -_,

m) proc? page ended= (ref file f) bool:
1 of current pos(f) = line bound(f) + 1;

n) proc ? line ended = (ref file f) bool:
c of current pos(f) = char bound(f) + 1;

Ensure routines.

a) proc ? ensure open = (ref file .f) void:
· •if-, opened ·of f ·then undefined ·fi;

b) pr¢c ? ensure state = (ref file f, state .s) void:
after a call of ensure state, the state is as specified
bys¢ berct ensure open(f) ;

char mood of s I set char mood(f) I:
bin mood ors I set bin mood(f));

(read mood of s l set read mood I set write mood) (f)
end;

c) proc ? ensure logical file = .
(ref file f state s · bool test) bool: -- , ___ ,__ --

¢ if necessary, a test for the logical file being ended is
made; the routine returns the value false iff
test " logical file ended ¢

beftn ensure state(f, .s);
test I -, logical file ended(f) true)

end;

d) proc ? ensure page =
(ref file f; state s; ·bool test; int lmarg) bool:

¢ if the routine "ensure logical file returns false, --
ensure page perfonns no check and sin:ply returns false;
otherwise, the page number is checked for being valid
and the routine returns true¢

begin bool result;
while

if result:= ensure logical file(f, s, test)
then
-r¥ int p = p of current pos (f) ;

.-. 1-=-1marg <p A p < page bound(f)
then false - -
else . --r• (physical file mended of .f) (f)

I undefined; skip -
I true)

fi --
else false
fi

do skip od;
result

end;

21

22

e) proc? ensure line=
(ref file f, states, bool test, int lmarg) bool:

¢ if the routine ensure page returns false, ensure line-
performs no check and simply returns false; otherwise,
the line number is checked for being valid and the
routine returns true. In this case, a new page is given
if necessary¢

begin bool result;
while

if result:= ensure page(f, s, test, .0)
then

if int 1 = 1 of current pos(f);
-1-=-1marg <l A 1 < line bound(f)
then false - -
else bool legal = page ended(.f);

if-, (page mended of f)(f)
then

if legal
then
(ensure page(f, s, test, 1)

I next page(f, s));
true

else undefined; skip n-
else true
fi --

fi-
else false
fi

do skip od;
result

end;

f) proc? ensure char=
(ref file f,·state s, bool test, int lmarg) bool:

¢ if the routine ensure line returns false, ensure char-
performs no check and simply returns false; otherwise,
the character number is checked for being valid, where
in any case a right margin of 1 is allowed, and the
routine returns true¢

begin bool result;
while

if result:= ensure line(f, s, test, 0)
then

if int c = c of current pos(f);
-1-=-1marg < c A c < char bound(f) + 1
then false - -
else (-, (line mended of f)(.f) l undefined; skip I true)
fi -

else false
n-

do skip od;
~ result

end;

g) pic? check pos = (ref file f, states) bool:
returns true if the current position is available for
transput, and false otherwise¢

begin bool ended:= true;
while

if-, ensure char(f, s, read mood of s, 0)
then (logical file mended of f) (fJ
elif line ended(f) -
then (line mended of f) (f)
else ended:= false-
fi

C do skip od;
-, ended

end;

h) 12!'.2£ ? next pos = (ref file f, state s) :void:
¢ ensures that the current position is available for

transput ¢
while

if-, ensure char(f, s, read mood of s, 0)
then ((logical file mended of f) (f) I true I undefined; skip)
elif line ended(f) - --
then
---rfline mended of f)(f)

I true -
I (ensure line(f, s, read mood of s, 0) I nextline(f, s));

true)
else-raI"se
f:L

do skip od;

23

24

layout routines •

. a) proc new page = (ref file .f) void:
begin state s = state(.f);

ensure page(f, s, read mood of s, .1); next page(f, s)
end· -_,

b) proc new line= (ref file .f) void:
begin state s = state(f);

ensure line(f, s, read mood of s., 1); next line(f, s)
end;

c) proc space = (ref file f) void:
begin states= state(f);

while
if..., ensure char(f, s, read mood of s, .1)
then ((logical file mended of f)(IT I true I undefined; skip)
elif line ended(f) - --
then
----r[line mended of .f) (.f)

I true -
I (ensure line(f, s, read mood of s, 0) I next line(f, s));

true)
elsef'alse
fi

do skip od;
(logical file ended(f) I outch I skipch) (f)

end;

.d) proc backspace = (ref file .f) void:
begin state s = state(f);

ensure char(f, s, false, O); c of current pos(f) -:= 1
end· · _,

e) p,c? next page= (ref file f, states) void:
the current position is advanced to the next page¢

if ref pos cpos = current pos(f), lpos = logical pos(f);
p of cpos = p of lpos

thencpos:= lpos;
if read mood of s
then (..., (logical file mended of .f)(f) I undefined);
~sure page(f, s., true, .1); next page(f, s)
else --

if corr:pressible(f)
then (c of cpos f 1 I next line(f));
~e text off in

(text t1): skip ¢ will never be reached ¢,
(flextext t2): (int pl= p of lpos;

t2[pl] := ti[p1][: 1 of lpos - 1])
esac

else while..., page ended(.f) do next line(f., s) od
, fi· -_,

cpos:= lpos:= (p of cpos + 1, 1, 1)
fi -

else cpos:= (p of cpos + 1, 1, .1)
fi· _,

f) proc ? next line = (ref file f, state s) void:
if ref pos cpos = cUITent pos(f), lpos = logical pos(f);

p of cpos = p of lpos A 1 of cpos = 1 of lpos
thenc of cpos:=c of lpos; - -

if read mood of s-
then (-, (logical file mended of .f) (f) I undefined);
~ure line(f, s, true, .1); next line(f, .s)
else

if compressible(f)
then
~se text of f in

(text t1): skip ¢ will never be reached ¢,

25

(flextext t2): (int pl= p of lpos, 11 = 1 of lpos;
t2[pl][ll]:= t2[pl][ll][: c of lpos - 1])

esac
else while' line ended(f) do outch(f) od
fi· - -_,
cpos:= lpos:= (p of cpos, 1 of cpos + 1, .1)

fi - -
else cpos:= (p of cpos, 1 of cpos + 1, 1)
fi· - ---~

g) proc? outch = (ref file .f) void:
if bin mood off
then ref poscpos = current pos(f);

c of cpos +:= 1; logical pos(.f):= cpos
else put char(f ".") -- , -
fi;

h) proc? skipch = (ref file f) void: c of CUITent pos(f) +:= 1;

i) proc set= (ref file f, int p, 1, c) void:
begin ensure open(f);

if set possible(f)
then cUITent pos(f) := · (p, 1, c); check logical pos(f)
else· ·undefined
fi

end;

j) proc set char number= (ref file f, int c) void:
begin ensure line(f, state(f), false'; 0) ;-

c of cUITent pos(f):= c; check logical pos(f)
end·-_,

k) pr(c reset= (ref file f) void:
eset possible(rfT set defaults(f) I undefined);

26

Formatless output.

a) proc put = (ref file f,
[] union(outtype, proc(ref file) void) .x) void:

begin state ps = (true, false, false;;ensure state(f, ps);
for i to [p] x
do case xi in
- ~roc(ref file) void pf) :

(ensure state(f, ps); pf(f)),
(out type ot) :
~ [J simplout y = straightout ot;

{: proc L real conv = (L real r) string:
float(r, L real width+ L exp width+ 4,

L real width - 1, L exp width+ 1) ~;
for j to [p] y
docaseyj in ·
- -:V-(union(number, L cornpl) nc):

begin strings=
case nc in
--a; int k) : whole (k, L int width + 1),

(L real r): L real conv (r),
(L compl .z): L real conv (re .z) + "A" +

L real conv (:im z)
esac;
wiuie ensure char(f, ps, false, 0) ;

int c = c of current pos(.f), n = upb s;
if n > char bound(.f)
then undefined; jkip
elif c + (c = 1 n In+ 1) >
~har bound(f) + 1
then
-(-• (line mended of .f)(.f)

put(f, new line;);
true

else false rr-
do skip od;
(c of current pos(.f) f 1 I put char(f, "..!..."));
fork to upb s
do (check pos(f, ps) I put char(f, s[k]) I
- undefined)
od

end~ i numeric i,
(bool b):

(next pos(f, ps); put char(f, (b I flip I flop))),
4 (L bits lb):

-fork to L bits width
do nextpos(f, ps);

put char(f, ((F of lb)[k] I flip I flop))
od ~, -

esac

od
end

(char .k):
(next pos(f, ps); put char(f, k)),

([] char ss):
if lwb ss > upb ss
then ensure char(f, ps, false, 0)
else for k from lwb ss to upb ss
~ next pos(f, ps); put char(f, ss[k]) od
fi-

esac

od
end-_,

b) proc put char= (ref file f, char char) void:
begin ref pos cpos = current pos(f), lpos = logical pos(f);

int p = p of cpos, 1 = 1 of cpos, ref int c = c of cpos.,
char k, bool found:= false;
case text off in
------r:Fext) : 0c: = char; found: = true) ,

(flextext): --
for i to upb F of conv off while-, found
do struct(char internal, external) key=
- (F of conv of .f)[i];

(internal of key= char I
k: = external of key; found:= true)

od
esac;
if found
then (text off I (text t1): t1[p][l][c],
-- (flextext t2): t2[p][l][c]):= k; c +:= 1;

if cpos beyond lpos
then lpos:= cpos
elif-, set possible(f) A pos(p of lpos, 1 of lpos, 1)
-- beyond cpos
then lpos:= cpos;
~ompressible(f) I c ••• .£.)
fi -

else
if-, (char eITor mended of .f)(f, k:= "l')
then undefined; k:= 11 ." -

fi· -_,
(check pos(f, (true, false, false)) I

put char(f, k) I undefined)
fi

end-_,

27

28

Fonnatless input.

a) proc get = (ref file f,
LJ union(intype, proc(ref file) void) x) void:

begin state gs= (true, false, true); ensure state(f, gs);
for i to [P] x
do case xi in
--ri)roc(ref file) void pf):

(ensure state(f, gs); pf(.f)).,
(intype it):

begin[] s:inplin y = straightin it; char k;
bool k empty;
2J2. ? = (string .s) bool:

if-, k empty
then k empty:= char in str:j_ng(k, loc int, s)
elif -, ensure char(f, s., true, 0)- -
then false
elif line ended(f)
then false
else get char(f, k);
~~mpty:= char in string(k, loc int, .s)
fi· _,

2J2. ? = (char c) bool: ? string (c) ;
pg£! =73";
2J2. i = (string s., char c) char:

if (k empty I next pos(f, gs); get char(f, k));
k empty:= true; char in string(k, loc int, s)

then k
else char sugg:= c;

if (char error mended of f)(f, sugg)
then (char in string(sugg, loc int, s) I sugg I

undefined; .c). - -
else undefined; c
fi

fi;
2!2. 7° = (char s, c) char: string (s) L c;

proc skip spaces= void:
while (k empty I next pos(f, gs)); ? "~' do skip od;
~ read dig = stri~:

(string t:= 11012345789" ! "0";
while? 11 0123456789 11 dot plusab k od; t);

proc read sign= char:
(skip spaces; chart= (? 11+-11 I k I "+");
skip spaces ; .'f)";

proc read mun= string:
(chart= read sign; t + read dig);

proc read real= string:
(rring t:= read sign;

? 11
•

11 I k empty:= false I t plusab read dig);
(? 11

•
11 I t plusab 11

•
11 + read dig);

(? 11
10e 11 I t plusab 11

10
11 + read mun); .t);

od
end· __ ,

esac

for j to upb y
do bool incomp: = false; k empty:= true;
-case y[j] in

--:r-(ref Lint ii):
incomp:=-, string to L int(read num, 10, ii) i,

i (ref L real rr):

29

incomp:=-, string to L real(read real, rr) i,
i (ref L COillpl zz):

(Incomp:=-, string to L real(read real, re of zz);
skip spaces; "i..L'.'l "I"; -
incomp:= incomp v -

-, string to L real(read real, im of zz)) },
(ref bool bb):
(skip spaces; bb:= (flip+ flop)! flop= flip), * (ref L bits lb):

for-it<:)L bits width
do skip spaces;
-(F of lb)[i]:= (flip+ flop) ! flop= flip
od },-

(refchar cc):
(next pos(f, gs); get char(f, cc)),

(ref[] char ss):
if lwb~> upb ss
then ensure char(f, gs, true, 0)
else --
-ror i from lwb ss to upb ss

do next pos(f, gs);get char(f, ss[i]) od
fi-,-

(ref string ss):
begin string t:= "";

while
if check pos(f, gs)
then char k; get char(f, .k);

-if char in string(k, loc int, term off)
then k empty:= false - -
else true
fi --

else false
~

dot+:= k od;
ss:= t

end
esac;
~k empty I backspace(f));
if incomp
then (-, (value error mended of f)(f) I undefined)
~ -

od-
e n d

30

b) proc? get char= (ref file f, ref char char) void:
begin ref pos cpos = current pos(.f);

int p = p of cpos, 1 = 1 of cpos, c = c of cpos;
c of cpos +:= 1; - -
char:= case text off in

(text ti): t1[p"JT1][cJ,
(flextext t2) :

begin char k:= t2[p] [l] [c]; bool found:= false;
for i to (pb F of conv off while-, found
do struct char internal, external) key=
- (F of conv of f) [i] ;

(external of key= k I
k: = internal of key; found:= true)

od· - --_,
if found
then k
else

if (char error mended of f)(f, k: = "~')
then k -
else undefined; 11

."

fi
fi-

end
esac

ena:-=--_,

Binary transput.

a) proc put bin= (ref file f, [] outtype ot) void:
begin state pbs = rra:Ise, true, false); ensure state(f, pbs);

fork to upb ot
do [] simplout y = straightout ot [k] ;

for j to upb y
do[] char bin= to bin(f, y[j]);
-for i to ~ bin

do nextpos(f, pbs);
-ref pos cpos = cpos of f, lpos = lpos of book of f;

case text off in
-Ulextextt2):

t2[p of cpos][l of cpos][c of cpos]:= bin[i]
esac;
c of cpos +:= 1;
ifcpos beyond lpos then lpos:= cpos
elif-, set possible(~
-- A pos(p of lpos., 1 of lpos, 1) beyond cpos
then lpos:= cpos;
(cornpressible(f) c ... £)
fi

od
od

od-
end-_,

b) proc get bin= (ref file f, [] intype it) void:
begin state gbs = (false, true., true); ensure state(f, gbs);

fork to~ it
do[] simplin y = straightin it[k];

for j to upb y
do
-s1flout yj. = c<:,s·e :f[j] in

· (ref L int----rf:'" 1 :l-,
.j: (ref L real r): r :l-,
.j: (ref L compl .z): z :l,.,
(ref bool b): b.,
{(ref L bits lb): lb :t-,
(ref char c): c,
(ref l]char s): s.,
(ref stririg°ss): ss

esac;
TI:" upb(to bin(f., yj))] char bin;
for i to~ bin
do next pos(f, gbs); bin[i]:=
-case text of f in

--r.flextextt2):
t2[p of cpos] [l of cpos] [c of cpos]

esac;
c of cpos +:= 1

od· -_,
case esac

od--
od-

end· _,

31

32

G. Pre- and postconditions

In the sequel, 11 (f) ", "of f" and "of book of f" have been omitted
for brevity's sake. -

A precondition of a routine is a condition that must hold when that
routine is called in order to warrant satisfactory elaboration. Only
such routines are treated here as may be called from within the
transput routines . The other routines are not protected by ? , and
are therefore available to the user; they have as precondition the
trivially satisfied condition, true. However, when any of the routines
get possible, etc. , is called from within the transput routines, the
condition opened is always satisfied., so that implementation by
direct inspection of the field concerned is possible.

A postcondition of a routine is a condition that holds when the
calling of that routine is completed., where it is assumed that a
call of undefined implies non-completion. If a routine "performs
no action", then any condition satisfied at the calling still holds
at the completion.

A general invariant, that should be understood to be part of any
pre- and postcondition., is given by:

opened=>:-, (cpos be lond lpos)
: write mood read mood
Either

. 1 < p of lpos < page bound

. 1 < 1 of lpos :Z-line bound

. 1 < c of lpos < char bound + 1
or

or

. 1 < p of lpos < page bound
1 of lpos = line bound + 1

. c of lpos = 1

p of lpos =page bound + 1
. 1 of lpos = 1
. c of lpos = 1 .

with one exception: at the calling of check logical pos, it is
possible that cpos beyond lpos.

Position enquiries

routine

.d) current pos

.e) logical pos

.g) state

h) page bound

.i) line bound

j) char bound

precondition

• opened

• opened

postcondition

performs no action

performs no action

performs no action

• opened performs no action

• opened performs no action
• 1:::J.) of cpos:sJ_)age bound

• opened performs no action
• 1 :sP of cpos:sJ_)age bound
• 1<1 of cpos<line bound

k) check logical pos • opened

.1) logical file ended • opened performs no action,
yields true iff cpos
coincides with lpos

m) page ended • opened performs no action,
• 1:::J.) of cpos:sJ_)age bound yields true iff

1 of cpos=line bound+1

n) line ended • opened performs no action,
• 1:::J.) of cpos:sJ_)age bound yields true iff
• 1<1 of cpos<line bound c of cpos=char bound+1

33

34

Ensure routines

All routines of this section have a trivially satisfied precondition.,
their only function being to guarantee a certain postcondition.

routine

a) ensure open

b) ensure state(f., .s)

.c) ensure logical file(f., s, test)
(In this and the following three
routines, Case B of the
postcondition can apply only
if test is true, i.e., if
read mood of s (except when
called from backspace) .)

d) ensure page(f, s, test, lmarg)

.e) ensure line(f., s, test, lmarg)

f) ensure char(f, s., test, lmarg)

postcondition

• opened

• opened
• state = s

• opened
• state = s
Case A: the yield is true:

• test=>• logical file ended
Case B: the yield is false:

• logical file ended

• opened
• state= s
Case A: the yield is true:

• test=>• logical file ended
• 1-lmarg:::J) of cposs>age bound

Case B: the yield is false:
• logical file ended

• opened
• state = s
Case A: the yield is true:

• test=>' logical file ended
• 1 < p of cpos < page bound
. 1-lmarg<l of ci;ios<line bound

Case B: the yield is -false:
• logical file ended

• ·opened
. state = s
Case A: the yield is true:

• test=>• logical file ended
• 1 < p of cpos < page bound
• 1 < 1 of cpos < line bound
• 1-lmarg<c of cpos<char bound+1

Case B: the -yield is false:
. logical file ended

g) check pos (f, .s)

.h) next pos(f, .s)

• opened
• state = s
Case A: the yield is true:

. read mood =>'logical file ended

. 1 < p of cpos < page bound

. 1 < 1 of cpos < line bound

. 1 < c of cpos < char bound
Case B: theyield is false:
Either

or
• read mood A logical file ended

• read mood => 'logical file ended
. 1 < p of cpos < page bound
• 1 < 1 of cpos < line bound
• line epded -

• opened
. state = s
• read mood =>'logical file ended
• 1 < p of cpos < page bound
• 1 < 1 of cpos < line bound
• 1 < c of cpos < char bound

35

36

Layout routines

routine precondition

.d) backspace

.e) next page (f, s) • opened
• state = s
Either

03) of cposs>age bound
or

. read mood
• p of cpos=p of lpos

or both -

.f) next line(f, .s) • opened

.g) outch
(It is assumed
that 11

•
11 is

convertible •)

h) skipch

• state = s
Either

or

. 1 ::P of cpos::Page bound
• O<l of cpos<line bound

• read mood
• p of cpos =p of lpos
• 1 of cpos=l of lpos

or both -

• opened
• write mood
• logical file ended
• 1 :sP of cpos::Page bound
• 1 <l of cpos<line bound

1<c of cpos<char bound

. opened .

. -, logical file ended
• 15) of cpOSS)age bound
• 1<1 of cpos<line bound
• O<c of cpos<char bound

postcondition

. opened
• -, logical file ended
• 1 S) of cpos::Page bound
• 1<1 of cpos<line bound
• O<c · of cpos<char bound

. opened

. state = s
• 1:sf> of cposs>age bound+1

1 of cpos = 1
• c of cpos = 1

• opened
• state = s
. 15) of cposs>age bound
• 1<1 of cpos<line bound+1
• c-of cpos =-1

• opened
• write mood
• logical file ended
• 1 ::P of cposs>age bound
• 1<1 of cpos<line bound

2<c of cpos<char bound+1

• opened
• 1 :sP of cpos:s.page bound
• 1<1 of cpos<line bound
. 1<c of cpos<char bound+1

Forrnatless output

routine precondition postcondition

.b) put char(f, .s) . opened • opened
• write mood • write mood
• char mood • char mood
• 1:::J) of cpos:::rage bound • 1:::P of cpos:::rage bound
• 1<1 of cpos<line bound • 1<1 of cpos<line bound
• 1<c of cpos<char bound . 2<C of cpos<char bound+1

(Moreover, if c is convertible-;- then logical file ended before implies
logical file ended afterwards.)

d) get char • opened
• read mood
• char mood
. -, logical file ended
• 1 < p of cpos < page bound
• 1 < 1 of cpos < line bound
• 1 < c of cpos < char bound

37

,

