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P, Prologue

P.1. History of the Report {Habent sua fata LibellLi.
De Littenis, Terentianus Mawws.}

a) Working Group 2.1 on ALGOL of the International Federation for Infor=
mation Processing has discussed the development of "ALGOL X", a successor to
ALGOL 60 [3] since 1963. At its meeting in Princeton in May 1965, WG 2.1 in-
vited written descriptions of the language based on the previous discussions.
At the meeting near Grenoble in October 1965, three reports describing more
_ or less complete languages were amongst the contributions, by Niklaus Wirth

[6]1, Gerhard Seegmiiller [5] and Aad ven Wijngaarden [7]. In [5] aud [6] ,
the descriptional technique of [3] was used, whereas [7] featured a new ,
technique for language design and definition. Other significant contribu=— .
tions were, a paper by Tony Hoare [2] and a paper by Peter Naur [4].

b) At meetings in Kootwijk in April 1966, Warsaw in October 1966, Zandvoort
near Amsterdam in May 1967, Tirrenis near Pisa in June 1968, North Berwick
near Edinburgh in July 1968 and Munich in December 1968, & numher of succesg—
sive approximations to a final report were submitted by a team working in
Amsterdam, consisting first of A.van Wijngaarden and Barry Mailloux [81,
later reinforced by John Peck [9], and flnally by Kees Kogter [11]. Versions
were used during courses on ALGOL 68 held in Amsterdam [ tQl, Bakuriani [101,
Copenhagen [12], Esztergom [12], Calgary [12] and Chlcago [1&] Theae

. courses served as test cases and the experience gained in explalnlng the.

. language to skilled audiences and the reactions of the students 1nf1uenced

the succeeding versions.

c) The authors acknowledge with pleasure and thanks the whole-hearted coop—
eration, support, interest, criticism and violent ohjections from members: of
WG 2.1 and many other people interested in ALGOL. At the risk of emharrag=
sing omissions, special mention should he made of Jan Garwick, Jack -Merner,
Peter Ingerman and Manfred Paul for [ 1], the Brussels group consisting of

M. Sintzoff, P.Branquard, J.Lewi and P.Wodon for numerous braingtormg, T.van
Gils of Apeldoorn, G.Goos of Munich, G.S.Tseytin of Leningrad and L.Meertens
of Amsterdam. An occasgional choice of a, not inherently meaningful, identi=
fier in the sequel may compensate for not mentioning more names in this sece.
tion,

P.2. Membership of the Working Group
{(Verum homines notos aumeie. odiosum em’:

Pro Roacio Amenino, f M.T.Cicero.}
At this moment, the members of WG 2.1 are: : )

F.L.Bauer, H.Bekic, L.Bolliet, E.W.Dijkstra, F.G.Duncan, AiPiErshov, J.V.
Garwick, G.Goos, A.Grau, C.A.R.Hoare, P.Z.Ingerman, E.T.Irons, C.Katz, I.0.
Kerner, C.H.A.Koster, P.J.Landin, S.S.Lavrov, H.Leroy, C.H.Lindsey, J.Loeckx,
B.J.Mailloux, A.Mazurkiewicz, J.McCarthy, J.N.Merner, M.Nivat, M.Pacelli,
M.Paul, J.E.L.Peck, W.L.van der Poel, (Chairman]), B. Randall, D.T.Ross, K.
Samelson, G.Seegmitiler, T. Simizu, M. Smtzoff., WM. Turski (Secreta.l‘:ﬂa A van
Wijngaarden, M.Woodger and N. Yoneda.

&




P.3. Maintenance i

The Working Group realises that, as a result of implementation studies,
minor changes or modifications in the language'might become necessary. To
this end an ALGOL 68 Maintenance Group is established. Those who have sug=-
gestions are encouraged to submit them to this Malntenance Group.

{
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0. Introduction

0.1. Aims and prlnclples of design

a) In defining the Algorithmic Language ALGOL 68, the members of Wbrklng
Group 2.1 of the International Federatlon for Informatlon Processmng express -
their belief in the value of a common programmlng language serv1ng many peo= . -
ple in many coufitries. :

b) ALGOL 68 is designed to communicate algorithms, to‘exeeute them effi~
ciently on & varlety of different computers, and to aid in teachlng them to
students.

4

¢) The members of the Group, influenced by several years of experlence'vlth
ALGOL 60 and other prdgrammlng languages, hope that the followlng has been.
achieved:

0.1.1, Completeness and clarity of description

The Group wishes to contribute to the solution of the problems of de-
scribing a language clearly and completely. The method adopted in this Re=~
port is based upon a strict language comprizing a language core, whose des=
cription is minimized. The remainder of the language is described in terms
of this core, thereby reducing the amount of semantic description at-the -
cost of a heavier burden on the syntax. It is recognized, however, that this
method may be difficult for the uninitiated reader. Therefore, a companion
volume, entitled "Informal Introduction t6 ALGOL 68", has. been prepared at
the request of the Group by C.H.Lindsey and S.G.van der Meulen, and further |
companion volumes on specific aspects of the language may well follow.

.0.1.2. Orthogonal design

The number of independent primitive concepts was minimized in order that
the language be easy to describe, to learn, and to implement. On the other
hand, these concepts have been applied "orthogonally" in order to maximize
the expressive power of the language, and: yet w1thgut introducing deleterl—’?
ous superfluities. f

0.1.3. Security o

ALGOL 68 has been designed in such a ﬁay that nearly all syntactical and
many other errors can be detected easily before they lead to calamitous re- i
sults. Furthermore, the opportunities for meking such errors are greatly re~
stricted. ~ :

0.1.h, Efficiency

ALGOL 68 allows the programmer to specify programs which can be run ef-
flclently on present-day computers and yet do not require sophisticated and .
tlmencensumlng optimization features of alcompller, Bee, €.g8s, 11.8,




0.1.4.1. Static mode checking

The syntax of ALGOL 68 is such that no mode checking during run time is
© necessary except during the eldboratlon of conformlty relatlons, the use of
. ‘which is required only in those cases in which the programmer expllcltly
makes use of the flexibility offered by the unlted mode feature.

0.1.k.2, Static scope checking

- The syntax of ALGOL 68 is such that no scope cheékingvduring run time is
necessary except in some cases in which the programmer explicitly mekes use
of the flexibility offered by the absence of syntactical scope restrictions.

0.1.4.3, Mode independent parsing

The syntax of ALGOL 68 is such that the parsing of a program can be per-
formed independently of the modes of its constituents. Moreover, there is an
algorlthm which determines in a finite number of steps whether an arbltrary
given sequence of symbols is a proper program.

0.1.h.4, Independent compilation

The syntax of ALGOL 68 is such that the main line programs and proce-
dures can be compiled independently of one another without loss of object
program efficiency, provided that during:each such 1ndependent compilgtion,
specification of the mode of all nonlocal quantities is provaded"see the |
remarks after 2.3.c. :

0.1.4.5. Loop optimization

Iterative processes are formulated in ALGOL 68 in such a way that
straightforwvard application of well=known optimization techniques yields ‘
large gains during run time without excessive increase of compilation time.

0.1.4.6. Representations

Representations of ALGOL 68 symbols heve been chosen so that the lan=
guage may be implemented on computers with a minimal character set. At the
same time implementers may take advantage of a larger character set, if it
is available.

0.2. Comparison with ALGOL 60

a) ALGOL 68 is a language of wider applicability and power than ALGOL 60.
Although influenced by the lessons learned from ALGOL 60, ALGOL 68 has not
been designed as an expansion of ALGOL 60 but rather as a completely new
language based on new insights into the essential, fundamental concepts of
computing and & new description technique. :




0.2, continued

b) The result is that the successful features of ALGOL 60 reappear- in

ALGOL 68 but as special cases of more general constructions, along with com& :

- pletely new features. It is, therefore, difficult to isolate differences be-
tween the two lenguages; however, the following sections are intended to
give insight into some of the more striking differences.

0.2.1. Values in ALGOL 68

. &) Whereas ALGOL 60 has values of the types integer, real, boolean and
string, ALGOL 68 features an infinity of "modes", i.e., generalizations of
the concept "type".

b) Each plain value is either arithmetic, i.e. of integral or real mode and

. then it is of one of several lengths, or it is of boolean or character mode..

e¢) In ALGOL 60, composition of values is possible into arrays, whereas in
ALGOL 68, in addition to such "multiple" values, also "structured" values,
composed of values of possibly different modes, are defined and manipulated.
An example of a multiple value is the character array, which corresponds ap—-
. proximately to the ALGOL 60 string; examples of structured values are com-
plex numbers, machine words considered as sequences of bits or of bytes, and
symbolic formulae.

d) In ALGOL 68, the concept of a "name" is introduced, i.e., a value which
is said to "refer to" another value; such a name-value pair corresponds to
the ALGOL 60 variable. However, any name may teke the value position in a
name-value pair and thus chains of indirect addresses can be built up.

e) The ALGOL 60 concept of procedure body is generalized in ALGOL 68 to
the concept of "routine", which includes also the formal parameters, and
vhich is itself a value and therefore can be manipulated like any other
value; the ALGOL 68 concept "format" has no ALGOL 60 counterpart.

f) 1In.contrast with plain values and multiple and structured values com+
posed of plain values only, the significance of a name, routine or format or
of a multiple or structured value- composed of nemes, routines or formats, N
possibly amongst other values, is, in general, dependent on the context in
which it appears. Therefore, the use of names, routihes and formats is sub-

. ject to some natural restrictions related to their "scope".

0.2.2. Declarations in ALGOL 68

a) Whereas ALGOL 60 has type declarations, array declarations, switch dec=
larations and procedure declarstions, ALGOL 68 features the "identity dec-
‘laration" whose expressive power includes all of these, and more. In fact,
the identity declaration declares not only variables, but also constants, of
any mode, and, moreover, forms the basis of a.highly efflclent and powerful

parameter mechanism.




0.2.2. continued

.
/

b) Moreover, in ALGOL 68, a "mode declaration" permits the construction of °

new modes from already existing ones. In particular, the modes of multiple

“ values and of structured values may be defined this way; in addition a union

of modes may be defined for use in an identity declaration allowing each
value referred to by a given name to be any one of the uniting modes.

c) Finally, iu ALGOL 68, a "priority declaration" and an "operation dec=
laration" permit the introduction of new operators, the definition of their
operation and the extension or revision of the class of operands applicable
. to already established operators.

.

0.2.3. Dynamic storsge alloecation in ALGOL 68

:Whereas ALGOL 60 (apart from the so-called "own dynamic arrays") implies
" & J'stack"-oriented storage-allocation regime, sufficient to cope with a
statically (i.e., at compile time) determined number of walues, ALGOL 68
provides, in addition, the ability to generate a dynamically (i.e., &bt run
time) determined number of values, which ability implies the use of addi-
tional, well established, storage-allocation techniques.

0.2.h. Collateral elsboration in ALGOL 68

Whereas, in ALGOL 60, statements are "executed comsecutively", in
ALGOL 68, "phrases" are "elaborated serially" or "collaterally". This last
facility is conducive to more efficient object programs under many circum-
stances, and increases the expressive power of the language. Facilities for
parallel programming, though restricted to the essentials in view of the
none=too~advanced state of the art, have been introduced.

0.2.5. Standard declarations in ALGOL 68

The ALGOL 60 standard functions are all included in ALGOL 68 along with

many other standard declarations. Amongst these are "enviromment enquiries",
which make it possible to determine certain properties of an implementation,

and "transput" declarations, which make it possible, at run time, to obtain
data from and to deliver results to external media.

0.2.6. Some particular constructions in ALGOL 68

a) The ALGOL 60 concepts of block, compound statement and parenthesized ex=
pressions are unified in ALGOL 68 into "closed clause". A closed clause may
be an expression and possess a value; Similarly, the ALGOL 68 "assignation",
which is a generalization of the ALGUL 60 assignment statement, may be an
expression and, a&s such, also possesses & value.

b) The ALGOL 60 concept of subscription is generalized to the ALGOL 68 con= |

cept of "™indexing", which allows the selection not only of & single element
of an array but also of subarrays with the same or any smaller dimensionale
ity and with possibly altered bounds.




0.2.6, gontinued

c¢) ALGOL 68 ﬁrovides not only the multiple vailues mentioned in Q.2.1.c, but
also "collateral expressions' which serve to compose these values or strucs
tured values from other, simpler values.

d) The ALGOL 60 for statement is modified into & more concise and efflclent,
"repetitive statement'.

e) The ALGOL 60 conditional expression and conditional statement, unified
into a "conditional clause", are improved hy requiring them to end with a
closing symbol whereby the two alternative: .clauses admit the same syntactic
possibilities. Moreover, the conditional clause is generalized into. a "case
clause" which allows the efficient selection from an arbltrary~numher of
clauses depending on the value of an integral expression or of a conformlty

relation.

f) Some less successful ALGOL 60 concepts, such as own guantities and 1ntem'
' ger labels have not been included in ALGOL 68, and some concepts like desige
national expressions and switches do not appear as such in ALGOL 68, but
their expressive power is included in other, more general, construction&,

' ‘ . {Thue wisdom Bnows
. ' £t must comprise.
' Aome. nonsense
as a compromise,
Leat fooks should 6@14@
Lo find it wise. '
Groobka, Pwt Hedn. }




"l;lLanguage.and'ﬁétalanguégéff"w

1.1; The methdd;of‘desérip%ith

1.1.1. mhe strlct, extended and renreeentatlon.languages
&) ALPOL 68 lS a language 1n vhlcn 'angramsW-can be formulated for "eom=
putern , i.e. aubomata Aor "human beings". It is defined.in three stages,. .
the strlcu,langudge the eytended language and the'ﬁrenresentatlon lan~5'
gufure . . . , - o , B X X

b) In the definition, the EnElLSh languagc and & "formal language" are .’
used For both of these lanzusges, as also for the' strlct language and the

xtended language, tvpogranhlcai and syntactlc marks are used which bear no
1mmed1ate relation to those used for the,representatlon language.

1.1.2. The syntax of the'sﬁribt language

a) The strict language is defined by means of a “syntax" and ' semantlcs
This syntax is a set of ."production rules" fbr "notions™; it-is exnressed 1n
"small syntactiec marks”,“in this Report ' a >, ”b"; e, "g", Ye, "fU, "o,
::1,.}:: , ::i:!', "'j ::, ::l{::’ .lﬂl” " ﬂ’ "nl"“ "O' ' p . Hq”’ r ) l‘ 1 . ‘"tl‘l,. "u”’ ':
tyt, M, XM, My and Mz R
"large syntactic marks",’in this Report "A" ”B"; "C"’ "pr, "E" tE,otet,
trTt il gt i1274) ] 1y 1 Mgt HATIE - I 1yt i Fatid 1] " n ” tenrt it :
.nVn’ ng]jt ? 'nin? ngn an](; VAR " a.ndN > ."O i P ? Q R q T‘ 2 U,
> [ ) ) , . .
"other syntactic merks", in this Revort “." ("point”)g ",“‘("comma“ , M
("ecolon"), ";" ("semicolon") and Ml (Mastepisk™), ;. o
{Note that. theae marks are in another type font than Lhe ‘marks in th

sentence 1

b). A,”protonotlon is & nonemntv posslolv 1nf1n1te, sequence of smalJ syn-
tactic marks, a notlon is a protonotion. for which there 1s a productlon
rule, svmbol" 1s a nro»onotlon endlng with Svmbol' :

¢) A production rule for a. plveﬂ notion conalstg of that notlon, nossibly
preceded by an asberlsk, 1ollowed by a colon, a llat of notions {see d}, _
and a nolnn, in that order. The list of notions is said.to be a "direct pro-
du0ulon of the glven notlon. : : c

a): A list eof notions is a nonempiy sequence of members ' ‘separated by com-
mas; a member is either a notion and ;s then said to be nroductlve {, or
nonuermlnalg}-or is & symbol {, which is terminal,} or 1s ‘empty, or is some
other vprotonotion {and then the producticn rule of whosé list of notions it
is a member is said to be & "blind alley"}. e o :

e) A "production” of a given notion is either a direct prodiction of that
given notion or a list of ncotions obtained by renlacing a productive memcer'
in some vproduciicn of the given nction by a alrect nrodactlon of. uhat Dro-
ductive member :

£) A "terminal nroduction’ oP a notLon is & nroductlon of that nOulon each-
of whose® mermters is either a symbol or eﬂmtv. :




l.L.2. continued

{In the nroduct¢on rule R L : :
'variable point numeral : 1ntegra] part optlon, Fractlonal part '
(5.1.2.1.0) of the strict language, the list of notlons o
’1nuegral part option, fractional part'.. @ . = ‘ SR s
is a direct production of- the ‘notion ‘Varlable D01nt rumeral';;and :ontalnff‘j,
two members, both of whlch are productlve. A ter 1na- production.. of this -
same notion is ) f o :
'digit zero symbol, point symbol diglt one svmbol"""' :
The mewber, 'diglt zero symbol', is an example of . a: symbol and is termlnal.
The protonotion 'twas brillig ard the slithy toves' is neither a symbol nor”
a notion in the sense of this Report, in that it does: not end w1th symbol'

and no production rule for 1t is given (l 1. 5 b c) }

51.1;3. The syntaX<6f the méﬁéianguage.

a)‘ %ome Uroductlon rulcs of the" strlct language are’ glven exnllcltly and
. others are. obtalned w1th the aid of a, metalanguage whose syntax 1s a set
of productlon rules for metanotlons ; D R U S

b) A metanotlon 1s‘a nonémnty‘Sequence'ofklarge SVﬁtaétic mafks.f.

c) A nroductlon rule for a: glveﬂ metanotlon con51sts of that metanotlon
followed by a colon, & a "list of metanotions" {see: dl}, and & point, in that °
order. The list of metanotlona 1s sala tq be a dlrect productlon of the

given metanot10n.-» . Lk

&) A-list of metanotion is a nonemoty uoquence of metamembers Séparaﬁed'.
by blanks; a metamember:is elther a mete notlon and is then. sald to be pro-
duective, or a, p0351b1y empty, scquenoe of small syntactlc m rks.

e) A broductlon of a’ glven metdnotlon 1s elbhe;'a dlrect prOdUCuJOH of- thatf
given metanotion or a list of metanotions. obtained by renlaclny a nroductlve}»
metemember in some production of the given- metanotlon by a. dlreCE productlon‘
of that nroductlve metamember. » : s '

f) A termlnal productlon of ‘a metanotlon is a productlon of that metdnotlonqm
none of whose me»amembers 1s “productive. N : A -

{In the nroductlon rule 'TAG : LETTFR '; derived’ from 1 2.1. r, 'LETTFR' P
is a direct production of the metanotlon TTAG! , and con51sts of orne- metamember"
Whlch is productive. A particular terminal vroduction of the metanotlon
"TAGY is 'letter x' (see 1.2.1.s,t).. In the production rule 'EMPTV i ! -
(1.2.1.1i), the metanotion FMPTY' has & dlrect nroductlon whlch consists of

one emntv metamember }

1.1.%. The DfOQthlOn rules o; the metalanuuage

The nroductlon rules of tne metalaqguage are the rules obtalncu from the
rules in Section 1.2 in the follow:ng steps: BT
Step 1: If some rule contalns one. or more. semlcolons, then it is ren¢aced by -
new rules, the first of which con51sts of the part of that rule up to
and including the first semlcolon with that semlcolon renlaced by a- 301nt ;
and the second of which consists of a copy of that part of the rule up to
and including the colon, followed by the part of the or1g1nal rule ‘follow=-
Cing its Tirst semlcolon, Whereupon %ten l is. taken agaln, ek

LWo




1.1.4, continued

Step 2: A number of produ0ulon rules for the metanotlon.'ALPHA’ {1. 2. 1. t},
- each of whose dlrect productlons is another small syntactlc mark ‘may be .
. added. : . .

{For instance, the rule :
VTAG LFTTTR TAG 1LETTER 5 TAC DICIT "
from 1.2,1.r, 1s,replaced by the rules CEoo
'"TAG : LETTER.' and 'TAG : TAG LETTER ; TAG DIGIT.',
and the second of these is replaced by ’
"TAG : TAG LETTER.' and 'TAG : TAG DIGIT.',
thuas resulting in three rules from the original one,
ihe readcr might flnd 1t helpful to read ":V ‘as "may be:a", "," as "followed

by a', and ";" as "or a"

1.1.5. The productlon rules of the strlcﬁ language

a) A production rule of the strict language 1s any rule obtalned -in the

follow1ng steps from the rules given in Chanters 2 up to 8 1ncluolve in the

sections whose heading is or begins with "Synt ax" : :
tep 1: Identical with Step 1 of 1.1.k4;

Step 2: One of the rules obtained is considered;

Step 3: If the considered rule containsg one or more metanotlons, then for
some terminal production of such a metanotion, a new rule is obtalned,by
replacing that metanotion, throughout a copy.of the considered rule, by o
that terminal productlon, whereupon this new rule is considered 1nstead
and Step 3 is taken; otherwise, all. blanks in the considered rule are re-
moved and the rule so obtained is a production rule of the strict lan-

guage.

b) A number of production rules may be added for 'indicant', 'dyadic
indicant' and ‘monadic indicant' {4.2.1.b,e,f}, each of whose direct produc~
tions is & symbol different from any symbol given in'this'Report with the -
restriction that no terminal production of '1ndlcant' is .also a terminal
production of 'monadic 1ndlcant' :

c) A number of production rulcs may be added for 'other comment item!'
{3.0.9.c} and 'other string item' {5.1.L.1.b} each of whose direct produc-
tions is a symbol different from any terminal production of 'character
token' with the restrictions that no terminal production of 'other comment
item' is fcomment symbol' and no termlnal productlon of other string item'

is 'gquote symbol'.

{The rule :

vactual LOWPER bound : strict LOWPER bouna.v
derived from T.l.l.t by Step 1 and- considered in Sten 2 is used in Step 3 to
prov1de either one of the following two production rules of the strict lan-
guage:

‘getuallowerbound: strictilowerbound. ' and

"actualupperbound: strictupperbound. '; T - »
however, to ease the burden on the reader, who may more ¢asily ignore blanks.
himself, some blanks will be retained in the symbols, notions and production
rules in the rest of this Report Thus, the rules will be written in the
nore readable form s e .

actual lower bound : strict 1ower bound. ' and

‘actual upner bouna : strict upner bound ' '
fote that

tactual lowe ucund : strlct upper oound ! :
ig not a JroaVeu¢on rule of the otrlct 1anguape, 51nce the replacement of



1.1.5. continued

» the metanotlon"LOWPER' by one of 1ts productlons must be cons
- throughout. , ; S e e
-8ince some metanotlons have an’ 1nf1n1te number of termlnal producﬁlons, the
number of notions in the strict language is 1nf1n1te and the number of nro— ,
duction rules for a given notion may be 1n¢1n1te, moreover, 51nce some metawf;'
notions have termlnal productlons of 1nf1n1te length, some notlons are infis;
.‘.nluely long. For exarples see h 1.1 and 8 S 2.2, These 1nf1n1t1es shoul& not
worry the reader. From the . sequel it fo;lows that in- any program only a fi-'"
nite number of notions ‘and productlon rules. are 1nvolved and that although
notions of infinite length may be involved, thelr constltutlon is always de=
termined by a simple auostltutlon Process . deflned by a flnlte number of sympil.
bols, viz. the program; 1t is thls process ratner than itge hyoothetlcal out-‘,.
come that matters. v U
Some production rules obta’ned ‘from a rule . contalnlng a metanotlon mav be I
blind alleys in the sense that no nroductlon rule is given for some member :
to the- rlght of the. colon even though 1t is not a symbol } :

i : R
b N ) : -~ AN

" 1.1.6. The semantics of the étﬁict.languégéi"

a) A terminal production of a notion is considered as a line@flyidrdered.'i
sequence of symbols. This order is termed the "téxtual order', and "follow-
ing" ('"preéceding") stands for‘"textually immediately following" ("textually:
immediately preceding") in the rest- of this Report. Tynogranhlcal display
features, such as blsnk space, change to a new llne, and change to a new
page do not influence this order. ! : » . : L

b) A sequence of symbols (A protonotlon) con51st1ng of 8 second sequence of
symbols (a second protonotlon) preceded and/or’ followed by (a) nonempty se-.
quence(s) of symbols (of small syntaotlc marks )’ "contalns ‘that second se~ .

- gquence of symbols.(uecond Drotonotlon) %,e : . o T

¢) A "paranotion' when not in a sectlon whose heaalng is-or: beglns w1th
"Syntex'", not between "apostrophe's (" ' ") and not contained 1n'another pa-
ranotion "denotes" some number of protonotlons, 1tq‘ orlglnals . A parano—'“

tion is either . SR
i)  a symbol and then it denotes 1tself {, e.m.3 "begin symbol" denotes

"begin symbol"}, ror o : )

il) a notion whose productnon rule does (rules do) not begln w1th an aster--:
isk, and then it denotes 1tself {, e. g . plusmlnus denotes ”plusmlnus"} o
or. ,

iii) a notion Whose productlon rule does (rules do) begln w1th an asterlsk,'
and then it denotes any of its direct productlons {, which, in thls Re-
port, always is a notion or a symbol, e.g.; "trlmscrlot" (8. 6 1.1, J) de—

- notes "trimmer option" or ”suoscrlpt }, or - _

iv) a parsnotion in which one or more "hyphen's ("- ") have been 1nserted
and 1t then denotes the onglﬁals of thaﬁ varanotion before the inser-
tion(s) {, e.g,, "begin-symbol" denotes what "begin symbol" denotes}, or -

v) a paranotion followed by 's" or. a naranotlon ~ending with y in which.
that "y'" has been replaced by "ies" and it then denotes sonie’ number. of the |

'Oflglnals of that paranotion before the modification {, €.,

"trimscripts" denotes some number of "trirmer ootjon s eni/or suoscwlot”
and "primaries" denotes some number of the notions. denoted by "orimary"},
or e T .

vi) a paranotion whose flrst small gyntectlc mark has been replaced by the.
corresponding large syntactic mark, and it then denotes the originals. of
that paranotlon tefore the modification {, e.p., "Identiflers" denotes the:
notions denoted i “1dentifiers"}, or e
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.comlttlng a termlnal productlon of SOHP' and/or Soﬁ;i 7
‘{, €.y 1ump denotes ‘the notions denoted by "NﬁID jump~”(w

‘clause" (6 10862100 0,0,2,6, 3.1.a,6.4
"SORTETY" ("SOME" "NDID") °tands for‘,f'
i'notlon vSORTETY' ('SOMF' ’NDID‘)} i

shorten the semantlcs }

a) Except as otherw1se specliled ,g 5.8 paranotlon stands for any occur- jV
rence' of any symbol denoted by it and/or of any terminal production of any '
notion denoted by it cons1derea as a termlnal productlon of, spec1i1cally,
that notlon. Lo - & R

" e) An occurrence.( of a termlnal productlon of :lon N 1s nrodueéd by -
tree of specific- productlons, for this productlon tree are’ deflned f
a "direct descendent" of N, i.e., a member of the diréet nroductlon of N 7
'”dezcendent" of N, 1.e., a dlrect descendent of- either N or a descendent :
of
a "visible descendent” of N, i.€., a decccndenn D of N whieh is, not also a
descendent of a second dcscendent U’ of N where D’ 1s the same notlon as .
eltner D or Ny 5 ! s
the "offspring" of a descendent D or N, i. e, if D is .2, notlon (symbol)
then the occurrence of the termlnal productlon of (the occurrence of) ﬂ
© which is, or is contained in, 0 and
a "direct constituent' ("constituent" )iof 0, i.e., the offsprlng of a d1~5
rect (visible) descendent of N. N _
{The terminal production of 'lntepzﬂl slice’ (8 6 1.1.a) QI Vl&.,-t»”
2271, 111117, contalns three occurrences of'digﬁt one symbol"(S 1.1.b) 5
two occurrences sub symbol* (3.1.1.e), [, and one occurtrence- of a tefml— -
~ nal production of ’integral slice' SZ, viz., 21711, whlch is a constituent .
of ST, The first odccurrence of 1 is a constituent of S7; the qecond and .
third are constituents of SZ and, -since QZ ‘is-both- 'integral slice' and a*
constituent of ST, not constltuents of - ?1 The first ‘oeeurrence of I is a’
di.rect constituent of ST° and ‘the second is a dlrect constltuent of Y but
ot a constituent of Sl } : : g

f) A paranotlon standlng for the occurrences of symbols or of termlnal pro~
ductions of notiong all of whlch are (dlrect) constltuents of termlnal pro-
" ductions of notions denoted by & second paranotlon is & (dlrecﬁ) constltuent
of that second paranotlon.o-‘ ; K \ o
{Since paranotions stand for occurrences of symbols or termlnal oroduc—' i
tions (d), J .= 1-is a constituent assipnation (8.3.1.1.a) of the ‘assigna-

tion © := j := 1, but not of the serial—clause‘(é 1.1. a) 1 oi= g = Ip ko= 80
nor of the a051gnatlons J = 1end k: 1= o= 1. The 3551gnation gov= 1o

is not a direct constituentjo he a051gnation z"* g 1 but the source
J o= 1 is'(8 3.1.1.b). } s : . Lo ‘

) A naranotlon whlch is a’ dlrect constltuentfof a second naranotlon 1s a -
naranotion of that second paranotlon.uzi:;m@u“ e T e e e




1.1.6. continued 2

{This permits the abbreviation of dlrect constltuent of", whlch would
appear frequently under Semantics, to "of", "its"™ or even "the", e.g., in
4 i="1, 7 is its destination (8. 3 1.1.b) or < is .the or a destlnatlon of :

goi= 1, whereas ¢ is a constituent destination but not 51mply a destlnatlon 3

‘of the serial-clause 7 := L g ;— 2.1

h) In sectlons 2 up to 8 under "Semantlcs ,; a meanlng 1s assoc1ated w1th :
occurrences. of certaln sequences of symbols by meahs -of sentences in the

" English language, as a series of processes. (the 'elaboration™ of* those oc=:;
currences of sequences of symbols as terminal productlons of given notlons),.
each causing a specific effect. ~Any of these processea may be replaced by -
any process. whlch causes tne same effect. ook ;

3

i) If an occurrence of a sequence of symbols 15 bobh ﬁhe offsprlng of a. no-'
tion N and of a direct descendent D of N which' is the only member:of a ai= -
rect productlon of N, then 1Ls preelaboratlon 5 p0351bly yvielding 'a "pre-.
value" with a ' premode and a. pregcope ',as Lermlnal productlon of N is 1its
.elaboratlon, possibly vielding a. "value" with a mode and o 'scope", as
terminal production of U and, except as. ‘otherwise specified 1{8. 2}, its elab-
oration with value, mode and scope as terminal productlon of N is its pre-.
elaboratlon with prevalue, premode and prescope as termlnal productlon of N.

{The elaboration with value, mode and scope of the reference—to-real-g
confriontation (8.3.0.1.a) & := 3,14 is its preelaboration with prevalue,
‘premode -and. prescope which is its elaboratlon Wlth value, mode and scope as
a reference-to-real-assignation.

The syntax of the strict lanwuage has been chosen in such a way that a
given sequence of symbols which is a terminal production of 'program' is so
by means of a unique set of productions, except, posolbly, for productlon
" rules inducing at most preelaboratlon, e.g., derived from rules 6. 2.1.e and
6.4.1.4 (valancing of modes) and from rule T.l.l.cc in comblnatlon with
T.2.1.a and T.4.1.a (order of terminal productidns of 'MDOD' in a terminal

prodactlon of 'UNITED'"); see-also 2.3.a.}

i) A terminal productlon of a metanotion M s enveloped” by a notion N if
it is‘contained once in N but not in another termlnal productlon of M con=
tained in N. :

{Thus, ‘reference to real' is enveloped as terminal producLlon of 'MODE!
by 'reference to real mode identifier', but 'real' is not. } :

k) If something is . left "undefined” or is said to be undefined, then this
means that it is not defined by this Report alone, and that, for its defini-
tion, information from"outside this. Report has to be taken into account.

1.7.7. The extended language .

The extended language encompasses the strict language; i.e., a pfogram
in the strict language, possioly subjected to a number of notational changes
by virtue of "extensions" glven in Chapter 9, is a program in the ettended-
language and has the same meaning. ‘

{Thus, real x, y, 2 is a representatlon of a collateral—dec]aratlon in -
the extended languagée which means the same as real Z, feal Y, real z which
is a rgpreientatlon of that collaterdl-declaratlon 1n the strnct language,
see 9 ¢ : v




1.1. 8 Tne renre entatlon —'la.nguag, :

a) "‘he reprcsentatl n ‘lan

3.1. 1 and in which all commes. {not comma~symbois} ar ‘deleted
in the representatlon language and has the sa.me meamng.f ST

of the huma.n or. mechanlcal mterpreter of the 1anguage}

{e.g., egzn be;,m ' 'BEGIN and 'BEGIN' are all: representatlons of the
beg’m—s;ymbol {3.1.4.e) in the representatlon langua,ge and some - combination
of holes in a pu.nched card may be a representatlon of it in some hardware a
language. } R fos SR : ‘ ce ,

1.2. The metaproduction rules

1 2 l. Metaproductlon rules of modes

a) vmr : MOOD UNITED.» e T ER

b) MOOD : TYPE ; STOWED. e U e

¢) TYPE : PLAIN s format 3 PROCEDURF H reference to MODE._‘

da) PLAIN : INTREAL ; boolean ; character. R

e). _IN'IREAL  INTEGRAL ; REAL.. L

£) INTEGRAL : LONGSETY integral'

g) REAL : LO’\TGSTTY real., -

h) TDNGSE‘I’Y : 101’1;1‘ DONGSETY 5 I’T"PTY

i) EMPTY @, -

j)"PROCVDURF : Orocedure PARAMETY MOID

k) PARAMETY : with PARAME! T RS 3 EMPTY,

1) PARAMETERS : PARAMETER ; PAPAMETEP% and P!\RAI\”ITFR

m)  PARAMETER : MODE parameter .

n) MOYID : MODE ; void.. Lo o

o) STOVED : structured with FIELDS ; row of NODE. o

p) FIELDS : FI ELD FIELDS and }"IELD R E

a) TIELD : MODE rield TAG.. . o

~r) TAG : LETTER ; TAG 1E TTER ’I‘AG DI(‘IT

s) LETIER : 1etter ALPHA' letber aleph: -

t) ALPIA : a; b c; df, e; f; g ;kh_;;i’;‘f :
. 'q,l",‘S,-ti,u,V,w;"" e

u) DIGIT : diglt FIGURE. o ‘

v) FIGURE : zero ; one ; two ; three ;

", nine. N

w) UNITED : union of LWOODS WOOD mode.

x)  TMOODS : LMOOD 4 LMC‘ODS IMOOD

v) LW\’)OD MOOD and

{Tﬁe reader ‘may flnd 1’0 helpful to no‘ce ’cha.t a, metanotlon end:.np' w:.th
TETY Y always has 'FIIIPTY' as a productlon } I o .




l.2.2. Metaproductlon I'UlCa assoc:1ated w1th modes

a) .PRIMTTIVF A 1ntegral R real boolean 5 character 5 1

v) ROWS : row of ROWS row. of. =~ -~ . . . v

e) ROWSETY : ROWQ 5 EMPTY.

d) ROWWSETY : ROUAETY.

e) - NONROW : NONSTOWED ; str'uctured with F’IELDS

£) NONSTOVED : TYPE ; UNITFD : : : o

g) FREFETY : reference to ; EMPTY. . =7 R .

h) NONPROC : PLAIN ; format ; procedure with PARANFTERS POID
reference to NONPROC 3 structured with ITFLDS 3 row of NOHPROC
UNITED.

‘i) PRAM : procedure with LMODE parameter and RNDDE parameter MOID

" procedure with RMODE parameter MOID ‘

1) LN')DF : MODE,

k) RMODE : MODE,

1) L&Kﬁﬂ‘ MOOD and. - S

m) LMOODSETY -MOOD and LMOODSETY EMPTY,

n) RMOODSETY : RMOODSETY and MOOD ; EMPTY, - .-

o) LOSETY : LMOODSETY. © ' L ’

p) BOX : LMOODSETY box.

q) LFIELDSETY : FIELDS and ; EMPTY.

r) RFIELDSETY : and FIELDS. ; FMPTY, - ' '

s) COMPLEX : structured with real field 1etter r 1etter e and real field :
letter 1 letter m..

t) BITS : structured with row of boolean field LENCTHF”Y letter aleph

u) LENGTHETY : LENGTH LENGTHETY ; EMPTY. o o

v) LENGTH : letter 1 letter o letter n letter g." '

w) BYIES : structured with row of character field LENGTHFTY Jetter aleph.

x) STRING : row of character ; character. _

y) MABEL : MODE mode ; label,

1.2, 3 Metaproductlon rules assoc:.ated w1th phrases and coercmon

a) PHRASE : declaration ; aAmm ’,, '..fﬁ'_;ﬁ'r;,’
b) CLAUSE : MOID clause. ' R
c) SOME : serial ; unitary ; CLOSED ; choice 5 THELSE

a) CLOSED : cloeed 3 collateral ; conditional .

e) THELSE : then ; else. . ‘

r) SORTETY : SORT ; EMPTY..

i)  SORT : strong; FEAT. o

"h) FEAT : filrm ; weak ; soft.

i) STRONGETY : strong ; EMPTY.

j) STIRM : strone ; firm. Co S

k) ADAPTED : ADJUSTED ; widened ; rowed hipped 3 voided.-

1) ADJUSTED : FITTED ; procedured ; united B :

) TFITIED : dereferenced ;,deprocedured '

1.2.k4. Metaproduction rules associated with coercends -

a) COERCEND : MOID FORM.

b) FORM : confrontatlon ; FORFSE, G

c) TORESE : ADIC formula ; cchesion ; 3 "base. =

LAy MIC PRIORITY monadle. SRS

@) ‘PRIORITY : priority NUMBER. . : : T

f£) NUMBER : one ; TWO ; THFEE ; FOUR FIVE 5. SIX 3. SFVEN ; EIGHT ; NINE,



1.2.4k, continued

g) TWO : one plus one.

h) THREE : TWO plus one.
i) FOUR : THREE plus one.
j) FIVE : FOUR plus one.
k) SIX : FIVE plus one.

1) SEVEN : SIX plus one.
m) EIGHT : SEVEN plus one.
n)- NINE : EIGHT plus one.

1.2.5. Other metaproduction rules

a) VICTAL : VIRACT ; formal. .
b) VIRACT : virtual ; actual.
c¢) LOWPER : lower ; upper.
d) ANY : KIND ; suppressible KIND ; repllcdtable KIND ;
replicatable suppressible KIND.
‘e) KIND : sign ; zero ; digit ; point ; exponent ; complex ; string ;
character.
f) NOTION : ALPHA ; NOTION ALPHA. ,
g) SEPARATOR : LIST separator ; go on symbol ; completer ; sequencer..
h) LIST : list ; sequence. ‘
i) PACK : pack ; package.

{Rule f implies that all protonotions (1.1.2.b) are productions .
(1.1.3.e) of the metanotion (1.1.3.b) 'NOTION'; for the use of this meta=
notion see 3.0.1.b,¢,d,g,h,1.}

C{"Well, 'sLithy' means 'Lithe.and sLimy'. ...
You see Lt's Like.a porntmanteau -—there ate
. Awa meanings packed.up Lnto.one word."
Through the Looking-glass, Lewis Carnoll.}

1.3. Pragmatics

Scattered throughout this Report are "pragmatic" remarks included be-
tween the braces { and }. These do not form part of the definition of the
language but are intended to help the reader to understand the implications
of the definitions and to find corresponding sections or rules.

{The rules under Syntax are provided with cross—references to be inter=
preted as follows. Let a "hypernotion" be either a protonotion or a sequence
of one or more metanotions, possibly preceded and/or separated and/or fol-
lowed by protonotions; then each rule consists of a hypernotion followed by
a colon followed by one or more hypernotions separated by commas or semico=
lons, and is closed by a point. By virtue of 1.1.5.a.Step 2, each hyperno-
tion eventually yields one or more protonotions. In each rule, a hypernotion
before (after) the colon is followed by indicators of the rules in which a

"hypernotion yielding one or more protonotions also yielded by the first hy-
pernotion appears after (before) the colon, or by indicators of the repre-
sentations in section 3.1.1 of the symbols yielded by the first hypernotion.
Here, -an indicator is, in principle, the section number followed by the let-
ter indicating the line where the rule or representation appears, with the



1.3. continued -

follow1np conventions: : : B ey o
i) the indicators whose sectlon number 1s tnat of the section in whlch
they appear, are given flrst and thelr sectlon number ds’ omltted e.g., ,
"3,0.3.b" ‘appears as "b" in section "3 0. 3" . B
ii) all p01nts are omltted and lO appaarstas A

"303a" elsewhere; '
11i) & final 1 is omltted e g.~ ”811&" anpears ‘as M8la"
Civ) a section number whlch is the same:.as. in the“p‘eceding;lnxlca or isi

omitted; e.g., "821a 82lb”tanpears as "821a, by S o
v) numerous indicators of the rules: 3 ;0s1.0 up . to h are renlaced bv more

helpful indicators; e.g., in 6.1.1.4d; ”chain OI St‘ *'oid unltq
separated by go on symbols{BOc}‘ appears aS'~" « )
separated by go on symbols{Blf}", also indi
restricted to a bare minimum; - s :
vi)  the absence of & production rule for one,or mo e proto ,tlons whlch are";

not symbols and are yielded by the hypernotlon appearlng after the- colon, N

is indicated by "-"; e.g., . in 8.3.0.1.a after "MODE: conformjty relation"
apvears {832a,-} since 8.3.2.1.a yields only ‘production rules for "booléan
conformity relation", and no other rule brov1des the absent productlons.}

{oome of the pragmatlc remarks are examples in the representaulon lan~-
guage. In these examples, 1dentifjer% occur ocut of conte%t from théir defini
ing oceurrences, Unless otherwise spe01fled these occurrences identify .. f
those in the standard-prelude (2.1.b and Chapter 10) (d.g:; see 10.3.k for. o
random end 10.3.a for pz), that in the ex1t (2 e e) (V1z., exzt),) : "

or those in: fj ' S . L

¥

int L. g, k, my n; rwal a, b ag y, booZ D, a, oveerow,,‘g
char ¢; format f; butes r,‘strznq 83 bits t; compl w,. z,
ref real xx, yys [1:n] real x1, yl; [1:m,1: n? real ‘%2;. o
Tim, 1:n) real y2; [1: n] int 115 [lem,1:md int 42 12,-,;*, 4fg_'
‘prog x or y = = pef real : (randbm < .5 x| yl; SRR
proc neos = (int 1) real : cos (2 x Pt x zv/,n) oy
proc nsin‘= (int 1) rpaé sin (2 x pi x'1 [ n); L
proc g = (real u) real : (arctan (u) - a+ u - 1)
proec stop go_to exit; L :
prmneeton grenoble: st pierre de chartreuse POOﬁﬁ$7k warsaw zandvoort
amsterdam tivrenia: north berwtck munwch stop } o :

{heneﬂg connobonai&ua daia&ﬂ sntended to S
_glve artistic veﬂ&é&m&ﬂ&iude Xo an othenuuAe
bald and: unconv&nc&ng naﬂhai¢ve.“

MLh&dO, o WS GLﬂbent }




2. The computer and the program

{The programmer is concerned with particular-programs (2.1.4). These are
always contained in a program (2.1.a), which also contains the standard-
prelude, i.e., a declaration~prelude which is always the same (see Chapter
10), possibly a library-prelude, i.e., a declaration-prelude which may de-
pend upon the implementation, the exit, i.e., ; exit : which enables the
programmer to end a program anywhere by the jump exzt, possibly a library-
postlude, and the standard-postlude (10.6).}

2.1. Syntax

a) program : open symbol{3le}, standard prelude{b},
library preludefc}t option, particular program{d}, exit{el},
library postlude{f} option, standard postlude{g}, close symbol{3ie}.
b) standard prelude{a) : declaration prelude{61b} sequence.
¢) library prelude{a} : declaration prelude{6ib} sequence.
d) particular program{a} :
label{61k} sequence option, strong CLOSED void clause{62b,63a,6ka}.
e) exit{a} : go on symbol symbol{31f},
letter e letter x letter i letter t{llec}, label symbol{31le}.
- £) library postlude{a} : statement interlude{61i}.
g) standard postlude{a} : strong void clause train{61i}.

2.2. Terminology {"When 1| use a word," Humpty Dumply said, Ain
nothen a scornful Lone, "Lt means {fust what
1 choose Lt L£o mean - nelthern mohe non Less. "
Thiough Lhe Looking-glass, Lewis Carwoll.}

The meaning of a program 1s explained in terms of a hypothetical com=
puter which performs a set of "actions'" {2.2.5}, the elaboration of the
program {2.3.a}. The computer deals with a set of "objects" {2.2.1} between
which, at any given time, certain "relationships" {2.2.2} may "hold".

2.2.1. Objects

Each object is either "external" or "internal. External objects are
occurrences of symbols or of terminal productions {1.1.2.f} of notions. In=-
ternal objects are "instances" of values {2.2.3}.

2.2.2. Relaticnships

a) Relationships either are "permsnent", i.e., independent of the program
and its elaborstion, or actions may cause them to hold or cease to hold.
Each relationship is either between external objects or between an external
object and an internal object or between internal objects.

~ b) The relationships between external objects are: to contain {1.1.6.D}, to
be a constituent or direct constituent of {1.1.6.e} and "to identify" {c}.

¢) A given occurrence of a terminal production of 'MABEL identifier!
{L.1.1.9} ("MODE mode indication' {4.2.1.b} or 'PRIORITY indication'
{(k.2.1.e}, '"PRAM ADIC operator’ {4.3.1.b,c}) where "MABEL" ("MODE",
"PRIORITY", "PRAM", "ADIC") stands for any terminal production of the meta-
notion 'MABEL' (*MODE', 'PRIORITY', 'PRAM', 'ADIC') may identify a "defining
occurrence” ("indication~defining occurrence", "operator-defining occur~
rence") ¢f the same terminal vraduehion.
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2.2.2. continued

d) The relationship between an external object and an internal object is:
"to possess'.

e) An external object counsidered as an occurrence of a terminal production
of a given notion may possess an instance of a value, termed "the" value of
the external object when it is clear which notion is meant; in general, "an
(the) instance of a (the) value" is sometimes shortened in the sequel to "a
(the) value" when it is clear which instance is meant.

f) A mode~identifier (operator) may possess a value ({more specificallyl} a
"routine" {2.2.3.4}). This relationship is caused to hold by the elsboration
of an identity-declaration {T7.k4.1l.a} (operation-declaration {7.5.1.a}) and
ceases to hold upon the end of the elaboration of the smallest serial-clause
{6.1.1.8} containing that declaration. ’

g) An external object other than an identifier or operator {e.g. serial-
clause (6.1.1.a)} considered as & terminal production of a given notion may
be caused to vossess a value by its elaboration as terminal production of
that notion, and continues to possess that value until the next elaboration,
if any, of that external object is "initiated", whereupon it ceases to pos~
sess that wvalue.

h) The relationships between internal objects are: "to be of the same mode
as", "to be equivalent to", "to be smaller than'", "to be a comwonent of" and
"to refer to". A relationship said to hold between a given value and a (an
instance of a) second value holds between any instance of the given value
and auy {that) instance of the second value.

i) An instance of a value may be of the same mode as another one; this re-
lationship is permanent {2.2.4,1.al}.

3) A value may be equivalent to snother value {2.2.3.1.4,f} and a value may
be smaller than asnother value {2.2.3.1.c}. If one of these relationships is

defined at all for a given pair of values, then either it does not hold, or

it does hold and is permanent.

k) An instance of a given value is a component of another one if it is a
"field" {2.2:3.2}, "element" {2.2.3.3.a} or "subvalue" {2.2.3.3.c} of that
other one or of one of its components.

1) Any "name" {2.2.3.5}, except "nil" {2.2.3.5.a}, refers to one instance
of another wvalue. This relationship {may be ﬂaused to hold by an "assign-
W°nt" (8.3.1.2.c) of that instance of that value to that neme and} continues
t0o hold until another instance of a value is caused to be referred to by
that neme. The words "refers to an instance of" are often shortened in the

sequel to "refers to',

2.2.3. Values

Values are "plain values" {2.2.3.1}, "structured values" {2.2.3.2},
"multiple values" {2.2.3.3}, routines {2.2.3.4}, "formats" {2.2.3.4}, and
names {2.2.2.1, 2.2.3.5}.



xx071168

2.2.3.1. Plain values

a) A plain vslue is either an "arithmetic value", i.e. an "integer" or a
"real number'", or is a "truth value" or a "character”.

b) An arithmetic value has a "length number", i.e. a positive integer char-
acterising the degree of discrimination with which the value is kept in the
computer. The number of integers (real numbers) of given length number that
can be distinguished increases with the length number up to a certain length
number, the number of different lengths of integers (real numbers)
{10.1.a,c}, after which it is constant.

¢) For each pair of integers (real numbers) of the same length number, the
relationship to be smaller than is defined {10.2.3.a, 10.2.k.a}. For each
pair of integers of the same length number, a third integer of that length
number may exist, the first integer "minus” the other one {10.2.3.g}. Fi~
nally, for each pair of real numbers of the same length number, three real

.numbers of that length number may exist, the first real number "minus"

("times", "divided by") the other one {10.2.k.g,1,m}; these real numbers are
obtained "in the sense of numerical analysis", i.e. by performing the oper-
ations known 1n1nathematicsby these terms on real numbers which may deviate
slightly from the given ones {; this deviation is left undefined in this

Report}.

d) Each integer of given length number is equivalent to a real number of
that length number. Also, each integer (real number) of given length number
is equivalent to an integer (real number) whose length number is greater by
one. These equivalences permit the "widening" {8.2.5} of an integer into a
real number and the incresse of the length number of an integer or redl num-
ber {10.2.3.q, 10.2.4.n}. The inverse transformstions are only possible on
those real numbers (arithmetie values) which are equivalent to an integer

(10.2.4.p} (a value of smaller length number {10.2.3.r, 10.2.4.0}).

e) A truth value is either "fuwe" or Mfalse".

f) Each character has an "integral equivalent" {10.1.h}, i.e. & nonnegative
integer of length number one; this relationship is defined only to the extent
that different characters have different integral eguivslents.

2.2.3.2. Structured values

A gtructured value is composed of a number of other values, its fields,
in a given order, each of which is "selected" {8.5.2.2.Step 2} by a specific
field-selector {7.1.1.i}.

2.2.3.3. Multiple wvalues

a) A multiple velue is composed of a "descrivtor" and a number of other
values, its clowents, each of which is selected {8.6.1.2. Step T} by & spe-
cific integer, its "index"

b) The descriptor consists of an "offset”, ¢, and some number, n = 0, of
"guintuples" (ﬁi, U, di’ A, ti) of integers, £ = 1, ... , n; £; is the
{-th "lower bound", Wi the L-th ' upper bound", d& the L~th "strlde", 44 the
{~th "lower state" and £; the {-th "upper state". If for any 4,



'2,2.3.3. continued

£ =T, oo 4, h, Uy < ﬁi’ then the number of elements in the multiple value
is zero; otherwise, it is (uz - 27 + 1) x ... % (an - ﬂn + 1). The descrip-
tor "describes" each element selected by ¢ + (h] -~£1) x d? toee. F

1,

n - x , € K. £ U. for es [ = ces .
(n, Kn) dn where £, < #; < u; for each 4L , n

{To the name referring to a given multiple value a state of which is 1,
no multiple value can be assigned (8.3.1.2.c.Step 4) in which the bound cor-
responding to that state differs from that in the given value.}

¢) A subvalue of a given multiple value is a multiple value which is (is
referred to by) the value of a slice {8.6.1.1.a} the value of whose primary
is (refers to) the given multiple value.

2.2.3.k. Routines and formats

A routine (format) is a sequence of symbols which is the same as some
closed~clause {6.3.1.a} (format-denotation {5.5.1.al).

2.2.3.5. Names

a) There is one name, Wi, whose scope {2.2.4.2} is the program and which
does not refer to any value; any other name is created by the elaboration of
an actual-declarer {7.1.2.c.Step 8}, a rowed-coercend {8.2.6.2.8tep T} or a
skip {8.2.7.2.a} {, and refers to precisely one instance of a value}.

b) If a given name refers to a structured value {2.2.3.2}, then to each of
its fields there refers a name uniquely determined by the given name and the
field-selector selecting that field, and whose scope is that of the given
name, ‘

¢) If a given name refers to a given multiple value {2.2.3.3}, then to each
element (each multiple value composed of a descriptor and elements which are
a proper subset of the elements of the given multiple value or composed of a
descriptor different from that of the given multiple value and the elements)
of the given multiple value there refers a name uniquely determined by the
given name and the index of that element (and that descriptor and those ele=
ments), and whose scope is that of the given name.

2.2.4, Modes end scopes

2.2,4,1. Modes

a) A mode is any terminal production of 'MODE' {1.2.1.a}. Each instance of
a value is of one specific mode which is a terminal production of "MOOD'
{1.2.1.b}; furthermore, all instances of a given value other than nif
{2.2.3.5.a} are of one same mode, the mode of that given value, and a "ccpy"
of a given instance of a value is a new instance of that value which is of
the same mode as the given instance.

b) The mode of a truth value (character, formast) is 'boolean' ('character!',
'format').
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2.,2.4.1. continued
¢) The mode of an integer (a real number) of length number n is (n - 1)
times 'long' followed by ‘integral' (by 'real').

d) The mode of a structured value is ‘structured with' followed by one or
more "portrayslis" separated by ‘and', one corresponding to each field taken

~in the same order, each portrayal being the mode of that field followed by

"field! followed by a terminal preduction of 'TAG' {1.2.1.r} whose terminal

production {field-selector} selects {2.2.3.2} that field; it is "structured

from" a second mode if the mode in one of its portrsvals is or is structured
from it.

e) The mode of a multiple value is a terminal production of 'NONROW!
{l.2.2.e} preceded by as many times 'row of' as there are guintuples in the
descripter of that value, .

f) The mode of a routine is a terminal vroduction of 'PROCEDURE' {1.2.1.j}.

g) The mode of & name is 'reference to' followed by another mode. {See

' 7T.1.2.c.Step 8.}

2.2.4.2. Scopes
a) Bach value has one specific scope.

b) The scope of a plain value is the program,

thet of a structured (multiple) value is the smallest of the scoves of its
fields (elements), .

that of a routine or format possessed by a given denotation {5.hk.1.a,
5.5.1.8} is the smallest ranpge {b.1.l.e} containing a defining occurrence
{h.1.2.a} (indication~defining occurrence {4.2.2.a}, cperator-defining
occurrence {4.3.2.a}) of a terminal production of a notion ending with
"identifier' (‘'indication', 'operator'), if any, an applied occurrence of
which but not a defining (indication~defining, operator-defining) occur=-
rence of which is contained in that denotabtion, and otherwise, the
program, and

that of a name is some {2.2.3.5, 8.5.1.2.b} range.

2.2.5. Actions {Suit the action to the wonrd,
the wond o the action.
Hamlet, WiLLiam Shakespeare. }

a) An action is "inseparsble", "seriel" or "collateral". A serial action
consists of actions which take place one after the other.

b) A collateral action consists of actions merged in time; i.e., it con-
sists of the inseparable actions which make up those actions provided only
that each inseparable action which would take place before another insepara-
ble action of the same action when not merged with the other actions, also
takes place before it when merged.
¢) The elaboration of any (of the closed~clause following the first do-
symbol {3.1.1.h} in any) closed-clause {6.3.1.a} which is a modified copy
{8.4L.2} of the actual-parameter of the operation-declaration {7.5.1.a}
10.4.0 (10.4.a) is an inseparable action.

{What other actions are inseparable is left undefined.}
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mantics {"T can explain all the poems that ever wesre
Anvented - and a good many Lhat naven'Zl
been Lnvenfed just yet."
Through the Looking-glass, — Lewis Cowwll.}

[av]
W
[€p]
[0}

a) The elaboration of a program is the elaboration of the strong-closed—
void~clause {6.3.1.a} consisting of the same sequence of symbols.

{In this Report, the syntax says which sequences of symbols are pYoOFrams
and the semantics which actions are performed by the computer when elabora-
ting s program. Both syntax and semantics are recursive. Though certain se-
guences of gymbols may be terminsal productions of 'vroeram' in move than one
way {1.1.6.1), this syntactic ambiguity does not lead to & sementic ambigu-

b) In ALGOL 68, a specific notation for external objects is used which, to-
gether with its recursive definibtion, makes it possible to handle and to
distinguish between arbitrarily long sequences of symbols, to distinguish
between arbitrarily meny different values of a given mode (except 'becolean')
and to distinguish between arbitrarily meny modes, which allows arbitrarily
many objects to exist in the commuter and which allows the elaboration of a
program Lo involve an arbitrarily large, not necessarily finite, number of
actions. This is not meant to imply that the notation of the objects in the
commuter is that uzed in ALGOL 68 nor that it has the same possibilities. It
is, on the contrary, not assumed that the computer can handle arbitrary a-
mounts of presented information. It is not assumed that these two notations
are the same or even that a one~to~one correspondence exists between them;
in fact, the set of different notations of objects of a given category may
be finite. It is not assumed that the speed of the computer is sufficient to
elaborate a given program within a prescribed lapse of time, nor that the
number of objects and relationships that can be esteblished is sufficient to
elaborate it at all.

¢) A model of the hyrothetical computer., using a vhysical machine, is said
to be an "implementation" of ALGCL 68, if it does not restrict the use of
the lansuage in other respects than those mentioned above., Furthermore, if s
language. is defined whose partlcular-programs are particular-programs of
ALGOL 68 end have the same meaning, then that languase is sald to be a sub-
language of ALGOL €8. A model is said to be an implementation of a sublsn-
guage if it does not restrict the use of the sublangusge in other respects
than those mentioned above.

{A sequence of symbols which is not a orogram but can be turned into one
by deleting or inserting a certain number of symbols and not a smaller num-
ber could be regarded as a propram with that number of syntactical errors.
Any vrogram that can be obtained by deleting or inseriting that nuwnber of
symbols may be termed a "possibly intended" propram. Whether s vrogram or
one of the possibly intended programs has the effect its author in fact in-
tended it to have, is a matter which falls oubside this Renort.}

{In an imnlementation, the particular-propram may be "compiled”, i.e.
transiated into an "object program’ in the code of the nhysical machine, Un-
der circumstances, it may be advantageous to comnmile parts of the
particular-pnropram independently, e.g. varts which are common to several
particular-prosrams. If such a part contains mode-identifiers (indlcations,
onerators) vhese defining (indication-defining, operator-defining) ocecur-
rences (Chanter U4) are not contained in that part, then compilation into an
Tficient object vprogram may be assured by preceding the vart by a chain of
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formal-parameters (5.4.1. e) (mOde-deciaratlons (7.2.1.a) or priority-
. declarations (7.3.1.a), captions (7.5.1.b)) containing those deflnlng
(1nd1catlon—def1n1ng, operator-deflnlng) occurrences. } ,

. {The deflnltlon of specific sublanguages and also the specification of
‘actions not deflnable by any program (e.g., compllatlon or initiation of the
elaboratlon), 1s not given in this Report However, the definition of the
language allows, for instance, to let a special representation of the
comment-symbol different from the ones given in 3.1.1.i, viz. ¢, co or
comment , preferably pr or Erag@at have the effect that by a comment
(3.0.9.D1) beginning and ending with this special representation, the’ com-
puter is invited to implement some such sublanguage or ALGOL 68 itself or to
take some such undefinable action, as may be specified by the comment (e. g.,

Eﬂ_aZgoZ 68 pr, pr run 2__Or pr dump E_) }

{pr algol 68 pr
begzn
proc pr nonrec E..P (: pls
p . :
end

pr run pr
Report on %E A%“b&&Ithc .
Language ALGOL 68.}



3. Basic tokens and general cqnstructio@s
3.0.;Syntax“

3.0.1. Introduction :

a)* basic token : letter token{302a} ; denotation token{303a}

action token{30ka} ; declaratlon token{305a} ;

syntactic token{306a} ; sequencing token{307a}

hip token{308a} ; extra token{309a} 3 special token{SOAa}
b) NOTION option : NOfI‘ION EMPTY. .
¢) chain of NOTIONs separated by: SEPARATORs{c d} : NOTION ;

- NOTION, SEPARATOR{e,f,31f,61j,1},"
chain of NOTICONs separated by SEPARATORs{c}

~d) NOTION LIST : chain of NOTIONs separated by LIST separators{c,e f}.
e) list separator{c} : comma symbol{31le}. '
f) sequence separator{c} EVPTY .
g) NOTION LIST proper : NOTION, LIST separator{e £}, NOTION LIST{d}.
h) NOTION pack : open symbol{31e} NOTION, close symbol{31le}.
i) NOTION package beg;n symbol{31e}, NOTION, end. symbol{31e}

{Examples:
a) a3 03+ 3 int s 2f 5. 3 nil 3 for 3 "5
0 ; , (1ntegral~part-optlons) ﬁ
0, 1, 2 ; (chain-of-strong-integral-units-separated-by-list-separators)
a) 03 0, 1, 2 ; (strong-integral-unit-lists) ‘
k-
1

2
5 2, 3 3 (a strong-integral-unit-list-proper)
h) (1, 2, 3) ; (a strong-integral=-unit-list-proper-pack) :
i) begin « = 3.14; y := 2.72 end (a strong-serial-void-clause-package) }

3.0.2. Letter tokens

a)*x letter token : IETTER{b}.
b) LETTER{3094,41b,c¢,d,512h,55h,1,0,q9,552b,e,f,553f,554a,555b,556b,55Tb,
713} ILETTER symbol{31a}

{Examples
a) a ; (see 1.1.k.Step 2)}

{Letter-tokens either are, or are constituents of, identifiers
(4.1.1.a), field-selectors (7.1.1.1), real-denotations (5.1.2.1.a), format-
denotations (5.5.1.a) and string-items (5.3.1.d).}

3.0.3. Denotation tokens

a)* denotation token : number token{b} ; true symbol{31b}
false symbol{31b} ; formatter symbol{31b} H fllpflop{e}
space symbol{31b}.

b) number token{309d} : digit token{c} ; point symbol{31b} H
times ten to the power symbol{31b}.

- ¢) digit token{v,51ta} : DIGIT{d4}.

d),.DIGIT{C,h1d,5520} DIGIT symbol{31b}..

e) flipflop{309d,52c} : flip symbol{31b} ; flop symbol{31b}



3.0.3. continued

{Examples:
a) 1 ; true ; false 3 & 3 15 . 3
b) I3 .5 103 '
c) 1
a) 13 .
e) 101

{Denotation-tokens are, or are constituents of, denotations (5.0.1.a).
Some denotation-tokens may, by themselves, be denotations, e.g., the digit-
token I, whereas others, e.g., the formatter-symbol ¢, serve only to con-
struct denotatlons }

3.0.k4. Action tokens

a)x action token : operator token{b} ; equals symbol{31c} ;
times symbol{31c} ; confrontation token{d}.

b) operator token{l2e,f} : minus and becomes symbol{3ic} ;
plus and becomes symbol{31c} ; times and becomes symbol{31c} ;
divided by and becomes symbol{31c} ; over and becomes symbol{3ie} ;
modulo and becomes symbol{31c} ; prus and becomes symbol{31c} ;
.or symbol{31c} ; and symbol{31c} ; differs from symbol{3ic} ;
is less than symbol{31c} ; is at most symbol{31c} ;
is at least symbol{31c} ; is greater than symbol{31c} ;
plusminus{c} ; divided by symbol{31c} ; over symbol{3lc} ;
modulo symbol{31c} th element of symbol{31c} ;
to the power symbol{31c} lower bound of symbol{31c} 5
upper bound of symbol{31c} ; lower state of symbol{31c} ;
upper state of symbol{31c} 5 plus i times symbol{31c} ;
not symbol{31c} ; down symbol{31e}l ; up symbol{31ic} ;
‘absolute value of symbol{31c} ; blnal symbol{3ic} ;
representation of symbol{3tec} ; lengthen symbol{31c} ;
shorten symbol{31c} ; odd symbol{31c} ; sign symbol{31c} ;
round symbol{31c} ; entier symbol{3lec} ; real part of symbol{31c} 5
imaginary part of symbol{3lec} ; conjugate of symbol{3lc} ;
" booleans to bits symbol{31c} ; characters to bytes symbol{31c}

¢) plusminus{b,5121i,55p} : plus symbol{31c} ; minus symbol{31c}.

d)* confrontation token : becomes symbol{3lc} ; conforms to symbol{31c} ;

conforms to and becomes symbol{31e} ; is symbol{31c} ;
is not symbol{31c} ; cast of symbol{3ic}.

{Examples:

a) + 3= 5% 5 0=

b) == o= o o= [im Trimop bS5V o3 A5 F g < 52 3 >
3/ 5 v s 50 L,F,k,fs.t,*";wv;’r,abs,bm,

repr ; leng ; short odd 3 8ign 3 round ; entier ; re ; im 3 cong ;
btb 5 ctb ;

c} oy =3

; R L L

{Operator-tokens are constituents of formulas (8.L4.1.a). An operator-
fen may be caused to possess an operation by the elaboration of an

- sien-declaration (7.5.1.a). Confrontation-~tokens are constituents of

sntations (8.3.0.1.a).} ' '



>3 0. 5 Declaratlon tokens ‘ |

a) ¥ declaratlon token : PRIMITIVE symbol{Sld} lonp symbol{Sld} ;
structure symbol{31d} ; reference to symbol{3ld}
flexible symbol{31d} ; either symbol{31d} ; procedure symbol{31d}
union of symbol{Bld} ; mode symbol{31d} ; complex symbol{3ld}
bits symbol{31d} ; bytes synbol{31d} ; string symbol{31d} ;
file symbol{31d} ; priority synbol{Bld} local svmbol{Bld}
~ operation symbol{Bld} i

{Examples: ‘ ,
a) int ; long ; struct 3 ref fZex 3 either ; proe 3 unton ; mode ;

compZ Dits s bytes 3 strzng s file ;5 priority 3 loc ; op }

{Declaration-tokens either are, or are constituents of, declarers
(7.1.1.8), which specify modes (2.2.4), or of declarations (7.2.1.a,
731a,7h1b T.5.1.0).}

3.0.6. Syntactic tokens

a)¥ syntactic token : open symbol{3le} ; close symbol{3le} ;
- comma. symbol{3le} ; parallel symbol{3le} ; sub symbol{Ble}
bus .symbol{3le} ; up to symbol{3le} ; at symbol{3le} ;
if symbol{3le} ; THELSE symbol{3le} ; fi symbol{3le} ;
of symbol{3le} ; label symbol{3le}. ,

{Examples: :
a) (3) s, 3pars U5 15 5 at; 2f s theny f2 5 0f 5 ¢}

{Syntactic~§okens separate external objects or group them together.}

3.0.7. Sequencing tokens

a)¥ sequencing token : go on symbol{Blf} ; completion symbol{31f} ;
go to symbol{31f}

{Examples
a) s 3. 3 go tol

{Sequencinghtokens are constituents of clauses, in which they specify
the order of elaboration (6.1.l1.c¢,d,j,1, 8.2.7.1.¢).}

3.0.8. Hip tokens

a)%# hip token : skip symbol{31lg} ; nil symbol{31lg}.

{Examples:
a) skip ; nil }

{Hip~-tokens function as skips and nihils (8.2,.7.1.b,d).}



3.0.9. Extra:tokens and comments

a)* extra token : global symbol{31h} ; for symbol{31h} ; from symbol{31h} ;
by symbol{31h} ; to symbol{31h} ; while symbol{31h} ; do symbol{31h} ;
then if symbol{31h} ; else if symbol{31h}.

b) comment{9.1} : comment symbol{31i}, comment item{c} sequence option,
comment symbol{31i}. - _

¢) comment item{b} : character token{d} ; other comment item{1.1.5.c}.

d) character token{c,514b} : IETIER{302b} ; number token{303b} ;
flipflop{303e} ; plus i times symbol{31ec} ; open symbol{3le} ;
close symbol{31le} ; comma symbol{3le} ; space symbol{31b}.

{Examples: : _ :
a) global ; for ; from ; by ; to ; while ; do ; thef ; elsf ;
b; ¢ with respect to § ; )
e) w7

a) a3 13213250505, 35213

3.0.10. Special tokens

a)* special token : quote symbol{31i} ; comment symbol{31i} ;
indicant{1.1.5.v} ; dyadic indicant{1.1.5.b} ; monadic indicant{1.1.5.b}.

{Examples:
a) "3 ¢ primitive ; ? 3 & }

3.1. Symbols

3.1.1. Representations

a) Letter tokens

symbol representation symbol representation
letter a symbol{302b} a letter n symbol{302b} n
letter b symbol{302b} b letter o symbol{302b} 0
letter c symbol{302b} e letter p symbol{302b} P
letter d symbol{302b} d letter q symbol{302b} q
letter e symbol{302b} e letter r symbol{302b} r
letter f symbol{302b} f letter s symbol{302b} 8
letter g symbol{302b} g letter t symbol{302b} t
letter h symbol{302b} h letter u symbol{302b} u
letter i symbol{302b} 2 letter v symbol{302b} v
letter j symbol{302b} J letter w symbol{302b} w
letter k symbol{302b} k letter x symbol{302b} x
letter 1 symbol{302b} /A letter y symbol{302b} y
letter m symbol{302b} m letter z symbol{302b} z

{No representation for 'letter aleph symbol' is provided and the pro=-
grammer cannot provide one himself; see 1.1.4.Step 2, 3.1.2.¢)}



3.1.1. continued

b) Denotation tokens
symbol

digit zero symbol{303d}
digit one symbol{303d,730}
digit two symbol{303d,73c}
digit three symbol{303d,73d}
digit four symbol{303d,73e}
digit five symbol{3034,73f}
digit six symbol{303d,73g}
digit seven symbol{303d4,73h}
digit eight symbol{303d,731i}
digit nine symbol{303d,73j}
point Symbol{ 303b,51 2d95530}

times ten to the power symbol{303b,512h}

true symbol{513a}
false symbol{513a}
formatter symbol{55a}
flip symbol{303e}
flop symbol{303e}
space symbol{309d}

¢) Action tokens
symbol

minus and becomes symbol{304b}

plus and becomes symbol{30L4b}

_times and becomes symbol{30kb}
divided by and becomes symbol{30L4b}

over and becomes symbol{30kb}

modulo and becomes symbol{30kb}

prus and becomes symbol{30L4b}

or Symbol{304b}

and symbol{30L4b}

differs from symbol{304b}

is less than symbol{304b}

is at most symbol{30kb}

is at least symbol{304b}

is greater than symbol{304b}

divided by symbol{304b}

over symbol{30Lb}

modulo symbol{304b}

th element symbol{304b}

to the power symbol{30kb}

lower bound of symbol{304b}

upper bound of symbol{304b}

lower state of symbol{30kb}

upper state of symbol{304b}

plus i times symbol{304b}

not symb61l{30kb}

down symbol{304b}

up symbol{30kb}

absolute value of symbol{304b}

binal symbol{30kb} ;

representation of symbol{30Lb}

/

representation
0.

1

2

3

4

)

6

7

8

9

10

true

false

¢

1

]
representation
“im  mLnus
+:= plus
Xi=  times
/i= T
1= overb
+3:%= modb
+=:  prus

v or

A and

% == ne
< 3
< <=}_e_
= >=g_e_
> gt
/

3 over

£: mod
O elem
4 k% power
L wb
- wb
(s
( ups
L2
~  mot
¥ down

+ up

abs

bin

repy



symbol

lengthen symbol{30kb}

shorten symbol{30Lb}

odd symbol{30L4b}

sien symbol{304b}

round symbol{304b}

entier symbol{30Lb}

real part of symbol{30Lb}

imaginary part of symbol{304b}

conjupate of symbol{30kb}

booleans to bits symbol{30kb}

characters to bytes symbol{30u4b}

plus symbol{30kec}

minus symbol{30kc}

__equals symbol{lh2e,72a,73a,74a, 750}
times symbol{lk2e}

becomes symbol{831

conforms to symbol{832b}

conforms to and becomes symbol{832b}

is symbol{833b}

is not symbol{833b}

cast of symbol{83ka}

d) Declaration tokens
symbol

integral symbol{Tlc}
real symbol{T7lc}
boolean symbol{T7lc}
character symbol{Tle}
format symbol{7lc}
long: symbol{l2c,e,f,510b,52a,T1d}
structure symbol{Tle}
reference to symbol{71l,m,n}
flexible symbol{Tit,v}
elther symbol{Tiv}
procedure symbol{Tiw}
union of symbol{Tlecc}
mode symbol{T72a}
complex symbol{l2c}
bits symbol{k2c}

bytes symbol{k2c}
string symbol{L2c}
file symbol{k2c}
priority symbol{T3a}
local symbol{851v}
oneration symbol{75b}

e) Syntactic tokens

symbol

open symbol{2a,30h,309d.,54b,55b}
close symbol{2a,30h,309d,5kb,55kb}
begin symbol{30i}

end symbol{30i}

comma, symbol{30e,309d,54d,554b,62e,g,T1f,0,£8,861b,c}

parallel symbol{62b}

'representatioh

leng

Toscesvssneltion.

short

' 9..._.53

[+]

‘ .

an

round :
L entier
re

im

'ixlll-i-'

.o o

.
§
-
@
[
&
{

18

[ R )

representation

real
bool
char
Jormat
Long

N o=,

ient ie not



symbol

sub symbol{7lo,p,861la}
bus symbol{7lo,p,861a}
up to symbol{Tir,861f}
at symbol{861g}

if symbol{6ha}

theri symbol{6he}

else symbol{6he}

fi symbol{6lha}

~of symbol{852a}

label symbol{2e,61k}
f) Sequencing tokens

symbol

po on symbol{2e,30c¢,54d,61b,c,3}

completion symbol{61Ll}
go to symbol{82Tc}

g) Hip tokens

symbol
skip symbol{827b} '

' nil symbol{827d}

h) Extra tokens
symbol

global symbol{9.2.a}
for symbol{9.3.a,b}
from symbol{9.3.a,b,c}
by symbol{9.3.a,b,c}

to symbol{9.3.a,c}
while symbol{9.3.a,b,c}
do symbol{9.3.a,b,c}
then if symbol{9.h.a}
else if symbol{9.h.a,b}

i)' Special tokens
symbol

auote symbol{51ka,c,53b}
comment symbol{309b}

representation

[ (
] )

(e e
(" _115 ease
| Zhen Tn
| else| out
) ft |esac

D e Qf. | S ,:zg"
representation
5 s
. extt

qo to goto

representation

3

ki
=

wearvenca

]
S0

«~

representation

global

for
from
By
to
while
do
TY  thef
|: elsf

representation

" quote

¢ oo comment



3.1.2. Remarks

a) Where more than one representatlon of a symbol is given, any one of them
may be chosen.

{However, discretion should be exercised, since the text

(a >b then b | a fi,
though acceptable to an automaton, would be more intelligible to a human in
either of the two representations
(a>b | b| a
or
" if a > b then b else a fi.

Also, some representaxicns may not be available in a given implementatlon.}

b) A representation which is a sequence of underlined or bold~faced mafks
or a sequence of marks preceded by a "pold~face shift" {,e.g., apostrophe,}
or between apostrophes is different from the sequence of those marks when

not underlined, bold-faced, preceded b& a bold*face shift or between apos~

trophes.

¢) Representations of other terminal productions of 'letter token'
{1.1.4.8tep 2}, 'indicant', 'dyadic indicant', ‘monadic indicant' {1.1.5.b},
'other comment item' and 'other string item' {1.1.5.c} may be added, pro-
vided that no sequence of representations of symbols can be confused with
any other such sequence. :

{e 8o do.gf are representablons of the do-symbol followed by the if-
synbol, whereas doif might be an ill=-chosen representation of an irdicant .}

d) The fact that representations of the terminal productions of 'letter
token! are usually spoken of as small letters is not meant to imply that the
so~called corresponding capital letters could not serve equally well as re-
" presentations. On the other hand, if both a small letter and the correspond-
ing capital letter occur, then one of them is the representation of another
terminal production of 'letter token' {1.1.k.Step 2}.

{For certain different symbols, one same representation is given, e.g.,
for the cast-of-symbol, up-to-symbol and label-symbol, the representation
":" i5 given. It follows uniquely from the syntax which of these three sym-
bols is represented by an occurrence of ":" outside comments and row-of-
character~denotations. Also, some of the given revresentations appear to be
"eomposite™; e.g., the representation ":=" of the becomes-symbol appears to
consist of ":", the representation of the cast-of-symbol, etc., and "=", the
representation of the equals-symbol. It follows from the syntax that ":="
can occur outside comments and row-of-character-denotations as representa-
tion of the becomes-symbol only (since "=" cannot occur as representation of
a monadic-operator). Similarly, the other given composite representations do
not cause ambiguity.} : -
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nrcductlon rule (though thls mlght be'possib e’ eélaborat 8X,
but also because it identifies the first occurrence acdording .t6- dne of ﬁhe
context condltlons. This’ chapter deseribes the methods of identification and
contains other conteyt condltlons Wthh prevent such unde51rable construct—

ions as mode a = a }

4,1, Identifiers

{Identifiers are sequences of‘letter—tokehS’and/or'digit—tokenS‘in which
the first is a letter-token, e.g. xl. Mode-~identifiers are made to possess
values by the elaboration of identity-declarations (7.4.1.a). Some mode- -
identifiers possessing values which are not names might, in ‘other languages,'
be termed constants, e.g. m in znt m = 4096, Mbde—identifiers ‘possessing
names which refer to such values might be termed variables and those POS=" -
sessing names which refer to: names mlght ‘be termed pointers. Such termlnol—
ogy is not used in this Report. Here, all mode-ldentifiers possess values, '
which are or are not names.} .

4.1.1. Syntax

a)¥ identifier : MABEL identifier{b}. - S R S
b) MABEL identifier{5ke,61k,827c,860a} : TAG{c,d,302b}. ; ‘
¢) TAG LETTER{b,c,d,71j} : TAG{c,d,302b}, LET?ER{BOQb}
da) TAG DIGIT{b,e,d,71j} : TAG{e,qd, 302b} DIGIT{3034}..
e)¥ range : program{ea} ; SORFETY serlal CLAUSE{61a}. H
procedure with PARAMETERS ‘MOID denotat10n{5hb}

{Examnleg
b) z; axx y xl g amsterdam}

{Rule b together with 1l.2.l.r and 1.2.2. y glves rise to an- 1nf1n1ty of -
production rules of the strict language, one for each palr of termlnal prod—
uctions of 'MABEL' and ‘TAG'. For example, :

‘real mode identifier : letter a letter b.! Lo
is one such production rule. From rule ¢ and - 3 0. 2 b, one obtalns .
'letter a letter b : letter a, letter b ', : : '
"letter a : letter a symbol.' and ‘
tletter b : letter b symbol. '
yielding
'letter a symbol, letter b symbol' :
as a terminal production of '‘real mode 1dent1fler'. For addltlonal 1n51ght

. into the function of rules ¢ and d, see T, 1.1, j and 8 5 25 1 a. }

k,1.2. Identification of identifiers

{The method of 1dent1f1catlon is flrst to dlstlngu1sh ‘between deflnlng
and applied occurrences of terminal productlons of 'MABEL ldentifier' and
then to discover which deflnlng occurrence is. 1dent1f1ed by a glven applled
occurrence.} : : . : .
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4.1.2. continued : S

a) A given occurrence of ‘& termlnal productlon of. 'MABEL identifler' where
"MABEL'" . stands for any terminal production of the metanotion 'MABEL'-is a

~defining occurrence if it follows a formalndeclarer {7 1.1.b}, or if it is .
contained in a. label {6 1.1.k}; -otherwxse, it is an applled occurrencev.:

b) If a given occurrence 6f a terminal nroductlon cf ‘MABEL .Ldentif'ier'~
(see a) is an applied occurrence, then it may identify a defining occurrence
of the same terminal productlon found by the following steps: -

Step 1: The given occurrence is termed the "home" and Step 2 is ﬁaken,

Step 2: If there exists a smallest range containing the’ home, then this
range, with the exclusion of all ranges contalned W¢th1n it is termed the
home and Step 3 is tsken {; otherwise, there is no: deflnlng Occurrence
which the given cccurrence identifies; see Wh.l1l.b};

Step 3: If the home contains a defining occurrence of the same termlnal
production of - 'MABEL identifier', then the given ocecurrence 1dent1f1es:it;
otherwise, Step 2 is taken, : R o

{In the closed~clause (gtring s := "abc", s[’] + ”d") the flrst oceur-..
rence of 8 1s a defining occurrence of a terminal prcductlon of:! reférence
to row of character mode ideritifier'. . The second cccurrence of s xdentlfles_
the first and, in order to satisfy the identification condition (L.k. l.a)
is also a terminal production of 'reference to row of character mode.
identifier'. Tdentifiers have no inherent meanlng.} L

¥,2, Indications

{Tndications are used for modes, nrlorltleq and oDeratoru. The repres~‘

entation of indicatlons chosen in this Report are sequences ‘of bold-faced

or underlined letters, e.g. cqnwl and plug, but no production rule deter-
mines this sequence, The programmer mey also’ create his own indlcatlons,
provided that they cannot be confused with’ an other symbol (1.1.5.p,
312c)}

9

N
‘ i

l

4.2.1. Syntax

a)* indlcation : NDUE mode indlcation{b} ADIC jndication{e f}
b) . MODE mode Jndication{(lb ii,72a} mode standard{c} ; 1ndlcant{1 1.5.b}.
¢) mode standard{v} : string mymbol{3ld} ; file symbol{31d} ;
long symbol{31d} sequence option, complex symbol{31ld} ;
long symbol{31d} sequence option, bits symbol{31d} ;
long symbol{31d} sequerice option, bytes synbo]{gld}
d)# dyadic indication : PRIORITY indicationie}.

e) - PRIORITY indication{k3v,73a} :| dyadic 1ndlcant{1 1.5.p} 3
long symbol{31d} sequence option, operator token{3okb} }
long symbol{31d} sequence option, equals bvmbol{Blc}
long symbol{31d} sequence Optlon, tlmeb_symbol{31c}

£) monadic indication{li3c} : monadic indicant{1.1.5.b} ;
long symbol{31d} sequence option, operator token{SOhb}

¢)* adic indication : ADIC 1nd1catlon{e . ,

{Examples:
b) ebmol ; primitive ; , A o
c) string 3 file ; long comn7 ; bits 5 Long bytes ;
e)?;+;==,x; . )
£) I+ 5 long btb } oy

E



k.2,2. Identificétionvof indications
{The identification of inﬁicatﬁons is similar to that of identifiers }

a) A given occurrence of &a. termlnal pro&uetion of 'MODE mode 1ndjcation' ‘
('PRIORITY indication') where "MODE" ("PRIORITY") stands for any ferminal 3
production of the metanotion 'MODE' ('PRIORITY') is dan indication-défining
occurrence if it precedes the equals-symbol of a mode~declaration {T.2.1.a} .
(pri orltyndeclaration {7.3. l.a}), otherw1se, 1t is an ”‘ndlcamlon-applled vp7’
oceurrence". Do e o

b) If a given occurrence of a termlnal productlon of 'MODE mode 1ndlcat10n“'.
(*PRIORITY indication') (see a) is an indication-apolied occurrence, then it
may identify an 1nd1cat¢on~def1n1ng occurrence of the same termlnal product— o
ion found by using the steps of 4.1.2.b with Step 3 replaced by , .
"Step 3: If the home contains an indication-defining oeccurrénce of ‘the same"'
terminal production of 'MOLE mode indication’ ('"PRIORITY indication' ) '
then the given occurrence identifies ity otherw1se, Step 2.is baken.

{Indications have no 1nhercnt meanlnp, A terminsl productlon of 'monadlc'
indication' has no 1ndlcat10nmdef1n1np occurrence. } :

. 4.3, Operators

{Operators are either mcnddic—operatovs,’i e., require a right operand
only, or are dyldic~operatOCb, i.e., require both a left and a rlght operand,
e.g., abs and / in abs x and & / y. Operators are made toQ possess routines '
by the elaboration of operation-declarations (7.5.1.a). Operators are iden~-'-
tified by observing the modes of their operands, e. Be>s T Y, £ +T, LA X,
7 + J each involves a different operator, see 10.2. k.i, 10.2.5.a, 10.2.5.b -
and 10.2.3.3. Though the mode enveloped by the original of an operator con=
tains the mode of the value,.if any, delivered by its routlne this mode ig
not involved in Lhe identification process. } , S s o

L.3.1, Syntax

a)¥ operator : PRAM ADIC operator{b,c}.

b) procedure with LVMODE parameter and RMODE parameter MOID PRIORITY
operator{75b,8kb} : PRIORITY indleation{l2e}.

¢) procedure with RMODE parameter MOID monadic operator{TSb 8hg} :
monadic indication{l2r}. N

a)# dyadic operator : procedure with LMDDE parameter and RNODE parameter
MOTD PRIORTTY operator{v}.

e)* monadic operator :
procedure with RMODE paramuter MOID monadlc OpPP&tOP{C}

{Examples:
b)
c) abs } :

4.3.2, Identification of operators

{The identification of operators is similar to that of identifiers and
indications, except that different occurrences of one same terminal product- .
ion of 'ADIC indication' may be occurrences of more than one terminal pro=-.
duction of 'PRAM ADIC operator’ end, therefore, the modes of the operands -
must be considered.} ' SO s R



k.3.2. continued

a) A glven occurrence of a8 ermlnalg roducH
- where "PRAM" ("ADIC")’stands for any termln lqprod
'"PRAM' ('ADLC') is an operato» T Y
equals-symbol of . an operatlon— ',
operator—applled occurrence'!, " *

) Ii a glven
(see a)is: ‘an , _ Y
may 1dent1fy an. operator-deflnlng oecu en
found by uslng the steps of L.1 2 b, Wluh

ADIC operator‘ Wthh 1j.*
- as the given: occurrenc
- made, is.such’ that so _
- {1:1.6.3} the same mode‘as that termingl
operator' “then the ‘given occurrence ide
‘occurrence; otherwise, Step 2 is taken.".

{Operators have no 1nherent meanlnp, an operator—def;nlng occurrence is
made to possess a routine (2 2 3. h) by the elaboratlon of an- operatlon»
declaration (7.5.%.a). :

A given indication may be both a dyadic-indicaticn and a d"wdic— ;i
operator. As a dyaaic—indication, it 1dent1f1es its: 1nd1cav ~def
occurrence, As a dyadic—operator, it may identify an onerator—deflning
oeccurrence, whi.ch possesses & routine. Since the indication, preceding the.
enuals—~s ymbol of an operatlon~declaration is an- 1ndicat10n—app11catlon and.
_an operator-definition (but not an operator-application), it follows that .
the set of those occurrences which identify a given dyadlc—operator is &
gsubset of those occurrences whlch 1dent1fv the same dyaaic“i ' '

" In the closed-clause CEL s
beain real x, y = 1.5; przormby min ,

oo min = (real a, b) regl : Aa > b
the First occurrence of mn in is an 1ndlcation~def1n1ng Drl rity~SIX%
indication. The second occurrence of min is 1ndlcatlon~applled and identif-
ies the first oceurrence (h.2.2), whereas, at the same . textual position, min
is also operator-defined as a [prrr]-priority-SIX-operator, where "[prrr]ﬁ—*
stands for ”prooedure—w1th*real~parameter~and~rea1~oaraneter,real" “The
third occurrence of min is' indication-applied and, as’ ”1‘dent1f1es the
first occurrence, whereas, at the same textual’ posmtlon , is also
onerator—anplled, and 85 such, 1dent1f1es the, ‘second, oe¢ _ce, this makes
it, because of the identification condition. (b.4.1.4); & [prrrl-priority-
SIX—operator. This identification of the dyadic—onerator 1aumade becauoe~
1)  min occurs in an operat10n~declaration, _
ii) the base y can be firmly coerced to' . the mode snec1f1ed by real
iii) the fo“mula pt / 2 is a priori of the ‘mode ‘specified- by real,
iv) . min is thus, because of. the 1dent1flcatlon‘condltlon‘a [prrr]-priorlty—

'SIA;operator, R : o . .

If the first three cond¢tlons were not satisfle, ]
another deilnlng occurrence would be contlnued 1n'the‘same‘ anye, or falllng

that, in a surroundlng ranpe } ‘;3;“1

. . ER {Thouah Ih&é be madneAA yet ?
S : o S thene 4s method in't.
' R HamZet W&££4am Shakeéneane 3




h.4. Context conditions % ¢

A "proper" program is a program satlsfylng'the contexm'condxtlons, a
me&nlngful" program is a proper-program whose elaboration is defi ‘
this Report. {Wnether all ‘programs, ‘only proper prograns, or: onl
programs are "ALCOL 68" programs is a matter for individual. tast
. chooses only proper programs, then one may consider: the’ context
as synuax ‘which is not wrltten as productlon ruleso}f;_ S

,meanlngful
' If ene

3

L.k, l. The 1dent1f1catlon condltlons

- ('indication’, "Operator“) and each applied . (’
applned) occurrence identifying it are. OGQurrehce
,ductlon of & notlon endlng Wlth'ldcntlfler' Qﬁwf

b) No proper propram contalns an . anpllcd (1ndlcatlon applied, operator—
applied) occurrence of a terminal production of a notion ending .with .
'identifier' (‘'indication'; 'operator!) which does not 1dent1fy 8 deflnlng :
(indication~ deflnlng, operatorwdeflnlng) oceurrences .

c) No proper program contalns an indication whlch as en. operator~anp11ed
occurrence idenmtifies an operator-defining: occurrence which as . ‘an R
-indication-applied occurrence identifies:an 1ndlcation~def1n1ng occurrence
. different from the one 1dent1f1ed by~ the glven indication as an 1nd1cat10n~

apnlled occurrence.

{Condition. ¢ makes -a program under. cnrcumstances lmproner 1ndepcndent of

its elaboration. Without condition ¢, a program contalning : :
(priority ? = 2; op ? = (real a, b) : skip; S :

(random < 0.5 |"priority ? = 2; 0.1 7 0. 2));
would be improper if, during the elaboration of thls clau c the value of
random < 0.5 turns out to be true. Then, the presence of an Jndlcatlon—,
defining occurrence of ? in the seria]«clause riority ? = 85 .0.17 0.2
couses its protection (6.4.2.a, 6.1.2.a, 6.0.2.d) to renlace both occur-
rences of ? by another indicatlon and thereby deprives the last occurrence
of its operator-defining occurrcncc which violates condltlon b. However,
condition ¢ makes the program improper immedlatelv since the fourth océur-
rence of ? identifies the third as 1ts 1nd1catlon—def1n1ng occurrence and
the second as 1ts oncratorudeflnlng occurrence whlch 1tself identifles the
first occurrence as lts 1ndicatlon~def1n1ng occurrence } :

L, h 2, The unlqucness conditions

a) A "reach" is a range {4.l.l.e} with the exclusmon of all 1ts constltuent
ranges. : : S :

b) No prover program contains a reach {a} containlng two deflnlng ‘
(indication-defining) occurrences of a piven termlnal productlon of a notion

ending with ‘identifier'- (' 1ndlcatlon )

&




“hok,2, continued

{e.g., none of the closcdnclauses (6 L, 1. a)
(real x; real x; szn (3.14)), I
(real y; tnt y; sin (3.14)),

(real p; p: go to p; sin(3. 14))

(mode a = reaZ mode a = bool; szn(3 14}7,

(priority b = 5; priovity b = 6; sin (3. 14))
is contalned in o proper program } .

¢) No proper program contains a reach contalnlnp two operation~declarations
the operators of whose captions are the ssme+terminal productions of a'mo~"
"tion ending with 'indication' and all of whose corresponding. constituent
virtual-parameters {7.5.1.b, T.1.1.x, S5.h.l.¢, T.1.1.y} are virtual-
“declarers specifying modes loosely related to: one another {h k.3.c}.
{e.g., neither the closed-clause i

(Qg_max = (int @, int b) int : (a> b | a ] b) .
op mox = (int a, int b) real : (a > b | @ I b)' sin (3 14))
nor .

(op maz = (int a, ref int b) int : (a > b b);
op max = (ref int a, int b} int : (a > b

is contained in any proper program, but
(op max = (int a, int b) real : {a > b I ]
op max = (real a, real b) real : (a > ! a

may be.}

: sin (3 14))

b);
|5

); sin (3.14))

k{In the pragmatic rema‘ks in the sequel, "in the reach of (tné
declaration)" stands for "in a context where all 1dpnt1flcatlons are made as
in & reach containing (the declaration)'.} : -

4,4.3. The mode conditions

&) A given mode is "strongly coerced from" ("firmly coerced from", "united
from") a second mode if the notion consisting of that second mode followed
by 'base' is a production of the notion'consLsting of 'strong' ('firm',
'firmly united to! ) followed by the given mode followed by 'base' {see 8.2}.

{e.g., the mode specified by real is flrmlv coerced from the mode svec~
ified by ref real because the notion 'reference to real base' is a product—
ion of 'firm real base' (8.2.0.1.e, 8.2.1.1.a); similarly, thet specified by
unton (int, real) is united from those specified by int and real.}

b) Two modes are "related" to one another if they are both flrmly coerced
{a} from one same mode. {A mode is related to 1tself }

¢) Two modes are "loosely related" if they either are related or are 'row
of LMODE' and ‘row of RMODE' where "LMODE" and "RMODE" stand for different
looselv related modes.

{e.g., the modes specified by proc real and rei real are related and,
hence, loosely related and those specified by [J rcaZ and by (1] raf real are
loosely related but not related } v

d) HNo proper program contains a declarer {7.l.l.a} specifying a mode united
from {a} two modes related {b} to one another.

{e 2., the declarer union (real, ref real) is not contained in any
proper oropram.} :

Biovisdmekll MATHEMATISCH  CENTRUM
AMSTERDAR



L3, cbntinﬁed‘

) same sequence of symbols.'_; e
{e g5 the declarer struct (tnt Ty booZ @)

L.k, h The declaratlon c@ndltlon

a) A mode—lndlcatlon {h 2 1 b} contalne ‘in ;Vfijba - ;~~1 1 b} 1s

'”shlemed" by that actual-declarer if. '~ ol 8

i) it is, or is contained in, a Vlrtudl~declarer {T 1 . b} follow1ng a.
reference-to—symbol {3.1.1.d} in a fleld-declarator {7 1.17. g}, or .

ii) it is, or is contained in, a v1rtual—declarer contalned in & field-"
declarator Contalned in a v1rtua1—declarer followlng a reference—to—
symbol, or . :

iii) it is contalned in a v1rtual-parameter {7 1. 1 y}, or - :

iv) it is contained in a Vlrtual—declarer follow1ng a Vlrtual—parameters-
pack 15 Lo1.£}, or : . . ‘

V) it 1s or identifies an 1nd1catlon—def1n1ng occurrence contalned in that
‘actual-declarer. .

{e.g., person is Shlelde in struct (int age, ggi:Eerson father) but -
not in struct (int age, persom uncle) and g g‘ls shielded in proc (g) g, but

not in unton (int, L] g) e

b) An actual-declarer D {7 1. 7. b} nay "show a mode—lndlcatlon M {h 2. 1 b},

this is determined in the follow1ng steps. g

Step 1: A copy is made of U; this copy and each mode—lndlcatlon fhereln con=
tained is said not to have been "encountered"; .

' Step 2: If the copy is, or contains and does not. shleld {a}, a. mode~

indication which is the same termlnal productlon as M then D shows M;

otherwise, Step 3 is taken; :

© Step 3: If the copy is, or contains. and does not shleld, ‘an’ Scourrence 0 of
a not yet encountered terminal productlon of* 'mode 1ndlcatlon', “then that
terminal productlon is sald to ‘have been encountered, ‘and 0 is- replaced by
a copy ol the actual-declarer of that. mode—declaratlon {7 201, a} which ;
contains the 1ndlcat10n~def1n1ng occurrence 1dent1f1ed by 0, in, Whlch all’
actual-lower-bounds (actual-upper-bounds) {T.1.1.t} are ‘replaced by '
virtual-lower-bounds (v1rtual~upper-bounds) {7 1 1 s}, and Step 2 is’
taken; otherw1se, D does not show M.

{e.g., in the declaration mode a = [1: 21p, b union (ggf d; ggﬁ real)
d = struct (ref e el; e = pro (1nt) a, the mode—lndications shown by
L1:2] b are é_and d. } , E A NN

¢) No proper program contains a mode—aeclaratlon‘{7_ ;a} ﬁh¢$e mode—

indication is .shown by its astual—deolarer.»

{e.g., none of the declaratlons
mode a = a, ,
mode b = e, e = [1:10] b, . S ST
mode d = [ ref union (pro¢ (d) d, Q d),*‘f*f"3 o

mode parson = struct (znt age, Earson uncZe)f
is contained in a proper progran } :




5. Denohtations

{Denotations, e.g., 3.14 or "abe" are terminal productions of notions
whoge value 1s independent of the elaboration of the program. In other lan—~
guages, they are sometimes termed "literals" or "constants".}

5.0.1. Syntax

a)* denotation : PLAIN denotation{510b,511a,512a, 513&,51ha} 3
BITS denotation{52b} ; row of character denotatlon{)B"} 5
procedure with PARAMETERS MOID denotation{54b} ;
format denotation{s5a}.

{Examples: , : ‘
a) 3.14 3 1 0 1 ; "algol.report” 3 ((bool a) int : (a | 1 | 0)) ; $5d4}

5.0.2. Semantics

-

‘Bach occurrence of a terminal production of a given notion which is the
original of a denotation possesses a new instance of one same value whose
mode is that enveloped by that notion; its elaboration involves no action.

{E.g., the value of "algol.report" which is ‘& production of 'row of
character denobation' is of the mode 'row of character!'.}

5.1. Plain denotabions

{Plairn~denotations are those of arithmetic values, truth values and
characters, e.g., 1, 3.14, true and "a'.}

5.1.0.1, Syntax

a)* plain denotation : PLAIN denotation{510b,511a,512a,513a,51kal.
b) long INTREAL denotation{860a} :
long symbol{31d}, INTREAL denotation{511a,512a}.

{Examples:
b) long 0 ; long long 3.1415826535 8979323846 2643383279 5028841971 69399}

5.1.0.2. Semantics

a) A plain-denotation possesses a plain value {2.2.3.1}, but plain values
possessed by differvent plain-denotations are not necessarily different
{e.g., 123.4 and 1.234e+2}.

) The value of a denotation consisting of a nuwber {, possibly zero,} of
lonuvoymbolb followed by an integral-denotation (real-denotation) is the "a
priori" value of that inbegral-denotation (real-denotation) provided that it
does not exceed the largest integer {10.1.b) (largest real number {10.1.d})
of length number one more then that number of long-symbols {3 otherw1se, the
value is undefined}.



5.1.1. Integral denotations

5.1.1.1. Syntax

a) 1ntegral denotation{Sldb,Slac d Ssg,860a} digit token{303c}secuence."

{Ekamples o - R Tl
a) 0 ; 4096 ; 00123 (Note that -1 is not ‘an integral—denotation,)}

5.1.1.2., Semantics

The & priori value of an integralvdenotation is the 1ﬁtegér which in
decimal notation is that integral—denotation in the representation language
{1.1.8}. {See also 5. 1 0.2.b.} .

5.1.2. Real denotations

5.1.2.1. Syntax

a) real denotation{510b,860a} : B : .
variable point numeral{b} ; floating point numeral{e}.

b) variable point numeral{a} : integral part{c} option, fractional part{dl}.

¢) intepral part{v}l : integral denotation{511a},

a) fractional oart{b} point symbol{31b}, integral denotation{5lla}.

e) floating point numeral{a} stapnant part{f}, exponent: part{g}.

r)} stamant part{el} : integral denotation{51la}; variable point numeral{b}.

g) exponent part{e} : times ten to the power ch01ce{h}, power of ten{il}.

h) times ten to the power choice{g} : times ten to the power symbol{31b}
letter e{302b}.

i) power of ten{gl : plusmlnus{30hc} option, integral denotatlon{511a}

{Examples: SR :
a) 0.000123 ; 1.23¢e~4 ; ' b) 123 ; 0.123
¢) 123 ; ' o a) .123
e) 1.23e-4 3 £) 1 1.28
g) e-4 ; . o h) s e

1) 3 ; +45 ; =678 }
5.1.2.2. Semantics

a) The a priori value of a fractional-part is ﬁﬁe a prlofl value of its
intepral-denotation divided by 10 as many times as there are digit-tokens
in the fractional-part. :

b) The a priori value of a variable-point-numeral is the sum in the sense
of numerical analysis of ( , the a priori value of its integral-part, if
any, and that of its fractional-part, if any {. See also 5.1. 0 2.b}. \

e) The a priori value of an exponent-part is 10 raised to the a priori
value of the integral-denotation of its power-of-ten if that power-of-ten
does nét begin with a minus-symbol; otherwise, it 1s 1/10 ralsed to the

a priori value of that integral—denotation. ;H~~, . I

d) The a priori value of a flgatiny~point—numeral 1s the product in the
sense of numerical analysis of the a priori wvalues. of its: staﬂnant—part and
exponent part {. See also 5 1.0.2. b} * . Ll

' , ' : ,
. N (4



5.1.3. Boolean denotations'

5.1.3.1. Syntax

a) vbobiean»qenetétién{860a} }'ffueLSYbyéi{3ib}ffi_f}*“"

v ~{Examples: ,
a) true ; false }

5 1.3.2. Semantlvs_

The value of a true—symbol (false—symbol) 1s tnue (6aﬁée)

5.1.4, Character denotations

{Character—denotdtlons con51st of a strlng—ltem between two quote—*ﬁ
: used for

un

Symbols, e.g. a', To indicate a quote, .a double quote—symb'
the str1ng~1tem nint, since the ‘syntax nowhere allows charact

denotations to follow one another, amblgultle

5.1.4.1. Syntax

a) character denotation{860a} :
quote symbol{311}, strlng 1tem{b}, ‘quote eymbol{311}
b) strlng item{a,53b} : : :
character token{309d} ; quote 1mage{c} 5 other strlng 1tem{1 1 S c}
¢) quote 1mage{b} ! quote- symbol{31l}, quote symbol{31;} U

 {Examples:
8,) llall ; .
b) a; "y 7y
C) mnn }

' 5.1.k.2. Semantico , = . o s Slf-ﬁV e

a) FEach string-item posuesses a unique. character {The character possessed
by a quote~image (space=-symbol, digit-zero,: dlglt—token, po:m.t--symbol°
times-ten~to-the-power-choice, plus—l—tlmes—symbol plus~symbol) may be
termed a quote (space, zero, dlglt, p01nt tlmes ten to the power, plus i

times, plus).}

b) The value of a character-denotation is a new 1nstance of the character
possessed by its strlng—ltem.' B IR : : :

5.2. Bits denotations

{There are two kinds of denotations of structured or multiple values,
viz., bits-denotations, e.g., 1 0 1 1, and. strlng-denotatnons, e.g., "abe'.
These derotations differ in that a otrlng—denotatlon contgins zero or two or
more string-items but a bits-derotation may contaln one or more - flipflops.
(See also character~denotatlons 5 1% h )} pi ,




5.2.1. Syntax

a)* bits denotation : BITS denotatlon{b ey, S i e
b) structured with row of boolean field. LENGTH LENGTHETY letter aleph [,
- denotation{b,860a} : long symbol{31d}, structured with row of ‘boolean
field LENGTHETY 1etter aleph denotation{b,c}. . )
c) ' structured with row of boolean fleld letter aleph denotatlon{b 860a} :
fllpflop{BOBe} sequence,, e . o7 S

{Examples: -
b) ZOLZQZQ_Z.J;&

c) 1011}

5.2.2. Semantics

Let m stand for the number of fllpflops in: the blts—denotdtlon and n for
the value of L bits width {10.1.g}, L standing for as many times long as
there are long—symbols in ‘the bits-denotation; if m <.n, ‘then the value of
the bits-denotation is a structured value with one field selected by letter—
aleph, that field being a multiple value {2.2.3.3} whose descriptor has
offset | and one quintuple {I,n,1,7,7) and whose element with index § is a-
new instance of {alse for § = I, ... , n - m, and for '§f = n - m+ 1, ...v,vn
is a new instance of faue (6a£4e) if the {~th constituent flipflop ( = § +
m - n) of the bits-denotation is a flip-symbol (flop—symbol) o ‘

5.3. String denotations

5.3.1., Syntax

a)% strjng denotation : row of character denotation{b}.
b) row of character denotation{860a} : quote symbol{311} '
: string 1tem{51hb} sequence proper optlon, quote symbol{31l}.‘

{Examples: .
b) frer ; ”abc” ; """a-:—_‘,:-bllllz_is:—a:—foz,muza”}

5.3.2. Semantics

The value of a string~denotation is a multiple value {2.2.3.3} whose de=
scriptor consists of an offset | and one qulntuple {1,n,1,1,1), where n
stands for the number of string-items contained in the strlng—denotatlon,
for £ = 1,..., N, the element with index A4 of that multlple value is a. new
instance of the character possessed by the L-th constltuent str1ng~1tem of
the string-denotation. : : :

{The construction "a’ is a character—denotatlan, not a. Stflﬂg*denotatlon.
However, in all strong positions, e.g., string & +=a", it can be rowed to
a multiple value (8.2.6). Elsewhere, where a multlple valué is requmred a
cast (8.3.4.1. a) may be used, e.g., union (int, string) is i= strtng s g,
The "string", i.e., value of mode 'row of* character' possessed by -

g, +,b"". 5. a, formula” may well be presented 1nformally as follows
"a o+ O is a formuba. } , x :




5.4, Routine denotatlons -

(A routlne—denotatlon, e.g. ((reaZ a,b)’ reaZ (a > b | I a)), always_
has a formal-parameters-pack, e.g: (real a,b) To the right of this formal--
parameters-pack stands a cast (8.3.4.1), e.g. real : (ai>b | b | a),-
whose declarer spec:lfles the. mode of the value, Af: a.ny, delivered by the
elaboration of the routlne, €.8. r'eal The whole is enclosed between an
open-symbol and a close-symbol, but these may often be omitted, see the ex-'
tension 9.2.d. It is essential that, in genera.l :3 I'outine-denotation be
closed, for, otherwise, denotations like (Znt szntzof?? i (int branquart)
lewi (wodon) could also be calls, or formulas like (int: a)znt 1+ 2+ 3
would be ambiguous if + is also declared as’ an oper'ator' acceptlng a routlne

as left operand.}

5,4.1. Syntax

a)¥ routlne denotation : procedure witn PARAMFTERS MOID denotation{b}

b) procedure with PARAMETERS MOID denotation{860a} : open symbol{3le},
formal PARAMETERS{c,e} pack, MOID cast{83ha} close svmbol{3le}

c) VICTAL PARAMETERS and PARAMETER{b,862a} '
VICTAL PARAMETERS{c,e,71y,Tlb}, sema{d} VTCTAL PARAMFTTR{e,le,Thb}

d) sema{c} : go on symbol{31lf} ; comma symbol{31e}

e) formal MODE parameter{v,c,Tha} :

' formal MODE declarer{7ib}, MODE mode identifier{h;b}
£)% VTCTAL parameters pack VICTAL PARAMETERS{c,e,T1Y,T¥b} pack.

{ I‘xa.mples ,
v)! ((bool a, b) booZ s (a | b I fplse)) ?
C) [17] reaZ a; TI:Tal real b ;

.'J 5 2

e) bool a }

5.4,2, Semanti es.

A routin0~denotation possesses that routipe which can be obtalned from
it in the follownxg steps: : :

Step 1: A copy is made of the routine-denotation;

~ Step 2: An equals-symbol followed by a skio-symbol is 1nserted in the copy
following the last identifier in each copied -constituent’ formal-parameter
of the formal-parameters-pack of the routine-denotation; the open-symbol
of that formal-parameters-pack is deleted and its close—symbol is replac-
ed by a po-on-symbol;

Step 3: If the cast of the routinemdenotatlon is a void—cast then an open-
symbol is inserted in the copy preceding, and a. close—symbol following
that cast; the copy, thus modlfled is the routine possessed by the

, routine»denotation, v

{The routine possessed by 1 aftex' the elaboratlon of g__g_g pZ

(int a, b) real : (a > b | ax | yy) is (int a =, "int b= real

(a > b I zx | yy)) and that possessed Dby p2 after the elaboratlon of‘ '

proc pg = (real a; real b) : (a > b | stop) is (real.a’'='v; real b =

(: (a >b | stop))). A routine is the same sequence of symbols as some

closed~clause (6.3.1.a). For the use of routings, sée 8.4 (formulas), 8.2.2

(Geprocedured-coercends) and 8 6.2 (calls) ¥




5.5.

5.5.
a)
b)

o

m)

{aa)
the
(10.

Format denotatiorns

1.'Syntax

format denotation{860a} : ‘ o ‘
formatter symbol{31b}, collectlon{b} list, formatter symbol{31b} :

'collectlon{a b} ¢ picture{c} ; insertion{d} option, repllcator{f} .

collection{b} list pack, insertion{d} option. :
picture{b} : MODE pattern{552a,553a, 55ha,5)5a,556b 557b =} optlon,
insertion{d} option. . ,
insertion{b,c,m,552b,f,554a,55Ta} - ‘
‘literal{j} option, insert{e} sequence ; llteral{a}
insert{d} : replicator{f}, alignment{i}, llteral{g} optlon..

" replicator{b,e,j,n} : repllcatlon{g} option. .

replication{f.,k,557Ta} :
dynamic repllcatlon{h} 5 integral denotatlon{51a}
dynamic replication{g} :
letter n{302b}, strong CLOSED intégral clause{63a 6h0a,—};
aligmment{e} : letter k{302v} ; letter X{SOab} 5 letter y{302b} ;
letter 1{302b} 5 letter p{302b}.
literal{d,e,552f,554b} : replicator{f}, STRING denotatlon{51ha,53b},
replicated literal{k} sequence option.

’repjlcated literal{j} : repllcatlon{g}, STRING denotat10n{51ha,53b}

{Examples: . ' '
$p''table.of"z 10a,n(ltm—1)(l6mdzd 3x3(2x+ 12de+?d"+gX"ﬂb+ 10de+2d/l)p$ H
p'table. of"xl0a 3 3x3(2x+.12de+2d" " +Fx"si+.10de+2d)l 3
L20ke("mon", "tues”, "wednes", "thurs", "fri", "satur" "sun")"day" 3P
p'table.of"x 5 "day" : : ~
"table Of" . :
n(Z1m~1) H 10 ;
n(lim-1)
Magxit
20H. 11 }

sign mould{552a,553a,d,e} :
loose replicatable zero frame{m}, sign frame{p} ; loose sign frame{m}.
loose ANY frame{l,552d,553b,d,555a,556a,55Ta} : -
insertion{d} option, ANY frame{n,p,q,SSTc}
replicatable ANY frame{m} : replicator{f}, ANY irame{o,q}
zero frame{n,552e} : letter z{302b}. ,
sign frame{l,m} : plusmlnus{BOho}
suppressible ANY frame{m,n,55Tb} :
letter s{302b} option, ANY frame{552e,553c,f,555b,556b}.
frame : ANY frame{n,o,p,q,552e,553c,f;555b,556¢,55Tc}

{Examples:
"=l'12z+ 3 2x+ ;
M=o
12z
st 3 10a }
Three ways of "transput" (i.e., "input" and "output") are provided by

standard—prelude, viz., formatless transput (10.5.2), formatted transput
5.3) and binary transput (10.5.4). Formats are used by the formatted—

transput routines to control input from and output to a "file" (10 5.1).
section on semantics of. format-denotations is glven, since this is entlrely
dealt with by the standard~prelude : :



5.5.1. continﬁed

bb) A format may be assoc1ated w1th a file by a call of Jormat (10 5.3.a),
outf (10.5.3.1.a) or <nf (10.5.3.2.a), which causes a transformat to be
elaborated (5.5.8.1.a), the collectlon—llst of the format-denotation consid-
ered in 5.5.8. 2.b.5tep 2 1o be unfolded (cc), the result to be' the current
picture~list of the file and its first constituent p¢ﬁture to be the current
picture of the file (; e.g., after the call format (f1, ¢pt,3(3d. d)l¢), the
current. plcture—llst of the file fZ is pt 3d.d, 3d.d, 3d.dl and the current
plcture is pt). , e : '

ce) The result of unfolding a collectlon~llst (10. S.J.b)iis a'picture—list
obtained as follows:

a) if the collection-list is a picture, then the result COnolSta of that
picture;

b) if the collection-list is a collection but not a picture, then the re-
sult consists of the first insertion-option of the collection, followed
by as many copies of the result of unfolding the collection-list of its
collection-list-pack as is the value of its replicator, separated by
comma~symbols, - folloved by its last insertion-option (; e.g., the result
of unfolding 3k"ab'2(10a)l is 3k"ab"10a, 10al); ,

¢) - if the collection-list is a collection-list-proper, then the result con-
sists of the result of unfolding the:collection of that collection-list-
proper followed by a comma-symbol, followed by the result of unfolding
its collection-list (; e.g., the result of unfoldlng 10a,pn(t)(d 2d)". "
is 10a, p"." when the value of < is (). :

dd) When one of the formatted~transput routines Outf (10.5.3.1.a), out:
(10.5.3.1.0), <nf (10.5.3.2.8) or <n (10.5.3.2,b) is called, then transput
takes place in the follow1ng steps:

Step 1: The values to be transput are elaborated collaterally and the result
is "stxalghtened“ (10.5.0) into a series of values, the first of which, if
any, is made to be the current value;

Step 2: If the current picture of the file is an 1nsert10nropt10n then its
insertion, if any, is performed (gg), the next picture, if any, is made to
be the current picture of the file and Step 2 is taken; otherw1se, Step 3
is taken;

Step 3: If the series of values is empty or exhausted, then the transput is
accomplished; otherwise, if the picture-list is exhausted, then format end
of the file is called, a routlne which may be prov1ded by the programmer
(10.5.1.kk); : "

Step 4: If the current value is "compatible" with (nn) the current picture,
then that value is transput under control of that picture; otherwise,
value error of the file is called, a routine which may be provided by the
Progyanmer ; :

Step 5: The next value, if any, 1is made to be the current value the next
picture, if any, is made to be the current picture and Step 2 is taken.

“ee) The value of the empty replicator is 7; the value of a replication
which is an integral-denotation is the value of’ that denotation; the value
of a dynamlcﬂrepllcatlon is the value of its integral-clause if that value
is positive, and 0 otherwise.

ff) ‘Transput occurs at the current "position" (i.e., page number, line
number and char number) of the file. At each POclthn of the file within

certain limits (10.5.1.1.5,k,1) some character is "present' depending on.
the contents of the file and on its "conversion key" (10.5.1.11).



5.5.1. continued 2

gg) An insertion is performed by performing-its constituent alignments
and, on output (input), "writing" ("expecting") its constituent literals one
after the other. » S '

hh) Performing an alignment affects the position of the file as follows,
where n stands for the value of the preceding replicator:
a) letter-k causes the current char number to be set to n;
b) letter-x causes the char number to be incremented by n (10 5.1.2. o),
c) 1letter-y causes the char number to be decremented by n (10. 5.1.2.p)%
d) letter-l causes the line number to be incremented by n and the char num-
: ber to be reset to I (10.5.1.2.q); ‘
e) letter-p causes the page number to be incremented by M and both the line
number and the char number to be reset to | (10.5.1.2.r).

ii) A literal is written by writing the characters (strings) possessed by
its constituent (row-of-)character-denotations each as many times as is the
value of the preceding replicator; a string is written by writing its ele-
ments one after the other; a character is written by causing the character
to be ‘present at the current position of the file, thereby obliterating the .-
character that was present, and then incrementing the char number by 1. &
literal is expected by expecting the characters (strings) possessed by its
constituent (row-of-)character-denotations each as many times as is the
value of the preceding replicator; a string is expected by expecting its el-
ements one after the other; a character is expected by incrementing the char
number by ! if the character is present at the current position of the file;
otherwise, the further elaboration is undefined. ' :

jj) When a string whose number of characters is given is "read", then that
number of characters are read and the result is a string whose elements are
those charaotera, when a string is read under control of a given "termina-
tor-string'", then as long as the line is not exhausted, characters are read
up to but not including the Tirst character which is the same as some ele-
ment of the tpxmlnator—strkub, and the result is a string whose elements are
those characters; when a character is read, then the result is the character
present at the current position of the file, and the char number of the file

is incremented by 1.

kk) The mode specified by a picture is that enveloped by the original of
its patbern, if any. The number of characters. specified by a picture is the
suwn of the numbers specified by its constituent frames and the number speci-
vied by a frame is equal to the value of its preceding replicator, if any,
&nd 1 otherwise.

1) On output, a picture may be used to "edit" a value.in the following
.eps:

.ep 1: The value is converted by an appropriate output routine (10.5.2.1.c,
d,e) to a string of as many characters as specified by the picture (; if
the pattern of the picture is an integral-pattern, then this conversion
takes place to a base equal to the value of the integral-denotation which
is the same sequence of symbols as its constituent radix, if any, and base
10 otherwise); if this number of characters is not sufficient, then value
crpror of the file is called, a routine which may be provided by the pro—
grammer (10.5.1.kk);

svep 23 In those parts, if any, of the strlng specified by a 51gn—mould a
character specified by the sign-frame will be used to indicate the sign,
viz., if the sign-frame is a minus-symbol and the value is nonnegative,
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then a space, and, otherwise, the character specified by the sign-frame; '
this character is shifted in that part of the string specified by the
sign-mould as far to the right as possible across all leading zeroes, and
those zeroes are replaced bv spaces (3 e.8., under the sign-mould 4z+ 5
the string possessed by "+0003" becomes that possessed by "...+3")y if the
picture does not contain a sign-mould and the value is npgatlve, then -
value error of the file is called; :

Step 3: Leading zeroes in those parts of the strang specified by any. remalnm'
ing zero-frames are replaced by spaces (3 e.g., under the picture zdzd2d,
the integer 180168 becomes the stl]ng possessed by 118.168";

Step L: For all frames occurring in the picture, first the preccdlng
insertion, if any, is performed, and next, if the frame is not "sup-
pressed" (, i.e., preceded by letter-s), then that part of the string
spe01fled by the frame is wrxtten, finally, the insertion, if any, follow~
1ng the last constituent frame is performed (; e.g., editing under the
picture zd'"-"zd"-19"2d, the 1n1eger 160168 causes the string possessed by
"18~.1~1968" to be wrltten)

"indit" a value of a given mode

mm) ‘On input, a picture may be used to
from a file in the following steps:
Step 1: A string is obtained consisting of the characters obtained by per-
forming the following process for all frames occurring in the picture,
viz., first, the insertion, if any, preceding the frame is performed and
next, as many characters are obtained as are spec1f1°d by the frame; each
of those characters is obtained,
if the frame is not suppressed, then by reading from the file a character,
and, if the frame is a digit- (point-, exponent—, complex—)frame and the
character is not a digit (point, times ten to the power, plus i times),
then calling char error of the file (10.5.1.kk) with as its parameter a
zero (point, times ten to the power, plus i times), and :

if the frame is suppressed, then by taking, if the frame is a digit-
(zero-, point-, exponent-, complex-, character-)frame a zero (zero,
point, times ten to the power, plus i times, space); ;

Step 2: Those parts, if any, of the string specified by a sign-mould must
contain a character, specified by the sign-frame, to indicate the sign
(; see 11.Step 2); if those parts contain such a character, with only
spaces appearing in front of it and no leading zeroes appearing after it,
then those leading spaces, if any, are deleted; otherwise, char error
‘is called with a plus; 1f this character is a space, and the sign-frame
is a minus-symbol, then it is replaced by s plus (; e.gv, if in Step 1 un=—
der control of 3z~d, the string possessed by "...39" is obtained, then in
Step 2 that possessed by "+39" is obtained);

Step 3: Leading spaces in those parts of the string specified by any remain-~
ing zero—frames are replaced by zeroes; ;

Step 4: The string is converted by an appropriate input routine (10.5.2.2.c,
d,e) into a value of the given mode, if possible, and, otherwise, value
error of the file is called (; e.g., if the value of maxint (10.1.b) is
10000, then under +5d it is possible to input +10000, but not +1000171).

nn) A value of a given mode is compatible with a given picture if

a) on output, there exists some mode which is the mode specified by the
picture preceded by zero or more times 'long', such that that mode is
strongly coerced from the given mode;

b) on input, there exists some mode which is the mode specified by the
picture preceded by 'reference to' followed by zerc or more times
"long', such that that mode is strongly coerced from the given mode.
(A value of mode 'reference to long integral' is on output compatible
with a picture that specifies the mode 'real', but not on input.) .
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00) Formats have a complementary meaning on input and output, i.e., a
given value which is not a string with one or two f{lexible bounds, which has
been output successfully to the file, under control of a certsin picture,
starting from a certain position, can be successfully input again from that
file under control of the same picture, starting at the same position, pro-
vided that the contents of the file are not changed in between; if the pic-
ture does not contain a letber-k or letter-y as alignment, and the picture
does not contain any digit-frames or character-frames preceded by letter-s,
then the second value, obtained on 1nput, is equal (approximately equal) to
the given value if this is a string, integer or truth value (is a real num-
ber); output of this second value to the file has the same effect on the
contents of the file as output of the given value under control of the same
given picture and starting from one same position.

pp) If a value is transput under control of a picture whose constituent
pattern is not an integral-choice-pattern (5.5.2.f), boolean-pattern
(5.5.4.8) or string-pattern (5.5.7.b), then on output (input) it is edited
(indited) under control of the picture.}

5.5.2. Syntax of integral patterns

a) integral pattern{55c} : radix mould{b} option, sign mould{551} option,
integral mould{d} ; integral choice pattern{f}.

b) radix mouldf{a} : insertion{ssd} option, radix{c}, letter r{302v}.

¢) radix{v} : digit two{303d) ; digit four{303d} ; digit eight{303d4} ;
digit one{303d}, digit zero{303d} ; digit one{303d}, digit six{3034}.

d) integral mould{a,553b,d,e}
loose replicatable suppressible digit frame{55m} sequence.

e) digit frame{55q¢)} : zero frame{550} ; letter d{302b}. '

f) integral choice pattern{a}
insertion{ssd} option, letter c{302b}, literal{s55j} list pack.

{Examples:
a) 2r8d30sd ;3 12z+d ; zd"-"zd"-19"2d4
1L20ke("mon', "tues", "wednes", "thurs", "fri", "satur", "sun")
b) ar ;
c) 2 34 3 8 5 10 5 16
a) zd"-"zd"-13"2d ;
) ZZOkc(”mon”,”tues" "wednes”, "thurs", "fri", "satur’, "sun") }

{If a given value is transput under control of a picture whose constitu~
ent pattern is an integral~choice—pattcrn, then the insertion, if any, pre-
ceding the letber-c is performed, and, _
a) on output, letting n stand for the integer to be output, if ©n > 0 and

the number of literals in the constituent literal-list-pack is at least

n, then the n~th literal is wrltten on the file; otherw1se, the further

elaboration 1s undefined;

b) on input, one of the constituent literals of the constituent literal-
list-pack is expected on the file; if the £~th constituent literal is
the first one present, then the value is £; if none of these literals is
present, then the further elaboration is undefined;

¢) finally, the insertion, if any, following the pattern is performed.}



5.5.3. Syntax of real patterns

a)

b)

a)
b)
d)
e)

real pattern{55c,556a} : sign mould.optlon{bSl} option, real mould{b} 5
floating point mould{d}.

real mould{a,e} : integral mould{s552d},
loose suppressible point frame{55m}, integral mould{552d} option ;
loose suppressible point frame{55m}, integral mould{5524}.

point frame{55q} : point symbol{31b}.

floating point mould{a} : stagnant mould{e}, loose suppressible exponent
frame{55m}, sign mould{551} option, integral mould{552d4}.

stagnant mould{d} : sign mould{551} option, INTREAL mould{552d,553b,~}.

exponent frame{55q} : letter e{302b}.

{Examples:

+12d 3 +d.11de+2d
d.11d 4 .12d ;

+d. 11de+2d

+d. 11d }

5.5.4, Syntax of boolean patterns

a)

b)

a)
b)

boolean pattern{55c} : insertion{55d} option, letter b{302b},
boolean choice mould{b} option.

boolean choice mould{a} : open symbol{31e}, literal{55j},
comma symbol{31e}, literal{55j}, close symbol{31le}.

{Examples:
L'result"1dxb 3 b("", "error")
("H’ Her,ror,lf) }

{If the boolean~pattern does not contain a choice-mould, theh the effect

of using the pattern is the same as if the letter-b were followed by
("1","0"), If a given value is transput under control of a picture whose
constituent pattern is a boolean-pattermn, then the 1nsert10n, if any, pre-
ceding the letter-b is performed, and,

a)

b)

=

on output, if the truth value to be output is fiue, then the first con~
stituent literal of the constituent choice-mould is written, and, other=-
wise, the second;

on input, one of the constituent literals of the constituent choice-
mould is expected on the file; if the first literal is present, then the
value faue is found; otherwise, if the second literal is present, then
the value false is found; otherwise, the further elaboration is unde-
fined;

finally, the insertion, if any, following the pattern is performed.}

5.5.5. Syntax of character patterns

a)
. b)

a)(

character pattern{55c¢} : loose suppressible character frame{SSm}
character frame{55q} : letter a{302b}.

{Example:
H° Ila }



5.5.6. Syntax of complex patterns

- a)* complex pattern : C@Wﬂiﬂ(pattern{b}
.b) COMPLEX pattern{55c} : real pattern{553a},

loose suppressible complex frame{55m}, real pattern{SSSa]
c) complex frame{55q} : letter i{302b}.

{Example:
b) Sw+.l12de+2d'"+ix"si+.10de+2d }

5,5.7. Syntax of string patterns

a)* string pattern : row of character pattern{bl.
b) row of character pattern{55c} : loose string frame{55m} ;
loose replicatable suppre581ble character frame{55m} sequence proper ;
insertion{s55d} option, replication{55g},
suppressible character frame{55q}.
c¢) string frame{55m} : letter t{302b}.

{Examples:
v) Ut 3 ba3saba 5 ‘p'"table.of"x10a (Note that a is a character-pattern,
whereas la is a string-pattern for a string with one element.) }

{If a giVPn value is transput under control of a picture whose constitu=
ent pattern is a string-pattern, then, if the pattern is a loose~string-
frame, then
a) the constituent insertion, if any, is performed;

b) on output, the given string is written on the file;

c) on input, if the string has fixed bounds, then that number of characters
are read; otherwise, a string is read under control of the terminator=
string of the file (10.5.7.mm);

d) finally, the insertion, if any, following the pattern is performed;

otherwise,

a) on output, the given string, which must have as many elements as the
number of characters specified by the picture, is edited;

b) on input, the string is indited.}

5.5.8. Transformats

{Transformats sre exclusively used as actual—-parameters of formatted-
transput routines; for reasons of efficiency, the programmer has deliber=
ately been made unable t0 use them elsewhere by the choice:of the field-
selector, which contains letter-aleph for which no representation is pro=
vided. Although transformats are not denotations at all, they are handled
here because of their close connection to formats. }

5.5.8.1. Syntax

a) structured with row of character field letter aleph digit one
“transformat {Th1b} : firm format unlt{61e}

{Example:
a) (x =20 | $5d¢ [ $5d"-"¢ )}



5.5.8.2. Semantics

a) The format {2.2.3.4} possessed by a given format-denotatlon is the same
sequence of symbols as the given formatwdenotatlon

b) A given transformat is elaborated in the follow1ng steps

Step 1: It is preelaborated {1.1.6.f};

Step 2: A format-denotation is considered Whlch is the same sequcnce of sym~
bols as the format obtained in Step 1;

Step 3: All constituent dynamlc—repllcatlons {5.5.1.h} of the considered
format~-denotation are elaborated collaterally {6.3.2.a}, where the elabo=~
ration of a dynamic-replication is that of its integral-clause;

Step 4: Fach of those dynamic-replications is replaced by an integral-
denotation {5.1.1.1.a} which possesses the same value as that dynamic~—
replication if that value is positive, and, otherwise, by a digit-zero;
furthermore, every replicator which is empty is replaced by a digit~one;

Step 5: That string-denotation {5.3.1.a} (character-denotation {5.1.k.1.a})
is considered which is obtained by replacing in the considered format-
denotation as modified in Step L each constituent quote-symbol by a quote-
image {5.3.1.d} and the first and the last constituent formatter-symbol by
a quote-symbhol;

Step 6: A new instance of the value of the considered string-denotation (of
a multiple value composed of the value of the considered character-
denotation as its {only} element and of a descriptor consisting of an off-
set | and one quintuple {7,7,7,7,1})) is made to be the {only} field of a
new instance of & structured value {2.2.3.2} whose mode is that enveloped
{1.1.6.3} by the original {1.1.6.c} of the transformat;

Step T: The transformab is made to possess the structured value obtained in
Step 6.
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6. Phrases

{A phrase is a declaration or a clause. Declarations msy be unitary,
e.g., real x, or collateral, e.g., real x, y. Clauses may be unitary, e.g.,
x := 1, collateral, e.g., (x := I, y := 3), closed, e.g., {® + y), or condi-
tional, e.g., if @ > 0 then x else 0 fi (which may be written (x>0|z|0)).
Most clauses will be of a certain "sort", i.e. strong, weak, firm or soft,
which determines how the coercions should be effected. The sort is "passed
on" in the production rules for clauses and may be modified by "balancing"
in serial-, collateral- and conditional-clauses.}

6.0.1. Syntax

a)® SOME phrase : SORTETY SOME PHRASE(6la,62a,b,c,d,f,63a,6ka,c,d,e,T0a,81a,

-}
b)¥ SOME expression : SORTETY SOME MODE clause{6la,62b,c¢,d,f,63a,6%a,c,d,e,
81a}. ) ‘

¢)* SOME statement : strong SOME void clause{6la,62b,63a,6ha,c,e,8la}.

{The rules b and ¢ are not actually used in this Report but serve to
help the reader, who may know some such constructions in other languages un-
der those appellations. For an informal introduction into ALGOL 68 (0.1.1)
also the following rules may be helpful:

d)#* constant : NONREF FORM{830a,8Lb,g,850a,860s}.
e)* varisble : reference to MODE FORM{830a,84b,g,850a,860a}.
£)¥ procedure : REFETY PROCEDURE IORM{830s,84b,g,850a,860a}.
g)¥* structure display : ,

stronp collateral structured with FIELDS and FIELD clause{62f}.
h)* row display : SORT collateral row of MODE clause{62¢,d}.
1.2.2.z)% NONREF : PLAIN ; format ; PROCEDURE ; STOWED ; UNITED.}

6.0.2, Semantics

a) The elaboration of a phrase begins when it is initiated, it may be
"interrupted", "halted" or "resumed", and it ends by being "terminated" or
"completed", whereupon, if the phrase "appoints" a unitary-phrase as its

“"successor'', then the elaboration of that unitary-phrase is initiated.

b) The elaboration of a phrase mey be interrupted by an action {e.g.,
"overflow'} not specified by the phrase but teken by the computer if its
1initations {2.3.b} do not permit satisfactory elaboration. {Whether, after
an interruption, the elsboration of the phrase is resumed, the elaboration
of some unitary-phrase is initiated or the elaborstion of the program ends,
is left undefined in this Report.}

¢) The elaboration of a phrase may be halted {10.4.a}, i.e., no further ac-
tions constituting the elaboration of that phrase take place until the elab-
oration of the phrase is resumed {10.k4.b}, if at all.

&



6.0.2. continued

d) A given {serial-}clause is "protected in the following steps:

Step 1: If the given clause contains a defining occurrence {L4.1.2.a} (an in-
dication-defining occurrence {4.2.2.a}) of a terminal production of a no=
tion ending with 'identifier' ('indication') which also occurs outside it,
then that defining (indication=-defining) occurrence and all occurrences
identifying it are replaced by occurrences of one same terminal production
of that notion which does not occur in the program and Step 1 is taken;
otherwise, Step 2 is taken;

Step 2: If the given clause as possibly modified in Step 1 or Step 4 con~
tains an operator-defining occurrence {4.3.2.a} of a terminal production
of a notion ending with 'indication' which also occurs outside it, then
that operator-defining occurrence and all occurrences identifying it are
replaced by occurrences of one same new terminal production of that notion
which does not occur in the program and Step 3 is taken; otherwise, the
protection of the given clause is accomplished;

Step 3: If the indication is a dyadic-indication, then Step 4 is taken;
otherwise, Step 2 is taken;

Step 4: A copy is made of the priority-declaration containing the indication
which, before the replacement in Step 2, was identified by that operator-
defining occurrence; that indication in the copy is replaced by an occur-
rence of the new terminal production; the given clause is modified by in—
serting before it the thus modified copy of the priority~declaration fol=-
lowed by a go-on~-symbol, and Step 2 is taken. .

{Clauses are protected in order to allow unhampered definitions of iden~
tifiers, indications and operators within ranges and to permit a meaningful
call, within a range, of a procedure declared outside it.}

{What's in a name? that which we call a rose
By any other name would smell as sweet,
Romeo and Juliet, WiLLiam Shakespedre. }

6.1. Serial clauses

{Serial-clauses are built from unitary-clauses and declarations with the
help of go-on-symbols (;), completion-symbols (. or exZt) and labels, e.g.,
(x > 0 { x =1 [ l); y. L2 y + 1, where the value of the clause is that of
Y, if & > 0 and that of y + I otherwise. A serial-clause may begin with
declaratlon—preludes, e.g., tnt m = 1; in int n := 1; x :=y + n. Labels
may occur in only three syntactlc positions within serial-clauses: after a
completion-symbol (here a label is obligatory, e.g:, .l:), in a sequencer
(e.g., 5L:), or at the beginning of a clause~train (i.e., one or more
unitary-clauses separated by sequencers, e.g., L x := I; y := 1),

A declaration-prelude may begin with void-clauses (statements), e.g., in or-
der to supply a multiple value as in [I:n] real x1; for < to n do x1 [Z] =
1 x 1; real y; ; however, these void-clauses may not be labelled. A declara-
tion-prelude always ends with a go-on-symbol. The modes of some serial-

clauses must be balanced (6.1.1.g). For remarks concerning the balancing of

modes see 6.4,1.}




6.1.1. Syntax

a) SORTELY serial CLAUSE{63a,6hb,e} : declaration prelude{b} sequence
option, suite of SORTETY CLAdSE trains{f,g}.
b) declaration prelude{a,2b,c} :
statement prelude{c} optlon, single declaration{d}, go on symbol{31f}.
c) statement prelude{b} : chain of strong void units{e} separated by
go on symbols{31f}, go on symbol{31f}.
d) single declaration{b} : : _
unitary declaration{TOa} ; collateral declaration{62a}.
e) SORTETY MOID unit{c,i,2f,558a,62b,c,e,h,Tlb,831c,83ka} :
SORTETY unitary MOID clause{81al.
f) suite of STRONGETY CLAUSE trains{a,gl} :
chain of STRONGETY CLAUSE trains{hl} separated by completers{l}.
g) suibte of FEAT CLAUSE trains{a,g} : FEAT CLAUSE train{h} ;
FEAT CLAUSE train{h}, completer{l}, suite of strong CLAUSE trains{f} ;
' strong CLAUSE train{h}, completer{l}, suite of FEAT CLAUSE trains{g}.
h) SORTELY MOID clause train{f,g,2g} : label{k} sequence option,
statement interlude{i} option, SORTETY MOID unit{e}.
i) statement interlude{n,2f} :
chain of strong void units{el} separated by sequencers{j}, sequencer{j}.
J) sequencer{il} : go on symbol{31f}, label{k} sequence option.
k) label{h,j,1,2d} : label identifier{4ib}, label symbol{3le}.
1) complebter{f,g} : completion symbol{31f}, label{k}.

{Examples:
a) real @ := 0; 11: 12: x :=a+ 1; (p | 18); (x>0 | 13 | « =1 = x);
false. 13: y =y + 1; true ; .
b) real a := 0; ; read (n); [1:n] real xl, yl; ;
c) read (n); ;
d) real a := 0 ; [1:n] real =1, yl ;

e) false ;

£) 11: 12: % :=a+ 1; (p | 18); (x>0 | 13 | © :=1 = x); false.
L8: y =y + 1; true ;

h) 11: 12: @ :=a+1; (p | 13); (x>0 | 13 | « := 1 = x); false ;

i) w=a+1; (p | 18); (x>0 | L3 I z =1 =g) ;
J) s 5 5 ld: 18:

k) 14: ;

1) . 13: 1}

6.1.2. Semantics

a) The elaboration of a serial-clause is initiated by protecting {6.0.2.d}
it and then initiating the elaboration of its textually first constituent

declaration or unitary-clause.

b) The completion of the elaboration of a unitary-phrase preceding a go-on-
symbol followed (not followed) by a label-sequence initiates the elaboration
of the unitary-phrase following that label-sequence (that go-on-symbol).

¢) The elaboration of a serial-clause is

interrupted (halted, resumed) upon the interruption (halting, resump-
tion) of a constituent unitary-phrase;

terminated upon the terminstion of the elaboration of a constituent
unitary-phrase sppointing a successor outside the serial—-clause, and that
successor {8.2.7.2.b.8tep 1} is appointed the successor of the serial~
clauseb
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d) The elaboration of a serial-clause is completed upon the completion of
the elaboration of its textually last constituent unitary-clause or of that
of a constituent unitary-clause preceding a completer.

e) The value of a serial-clause is the value of that constituent unitary-
clause the completion of whose elaboration completed the elaboration of the
serial-clause provided that the scope {2.2.4.2} of that value is larger than
the serial-clause {; otherwise, the value of the serial-clause is unde~

fined},

{Iny := (x := 1.2; 3.4), the value of the serial-clause x := 1.2; 3.4
is the real number possessed by 3.4. In xx := (real r := 0.1; r), the value
of the serial-clause regl r := 0.1; r is undefined since the scope of the
nsme possessed by r is the serial-clause itself, whereas, in y := (real »
:= 0.1; r), the serial~clause reql r := 0.1l; r possesses a real number.}

6.2. Collateral phrases

{Collateral-phrases contain two or more unitary-phrases separated by
comma~symbols (,) and, in the case of collateral-clauses, are enclosed be=
tween a open-symbol (() and a close-symbol ()) or between a begin-symbol
(begin) and an end-symbol (end), e.g., (x := 1, y := 3) or real x, real y
(usually real x, y, see 9.2.c). The values of collateral-clauses which are
‘not statements (void-clauses) are either multiple or structured values,
e.g., (1.2, 3.4) in [] real x1 = (1.2, 3.4) and in compl z := (1.2, 3.4).
‘Here, the collateral-clause (1.2, 3.4) obtains the mode 'row of real' or the
mode which is the terminal production of 'COMPLEX'. Collateral-clauses whose
value is structured must contain at least two fields, for, otherwise, in the
reach of the declarations struct m = (ref m m); m nobuo, yoneda, the assig-
nation nobuo := (yoneda) would be syntactically ambiguous. In the reach of
the declarations struct r = (real a); r r, the construction r := (3.14) is
not an assignabion, but a of r := 3.14 is. It is possible to present a
single value or no value at all as a multiple value, e.g., [] real xI = ;
[] real y1 := 3, but this involves a coercion known as rowing; see 8.2.6.}

6.2.1. Syntax

-a) collateral declaration{61d} : unitary declaration{70al} list proper.
b) strong collateral void clause{2d,81d4} :
parallel symbol{3le} option, strong void unit{61le} list proper PACK.
c) strong collateral row of MODE clause{81d} :
strong MODE unit{6ie} list proper PACK.
d) FEAT collateral row of MODE clause{81d} : FEAT MODE balance{e} PACK.
e) FEAT MODE balance{d,e} :
FEAT MODE unit{61e}, comma symbol{31le}, strong MODE unit{6le} list ;
strong MODE unit{61e}, comma symbol{3le}, FEAT MODE unit{6te} ;
strong MODE unit{6le}, comma symbol{31e}, FEAT MODE balance{e}.
f) sbrong collateral structured with FIELDS and FIELD clause{814} :
strong structured with FIELDS and FIELD structure{g} PACK.
g) strong structured with FIELDS and FIELD structure{f,g} :
strong structured with FIELDS structure{g,h}, comma symbol{31e},
strong structured with FIELD structure{hl}.
h) strong structured with MODE field TAG structure{g} :
strong MODE unit{61e}.
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{Examples:
) real x, real y ; (and by 9.2. c) reaZ x, Y
) (x =1, y =2, 8 1= 8) 3 , '
) (x, n) '
) (1.2, 3, 4) (in (1.2, &, 4) + %1, supp031ng + has been declared 8lso
for 'row of real')
e) 1.2, 3, 4 (in (1.2, 3, 4) + x1) 5 1; 2.3 (in (1, 2.3),,+ wl)
1, 2.3, 4 (in (1, 2.8, 4) +x1) 3 - - ’
£) (1, 2.3) (in 3 := (1, 2.3)) ;
g}* 1, 2.8 ;
n) 1}

6.2.2. Semantics

a) If constituents of an occurrence of a terminal production of a notion
are "elaborated collaterally", then this elaboration is the collateral ac~ -
tion {2.2.5} consisting of the {merged} elaborations of these constituents,
and is ,

initiated by initiating the elaboration of each of these constituents,

interrupted upon the interruption of the elaboration of any of these
constituents,

completed upon the completion of the' ulaboratlon of all of these con=-
stituents, and

terminated upon the termination of the elaboration of any of these con=
stituents, and if that constituent appoints a successor, then this is the
successor of the occurrence.

b) A collateral~aeclaratlon is elaborated by elaborating 1Ls constituent
unitary-declarations collaterally {a}.

c¢) A collateral-clause is elaborated in the following steps:

Step 1: Its constituent units are elaborated collaterally {a};

Step 2: If the terminal production of the metanotion 'MOID' enveloped
{1.1.6.j} by the original {1.1.6.c} of the collateral-clause is a mode,
then this mode is considered and Step 3 is taken; otherwise, {it is 'void!
and} the elaboration of the collateral-clause is complete; :

Step 3: If one of the values of the units obtained in Step 1 is a name
{2.2.3.5} which refers to an e¢lement or subvalue having one or more states
{2.2.3.3} equal to 0, then the further elaboration is undefined; other-
wise, Step 4 is taken;

Step b: If the considered mode begins with 'row of', then Step 5 is taken;
otherwise, new instances of the values obtained in Step 1 are made, in the
given order, to be the fields of a new instance of.a structured value
{2.2.3.2}; this structured value is considered and -Step T is taken;

Step. 5: If the considered mode begins with 'row of row of', then Step 6 is
taken; otherwise, a new instance of a multiple value is created as fol-
lows: Let m stand for the number of constituent units in the collateral-
clause; its element with index £ i1s a new instance of the value of the
A~th constituent unit and its descriptor consists of an offset | and one
quintuple (I,m,1,7,1); this multiple value is considered and Step 7 is
taken;
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Step 6: If not all corresponding upper (lower) bounds of the multiple
values obtained in Step 1 are equal, then the further elsboration is unde=
fined; otherwise, the elements with indices (L ~'1) x n + 4§, § =1, ...,,1
of the new value, where A stands for the number of elements in one of
those values, are new instances of the elements of the value of the 4=-th
constituent unit and the descriptor of the new value is a copy of the de~
seriptor of the value of one of the constituent units into which an addi-
tional quintuple {7,m,1,1,1) has been inserted before the old first quin-
tuple, the offset has been set to I, d has been set to 7, and for 4 = n,
n~-1, ... , 2, the stride d, _ , has geen'set to (u, ~ £, + 1) x d,; this
new multiple value is conside€red and Step 7 is taken] ’ <

Step T: The value of the collateral-clause is the considered value; its mode
is the considered mode. : '

6.3. Closed clauses.

{Closed-clauses are generally used to construct primaries (8.1.1.d) from
serial-clauses, e.g., (@ +y) in (x + y) x a. The question of identifica~
tion (Chapter 4) and protection (6.0.2.4) may arise in closed-clauses, be-
ceuse a serial-clause is a range (L.1.1.e) and it may begin with a
declaration-prelude (6.1.1.a).} '

6.3.1. Syntax v
a) SORIEIY closed CLAUSE{2d,55h,81d} : SORTETY serial CLAUSE{61a} PACK.

{Examples:
a) begin i =2 + 1; j =g+ 1end; (x+y)}

6.3.2. Semantics

The elaboration of a closed-clause is that of its constituent serial-
clause, and its value is that, if any, of that serial-clause.

6.4, Copditional clauses

{Conditional~clauses allow the programmer to choose one out of a pair of.
clauses, depending on the value (which is of mode 'booléan') of a condition,
e.g., (x>0 | « | 0). Here, x > 0 is the condition. If its value is frue,
then x, and, otherwise, 0 is chosen. Conditional-clauses are generalized in
the extensions 9.4, e.g., 2f © > 0 then x elsf x < ~1 then -x ~ 1 else 0 fi,
which has the same effect as (¢ > 0 |« | (z < ~1 |~x - 1 | 0)). Unlike
similar constructions in other languages, conditional-clauses are always en-
closed between an if-symbol, represented by #f or by (, and a fi-symbol,
represented by fZ or by ). This enclosure allows both parts of the choice-
clause snd the condition to contain serial-clauses.}

&



6.4.1. Syntax

a) SORTETY conditional CLAUSE{2d,55h,81d} : if symbol{31e} condition{b},
SORTETY choice CLAUSE{c,d}, fi symbol{31e} '
b) condition{a} : strong serial boolean clause{61a}.
e¢) STRONGETY choice CLAUSE{a} :
STRONGETY then CLAUSE{e}, STROVGETY else CLAUSE{e}
d) FEAT choice CLAUSE{a} :
FEAT then CLAUSE{e}, strong else CLAUSE{e} H
strong then CLAUSE{e} FEAT else CLAUSE{e}.
e) SORTETY THELSE CLAUSE{c,d} :
THELSE symbol{31e}, SOREETY serial CLAUbE{61a}

{Examples:
a) (x>0 | x| 0); 2f overflow t%en exit fi (see 9.4.a) ;
b) x > 0 ; overflow ;
e) | x| 0 then exit ;
a) laloln(x>0]a|0)+y);
e) |z | 0; then exit }

{Rule 4 illustrates the necessity for the balancing of modes (see also
6.1.1.g). Thus, if a choice-clause is, say, firm, then at least one of its
two constituent clauses must be firm, while the other may be strong. For ex-
ample, in (p | © | v + (p | ~ | y), the conditional-clause (p | = | ~) is
balanced by meking | @ firm and | ~ strong, whereas (p | ~ | y) is balanced
by making | v strong and | y firm. The example (p | ~ | ~) + y illustrates
that not both may be strong, for otherwise the oOperator + could not be iden=

tified.}

6.4,2. Semantics

a) A conditional-clause is elaborated in the following steps:

Step 1: Its condition is elaborated;

Step 2: If the value of that condition is faue, then the then-clause and,
otherwise, the else-clause of its choice~clause is considered;

Step 3: The serial-clause of the considered clause is elaborated;

Step 4: The value, if any, of the conditional-clause, then is that of the
clause elaborated in Step 3.

b) The elaboration of a conditional-clause is

interrupted (halted, resumed) upon the interruption (halting, resump—
tion) of the elaboration of its condition or the considered clause;

completed upon the completion of the elaboration of the considered
clause;
terminated upon the terminstion of the elaboration of its condition or
the considered clause, and if one of these appoints s successor, then this
is the successor of the conditional~clause.



1. unitary daeciaracions

 {Unitary-declarations provide the indication-defining occurrences of
mode-indications, e.g. string in mode string = [1:flexlchar, end dyadic-
indications, e.g. plus in priority plus = 1, defining occurrences of mode-
. identifiers, e.g. & in real x, and the operator-deflnlng occurrences of
" operators, e.g. abs in op abs = (int alint i (a < 0 | -a | a). Declarations
occur in declaration«preludes (6.1.1. b) } ) ' .

T.0.1. Syntax

a) unitary declaration{61d 62a} : '
' mode declaration{T72a} ; priority declaration{73a} 3
identity declaration{?ha} ; operation declaratipn{YSa}@

{Examples ’ .
a) mode string-= [1: flex]char przorzty plus—= 1
: int m = 4096 ; Qg_%,=-(real a,blint : round a .:round b}

7.0.2, Semanties

A mode-identifier (operator) which was caused to possess a vsalue by the
elaboration of a declaration containing the defining (operator-defining)
occurrence of that mode-identifier (orerator) is caused to possess an unde-
finéd value upon termination or completion of the elaboration of the small-
est range {4.1.1.e} containing that declaration.

7.1. Declarers

: {Declarers are built from the symbols int, real, bool, char; format,
with the assistance of certain other symbols as e.g. long, ref, [,.],
struct, union and proc. A declarer specifies a mode, e.g., real specifies
the mode 'real'. A declarér is either a declarator or a mode-indication,
e.g., compl is a mode-indication and not & declarator. Declarers are clas-
sified as actual, formal or virtual depending on the kind of lower- and
upper=bounds which are permitted. Formal-declarers heve the greatest free~
dom in this respect, e.g., [I:n]real, [1:flexlreal, [1:eitherlreal and

[lreal may all be formal, but only the first two may be actual end only the
last one may be Virtual }

T.1.1l. Syntax

a)* declarer : VICTAL MODE declarer{b}.

b) VICTAL MODE declarer{h,k,l,m,n, o,p,xgy,aa,jjssheﬁQa O3ka,;851b,c} :
VICTAL MODE declarator{c d,e,l,m,n,0,p,w,cc}
MODE mode indication{hzb} v

¢) VICTAL PRIMITIVE declarator{b,d} : PRINETIVE symbol{31d}

d). VICTAL long INTREAL declarator{b d}
long symbol{31d}, VICTAL INTREAL declarator{cgd}g

{Examples:
b) real ; bits ;
e) int real bool ; char ; format ;
a) Tong int 3 Zong long real }
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" T.1.1.continued

e) VICTAL structured with FIELDS declara?or{b} ' o
) structure symbol{31d}, VICTAL FIELDS declara’cor{f h,k} pack.A :

£) * VICTAL FIELDS. and FIELD declarator{e £k}

VICTAL FIELDS declarator{f,h,k}, comza qynbbi{BJ.e},
: VICTAL FIELD declara‘tor{h k} _ _
g)* field declarator : VICTAL. FIELD det,larator’{h X}

‘h) VICTAL STOWED field TAG declarator{es;f} :

VICTAL STOWED declarer{b}, STOWED' field TAG selector{:}}
i)* fi{eld selector : FIELD selector{J} -
3). MODE field TAG selector{h,852s} : TAG{302b Lie, d}. v
k) VICTAL NONSTOWED field TAG declarator{ e,f} : -
' virtual NONSTOWED declarer'[b} NONSTOWED field TAG splector{,j}. '
~ {Examples: ' R ' ‘ o
e) struet (string mtlej, [1 nlggﬁ et ing . paqes, mt pmee) 3
f) string title, [1: n]_z;e_f string pages, ing pmee 3 o
h) [I: niref tmng pages 5 o '
J) title ] ‘
k) "int price }

{Rules h and k, together with 1.2.1.r,s,t,u,v end b.1.1,c,d lead to an

infinity of. production rules of the strict language, thereby enabling the
syntax to "transfer" the field-selectors (i) into the mode of structured

values, and meking it ungrmmnatlcal to use an "unknown" field-selector in a
selection (8.5. 2). Concerning the occurrence of & given field-selector more
than once in a declarer, see 4.4.3, which implies that struct(real z, int x)
is not a (correct) declarer, whereas struct(real x, struct(int x, bool plp)
is. Notice, however, that the use of a given fleld-selectoriinttwo different
declarers within a given redch does not cause amblgultyg Thus, mode cell =
struct (string name, ref cell next) and mode link = stmet(ref ka newt,,rg_»‘e_f
¢ell value) may both oceur ur in the same: reach, } i

1) VIRACT reference to MODE declarator{b} ) :
. reference to symbol{31d}, virtual MODE declamr'{b}
m) formal reference to STOWED declarator{b} :
. reference to symbol{31d}, formal STOWED declar'er{ b}
n) fonnal reference to NONSTOWED déclarator{bv} :
reference to symbol{Sld}, virtual NONSTOWED declarer'{b}

. {Examples:
1) .refllreal ;
m) refll:]real ; refll:either, 1: flem]real
n) ref ref[]real } }

{Rules 1,m and n 1mply tha.t for mstance ref[l ewhez']real % may be a

'fonnal~parameter (5.h.1.e), whereas ref’ refli: ezther]real x may not.,}

o) VICTAL ROWS structured with FIELDS declaraLOP{'b}
. sub symbol{3le}, VICTAL ROWS rower{q,r}, bus c;yrrﬁ::o].{3.‘!.eza} 5
VICTAL structured with FIELDS declamr{b}
p) VICTAL ROWS NONSTOWED declarator{b} :
sub symbol{3le}, VICTAL ROWS rower{Q,r} s bus .aymbol{31e} s
« virtual NONSTOWED declarer{v}. . . S
q) VICTAL row of ROWS rower{o,p} : : B . _
VICTAL row of rower{r}, comma y’mbol{‘31e} ”VIC‘I‘AL ROWS rower{qgr}
r) VICTAL row of rower{o,p,ql} :
VICTAL lower bound{ast,v}, up to symbol{31e}, VICTAL upper bound{s ,t,v}.



. ?v1rtual LOWPER bound{r} EMPTY; e i

©t) ;actual LOWPER bound{z} ::.strict ];OWPER bound{u} i
.t strict LOWPER- bound{u} option, flexible ;symbol{?ﬂd}

iot LOWPER bound{t,V) B61£) 5 g i ;

A s’crlct IDWPER bound{u} opt:Lon, flex1b1e .‘symbol{ 3:1d} opt
& str:l.ct I_DWPER bound{u} optlon, elther ymbol{31d}

—m.~.f}{Examples.,v"ff7i‘ RS
~0) v [1:m] struct (L1mnd rea? a; mt b) ;
'p). [1:m,I:nJ ref 0 r'eal :

La) Ismizlinog T
) Loy i
t) m m_fle’m;; flem ;
u) m 3 : ’- 4

v) m fZex : ezther' ¥

R

?-{The flex:.blewsymbol, elther-s,/mbol, btr"""t--lower-bound and s’crlct- ,
upper—-bound contained in & fomlal—declarer serve:to- prescrlbe ‘states and
bounds of the multiple value possessedsby ‘the'‘do ‘esponding actual-param-

. eter. The flex1ble-symbol dn.pvef [1: flex] chap = prescribes that a name
referrlng to-a- multlple'va“ue W1th upper . state:l (1 ey the»uyper bound may
~vary) will be: possessed by &; the’ e:x.’cher—-symbol in refll:nleither char s = ¢
prescribes that that upper-state is either 0 or'l (i. 8oy ‘the upper bound may
be variable or. fixed) and. the absence of both- flexible—symbol -and e1ther~‘
symbol in ref [1: n) char s = t prescribes that that upper state is 1 (i. e.,
‘the upper bound must” ‘be flxed) _Independently, nin refld: nleither char g

or 'in ref [1:n]. clar g = ¢ prescrlbes sthat & name referring to a multlple
value whose upper bound equals the value of 7 w1ll be- possessed by 8; if, in

- che first example, the upper state is 0, then that upper bound may well be!

changed later -on by an asslgnment The:, absence of 'a: strlct—upper—bound in
refll:flexlchar s =t does not’ ‘restrict the upper bound in that way. Similar
remarks. apply -to. stmct—lowerwbotmds. 'l‘he flexibl, e-symbol, strict-lower-
bound and str:n.ct-upper—bound serve a Slmllar role in. generators (8 5) P

- w) VIGI‘AL PROCEDURF dec,larator{b} i
o “procedune symbol{ 31d}; virtual PROCEDURE plan{x a.a.}
' x) virtual procedure with' PARAMETERS ‘MOID planfw,75b} : . .
" yvirtual PARAMETERS{y,5he} pack,: virtual MOID declarer{b,z}
y): virtual MODE parameter{x,Shec} : thual MODE declarer{b}
z) virtual void declarer{x,834a} : EMPTY.
- as) virtual procedure MOID plan{w} : v:Lrtua.'L MOID declarer{b 2}

bb)*parameter% pack: : VIC"I‘AL PARAMEI’ERS{y,'jhc e,'[hb} pack.~

. {Examples.. ' ‘ ' P o
‘W) proec .; proc (z’eal 'Lnt) 3 proc bool 5 proc (real) ooZ
x) (real, int) ; (real) baol :

y) real ; R

.aa) booZ }

ec) VIGI'AL union of’ I_MOODS MOOD mode declarator{b}v Pl
.~ union-of symbol{31d} IMOODS MOOD and’, open. ox{dd.} pack
".4d) LOSETY IMOOD open BOX{ce,ee} : LOSETY closed IM lp; end,:BOX{ee,ff}, _
ee) LOSETY closed IMOODSETY IMOOD. end *BOX{ dd,ee,f: : T
o LOSETY - closed lNKKHXﬂEEY TMOOD. INKXM) end’ BO. ees
U LOSELY open'’ T.MOODSEI‘Y “IMOQD" BOX{ddggg},,
£1) LOSETY closed LMOODSETY LMOOD énd.. LMOOT . BOXde,ee,ff}
DOSEl’Y closed HVIOODSETY IMOOI‘ IMOOD end BOX ee,ff}. .
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ar) open LMOODS LMOOD BOX{ee,g,g,u} LMODDS LMOOD BOX{:Li} o
open LMOODS box{gg,hh} . comma, symb01{3le}, LMOOD. BOX{li,JJ}e: ,
hh) open LMOOD box{gg} : LMOOD box{33}. -
ii) LMOODS MOOD and box{gg} “union of’ LMOODS MOOD: mode mode md_mamon{ hab}
" union of symbol{31d}, epen IMOODS MOOD and: box{gg} pack o
in MOOD and box{gg,hh} : virtual MOOD dcclarer{b} . .

: {Examples ‘ P :
ce) unzon(real, unton(tnt booZ), unzon(real tnt)) 30
: unton(rt, unzon(bool real}) (1n ‘the reach of un ion ;_;— (reaZ znt))}

 {Let "b" stand for 'boolean’ A for 'intepral‘ "n" for 'real'- "+"

for 'and' and "(bin)" for any of the six protonotions 'bhi#n', 'b+k+&'
ALrbrnY, VLratbY, Pntb+AY and 'a+i+b'., Both examples are then examples of &
virtua1~, actual- or formal-union-of-(bit)-mode~declarator. The choice for
(bin] is left undefined and is semantically irrelevant, but if one chooses
‘some canonical .ordering of ‘8ll modes involved in a program, then the rules
ce up to JJ and 8.2.4.1.a,b,c,d do not cause any ambiguity (see 1.1.6.i).
The production mechanism of the rules cc up. to 33 is such that rule eel
repeats, rule ff commutes and rule gg associates. modes, whereas rule dd
closes and rule ee? opens the box. Let "#" stand for 'box', "{" for 'closed’,
")" for 'end', "()" for 'open' and "," for | 5 comma, symigol ", then the produc* i
Ivion of the first example from 'actual.unlon of 1ntegra1 and real and boolean ]
“mode declarator' is suggested by: ‘ .
ce L+nebt () #  eel i+ [nsns)bsk £F (h+¢r)b+n+# B ee2 ()ﬂi&*b*&*&+#
dd {+nt (be )t £f Lk (nrbine )t el (ntiti+)benst tggo (Jarisbs# neisd
ee2 L+nt{)bs#t  ee2 L+ {arbriet  £5 (nirbeis)nst ggg ()M# mbw it
da L+ (n+)b+t  ad (4+)a¢b+nf#‘ £ (k*&+b*”*¢*)” . hh n¢#3L+b+# el )

i

s

T-1.2 uemantics

a) A given declarer spec1fies the mode enveloped {1 1. 6 j} by its original
{1.1.6.c},

b) A ngen declarer is "developed" as follows: . '

Step: If it is, or contains 'and does not shield, a mode-lndlcatlon which is
an actual-declarer or formal-declarer, then that indication is replaced by
a copy of the actual-declarer of that mode~declaration {7.2} which con-

- tains its indication~defining occurrence {k.2.2.0b}, and the Step is taken,
otherwise, the development of the declarer has been accompllshed.

{A declaver is developed durJng the elaboration of : an’ actual-declarer
(e¢) or identibywdeclaratlon (7 4,2.8tep 1), }

c) A given actual«declarer is el&borated in the following steps:

Step 1: It is developed {b} ;

Step 2: If it now begins with s structure-symbol, then btep I is taken;
otherwise, if it now begins-with a sub-symbol, then Step 5 is taken;
otherwise, if it now beginswith: ahunlcnncfwsymbolsf thén-Step 3 is taken;
otherwise, a new instance of a value of the mode spec1fied {a} by the
given actual-declarer is considered and Step. 8 is" taken,

Step 3¢ Some mode is considered which does ‘not begin with 'union of® and
from which the mode specified by the: glVen actualydeclarer is united
{4.4.3.a}, & new instence of a value whose secope is the. program and
which is of the considered mode is consmdered ang- Step 8 is taken,
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Step lb: All its constituent actual-declarers are elaborated collaterally:
{6.3.2.a}; the values referred to by the values {names} of these actual-
declarers are made, in the given order, to be the fields of 8 new

~ instance of a structured value of the mode specified by the given
- actual-declarer; this structured value is’ con51dered, and Step 8 is
taken;

Step 5: All its constituent strict«lowerubounds and strictnupperubounds are
elaborated collaterally;

Step 6: A descriptor {2.2.3.3} is established con31st1ng of an offset 1 and

as many quintuples, say n, as there are constituent actual-row-of-rowers
in the given declarer; if ‘the {-th of these actual-row-of-rowers contains
a strict-lower-bound (strict-upper-bound), then Ex(qL) is set equal to-
its value; otherwise, ﬂ (u ) is undefined; if the .{~th of these actual-
row-of-rowers conteins & actual»lower-bound (actual-upper-bound) which
is or contains “as flexible-symbol, then 5; (f;) is set to 0; otherwise,

(t ) is set to 71; next d is set to 1, and for L=n n-ig see o 2, the
strlde d;.7 is set to (uL Z + 1) x d ,

Step T: The descriptor is made to be the descrlptor of 8 multiple value of

the mode specified by the given actual-declarer; its elements are obtained -

as follows: if the last constituent declarer of the given actual-declarer
is an actualmdeclarer, then it is elsborated a number of times and esch
element is a new instance of the value referred to by one of the resulting

names; otherwise, each element is a new instance of some value of some .

mode {not beginning with 'union of! and} such that ‘the mode specified by the

last constituent virtual-declarer is or is united from {b.h,3.a} it; this
multiple value is considered;

Step 8: A name {2.2.3. 5} different from 8ll other names and,whose mode is
‘reference to' followed by the mode specified by the given actual-
declarer, is created and made to refer to the considered value; this name
is the value of the given actualwdeclarerq :

7.2, Mode declavations

- {Mode-declarations provide the indization<sdéfining occurrences of mode-
indicatlons, which act as abbreviations for declarers built from primitive
synbols, e.g. mode gtring = [1:flex]char, or from other declarers or even
from themselves, e.g. mode book = giruct(etring title, re ref book next) . In
this last example, the mode~indication is not only a ccnvenient sbbreviat-
ion but it is essential to the declaration }

7.2.1. Syntax . :
a) mode declaration{70s} : mode symbol{31d}, MODE mode indication{hzb}9
equals symbol{3lc}, actual MODE declarer{TIb} '

{Exomples: A \ , A .
a) ‘mode string = [1:flexlchar ; struct compl = (real re, im) (see 9.2.b,c);
Tunion pr1mmtzve = (Lnt real, bool, char, fbrmat) (see 9.2, b)}

Te2. 2.'$emantics

The elaboration of 8 nmdemdeelaration involves ne acbione
{See 4.h.b.c concerning, certain mode«declarations, e.g. modb a=a,
which are not contained in proper prcgrams } : ~
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1.3, Priorlty declarations.

{Priority»declarﬂtions provide the 1ndicationmdefining ceeurrences of
dyadie-indications, e.g. o in priortty o = 6, which may then be used in the

" declaration of dysdic 0perations, Priorities from | to 9 are availeble.
. Since monadic-operators have effectively only one priority level (8.h.1.g),

which is higher than that of all dyadicmoperatorq,mbhaﬂiéeindications do

not oceur in priority-declarations.}

T.3.1. Syntax

a) priority declaration{70a} : priority synbbl{Bld};»'

priority NUMBER indication{l2e}, equals synbol{3lc},
NUMBER token{b,c,d,e,f,g,h,i,j}.

b) one token{a} : digit one symbol{31b}.

¢) TWO token{a} : digit two symbol{3ib}.

d) THREE token{a} : digit three symbol{3lb}.

e) FOUR token{a} : digit four symbol{31b}.

') FIVE token{a} : digit five symbol{3lvb}.

g) SIX token{a} : digit six symbol{3ib}.
h) SEVEN token{al} : digit seven symbol{3ib}.

i) EIGHT token{al} : digit eight symbol{3ib}.

J) NINE token{a} : digit nine symbol{3lb}.
{Example: |

a) priority + =

T.3.2. Semantics

The elsboration of a priority»declaration involves no action,
{For a summary of the standard pmority»declamﬂons9 Bee the vemarks

in 8.4.2.}

T.b, Identity declarations .

{Identity-declarations provide defining occurrences of mode~identifiers,
e.g. & in real ® (which is an sbbrevistion of ref real x = loe real, see
9.2.8). Their elsboration causes mode-ldentifiers to possess v&lu@s; here, |
& is made to possess a name which refers to some real number.}

7.4,1, Syntex

a) idéntity declaration{70a} : formal MODE paran@ter{she}
- equals symbol{3lec}, actual MODE parameter{b} o

) actual MODE parameter{a,5he, 75a,862a} :
strong MODE unit{6le} ; MODE transformat{558aaw},

{Examples : ' ‘
a) real e = 2.718281828459045 ; int e = abg £ ; real d = ﬁe(a % aamz 8)

refl, lreal al = al,:k] ; ref real alk = mf{k} 3amgz wntt = T 3
groc int & time = eclock + eyeles 3 | ,

we

G e
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' b) abs 7 ; Zoc real ; loe int := 0 ; $+d.11de+2d$ '}‘

T.4.1. continued

(The following declarations are given first without, and then with, the
exten51ons of 9.2.) . ‘ :
" ref real x = loc real ; real x ;
ref int sum = loc int := 0 ; int sun := 0 :
ggf[,]real q = Zoe[l-m,l n]real 1= %2 3 [Tem, 1 n]real a = xz ;
" proc(real)real vers = ((real x): m)veal 1~ cos(x))
. proc vers = (real x)veal : 1 - aos(x) '
ref proc(real)real = loc proc(reai)real = ((real %) real : sqri(x))
roe q := (real m)real : sqpt(x) 3 :

i

7.4, 2. Semantics

An identity-declaration is elsborated in the follcwing steps:
Step 1: The formal-declarer of its formal-parameter is developed {7.1.2.b};
Step 2::Its actual-parameter and ell strict-lower-bounds end strict-upper-
bounds contained in that formal-declarer, as possibly modified in Step 1, -
but not contained in any strict-lower-bound or strict-upper-bound . con-
teined in it, are eleborated collaterally {6. 3 2.a}; '

Step 3: If the value of the actual-parameter is a name which refers to a

component {2.2.2.k} of a multiple value having one or more states equal
to 0, then the further elaboration is undefined; otherwise, if the value
of the ‘actual-parameter. is a name other than nil, then the value to which
that name refers, or otherwise the value itself, is considered;

Step U: If the considered value is not a multiple value, then Step T is ta~-
ken; otherwise, if the value of the dctualmparameter is not a name, then
Step 6 is taken;

Step 5: For each flexible-symbol-option contained in the f‘ormal«—declarera
as possibly modified in Step 1, but not contained in any strict-lower—
bound or strict-upper-bound contained in it, {the corresponding state is
checked, i.e.} if that flexible-symbol-option is a flexible-symbol
(empty) and the corresponding stste in the considered value is 1 (0),
then the further elaborstion is undefined; otherwise, Step 6 is taken:

‘Step 6: For each strict-lower-bound and strict-upper-bound contained in the

formal-de¢larer, as possibly modified in Step 1, but not contained: in- eny
strict-lower-bound or strict-upper-bound contained in it, {the corres-
ponding bound is checked, i.€.,}if its value is not the same as the cor-
responding bound in the considered value, then the further elaboration is
undefined; otherwise, Step T is taken: '

Step T: The identifier of the formal-parameter is made to possess the value
of the actual-parameter.

{According to Step 6, the elsboration of the declaration {1*2]real xl =
(1.2,3.4,5.6) is undefiued and according to Step 5 the elsboration of the
declaration refli:flexlreal xl = [1:2Jreal := (1.2,3. 4) is undefined. The
elaboration of the declaration [I: tZex]rzaZ xzl = (1,2,3,4) is well defined .
but its effect is also obtained by the elsboration of the less confusing '

.. declaration []rédl &1 = (1, 2 3.4).}



,7;5. Opération déclaramiqns

{Operation-declarations provide the operator—defining occurrences of
operators, e.g., op vV = (real a, b) real : (random < .5 | a | b), which .con=
tains an operator-—defining occurreunce of v as a dyadic-operator. Unlike
identity-declarations of which no two for the same identifier may occur in
a reach (L.k.2.b), more than one operation-declaration involving the same
adic~indication may occur in the same reach, see 10.2.3.i, 10.2.h.i, ete.}

P

7.5.1. Syntax

a) operation declaration{70a} :

: PRAM caption{bl}, equals symbol{31c} , actual PRAM parameter{’rhb}.
b) PRAM caption{a} : operation symbol{31d},

virtual PRAM plan{Tix}, PRAM ADIC operator{43b,c;~}.

{Examples:
a) op A = (bool a, b) bool : (a | b | false) ;
op abs = (real a) real : (a <0 | ~a | a) (see 9.2. d,e) :

b) op (bool, bool) bool A 3 op (real) real abs }

T.5.2, Semantics

An operat10n~declaratlon is elaborated in the follow1ng steps:
Step 1: Its actual-parameter is elaborated;
Step 2: The operator of its capbion is made to possess the {routlne which

is the} value obtained 1n Step 1.

{The formula (8.4.1) p A q, where A identifies the operator-defining
occurrence of A in the operation-declaration

op A= (bool john, proc bool mecarthy) bool : (john | mecarthy | false),
possesses the same value as it would if A identified the operatormdeflnlng

occurrence of A in the operation-declaration
op A= (bool a, b) bool : (a | b | falsel,

except, posslblys when the elaboration of q involves side effects on that
of p.} '




'_8 Unltary clauses

{Uhltary~clauses may oceur as aotual—parameters, ‘€@.g.5 & in sin ﬁx), as
sources in a581gnat10ns, €.8e5 Y in x := Yy, in oasts, ‘especially in routine~-
denotatlons, €.8., ¢ +:= 1 in ((vef int <) int : < +:= 1), or may be used to
construct serial-clauses or collateral-clauses, e.g., « := 1 in (x := 1;.

Y :=2)or in (x := 1, y := 2). Unitary-clauses either are closed, collat-
eral or ¢onditional, or are coercends. There'are four kinds of coercends
~ confrontations, e. g., x := 1, formulas, e.g., £ + 1, cohe51ons, Cofesy next
. of cell, and bases, e.g., x. These coercends and the closed-, collateral~-
N and cond1t10nal~clauses are grouped into the following four classes, each
,class being a subclass of the next: primaries, which may be subscripted and
parametrized, e.g., I and gin in xI [£] and sin (x); secondaries, from
Which fields may be selected, €.g., 2 in re of 3, and tertiaries, which may
" be operands, or may be destinations in a551gnablons, or may oceur in
identity- or conformlty-relatlons, €.8ep, X inx + 1 or in x = 1 or in
& :=: yy or in & ::= ir, or may be strict-lower- (upper-)bounds, hew-lower— -
(upper—)bounds or subscripts, e.g., m, 0 and.n in 2 {:m @ 0, nl, and, fi-
nally, unltary—clauses, which is the largest class. Thus, r of & (%) means
that & is first called or subscripted, whereas (r of 8) (i) means that the
field is selected first. Also, r of s + t means that the field is selected’
from ¢ before elaborating the routine possessed by +, while to force the
elaboration of + first, one must write r of (s + t) } :

a) SORTETY unitary MOID clause{6le} : SORTETY MOID ter'blary{b}

SORTETY MOID confrontation{820d,e,f,g,830a,=}.

b) SORTETY MOID tertiary{a,71u,831b, 832a 833a,861hn,i} : ' -
SORTETY MOID secondary{c} ; SORTETY MOID ADIC fonmAla{BZOd,e, ,g,ehb,g}.

c) 'SORTEIY MOID:secondary{b,84f,852a} : SORTETY MOID prmary{d}
" SORIETY MOID oohe51on{820d,e f,g,850a} '
d) SORTETY MOID primary {c 8618,862a} : SORTETY MOID- base{820d e, ,g,860a,b} 3

SORTETY CLOSED MOID clause{6?b c,d £ 63&,6&&,@}

{Examples: , ‘ .
a) x 3 x:=13 ' o
b) ;o + 1 '
c) x 3 real ;
d) x 3 (x+ 1)}

8.2. Coercends

{Coercends are of four kinds: bases, .8y &, cohe31ons, e.g., re of z,
formulas, e.g., & + y and confrontations, e. gos & 1= I. These are collect=
ively considered as coercends because it is in their productlon rules that
the basic coercions appear.

In current programmlng languages certain 1mpllc1t changes of type are
described, usually in the semantics. Thus 2 := 1 may mean that the integral
value of 1 yields an equivalent real value which is then assigned to the _
name possessed by . In ALGOL 68, such 1mp11c1t changes of mode are known as
coerc:Lons9 and are reflected in the syntax. Certaln coercions available in
-other languages, such as that in < := x, are not permltted° One must write
1 = round x or 1 := entier ®, for in this situation it is felt advisable
for the programmer to state the coercion expi1c1t1y. Apart from this, all
the coercmons which the programmer mlght reasonably expecb are supplled.



8.2, continued

There are eight basic coercions. They are: dereferencing, deproceduring,
proceduring, uniting, widening, rowing, hipping and- voiding. In x + 3,14,
the base x, whose & priori mode is 'reference to real’, is dereferenced to
'regl'; in x := random, the base random, whose & priori mode is 'procedure
real’, is deprocedured to 'real'; in proc real p = & + .14, the formda: |
L@ +-3.14, whose & priori mode is 'real', is procedured to procedure R
‘real'; in union(int, real) ir := 1, the base 1, whose a priori mode is
"1ntegra1' is united to ‘union of integral and real mode'; in z .= 1, the
base 1, whose & priori mode is 'integral', is widened to 'real';
string s :=1\"a'", the base "g", whose & pricxi mode is fcharacter’ is rowed
- to 'row of character' in o = skip, the skip gkip, which has no a priori,
mode, is hipped to 'redl' and in (x := I; y := 2) the confrontation z := 1,
whose & priori mode is"reference to real' is voided (i.e. its value is
ignored).

~ The klndsof coerclon'which are used depend upon three things. "syntactic
position", a priori mede and a posteriori mode (i.e. the modes before and
after coercion). There are four sorts of syntactic position. They are:
"strong" positions, i.e. actual-parameters, e.g. x in ginfx), sources, e.g.
2 in y := x, conditions, e.g. @ > 0 in (x> 0 | = | 0), subscripts, e.g. ©
in xI[1] ete.; "Pirm" positions, i.e. operands e.g. = in a + y, transform-
ats, e.g. $5d¢, end certain primaries, e.g. gin in sinf(x); "weak" p031tions,
i e,,certaln primaries, e.g. xl in xI1[¢{] and certain secondaries, e.g. 2 in .
re of z; and "soft" positions, i.e. destinations; e.g. & in 2 =y, andxabme
other tertiaries, e.g. ax in xx :=: =,

‘Strong positions are so termed because the 8 posterlorx mode is dictated
entirely by the context. Such positions lead to the possibility of sny of
the eight basic coercions. Firm positions are e.g. operands, in vhich widen-
ing, rowing, hipping sand voiding must be exgluded, singe, otherwise, the
- identification of the operations involved in 7 4+ 4, x + y (supposing + to be
" declared also for 'row of real'), < + skip end 7 + algol could not be pro~
perly made. In the weak positions, only deproceduring snd dereferencing are .
permitted, and special care must be taken that dereferencing removes a
treference to' only if followed by 'reference to'. The &l in x1[i] := 1
"demonstrates the necessity for this look-ahead. In the soft positions, the
a postetriori-mode is the a priori mode except for the removel of zero or
more times ‘procedure’. Thus in soft positions only deproceduring is per-
formed.

In the productions of & notion, the sort (strong, firm, wesk, soft) of
position is passed on, or modified during bslancing (to strong) and leads to
basic coercions which appear in the production rules for coercends; morew
over, the coercion must be conmpletely expended in these rules. For example,
y in x := y is a real-source and therefore a strong-real-unit (8.3.1.1.f);
“the sort 'strong' is passed through the productions of 'strong’ real unit'
until a ‘'strong real base' is reached (8.1.1.d); this is then produced to
'strongly deréferenced! torreal base' (8.2.0.1. d)9 next to 'reference to
real base' (8.2.1.1.a) and finally to 'reference to real mode identlfiert

(8.6.0.1.a).}




"8 2 0. 1. Syntax.

'a)*‘coercend SORT COERCEND{d e,f,g,830a, 8hb,g,850a,860a,—} 3 4 :
SORle ADAPTED to COFRCEND{82la b,822a,b,c,823a, Bzha 825a,b,¢,4d,826a,
L - 827a, 828a b, } -
- b )* SORT coercend SORT COERCEND{d,e,f,g}. ‘
©e)® ADAPTED coercend : SORT1ly ADAPTED to COERCEND. - ‘
'd)” strong COERCEND{Bla bsc,d} : COERCEND{830a,8lb,g,850a, 860a b,-} 3
L strongly ADAPTED to COBRCBND{azja 822a, 823a 82ha 825a,b c, d 826a,
".~15, . ' 827a,828a,b,~1.
Ce) . firm COERCEND{Bla b,c,d,84d,f} : COERCFNptssoa,sub,g,ssoa 860a,b -}.3
0 firmly ADJUSTED to CQERCEND{821a ,822a,823a,82ha,-1. ‘
“f) - weak COERCEND{8la,b,c,d} : COERCEND{830a 8&b,g,850a9860a b,-}3
© " weakly FITTED to COERCEND{Belb 822v), }.,
g) soft COERCEND{8la,b,c,d,84r} : COFRCEND{830a Bhb,g,BSOa 860a,b ~}
- softly deprocedured "to. COERCEND{822c}

, {Examples

d) 3.14 (in 2 := 3.14) ; y (ln x =y) ;

e) 3.1¢4 3 z (in 3.14 + z) ; 8in (1n stn(m)) 3 ”

) ‘=1 (in x1[Z]) 5 22 (in re of 2z in the reach of gﬁﬁ aqmgw_zz) :
g) = (in x := 1) 3 xory (1n xory := & 14) } X

= 8.2.1. Dereferenced coercends

{Coercends are dereferenced when it is required that an initial
'reference to' should be removed from the & priori mode; e.g: in x = y,
the' a priori mode of y is 'reference to real' but the a posteriori mode re-
quired in this strong position is ‘real'. Here, y possesses a name which
- refers to a real number and it is that real number which is assigned to x,

not that name.}

8. 2,1ﬁ1“ Syntax

a) ’STIRMly dereferenced to MODE FORM{a 820d,e, 822a 823a, 82hm,825a,b 826&}
. reference to MODE FORM{830a, 8hb,g,BSOa 860a}
- STIRMly FITTED to reference to MODE IORM{a, 8e2a}, -
b) weakly dereferenced to reference to MODE FORM{b,820f} :
reference to reference to MODE FORM{830a,8Ub,g,8508,8608} ;
- weakly FITTED to reference to reference to MODE FORM{b,822b}.

~ {Examples: :
a) y (inx :=y or in o + y) s yy (in x = yy or in a +. yy)
b) rxl (in le[%] in the reach of refllreal rz1) }

8.2.1.2. Semantics
A dereferenced-coercend is elaborated in the following steps:
Step 1: It is preelaborated {1.1.6.1};

Step 2: If the value obtained in Step 1 is not: nc@ then the value of the
dereferenced-coercend is- a copv of the value referred to by the walue

flﬂﬁde

{namé} obtained in Step 1. |; othervise, the further elaboration is unde'-



8.2.1.2. coptinued

{Weak dereferencing must lcok ahead 80 that it does not remove a L
. 'peference to' which precedes s mode which does not begin with. 'reference .
to', Tor example, in ®1{t] := y, the primary x! should not be dereferenced,
. for x1[1] must be L name. In ml[z] * y, the xl ig’ not dereferenced but the
base. xl[m] is.} . . A T A

8 .2, 2 Deprocpdured coercends,

{Coercends ‘are deprocedured when it 18 required that an initial
'procedure' should be removed from the a priori mode; eig. in. x := random,
the a priori mode of random is 'procedure real' but the'sa posteriori mode
required in this strong position is 'real'. Here, the routine possessed by -
random is elaborated and the resl number yielded is assigned to x.}

8. 2 2.1. Syntax

8) STIRMly deprocedured ‘Lo MOID }“ORTSE{a 820d e,821a ezl,smgegsw b,826h 828b} H
procedure MOID FORESE{8lv,g,850a, 860a}
_ STTRMly FITTED to procedure MOID FORFSE{a 821a}
"~ b) weakly deprocedured to MODE FORESE{820f, 821b}
procedure MODE FORESE{8.b.g,850a, 860a}
firmly FITTED to procedure MODE FORESF{a Bala}
¢) softly deprocedured to MODE FORESE{c 820g}
procedure MODE FORESE{84b,g,850a, 860a} : "
softly deprocedured to procedure MODE FORESE{C}o :

{Examples. '
- a) random (in x© := random or in % + random) A S
. b) vz (in re of rz in the reach of proc aomgl ra = (randbng random))
c) wory (inx ory 1) } e

8.2.2.2. Semantics

A deprccedured~coercend is elaborated in the follOW1ng steps.

Step 1: It is preelaborated {1.1.6.i};

Step 2: The deprocedured-coercend is replaced by a closed-clause which is &
copy of {the routine which is} its prevalue obtained in Step 1, and the ‘
elaboration of that closed-clause is initiated; the value yleldedg if any,
is that of the deprocedured-coercend and if this elaboration is completed -
or terminated, then the closed-clause is replaced by the. deproceduredr
coercend before the elaboration of a successor ig 1n1t1abed. RO

{See also calls, 8.6.2.} : Sk



8.2.3. Procedured coercends

{Coercendb are procedured when it is requlred that an 1n1b1al f
procedure' should be placed before the a priori mode (1 e., Lhey should be

turned into procedures without parameters), 2.8:9 & = 1 dn pro reaZ P
& {* 1. Here, 1 is not assigned to x, but that routine which a351gns gns 1 to X -
is assigned to p. Notice, tham proc p i= =1is- syntacblcally incorrect,

since & := 1 must first be voided before 1t can be procedured to the mode’
'procedure void'; the way to schieve this is by using & void-cast-packs =
proe p := (: x 3= 1). For the coercion in proc stop = exit see 8.2.7.}

8.2.3. 1. Syntax

a) STIRMly procedured to procedure MOID FORM{a 820d e,82kb 826&}
MOID FORM{830a,84b,g,850a,860a,b,~} ; , .
' STIRMly dereferenced to MOID FORM{821a,~} ;
- STIRMly procedured to MOID FORM{a,=~} ;.*
STIRMly united to MOID FORM{82ka,=~} ;
STIRMly widened to MOID FORM{825a,b, } ,
STTRMly rowed to MOID E\ORM{826a,“}

{Examples: , ' R
a) 3.14 (in proc reaZ p = q,z4) 3 X (1n pro real p .= z)
3,14 (in proc proc real p 3= &. 14) 3
1 (in proc union (int, real) p = 1)
1 (in proc real p = 1) ; 1 (in proec [J int p p= 1) }

8.2.3.2, Semantics

A procedured-coercend is elaborated in the following steps:

Step 1: A copy is made of it {itself, not its‘value}; if the mode enVeloped
by the original of the procedured-coercend is proceduré’ followed by a
second mode {not by 'void'}, then the second mode is con31dered other="
wise, Step 3 is taken;

Step 2: A virtual-declarer, which, if- 1b ocecurred in the smallest reach con=
taining the procedured~coercend would specify the con31dered mode, fol=
lovwed by a castmof—symbol is placed before the copy;

Step 3: An open-symbol is placed before and a close-symbol is placed after
the copy as POwSlbly modified in Step 2; the thus modified copy is the
{routlne which is the} value of the procedured—coercend

{The elaboration of the strong-procedure~real~base (p | w2 | y1) [£]
yields the routine (real : (p | ®1 | y1) [Z]), whereas that of the strong-
conditional-procedure-real-clause {p | 1021 | y1[£]) yields either the
routine (real : x1[Z]) or the routine (real : yl(<l) depending on the value
of p; similarly, the elaboration of the flrmrprocedurewrealwconfrontatlon
Cxi= (q =g + 1; y) yields the routine (real : x := (a = a + 13 y)),
whereas that of the flrmwolosed~procedure~realmclause_(a r= a~+:15'x
yields, apart from a change in the value of a, the routine (reaql :
as -last example, the elaboration of the strong*procedure«v01drbase
(s 2 := 1 + 1) yields the routine ((: ¢ := ¢ + 1)), } ,
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8.2.h. United coercends

. {Coercends are united when 1t is required bhat the a pr10r1 ‘mode should
be changed to a mode united from (h k.3.2) it, e.g., in witon (int, real) ir -
= 2, the base 2 is of the a priori mode '1ntegral' “but the source of thls

ass1gnat10n reqmres the mode 'um_on of mtegr'al and real mode'. 3

‘8.2 L.1. Syntax

a) STIRMLY united to union of LMOODS MOOD mode FORWHBQOd,e 823a,826a}
one out of IMOODS MOOD mode FORM{b} ; , ,
some of LMOODS MOOD and but not FORM{c} =
b) one out of IMOODSETY MOOD. RMOODSETY mode - FORM{a}
MOOD FORM{830a,84b,g,850a,860a} ;
firmly FITTED to MOOD FORM{821a, 8¢2a}
firmly procedured to MOOD FORM{823a,~}
¢) some of LMOODSETY MOOD and RMOODSETY but not LOSETY FORM{a c}
some of LMOODSETY and MOOD RMOODSETY but not LOSETY FORM{c,d,~} 5
- some of LMOODSETY RMOODSETY but. not MOOD and LOSETY FORM{c 2dy=}.
d) some of and MOOD and MOODS but not LMOOT LOSETY FORM{c} : -
union of MOOD and MOODS mode FORM{8lb,g,850a,860a} ;
fxnnly FITTED to urnion of MOOD dnd MOODS mode FORM{821a,822a}

' {Examples
a) 2 3 ir
b) 2 3 1 ; true 5
a) ri ; t? (ell in (union ir = (int, reaL), iriv; teri=(p | 4| «);
unzon (tr, proc booZ) irb = 2; 1rb :='<; irb = true)) }

{In wniting, 'strong’' leads tof’flrm' in order that unions like that in-

" volved in union (int, real) ir := ] should not cause ambiguities. In this

example, if the bage I is widened, then it cannot bé united, i.e., in the
order of productions in the syntax, uniting cannot be followed by widening.}

8.2.5. Widened coercends

{Coercends are widened when it is required that the a priori mode should
be changed from 'integral' to ‘real' or from 'real' to 'COMPLEX', e.g., I in
g = 1, or from 'BITS' to 'row of boolean' or from ‘BYIES' to 'row of
character' }

8.2.5.1. Syntax

a) strongly widened to LONGSETY real FORM{b, 820d 823a, 826a} :
LONGSETY integral FORM{830a,84b,g,850a, 860a} [
strongly FITTED to LONGSETY integral{FORM 821a,822a}.

b) strongly widened to structured with REAL field letter r letter e °
and REAL field letter i letter m FORM{820d, 823a 8268} :
REAL FORM{830a.,8k4b,g,850a,860a} ;
strongly FITTED to REAL FORM{821a, 822a} 3
strongly widened to REAL FORM{a}.

c) strongly widened to row of boolean FORM{BZOd 823a 826&}

~ BITS FORM{830a,84b,5,850a,860a} ; , ,
. strongly FIQTED to BITS FORM{821a 829a}



d) strongly widened to row of character FORM{BQO& 823a 826a}
BYTES FORM{830a.,84b,g,8508,860a} ; =y
' stronply FITTED to BXTES PORM{8213 822&)

a) 1 (inat=1) ;7 (in z :=1) ; S

b) 3,14 (in z i= 3.14) 5 2 (in 2 = x) 3 1 (dn 2 := 1) 3
e) 101 3t (in [1:31bool bl :=(p | 10 1| t));

a) eth "abe" 3 v (in 8 := (p | etb "abe" | r))'}

',8 2, 5 2 Semantlcs -

A widened»coercend is elaborated in the follow1ng step5°7 : ’ :
Step 1: Tt is preelsborated {1.1.6.i} and the value yielded is considered"
Step 2: If the considered value is an integer, then the real number equiva~-

lent to it {2.2.3.1.4} is considered instead; -obhervise,; if the consldered
value is a real number, then the structured {complex (10.2.6)} value comp-"
osed of two fields, which are the considered value and ‘the real number
zero and which are selected by letter-r-letter-e and letter-i-letter-m-
respectively is considered instead; otherwise, {the considered value is a
‘structured value with one field and} the field of the con31dered value is ¢
considered instesad; ‘
Step 3: The value of the widenedmcoercend is a nev instance of the considered
value; its mode is that enveloped by the original of the widened-coercend.

{Wldening may not be done 'in firm positions, for,,otherwise x = L + 1
might be ambiguous.}

8.2 6. Rowed coerCendé

{Coercends are rowed when it is zequired that 'row of"should be placed
either before the a priori mode or after an initial 'reference to' of the a
priori mode; e.g., in [I:I1]real al := 3,14, the 'a priori mode of the base
3.14 is ‘'real' but the a posteriori mode required in this strong position is
‘row of real') whereas, in ref(l:lreal: a2 = x, the a priori mode of the base
x is 'reference to real' but the a posteriori mode required is freference to.
row of real’. Here, the value of 3,14, to which x refers, is’ turned into a
multiple value with a descriptor..Note that the value of a2[1] sme om is

tnue,}

8.2.6.1. Syntax

a) strongly rowed to REFETY row of MODE FORM{a,Baod 823a} ' s
REFETY MODE FORM{830a,84b,g,850a,860a} ; o
strongly ADJUSTED to REFETY MODE FDRM{Bela 822a 823a 82&&,»} E
strongly widened to REFETY MODE PORM{BESa sbycydy=} 3
strongly rowed to REFETY ‘MODE FORM{a,-} .3
REFETY MODE FORM vacuum{b,-}.

b) REFETY NONROW base vacuunﬁa} FMPTYQ

{Examples
a) 3.14 (in [I: Z]real ‘1 :?'3, 14) 3
3.14 (in [1:1)proc real p 1= 3.1
3.14 {in [1:1]comp L 8l = 3¢14)
3m3;

g (1n ggﬁ[l I]reai ml y) 3

3,14 (in [1:1,1: 1]veal x8:

14), y {in- rgﬁ{l 1, 1 I}reaZ %2 = y)
(the EMPTY following ‘

.; in [1 O]Peal :#ﬁ )'}

s



"~

8.2.6.2, Semantics

A rowed-coercend is elaborated in the iallowing stepS‘

‘Step 1: The mode enveloped by the origlnal of the rowed-coercend is consid-rf

ered; if the rowed-coercend is not empty, then it is preelaborated
{1.1.6.1}, the value obtained and its scope are con51de1ed and otep 3 is

taken;

- Btep 2@ A new instance of a multiple value {2.2.3. 3} ccmposad of zero elem-

ents and a descriptor consisting of an offset | and one quintuple
(1,0,1,1,1) is considered and Step T is taken; :

Step 3: If the considered mode does not beginrwith 'reference to', then
Step 5 is token; otherwise, if the considered value is not n&ﬂ, then _
Step 4 is taken; otherwise, the elaboration of the rowed-coercend is come
plete, its value ig & new instance of . nAﬁuwhose moae is the considered
mode; '

Step U: That instance of the value to which the {name which is the} consid~
ered vslue refers is considered instead; if the considered value is a
multiple value having one or more states equal to 0, or if it is a compo“}ﬁ
nent of {2.2.2.k} such & multiple value, then the further elahoration is
“undefined; otherwise, Step 5 is taken;

Step 5: If the considered value is a multiple value,- then Btep: 6 is tekeni-
otherwise, a new instance of a multiple value composed of the considered
value as only element and of a descriptor consisting of an offset | and
one quintuple (7,1,1,1,7] is considered instead, and Step 7 is taken;

Step 6: Let d stand for (u L, + 1) x d,3 a new instance of a new multiple -
value, composed of the e]emenls of the considered value and a descriptor
which is a copy of the descriptor of the considered value into which the
additional quintuple (71,71,d,7,1) is inserted before the first quintuple,
and in which all states have been set to !, is considered instead;

Step T: If the considered mode does not begin with 'reference to' then the
value of the rowed-coercend is the considered value; otherwise, a nome N
is made to refer to the considered value, which name N is chosen in such s
way +that the name, by virtue of 2.2.3.5.c uniquely deteimined by N and by
{the component of the considered value which is} the instance of the value
considered in Step 4, is the same as the value {name} obtained in Step 1
{, whose scope is the prescope obtained in Step 1}, and whose mode is the
considered mode; this name N is the value of the roweducoercenda

8.2.7. Hipped coercends

{Coercends sre hipped when they are skips, jumps or nihils. Though there
is no a priori mode, whatever mode is required by the. contex‘t5 is adoPted
e.g., in real » = gkip, the base, skip, which has no a priori mode, is hip=
ped to 'real'. Since hipped-coercends are so very accommodating, no other
coercions may follow them (in the elaboration order); otherwise, ambiguities
might appear. Consider, for example, the several meanings of the assignation
unton (int, real, bool, char) u := skip, supposing unltxng could follow hlp"

PiNg. }

8.2, T.1. Syntax

a) strongly hipped to MOID base{820d} :

MOID skip{bl} ; MOID jump{ec} ; MOID nlhll{d,“}
b) MOID skip{al eﬂapbwmmimg} i ‘
c) MOID jumpfa} : go to symbol{31f} option, ldbel :Ld@rtn;J.:t:Lex'{h‘lb},u
d) reference to MODE nihil{a} : nil symbol{Blg} _ .



8;2,Ty1. cdnﬁinued‘

 {Examples:
a) skip 3 go to grenoble y nil 3
b) skip ; o ;
c) go to grenoble 3 8t pzerre de chartreuse',’

) nzZ } o ) v

8>2 T.2. Semantics

a) A skip is elaborated in the following steps

Step 1: If the terminal production of the metanotion 'MOID' enveloped TR

{1.1.6.3} by the original {1.1.6. c} of the skip is & mode, then this mode
is considered and Step 2 is taken; oLherw1se, {1t is ‘'void! and} the elab*

oration of the skip is complete;
Step 2: If the considered mode beglns with 'unlon of" then some mode fnom-

which it is united {k.h.3.a} is considered 1nstead, L ;

 Step 3: The value of the. oklp is a new instance of some value of the con51d-’

ered mode and whose scope is the pl’*ogr'am° .

b) A jump is elaborated in the following steps:

Step 1: If the original of the jump envelops a mode which is 'pracedure MOID'
where "MOID" stands for any terminal productlon of the metanotion 'MOID', :
then this mode is considered and Step 2 is taken; otherwise, the elabora“
tion of the Jump is terminated and it appoints as its successor the ‘
unitary-clause following the label-sequence’ or the completer contalnlng '
the defining occurrence {in a label (h 1. 2)} 1dent3f1ed by the label=~
identifier of the jump;

Step 2: A copy is made of the jump and an openwsymbol followed by a cast~0f—
symbol is placed before and a close-symbol is, placed after the copy; if
the considered mode is not 'procedure void', then the initial 'procedure'
is deleted from it and a virtual-declarer, whlch, if it occurred in the
smallest reach containing the jump, would specify the mode so obtalned, is
inserted between the open~symbol and the cast-of-symbol in the copy;
otherwise, an open-symhol is placed before and a close-eymbol is placed
after the thus modified copy's

Step 3: The value of the jump is the routine con51ot1ng of bhe same sequence‘

of symbols as the copy as modified in Step 2 and Whan mode is that envelw
oped by the original of the Jjump.

¢) 'The elaboratlon of a nihil involves no action; Jts value is a new in-
stance of nif {2.2.3.5.a} whose mode 1s that enveloped by the orlglnal of
the nihil. .

{Skips play a role in the semantics of Poutine*denotations (5.4.2.8tep 2)
and calls (8.6.2.2.5tep b). Moreover, they are useful in & number of pro~

gramming situations, like e.g.,
supplying an actual-parameter (7.4.1.b) whose value is irrelevant or is to

be calculated later; e.g., f(3,v)vhere f does not use its second actual-

parameter if the value of the first actual—parameter is positive; see
also 11.11.ar;

supplying a constituent unit of a collateral-clause (6. 2 1.b,cse,h), e.gw
[1:4] real x1 := (3.14, skip, 1.68, skip);

as a dummy statement (6.0.1.c) in those rare situations where the use of a
completer is inappropriate, e.g., L¢ B@_E) in 10. h.aa See also 9.h.a.

Sl



8.2.7.2. continued

* \ f"

A jump is useful as a clause to termlnate Lhe elaboratlon.of another
clause when certain requlxements are not. met, e, g,, QD o ex¢t in '

= if ® 2 0 then sqrt (x) else go to exit fi. o :

If el, e2 and and e3 are 1abel—1dent1f1ers, tHhen the reader mlght recognlze
the effect of the declaration [1 proe switeh = (el, 92, e3) and the state-
ment switeh [Z]; however, the declaration [1: ﬁlex] roc swztah = (el, e2,e3)f
is perhaps more powerful, since a351gnatlons like swzteh [2] = el and

switeh := (el, e2, ed, e4) are possible.. - ’

A nihil is partlcularly useful where structured values are. connected “to
one another in that a field of each structured value refers to.another one
except for one or more structured values where .the fleld does not refer to
anythlng at all; such a field must then be n&ﬂ ooy . C

8.2.8. Voided coercends

{Coercends are voided when it is requnred that thelr values (and there* .
fore modes) should be 1gnored, e.g., in (& = 15y —,2) the confrontation -
x := 1, whose e priori mode is 'reference to real’, is voided (see 6.1.1.i).
Confrontatlons must be treated differently ‘from the other -coercends. in order
that, e.g., in (proec p; p := stop; p), the confrontation p := gtop does riot
involve the elaboration of the routine possessed by $top, but in the last
occurrence of p, that routine is elaborated. I e

8.2.8. 1. Syntax

a)  strongly voided to void confrontablon{BEOd} MODE confrontatlon{830a}
b) strongly voided to void FORESE{820d,h} : , ,

NONPROC FORESE{84b,g,850a,860a} 3
- strongly deprooedured to NONPROC PQRESE{Beza}

{anmples. -
a) x =1 (in (x := 1; y 1= 2)) '
b) @ ; random (in (w; random; skip)) }

,{The value obtained by elaborab;ng (3. oy preelaboratlng 1 1 6. 1)
voided-coercend is discarded,} : , S

{In the reach of the declaratlon L] proc switeh = (el, e2, e3) and the
clause-train el: e2: e3: stop, the construction switch; stop is not &
serial-clause because switch is not a strong-void-unit. In fact, switeh can
not be deprocedured, because its mode begins with ‘row of' and no coercion
will remove the 'row off and it cannot be voided because ‘row of procedure

“void' is not a terminal production of 'NONPROC'. However, the elaboratlon of
switeh [2]; skip will involve a jump to the label e2..} ‘ ;



8.3. Confrontations

8.3.0.1. Synﬁax

a) MODE confrontatlon{81a 820d,e,f ,g,821a b, 823a 82ha 825a b.e, d 826&,8283}~
MODE assignation{83ta,~} ; MODE eonformlty relab10n[832a,~} o
MODE 1denL1Ly relatlon{833a,~} H MODE cast{83he} -

'{Bxamplesu. e L e IR T SR S
'a) x 1= 3.14 5 ec a (seek11,11ai),; xx 1= r”eriy{; EJfreql :71,}j

8.3.1.. Ass1gnatlons

{In a531gnat10ns, Cuesy & 1= 3.14 (an 1nstance of) a value is a531gned
to a name. In & := 3.14, the value possessed by the source 3.14 is assmgned
.*o the (name whlch is the) value possessed by . }

8.3.1.1. Syntax‘_

a) reference to MODE aselgnatlon{BBOa} : reference to MDDE destlnatlon{b},
becomes symbol{31c}, MODE source{c}. ~

b) reference to MODE destination{al} : soft reference to MDDE tertlary{81b},

¢) MODE source{a} : strong MODE, un1t{61e}

. {Examplee'” Lo ‘ RO P
a) x :=1 ; loc real = 3.14 ; : S :
b) x Zoc real .

c) 1 3.147

8.3.1.2: Semantics

-a) When a given instance of a value is superseded" by another 1nstance of
a value, then the name which refers %o 'the given instance is caused to refer
to that other 1nstence, and., moreover, each name whlch refers to an instance
of a structured or multiple value of which the given 1nstanee is a component
{2.2.2.k} is caused to refer to the instance of the structured or muﬂtlple
value which is established by replacing that component by that other in=-
stance. -

b) When a field (an element) of a given structured (multiple) value is su-
perseded by another instance of a value, then the mode of the thereby estab~
lished structured (multiple) value is that of the given value.

c) An instance of a value is assigned to a name in the following steps:

Step 1: If the given value dces not refer to a component of a multiple value
hav1ng one or more states equal to 0 {2.2.3.3. b}, if the scope of the
given name is not larger than the scope of the given value {2.2.4.2} and
if the given name is not WAL, then Step 2. is ‘taken; otherw1se, the further =
elaborstion is undefined;

Step 2: The instance-of the value referred Lo by the glven nsme is consid-
ered; if the modée of the given name beglnS’Wlth ‘reference to structured
with' or with 'reference to row off, then Step 3 is ‘taken; otherwise, the
considered instance is superseded {al by a copy of the glven 1n§tance and
the assmgnment hes been accompllshed, , .



8.3.1.2. continued

Step 3: If the considered value is structured value, then Step 5 is taken,
otherwise, applying the notatlon of 2.2.3.3.b to its dcscrlptor, for 4L ¢
), oo s 0, if 85 = 0 (L = 0), then £y (u;) is set to the value of the .

{-th lower bound ({-th upper bound) in the descriptor of the given values
moreover, for L = n, n-1, ... , 2, the stride, dcmy, is set to o
(ug - £; + 1) = dg; finally if'some:4; = 0 or L; = 0, then the descriptor
of the con31dered value, a3 modified above, is m&de to be the descriptor
of g new instance of a multlple value wvhich is of the same mode as the
considered value, and this new . instance is made to be referred to by the

given name and is con91dered instesd;

Step b: If for all £, 4 = 1, ... , n, the bound £; (u;) in the descriptor
of the considered value, as possibly modified in Step 3, is egual to ﬁ
(uL) in the descriptor of the given value, then Step 5 is taken (s other»'
wige, the further elaboration is undefined}l;

Step 5: Each field (element, if sny,) of the given value is assigned {in an
order wvhich is left undefined} to the name referrlng to the cOrresponding :
field (element, if anys) of the considered value and. the a551gnment hasJ

heen accomplished

d) An asslgnation is elsborated in the following StepS"
Step '1: Its destination and source are elaborated collaberallv {6.2.2. a},
Step 2: The value of its source is assigned to the {name which is the}

value of its destination;
Step 3: The value of the assignation is the value of its destination.v

{Observe that (x, y) := (1.2, 3.4) is not an assjg:nation9 since (z, y)
is not a destination; the mode of the value of a collateral-clause (6.2.1.
¢,d,f) does not begin with 'reference to' but with 'row of" or 'structured

with’ }

8.3.2. Conformity relations

{The purpose of conformitymrelation% is to enable the programmer to find,w
out the current mode of an instance of {& value if the context permlts:
this mode to be one of a number of given modes. See for example 11.11.1,
q, 2z, ah. Conformity-relations are thus used in conjunction with unions.}

{T would Zo God they would either conform,
o be mone wise, and not, be catched! -
Diany, 7 Auq. 1664 Samuel Pepys. }

8.3.2.1. Syntax

&) boolean conformiby relation{830a} :
soft reference to LMODE tertiary{Blb} conformity relator{b}

. RVODE tertiary{8ib}. -
b) conformity relator{al}l : conforms to symbol{3lc}
conforms to and becomes symbol{3lcl.

{Examples:
g&) int :: irb 5 ec i:= a (see 11.11.1) ;
D) oy =}

&



8.3.2.2. Semantics

A conformity-relation is elaborated in the follow1ng steps:

Step 1: Its textually last tertiary is elaborated and the value ylelded is
considered;

Step 2: If the mode enveloped by the original of its textually first
tertiary is 'reference to!' followed by a mode which is, or is united from
{4.4.3.a}, the mode of the considered value, then the value of the
conformity-relation is taue and Step 4 is taken; otherwise, Step 3 is
taken;

Step 3: If the considered value refers to another value, then this other
value is considered instead and Step 2 is taken; otherwise, the elabora=-
tion is complete and the value of the conformity-relation is false; '

Step 4: If its conformity-relator is a conforms-to-and-becomes-symbol, then
its textually first tertiary is elaborated and the considered value is
assigned {8.3.1.2.c} to the value of that tertiary.

{Although not suggested by the wording of Step 2, the, possibly, most
obvious applications of conformity-relations are those in which 'RMODE' in
8.3.2.1.a begins with 'union of' whereas 'IMODE' does not. Then, the mode of
the considered value (Step 1) is not 'RMODE' (which is united from it) and
“the conformity-relation serves to ask whether this mode is 'LMODE' and, if
so and if the conformity-relator is a conforms-to-and-becomes-symbol, to as=
sign this value to a name whose mode does not begin with 'reference tc union
of' and, thereby, make this value easily available elsewhere. Several appli=
cations, partly disguised by the application of the extensions 9.4 are given
in 11.11.

Observe that if the considered value is an integer and the mode of its
textually first tertiary is 'reference to' followed by a mode which is, or
is united from, the mode 'real' but not from 'integral', then the value of
the conformity-relation is gafse. Thus, no automatic widening from 'inte-
gral' to 'real' takes place. For example, in union (real, bool) rb; rb ::=1
no value is assigned to rb, but in rb ::= 1.0, the assignment takes place.
Rule 8.3.2.1.a is the only rule in the syntax where a notion other than a
coercend produces uncoerced clauses, i.e., those produced from 'RMODE

tertiary'.}

8.3.3. Identity relations

{Identity-relations maey be used to ask whether two names of the same.
mode are the same; e. g5 in the reach of the declarations struct cons =
(re ong car, cdr); union cong =.(cons, string); cons cell := (co

"ape", nzl) the 1dent1ty—relatlon edr gf cell :=: nil possesses he value
6a£42 because the value of &dr of cell is the name referring to the second
field of the structured value referred to by the value of cell and, hence,
is not nif, but the value of (ref cong : cdr of cell) :=: nil is Inue.}

8.3.3.1. Syntax ;
i ?
a) boolean identity relation{830a} :
. soft reference to MODE tertiary{81b}, identity relator{b},
strong reference to MODE tertiary{81b} ;

strong reference to MODE tertiary{81b}, identity relator{b},
i soft reference to MODE tertiary{81b}.
b) identity relator{a} : is symbol{31c} ; is not symbol{31c}.



8.3.2.2. Semantics

A conformity-relation is elaborated in the follow1ng steps.

Step 1: Its textually last tertiary is elaborated and the value ylelded is
considered;

Step 2: If the mode enveloped by the original of its textually first
tertiary is 'reference to' followed by a mode which is, or is united from -
{4.4.3.a}, the mode of the considered value, then the value of the
conformity-relation is faue and Step 4 is taken; otherwise, Step 3 is
taken;

Step 3: If the considered value refers to another value, then this other
value is considered instead and Step 2 is taken; otherwise, the elabora=
tion is complete and the value of the conformity-relation is false;

Step 4: If its conformity-relator id a conforms-to-and-becomes-symbol, then
its textually first tertiary is elaborated and the considered value is
assigned {8.3.1.2.c} to the value of that tertiary.

{Although not suggested by the wording of Step 2, the, possibly, most
obvious applications of conformity-relations are those in which 'RMODE' in
8.3.2.1.a begins with 'union of' whereas 'IMODE' does not. Then, the mode of
the considered value (Step 1) is not 'RMODE' (which is united from it) and
“the conformity-relation serves to ask whether this mode is 'LMODE' and, if
so and if the conformity-relator is a conforms-to-and-becomes-symbol, to as=
sign this value to a name whose mode does not begin with 'reference to union
of' and, thereby, make this value easily available elsewhere. Several appli-~
cations, partly disguised by the application of the extensions 9.4 are given
in 11.11.

Observe that if the considered value is an integer and the mode of its
textually first tertiary is 'reference to' followed by a mode which is, or
is united from, the mode 'real! but not from 'integral', then the value of
the conformity-relation is fafse. Thus, no automatic widening from 'inte-
gral' to 'real' takes place. For example, in union (real, bool) rb; rb ::=1
no value is assigned to rb, but in rb ::= 1.0, the assignment takes place.
Rule 8.3.2.1.a is the only rule in the syntax where a notion other than a
coercend produces uncoerced clauses, i.e., those produced from 'RMODE

tertiary'.}

8.3.3. Identity relations

{Identity-relations may be used to ask whether two names of the same
mode are the same; e.g., in the reach of the declarations struct cons =

(ref cong car, cdr); union cong = .(cons, string); cons cell := (cong :=
"abe", nil), the identity-relation edr of cell :=: nil possesses the value

false because the value of edr of cell is the name referring to the second
field of the structured value referred to by the value of cell and, hence,

is not nil, but the value of (ref cong : cdr of cell) :=: nil is thwe.}

8.3.3.1. Syntax

a) boolean identity relation{830a} :
. soft reference to MODE tertiary{81b}, identity relator{b},
strong reference to MODE tertiary{81b} j
strong reference to MODE tertiary{81b}, identity relator{b},
) soft reference to MODE tertiary{81b}.
b) didentity relator{a} : is symbol{31c} ; is not symbol{31c}.



8.3.2.2. Semantics

A conformlty*relatlon is elaborated in the follOW1ng steps

Step 1: If its conformltymrelator is (is not) a’ conforms-to—symbbl then its -
textually last tertiary is elaborated (J.ts tertiaries are ela.borated col- :

lateral]y) and the value of its textually last tertlary 1s con51dered
Step 2: If the mode enveloped by the orJg;nal of its' textually flrst
tertiary is 'reference to' foliowed by a mode which ig or is unlted from

~{b.}4.3.a} the mode of the considered value, then the value of .the conform-

¥

ity-relation is tuwe and Step b is taken; otherw1sc, Step 3 is! taken,J
Step 3: If the considered value refers to another Value, then ‘this’ other
value is considered 1nstead and Step 2 is taken, otherw1se, the va¢ue of
“the conformity-relation is false and Step b is téken; = - N O
Step 4: If its conformity-relator is a conforms~to~and~becomesﬁsymbol and
the value of the conformity-relation is fiue; then the considered valué is
as31gned {8. 3 1.2.c} to the value of the textually first tertiary.

(Although not suggestbd by Lhe wording of Step 2, the poss:Lbly9 mosb
obvious applications of conformlty-relatlons are those in which 'RMODE' lh
8.3.2.1.a begins with 'union of' whereas 'LMODE' does not. Then, the mode of
the considered value (Step 1) is not 'RMODE' (which is united from. it) and.
the conformity-relation serves to ask whether this mode is 1IMODE' "and, if §

80 and if the conformity-relator is a conforms-to-and-becomes-symbol, to' as=~
sign this value to a name whose mode does not begin with 'reference to union -
of' and, thereby, make this value easily available elsewhere.. Sevexal appll~'
catlons, partly dlsgulsed by the application of the exten51ons 9. h are glven i

in 11.11.

Observe that if the con31dered value is an 1nteger and the mode of 1ts
textually first tertiary is 'reference to' followed- by a mode which is, or
is united from, the mode 'real' but not from’ tintegral®, then the value of"
the conform1ty~relatlon is galse. Thus, no automatic widening from 'inte-—

gral' to 'real' takes place. For example, in union (real, bool) rb; rb ::sl,

no value is assmgned to rb, but in rb :i= 1.0, the assigument takes place.
Rule 8.3.2.1.a is the only rule in the syntax where a notion other than a’
coercend produces uncoercea clauses, i.e., those produced from 'RMODE
tertiary'.}

8.3.3. Identity relations

{Identity~relations may be used to ask whether two nemes of the same
mode are the same; e.g. ’ in the reach of the declarations struct cons .
(rgf cong car, cdr); union cong = (cons, stringl; cons cell := (con
"abe', nil), the identity-relation edr o of cell :=: nil possesses"%ﬁg'value
galse because the value of cédr of cell is the ndme referring to the second’
field of the structured value referred to by the value of cell and, hence,
is not nif, but the value of (ref cong : edr of cell) :=: nil is taue.}

8.3@3.1. Syntax

a) boolean identity relation{830a} :
sof't reference to MODE tertlary{Blo}, identity relator{b}, =
strong reference to MODE tertiary{81b} ;
strong reference to MODE tertiary{81b},’ 1denL1Ly relator{b},
. soft reference to MODE tertlary{BTb] o
b) 1dent1ty relator{al} lb symbol{31e} 5 is not Symbol{31c}

aL



8,3.3.1, continued

{Examples: .
a) wory i=:x ;A 1= &Ly
b) s=rog o} oo

8.3.3.2, Semantiés

An 1dent1ty~re1atlon is elaborated in the fOllOWlng Steps.

Step 1: Its bertiaries are elaborated collaterally {6.2.2.a}; '
Step 2: If its identiby-relabor is an is—-symbol (1s~not~symbol) then the
value of the 1dentlty~relatlon is trwe (false) if the {names which are’

the} values obtained in Step 1 are the same and 6a£Ae (trwe) obherw1se.'

{Assuming the a551gnatlon @ := yy := & to have been elaborated, the
value of the identity-relation xx :=: yy is 6aﬁée because xx and yy, though
of the same mode, do not possess the same name' (T.1.2.Step 8), but the name
which each possesses refers to the same neme and so @ng real : xx) :

(ref real : yy) possesses the value thwe. The value of the 1dent1ty-relat10n
XX :=: x or y has a probability 3 of being e because the value posoessed
by xx (effectively that of ggi real : xx here, because of coercion) is the
name possessed by x, and the routine possessed by % or y (see’ 1.3), when
~ elaborated, yields either the name possessed by x or, W1th equal probabil=- .
ity, the name possessed by Y.

In the 3dent1by~relatlon, the programmer is usually asklng a spec1f¢c
question concerning names and thus the level of reférence is of crucial im-
portance. Thus at least one of the tertiaries of an idenbity-relation must

" be soft, i.e., must involve only deprocedurlng ‘and certainly no derefer-
encing. The construction case 7 in x, xx, * or Y, nil.esac i=: case J zn Ys
skip, x or Yy, re *f 8 out yy esac is an example of & dellcately balanced
identity-relation in which the mode is 'referénce to real'.

, Observe that the value of the formula 1 = 2 is false, whereas 1 :=: 2 is
© not an identitymrelatlon, since the values of its tertiaries are not names.
. Also $2d3d¢ :=: $5d% is not an 1dent1ty-relat¢on, whereas $2d3d¢ = $5d¢ is a
formula, but involves an operation which is not 1nc1uded in the standard~
prelude. }

8.3.4. Casts

{Casts may be used to provide a strong p051t10n for 8 un1tary~clause in
8 position which is not strong, e.g., ref real : xx in (ref real : xx) := 1.
They play a role in routine-denotations (5.k.1.8), e.g., real : a + 1 in
((znt a) real : a + 1) and procedurcdrcoercends (8.2.3. 1.a7""é ges ¢ (L2 1)
in proec busy = (: (l: 1)). A void-cast is not a clause but is & constituent -
of & void-cast-pack and of some routinr-denotations and thus of ‘bases.}

8.3Qh»1; Syntax

a) MOID cast{5hb,830a, 860b} : virtual MOID declarer{71b z}g
‘ cast of symbol{31b}, strong MOID un1L{61e} -

‘ {Exa,mpleso ,
a) [Jreal : 1 ; : 2 = 3,14}

8.3.4.2. Semantics

‘The elabcratidn’(valug, if any,) of a cast is that of its umit.



8.k, Formules

{Formulas are either dyadic-formulas, e.g. x + 7, or monadic-formulas,
e.g. abs x. A formula contains at least one operand and at least one opera-
"tor. The order of elaboration of & formula is determined by the priority of
its operators; monadic~formilas are elaborated first and then the" dyadic»
formulas from ‘the hlghest to the lowest priority } ’ B} ,

8.4.1, Syntax

)* SORTETY formula : SORTETY MOID ADIC formula{b,g,ﬂzad e,f e}, ,
b) MOID PRIORITY formulad{8lb,820d,e,f,g,821a,b,822a,b,¢ 8236.,82ha,825a,b, :
¢,d,826a,828v} ¢ firm LMODE PRIORITY operand{d}, procedure with
IMDDE paraneter and RMODE parameter MOID PRIORITY operator{h3b},
firm RMODE PRIORITY plus one operand{d, e}
c)* operand : firm MODE ADIC operand{d,f}.
d) firm MODE PRIORITY operand{b,d} : firm MODE PRIORITY fmrmula{820e}
- firm MODE PRIORITY plus one operand{d el,
e) firm MODE priority NINE plus one operand{b,d} :
firm MODE monadic operand{f}.
f) firm MODE monadic operand{e,g} : firm MODE monadic fbﬂmula{BQOe,g}
f1irm MODE secondary{8lc}.
g) MOID monadic formula{Blb 820d,e f,g,SQla,b 822a,b e 823&,82&& Babagb
¢,d,826a,8280} :
procedure with RVODE parameter MOTD monadic operator{th},
« firm RMODE monadic operand{f}.-
h)# dyadic formula : MOID PRIORITY formula{b}.

We

\J.

{Examples:
b) ®+y
a) mxy;w;

o f) abo z 3 age of algol ; o
g) = abs re z }

8.4.2. Semantics

A formula is elaborated in the following steps: ‘

Step 1: The formula is replaced by a closed-clause which is a- copy of the.
routine possessed by the operator-defining occurrence identified by its
operator {7.5.2, 4.3.2.b}; : s

Step 2: The constituent serial-clause of the closcd*cLause is protected
{6.0.2.4};

Step 3: The skip-symbol {5.4.2.Step 2} following the equals-symbol following
its textually first copied formal-parameter is replaced by a copy of the
textually first operand of the formula, and if the formula is a dyadic—
formula, then the skip-symbol following the equals-symbol following its -
textually second copied formal-parameter is replaced. by a copy of the
textually, second operand of the formula,

Step k: The closed-clause as modified in Steps 2 and 3°ig replaced by a
closed-clause Lon51sb1ng of the same sequence of symbols9 the elaboration
of this closed-clause is initiated; its value, if any is then that of the
formula and if this elsboration is completed or terminated, then this
closed-clause is replaced by the formula before the elaboratmon of a suec~
cessor is initiated. A



8.k.2. continued

- {The follow1ng table sunmarises the prlorltles of the operators declared
in the stendard priorities (10 2. O) ' : :

,dyadxc~ s dl monadie”
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Observe that a + b is not precisely the same as aP in usual notation;
indeed, the value of (~1 4 2 + 4 = 5) and that of (4 = 1 4+ 2 = 3) both are
buie, since the first minus-symbol is a monadic-operator, whereas the second
is a dyadic-operator. Although the syntax determines the order in which
-formulas are elaborated, parentheses may well be used +to 1mprove readabllw
ity; e.g., (@ Ab) VvV (Ta A7 D) instead of @ A'Db VT a A b ;

In the formula x + § x 2, both y and Z are primaries, which allows y to o
be a flrmrprlorlty—SEVENmoperand and 2 to be a flrmrprlcrltv—EIGHT~operand.
The formula y x 2 is then of priority 7. Since & is also a primary, and
therefore a flrmrprlorlty-SIX~operand x+yx2is a prlorlty—SIwaormula.
The effect of 2 + y x 2 is thus the same as Lhat of & + (y x 2).} -

8.5. Cohesions

{Cohe31ons sre of two kinds: generators, . Q-1 strzng, or selectlons,
€.g., re of z., Cohesions are distinct from bases in order that constructions
like g of b [Z] may be parsed without knowing.the mode of @ and b, Cohesions .
may not be subscrlpbed or parametrized, but they may be selected from, e. g.,
; f‘ather of aZgoZ in father _,ﬁ father of algol.} '

8.5(,0,1.. Syntax

a) MODE cohesi'on{B‘lc,820d,e,f,g,821a5b3822a,b5c,8235315,82&3,,8259,,1@,826&,t'
-828b} : MODE generator{851a} ; MODE selection{852a}.

{Examples:
a) real (1n xx 1= regl i= 3. 14) 3 re of a2}

8.5.1, Generators © {And as Lmagination bodies forth . -
: The forms of things unknown, the poet's pen
‘ . Twws them to shapes, and gwu to airny nothing

A Local habitation and a name.
A M/(_dAwnm?JL-Mgh/t’é D/Leam WALELam Shalzebpeme.}

{The elaboration of a.generator, e.g., real .in ax real := 3,14 or
loc real in ref real x = .loc real (usually written reaZ % by extension
9.2.a), involves the creation of a nae , i.e., the reservation of storage.
The use of a 1ocalwgenerator implies (with most implementations) the reserw
vatlon of storage in & run=time sLack, whereas globalmgﬁwmﬂeLors 1mply the




8.5.1. continued,t

reservatlon of storage 1n another region, termed the "heap , in whlch gar~

- bage—collection technlques nsy be used for sborage retrieval. Since this'is
usually less efficient, global-generators should be avoided where possible.

* The temptatlon to use global~generators unnecessarlly, is reduced by the ex-
ten51ons '9.2.a, which allow the greatest shortenlng of the text when local—
generators are used o - _ L : :

8.5.1.1. Syﬁtax

a) MODE generator{ 850a}
MODE local generator{b, } 3 MODE global generatortc,~}
b) reference to MODE local generator{a} : v
- local symbol{31d}, actual MODE declarer{'r 1b}.
c) reference to MODE global generator{a} : actual MODE declarer{71b}

{Examples. -
a) Lloc real ; real ;
b) Zoc real ;
c) 'real I

8.5.1.,2. Semantics

"a) A generator is>elaborated:in the following steps:
- Step 1: Its actual-declarer is elaborated {T7.1.2.cl;
Step 2: The value of the generabor is the {name whlch is thel value obtalned

in Step 1.

b) The scope {2.2.4.2} of the value of a local-generator is the smallest
range containing that generator; that of a global~generator is the program.

{The closed~-clause

(ref real wx; xx := (real global % := pi; x), xx = pz) (see alsc 9.2.a)
possesses the value t&ua, but the closed-clause .

(ref real xx; = (real « := pi; x); xx = pt) : :
possesses an undeflned value since the name to be assigned to the name pos=.
sessed by xx becomes undefined upon the completion of the elaboration of the
inner range, which is the acope of the name possessed by x (6. 1 2.e, T.0s 2)
The closed-clause _ :

((ref real xx; real x := pi; xx :=x) = pi)
however, possesses the value fwe.}

8,5.2. Selections

{A Selectlon selects a field from a structured value, €.8., re _ﬁ g se=
lects the first real field (usually termed the real part) of the value pos=—
sessed by z. If z possesses a name, then re of z possesses also & name, but
if w possesses a complex value, then re of zopossesses a real value, not the
name referring to a real value.} -

&

8.5.2.1. Syntax

a) REFETY MODE selec‘clon{BSOa} MODE field 'I‘AG selector{ﬂg},
- of ‘symbol{31e}, weak REFETY struc,tured w:Lth LFIEIDSEPY MODE f:leld TAG
RFIELDSETY secondary{B‘lc} _



8.5.2.1{Acbntinued

; {Examples: The following examples are assumed in the reach'of the
declarations: I ‘
struct language = (int age, ref Zanquaqe father);

anguage aZgoZ i= (10, language := (14, nzZ)),Zanquaqe pZI (4 aZgoZ)
'a) age __prI father of algol} - _

{Rule a ensures that the value of the secondary has a field selected by
 the field-selector in the selection (see 7.l.1.e,f,j,k and the remarks below
7.1.1 and 8.5.2.2). An identifier which is the same sequence of symbols ag &
field-selector in the same reach creates no ambiguity. Thus; age of algol =
age is a (possibly confusing to the human) asslgnation if the second occur-~
rence of age is an integral—mode-identifier,},

P U S -

8.5.2.2. Semantics

A Selectlon is elaborated in the follow1ng steps
Step 1: Its secondary is elaborated; if its value is nmif, then the" further‘
elaboration is undefined; otherwise, the structured value which is, or is
referred to by, that value is considered;
~ Step 2: If the value of the secondary is a name, then the value of the
selection is a new instance of the name which refers to that field of the
considered structured value selected by its field-selector; otherwise, it
is a new instance of {the value which is} that field itself.

" {In the examples of 8. 5:2.1, age of algol is a reference~to—integral—
selection, and, by 8.5.0.1.2;a rnference—to~integral-cohesion, but age of .
pll is an integzelmselection and an intepral-cohesion. It follows that age:
of algol may appear as a destination (8.3.1.1.e) in an assipnation but age
,._f pZ] may not. Similarly, anoZ is a reference—to~[lanpuage]—base ibut plr
is a [language]-base and no assignment may be made to pll. (Here, [lanpuage]
stands for structured-with-integral-field~[ape ]~and~reference-to~[lanpuage ]~
field-[father] and [ape] stands for letter-a-letter-g~letter-e, etc.) The
- selection father of pll, however, is a reference-to-[lanpuage]-selection and
thus a refErence~to~[lanpuape]ucohesion whose value is the name possessed by
algol. It follows that the ldentity-relation father of pll :=: algol posses-
 ses the value true. If father of pll is used as a destination in an assig-
nation, then there is no change in the name which is a field of the struct-
ured value possessed by pll, but there may well be a change in the value of
mode [lanpuage] referred to by that name. By similar reasoning and because -
the operators re and im possess routines (10.2.5.b,c) which deliver values
wl'ose mode is 'real’ and not'reference to real', reldf 2 = 1imw is an
-assignation, but re z i= zm w is not.} . .

8.6. Bases

{Bases are mode-identifiers, e.g. x, denotations, e.g. 3.14, slices,
e.g. x1[{1] and calls, e.g. sin(z). Bases are generally elsborated first.
They may be subscripted, parametrized and selected from and are often used
as operands. Moreover, certain vold-bases are void-cast-packs, e.g. '
(: & := 2+ 1), which may be used, e.g., as procedured-coercends; it is es-
sential that they begin’ with. an open»symbol and end on a closensymbol for,
otherwise, the parsing of, e.g.s a = : b, which might, in practice, be un-
distinguisheble from g = b 'would depend on the modes of a and b. }



8.6. 0. 1 Syntax

’ é)» MODE base{8ld 8204,e f,g,82la b, 822a b e, 823& 82ha 825& b,c, d 826&,,¢ 
‘ 828b} : MODE mode identifier{blb} MODE denotation{SlOb Slla 512a,

513a,514a,52h,¢,53b,54b,55a,~] ; "MODE_s1ice{861a} 3.MODE ca11{862a}.1,

b) void base{81d 8204, 823a} : vold call{862a} 3 void cast{83ha} pack.

{anmples
a) x 3 3.14 3 xZ[t,g] : szn(x) ;

b) set randbm () 5 (2 x = 3-14},} -

8. 6 0.2. Semantlcs 5:

a) A modenidentifier is elaborated by maklng a copy of the 1nstance{of the

value, if any, possessed by the defining occurrence identifled by it {h 1 2,
- T b,2.8tep T} its v&lue is the copy. : _ v ,

b) The elaboration of a Voiducastwpack is that of its Void—cast

8.6.1. Slices

{Slices are cbtained by'subséripting, e.g; x1{Z] or by frimmiﬁg, e.g. .

xz1[2:n], or by a mixture of both, e.g. x2[j:n,d] or x2[,k]. Subscripting and’

trimming may be done only to primaries, e.g. x! and 22 or (p | 1 | y1). The
value of & slice may be either one element of the value of its primary, e.g
x1[Z] is a real nutber from the row of real numbers x1, or a subset of the

elements, e.g. x2[£] is the i-th row of the matrix 22 and xZ[,k] is the k—th‘

column.}

8.6.1:1. Syntax

a) ‘REFETY ROWQETY ROWWSETY NONROW Slice{BGOa}
weak REFETY ROWS ROWWSETY NONROW prlmany{Bld} sub gymbol{31e}
. ROWS leaving ROWSETY indexer{b,c,d,e}, bus symbol{31e}
b) row of ROWS leaving row of ROWSETY 1ndﬁxer{a b} ,
trimmer{f} option, comma symbol{3le},
ROWS leaving ROWSETY indexer{b,c,d,e} ;
subscript{i}, comma symbol{3lel,
ROWS leaving row of ROWSETY indexer{bv.d}.
e) row of ROWS leaving EMPTY indexer{a,b,c} :
subseript{i}, comma symbol{3le}, ROWS 1eaving EMPTY 1ndexer{c,e}
d) row of leaving row of indexer{a, b} trimmer{f} option.
e) row of leaving EMPTY indexer{a,b,c} : subscript{il}.
f) trimmer{b,d} : strict lower bound{?lu} option, up to symbol{Ble}
strict upper bound{7lu} option, new lower bound part{g} option.
g) new lower bound part{f} : at symbol{3le}, new lower bound{n}.
h) new lower bound{g} : strong integral tertlary{BTb}
i) subscript{b,c,e} : strong integral. tert1ary{81b}
j)* trimseript : trimmer{f} option ; subscript{i}.
k)#* indexer : ROWS leaving ROWSETY indexer{b,c,d,el.

&

heY
R



8.6.1,1;Aéohtinued.

’{Examples : e
a) «1l<] xZFz,J] 3 xZ[z] 3 x1[2 n]
D) 2 n,g 5 1 2 nog ‘

C)'. 1‘:3 H

d) 2°n :

e) 7. . :
£)  2:m 3 2:n at 0
g) at 0 ;

h) 0 ;

i) 4}

{In rule a, 'ROWS' reflects the number of Lrimscripts in the slice, ,
" ROWSETY ! the number of these which are trimmer—options and ROWWSETY' the
number of 'row of' not involved in the indexer. In the slices x2[%,73,
x2[%,2:n], 22(<], these numbers are (2,0,0), (2,1,0) and (1,0,1) respect4
ively. Because of rules d end T.1l.l.u, 2:3 at 0, 2:n, 2:, .5 and : at 0 are
. trimmers, while rules b and d allow Lrimmers to be omitted.} .

8.6 1.2, Semantics

A slice is elaborated in the following steps o ‘

Step 1: Its primary, and all constituent strict-lower-bounds, strlct—upper—
bounds , new-lower-bounds. and subscripts of its indexer are elaborated col=
laterally {6.2.2.a}; if the value of the prlmary is nil, then the further
elaboration is undefined; otherw1se, Step 2 is taken; :

Step 2: The multiple value which is, or is referred to by, the value of the
prlmary, is considered, a copy is made of its descrlptor,‘and all the
states {2.2.3.3.b} in the copy are set to I;

Step 3: The trimseript follow1ng the sub-symbol is con51dered, and a pointer,
L, is set to 1;

" Step 4: If the considered trimscript is not a subscript ‘then Step S is
taken; otherwise, letting R stand for its value, if L; ¢k < ug, then the
offset in the copy is increased by (k - EL) X dL the A~th quintuple is
"marked", and Step 6 is taken; otherwise, the further elaboration is

.~ undefined;
. Step 5: The values £, u and £' are determined from the considered trimscript

as follows:
if the considered trimscript contains a strict—lowernbound (strict-
upper-bound), then £ (u) is its value; otherwise, £ (u) is £; (u;); if
it contains a new-lower-bound, then £' is its value; otherw1se, 'is I
if now £; < £ and u < u;, then the offset in the copy is increased by
(£ - £;) % d¢, and then £; is replaced by £' and g by (Z' - L)+ u
otherwise, the further elaboration 1s undefined;

Step 6: If the considered trimscript is followed by a Oommarsymbol then the
trimscript. following that comma-symbol is considered instead, 4 is in-
creased by 1, and Step L4 is taken; otherw1se, all qulntuples in the copy
vhich were marked by Step U are removed, and Step T is taken;

Step T: If the copy now contains at least one quintuple, then the multiple
value composed of the copy and those elements of the considered value
which it describes and whose mode is obtained by deleting the initial
-‘reference to', if any, from the moge enveloped by the original of the

~ slice, is considered instead; otherwise, the element of the considered
value selected by’ {the 1ndex equal to} the offset in the copy is con51d-
ered instead;

Step 8: If the value of the primary is a name, then the value of the slice
is a new instance of the name which refers to the considered value, and,

' otherwlse, is a new 1nstance of the con31dered value 1tself.



8.6.1.2, continued

_ {A trimmer restrlcts the pOSSlble values of ‘a subscript and changes . its
notation: first, the value of the subscript is restricted to ‘run from the .
- value of the strict«lower~bound to the value of the strict*upper~bound both
- given in the old notation; next all restricted values of that subscript are
changed by adding the same smount to each of ‘them, such that the lowest .
value then equals the value of the new-lower-bound. Thus, the. assignations .

y1[1:n-17 := xI[2:n] ; yi1lnd == x1[1] ; xl 3= y1 effect a cyclic permutation

of the elements of xl.}

8.6.2. Calls

{Calls are obtained by parametrlzlng, e.g. sin (x + 1), »Parametrizihg f
may be done only to primaries, e.g. sin and cos or (p | sin | cos). The
completed elaboration of a call may or may not deliver a value.}

'8.6r2.l. Syntax

‘a) MOID call{B60a} : Firm procedure with PARAIVIE'.I'ERS MOID primm{end},
actual PARAMETERS{Shc,Thb} pack.

{Example:
a) sin (x) }

8.6.2.2. Semantics o

A call is elaborated in the following steps

Step 1: Its prlmary is elaborated;

Step 2: The call is replaced by a closed-clause Wthh is a copy of {the rou~
tine which is} the value obtained in Step 1;

Step 3: The constituent serial-clause of the closed-clause is protected
-{6.0.2.d};

Step L: The skip-symbols {5.4.2.Step 2} following the equals—symbols follow-
ing the copied formsl-parameters are replaced in the textual order by
copies of the actual-parameters of the call taken in the same order;

Step 5: The closed-clause as modified in Steps 3 and b is replaced by a
closed-clause consisting of the same sequence of symbols; the elaboration.
of this closed-clause is initiated; its value, if any, is then that of the
call and if this elaboration is completed or terminated, then this closed~
clause is replaced by the call before the elaboratlon of a successor is
initiated.

{The call samelson (m, (znt d) real : x1[41) in,the;reach of the
declaration
proc samelson = (int n, proe (int) real f) real :
beqzn long real & := long 0; for © to n do s gZus eng f (t) 4 2
short long sqrt (s) end : e
“'is elaborated b: by repla01ng it (Step 2) by the Closedmclause ..
(int n = skip, proe (int) real f = skip; real :
“begin long real s := long 0; for © ton do 8 Q Zena f (1) + 2;
. 8hort long eqrt (s) end ). e
Supposing that n, 8, f and 1 do not occur elsewhere in the program, this
closed~clause is protected (step 3) without further alteration. The. actual—
navameters are now inserted (Step h), yielding the closedmclause




8.6.2.2. continued

Aint n = m, proc (znt) real f = (tnt J) reaZ : xlfv]' PeaZ
begin long real & := long 0; for 1 to n do. s g Zena f (z) +2;
ghort long sqrt (8) end), .
and this closed-clause is elaborated (Step 5). Note that, for the duration :
of this elaboratlon, n possesses the same 1nteger as that referred’ to by the
name possessed by m, and f possesses the same routine-as that possessed by
the routine—denotation ((int §) real : x1[jl). During the elaboration of
this and its inner nested “closed-clauses. (9.3), the elaboratlon of f(z)
itself involves the elsboration of the closed~clause (int j = 1; real :
x1[41), and, within this inner closed-clause, the first occurrence of J pos~
'sesses the same 1nteger as. that referred to by the name possessed by t } '
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'9{'Eitensiohs'

a) An exten51on is the. 1nsertlon of a comment between two symbols or the
replacement of a certain sequence of symbols, possibly satlsfylng certaln
restrlctlons, by another sequence of " symhols, as 1nd1cated 1n sectlons 9 1

up to 9 l,.

b) No extension may be performed w1th1n a comment {3 0 9 a} character*
denotatlon {5.4, h .8}, orrow—of-character"denotatlon {5 3 1 b} ' .

‘c) Some extensions are given in the representatlon language, except thap

A, B and C stand for strong-unitary-integral-clauses. {8 1. 1 a},. .

D for a strong-serial-boolean-clause{6.1.1.a}, . . ‘ . ¢

E for a strong-unitary-void-clause {8.1.1.a}, B Lo '

F and G for unitary-clauses {8.1.1.a}, .

H for two or more unitary-clauses {8.1.1. a} separated by comma'symbolS!
{3113}1 ’ - : b

I, J, K and [ for mode-identifiers {4.1.1. b}, ; "“<” S

M for a label-identifier {k.1.1.b},

N for zero or one mode~identifiers {4.1.1.b},

0 for a conformity-relator {8.3.2.1.b},

P for an indication {k.2.1.a},

Q@ for a virtual-plan {7.1.1.x,aa}, L , oo

R for a routine-denotation {5.4.1.a}, " I S o

S for the standard-prelude {2.1.b, 10} if the extens1on is performed out=
side the standard~prelude and, otherwise, for the empty sequence of sym-
- bols, .

T for a condition followed by a ch01ce~clause {6 h 1.b,¢,d},

U for a declayrer {7.1.1.a},

V for a formal-declarer {T.1.1.b} all of whose formal~row—oferowers
{T.1.1.q,r} are empty, ,

W, X and Y for tertiaries {8.1.1.b}, ’

72 for two or more tertiaries {8.1.1.b} separated by comma—symbols {3.1.1. e},

I' for a commarsymbol {3.1.1.e}, go-on-symbol {3 1.1, f} or becomes-symbol
{3.1.1.e}, and - .

L for a serial—-clause {6 1.1.a8}.

d) Each representation of & symbol appearing in sections 9.1 up to 9.4 may
be replaced by any other representation, if any, of .the same symbol.

9.1, Comments ‘ ' {A Aauncel065inAOCQnt Manimgnt,
: Mikado, ~ . W.S. Gilbenrt.}

A comment {3.0.9.b} may be inserted between any two symbols {but see, »
9.b}.
{e.ge, (Mm>n | m i n) may be replaced by

(m>mn | m¢ the larger of the two ¢ | n) }

9.2, Contractions

ref VI = Zoc ur and ref VI =UT vhere ref VI is the formal-parameter
of an identity-declaration {7.l4.1.a} and where U and’' V specify the same mode
{7.1.2.a} may be replaced by U I P and U global I T respectlvely.

{e.g., ref real x = loc real; may be replaced by real x, ,
ref bool p = Loc bool := true may be repldced: by booZ p = true ., and
© ref real t = reaZ may be replaced by real QZOba } ] '

l.;




9.2. continued

'b) mode P = struct may be replaced by stmcf: P and mode P union by

unton P = . '
{e.g., mode compl = stmcf;(real re, 'z,m) (see also 9 2, c) me,y be replaced

by struct compl = (reaZ re, vtm) } - . , , ‘ R

,c) If a given 1 ’node-declaratlon {1.2.1. a} (prlorl‘cy-declaratlon {71. 3 1. a},
identity-declaration {T.lt.1.a}, operation-declaration {T.5.1.a}, formal-
parameter {5.k4.1.e}, field-declarator {'( 1.7.g}) and another one followmg a
comma~symbol {3.1.1.e} following the given one both begin with a mode-
symbol, structure-symbol, union-of-symbol, priority-symbol, operation-
symbol {all 3.1.1.d}, one same terminal production of 'actual MODE declarer’
or of 'formal MODE declarer' {both T.1.1.b} where "MODE" stands for any ter=
minal production of the metanotion 'MODE', then the second of these occur= :
rences may be omitted. S . ' ' ' :

{e.g., real %, real y := 1.2 may be replaced by real x, y := 1.2, but
real x, real y = 1.2 may not be replaced by real x, y = y = 1.2, since the first
occurrence of regl is an actual-declarer whereas the second is a formal-
declarer. Note also that mode b = bool, mode r = real may be replaced. by
mode b = bool, r = real, etc.}

d) If an actual-parameter {7.h4.1.b} (source {8.3.1.1.£}) is a routine-
‘denotation {5.4.1.a} or a void-cast-pack {8.3.4.1.b} (is a routine-
denotation), then its first open~symbol and last close-symbol {voth 3.1.1. e}
may simultaneously be omitted.

{e.g., op + = ((int a) int : a) may be replaced by _qp_ += (m.ta) int:al

e) If the orlglnal {1.1.6.c} of @ and the original of R envelop {1.1, 6. iy
the same mode, then proc @ I =R may be replaced by Qroc I =R, op ¢ P =R by
p P =R, and proc. @ N := R by proc Il ;= R.
{e g.5 proc (rvef int) iner = (ref int 2) : % +:= 1 may be replaced by
proc incr = (ref int ¢) : < +:=1, op (ref int) int decr = (r'ef int ).
mt : £ =:= 1 may be replaced by op decr = (ref int 7) int : 7 ~:i= 1, and
proc (real) int p := (real x) int : round ac, obtalned by 9. 2 a,d from
ref proc (real) int p = Loc proc (real) int := ((real a:) int ¢ round x)
may be replaced by proc p := (real x) int : r*ound x. }

£) [:] may be replaced by [] , [:, by [, s 505 DY 55 ,e] by ,] , [t e by
[@ , and ,:@ by ,@ . e o
{e.g., [:] real mey be replaced by [] real.}

9.3. Repetitive statements

a) The strong—unitary-void%lause {8.1.1.a} -
begin int J := A, zntK—B L =Cy

-M__iS(K>0! |K<01J L | trus)
then int I = (DIE’, (S J +:=K); go to M)
A o

end ,

where J K L and M do not occur in D E’ or S N a.nd where I dl'ffers from J

and K, may be replaced by
f_orIfromAp_giBtoC'whzZeDdoE, ,
and ifs moreover, I does not occur m D or E,._, then f_‘or I irom may be re=-

placed by ﬁro .

)



9.3 continued

b) The strong unl’cary—vmd—clause {8 1.1. a}
~ begin int J =4, int K =
M: (mbr s (DIE SJ+ K),QotoM)
end : :
where J K and M do not occur in D E or S, a,nd where I dlffers from J and
K, may be replaced by - , o .
f_a_r_IfromA_Zgy_BwhzZeDdoE5 ‘ ‘ '
and 1if, ‘WOreover, I does not occur in D or E then fo_lf_ I from may be re~

placed by from.

c) from 1 by may be replaced by by __g_ 1to by 20 Zy_ 1 while by whtle, and o

while true do. by do.
— {e.g., ges for < from 1by 1 ton while true do x +:= acl[z] may be replaced
by for © to n do x +: xl[*p] “TNote that to o 0 do. E and while false do E do -

not cause & to be elaborated at all, whereas 'CT‘ E causes es £ to be etaborated -

repes,tedly until the elaboration is termlnated, 1nterrupted. or halted. }

9.4, Contracted conditional clauses {The §Lowers that b£oam in the Aplu.ng,
: Tha Ra.,
Have no,th,cng ;to do with the case.

Mikado, —  W.S. Gdb%t}.

a) else skip fi may be replaced by fi.-
{e.g., ¢f © < 0 then = := 0 else skzgg f_@_may be replaced by 2f ® < 0
then x := 0 fi.}

b)  else if T fi fi may be replaced by elsf T fi and

then 1f I fi fi may be replaced by thef T fi. ‘

{e.g., Lf p then princeton else if q then grenoble else zandvoort It fi
may be replaced by _f then princeton elsf q then grendble else zandvoort fi
or by (p prmceton "q | grenoble | zmandvoort). Many more exsmples are to
be found in 10.5.} . ;

¢) (int I =A4; if SI=1then F elsf S I = 2 then G else & fi), where I
does not occur in F, G, S or L, may bhe replaced by case e A - in F, G out I esac
{or vy (A | F, G | )},

a) (int I =4A; ¢f SI =1 then F else case (S I=1)1in H out I esac ,f__),
where 1 does not occur in F, H, S or I, may be replaced by .
case A in F, H out T esac {or by (4 | F, B | 2},

e) (nt I; UK=W; ((XOK'|I:=1;M), (YOK ]| I =2; M)); 0. M: I),
where W is the same as some terminal production of 'MODE tertiary' in which
"MODE" stands for the mode specified by U, and where I, K and ¥ do not occur
in Wy, X and Y, may be replaced vy (X, YO W:).

£) ('LntI J; UK = W; ((xox | I :=1; W), (5 (J = ((:2 0 K:) + 1)) > 1]
I :=4d; M)); 0. M: I), where W is the same as some term1nal production of
'MODE ter'tlary' in which "MODE" stands for the mode specified by U, and
vhere I, J, X and M do not occur in S, W X or Z, may: be replaced by

(:X, ZOW)

g) ((Z&OW)]HIF)maybereplacedby(ZOW|H]F)
{Examples of the use of such cont'ormlty case clauses are ‘given 1n
11.11. q,a.h } ' . _



10. Standard prelude and postlude

a) A "standard declaration" is one of the constituent declarations of :
the standard-prelude {2.1.b} {; it is either an "enviromment enquiry", |
supplying information concerning a specific property of the implementation

(2.3.c), a "standard priority" or "standard operation", a "standard

mathematical constant or function", a "synchronization operation" or a

"“transput decleration"}.

b) A representation of the standard-prelude is obtained by altering

each form in 10;1, 10.2, 10.3, 10.4 and 10.5 in the foliowing steps:

Step 1: Each sequence of symbols between { and } in a given form is
altered in the following steps:

Step 1.1: If D occurs in the given sequence of symbols, then the given
sequence is replaced.' by & chain of a sufficient number of sequences
separated by comma-symbols; the first new sequence is a copy of the v
given sequence in which copy'g_ is deleted ; the n~th new sequence,

n > 1, is a copy of the given sequence in which copy D is replaced
by a sub-symbol followed by n~2 comma-symbols followed by a bus—
symbol;

Step 1.2: If, in the given sequence of symbols, as possibly modified
in Step 1.1, L Znt (_J.i reals L eompl) occurs, then that sequence

is replaced by a chain of a sufficient number of
sequences separated by comma-symbols, the n-~th new sequence being a i
copy of the given sequence in which copy each occurrence of L(L)
has been replaced by (n-1) times Zlong(long);
Step 2: Each occurrence of % and } in a given form, as possibly
. modified in Step 1, is deleted |
Step 3: If, in a given form, as possibly modified in Steps 1 and 2, B ~

L int (L real, L compl, L bits, L bytes) occurs, then the form is

replaced by a sequence of a sufficient number of new forms; the n-th
new form is a copy of the given form in which copy each occurrence of

L(L, X, S,) is.replaced by (n=1) times Zéng( long, leng, short) ; -




10. continued

Step 4: If P occurs in a given form, as possibly modified or made in the
Steps above, then the form is replaced by four new forms obtained by
replacing P consiétently throughout théifdrm by either - or + or X or /

Step 5: If Q occurs in a given form, as possibly modified or made in the
Steps above, then the form is replaced by four new forms obtained by _ i

replacing g consistently throughout the form by either minus or plus

or times or div ;

Step 6: If R occurs in a given form, as possibly modified or made in the
Steps above, then the form is,replaced'by six new forms 6btained by .
replacing R consistently throughout the form by either < or < or = or.
£ or = or > ; ' o

Step T: Each occurrence of F in any form, as possibly modified or made
in the Steps above, is replaced by a representation of the §
letter-aleph-symbol {5.5.8}‘; .

Step 8: If, in some form, as possibly modified or made in the Steps above,

% 6ccurs followed by the representation of an identifier (field-selector,
indication), then that occurrence of % is deleted and each occurrence
of the representation of that identifier (field-selector, indication)
in any form is replaced by the representation of one samé ldentifier
(field-selector, indication) which does not occur elsewhere in
and Step 8 is taken ;

Step 9: If a sequence of representations beginning with and ending with ¢
occurs in any form, as possibly modified or made in the Steps above,
then this sequence is replaced by a representation of an actual-declarer

er closed-clause suggested by the sequence ;
Step 10: If, in any form, as possibly modified or made in the Steps above,

a representation of a routine-denotation occurs whose elaboration in-
volves the manipulation of real numbers, then this denotation may
be replaced by any other denotation whose elaboration has approximately
the same effect { .3 the degree of approximation is left undefined in this
Report (see also 2.2.3.1.c) }s
Step 11: The standard-prelude is that declaration-prelude whose represent-
ation is the same as the sequence of all the forms, as possibly modified
or made in the Steps above. '
{The declarations in this Chapter are imtended to describe their effect
clearly. The effect may very well be obtained by a more efficient method.}

¢) A representation of the standard-postlude is given in 10.6.



10. 1. Enviromment enguiries

e the number of dtffer'ent Zengw‘;hs of. zm’:egers e
¢ the largest L integral value ¢ ;-

a) <int int lengths

b) L int L max int
¢) zint real lengths = '
¢ the mumber of different vZe;igths ‘of real riumbers [
d) I real L max real = ¢ the largest L real value ¢ ;
e) L real L small real = ¢ the smallest L real value such that both
L1 + L small real > L1 and L1 - L small real <Ll e ;
£) int bits widths = ‘
¢ the number of different widths of bits ¢ ;
g) int L bits width = |
¢ the number of elaments in L bits; see L bits {10.2.8.a} ¢ ;
h) op abs = (char a) int : | '
¢ the integral equivalent of the character 'a' ¢ ;

i) op repr = (int a) char :
¢ that character 'x', if it exists, f‘or which abs x = a ¢ ;

Jj) int bytes widths =

¢ the number of different widths of bytes ¢ ;
k) int L bytes width = .

¢ the mumber of elements in L bytes; see L bytes {10.2. 9.a.} e
1) char rull character = ¢ some character ¢ ;

10.2, Standard priorities and operations

10.2.0, Standard priorities

1, times = T,overb = 1, div = 1, modb =
=4, ¢=4J <=9, =6, 2=

a) priority minus = 1, plus

i
(3}
.
v

il
<n
™

H

Eru‘g:‘]-’v:g-’ A=3.’
+=6, x=7, + =7, %:

It

7, /=7, eZan=7,+=8,_§_ullg_=8,zp_b_=

10.2.1. Rows and associated operations

a) mode % rows = ¢ an actual-declarer spéaifying a mode united from

{4.4.3.a} all modes beginning with 'row of' ¢ ;



10.2.1. continued

b) op lwb = (int n, rows alint : ¢ the lower bound in the n-th quintuple
of the descriptor of the value of 'a', if that quintuple exists ¢ ;

- ¢) op upb = (int n, rows a)int : c.the upper bound in the n-th quintuple

| of the descriptor of the value of 'a', if that quintuple exists ¢ ;

d) op lws = (int n, rows a)bool : ¢ true (false) zf the lower state in
the n~th quintuple of the descriptor of the value of 'a' equals
1(0), if that quintuple exists ¢ ; ' ' ‘

e) op ups = (int n, rows a)bool : ¢ true (false) if the upper state in
the n-th quintuple of the descriptor of the value of 'a' equals
100), if that quintuple exists ¢ ; '

£) op wb = (rows alint : 1 b a

g) op upb = (rows al)int : 1 upb a ;
h) op lws = (rows a)bool : 1 lws a ;
i) op ups = (rows albool : 1 ups a

10.2.2. Operations on boolean operands

(bool a, blbool : (a | true | b) ;

a) op V=

b) op A= (bool.a, blbool.: (a | b | fhlse) ;

¢c) op —= (bool albool : (a | false |, true) ;

d) op == (bool a, blbool : (a A Db) Vv tan—b) 3
e) op # = (bool a, b)bool :—(a =b) ;

f) op abs = (bool a)int : (a | 1 | 0) ;
10.12 3. Operations on integral operands
a) op < = (L int a, b)bool : ¢ true if the value of 'a' is smaller than

that of 'b' and false otherwise ¢ ; {2.2.3.1.c}

op £ = (L int a, b)bool : (b < a) ;
¢) op==(Lint a, b)Jbool : a <b Ab<a ;
d) op # = (L int a, blbool : ™(a = b) ;
e)‘l_gB,z:@_ﬁgga, blbool : b < a ;
£). op > = (L int a, blbool : b < a ;
g) op -=(Lzint a, b) Lint : ¢ the value of 'a' minue that of ! e ;

{2°2.3.1.c}



10.2.3. continued

) op-=(Linta) Lint:L0-aj;
i) op+=(Linta, b) Lint :a=-~-b ;
i) ep+=(Linta)Lim:a; .
k) opabs = (Linta) Lint : (a<L0 | -a | a);
1) op x = (Lint a, b) Lint : (Lint s i= L0, © = abs b ; |
" while iz Lldo(s =s+a;t =% -L1); (b<L0| -8 | 8));
m) op + = (L int a, b) L int : ‘ ‘ '
(b#éolgﬁq:=£0,r:=@_a;
while(r 1= r - abs b) 2 L0 do q = q + L1 ;
_‘(a<£0/\b2._@_0va2_.§0f\b<£0’i—q'lq))_;
n). op *:+ = (Linta, b) Lint ia-atbxb+ (a<0|absh | 0);

o) op /= (Lzint a, b) L real : (_@_feazié)/(LreaZ:b);
p) op *=(Linta, intb) Lint :
(b'zvol_fig,'_@p:=£7_;f_g_biqp:=p><a;p);

a) op leng = (L int a) long L int : c the long L integral value equivalent

to the value of 'a' ¢ ; {2.2.3.1.d)

| ‘r)b op short = (long L int a) L int : ¢ the L integral value, if it exists, .

equivalent to the value of 'a' e ; {2.2.3.1.4}
s) op odd = (L int albool : abs a +: L2 = L1 ;

t) opsign= (Lint alint ¢ (a>L0 | T lsa<LO |~-711]0);
u) op L = (L int a, b) L compl : (a, b) ; '

10.2.4. Operations on real operands

a) op < = (L real a, b)bool : ¢ true if the value of 'a' is
smaller than that of 'b' and false otherwise ¢ ; 12.2.3.1.c}
b) op <= (L real a, b)bool : (b < a) ;
¢) op == (L real a, b)Jbool : a<b Absa;
d) op # = (L real a, blbool : Ta = b) ;
e) op 2= (L real a, b)Jbool : b sa;
a

1
o

it

f) op > = (L real a, b)bool : b <

g) op - = (L real a, b) L real : c the value of 'a' minus that of 'b' ¢
{2.2.3.1.¢c} ; '

h) op -=(Lreal a) Lrel : L0 - a ;

.
3

il

&



10.2.4. continued

i) op + = (L real a, b) Lreal : a - - Db ;

i) ap+= (Lreal a) Lreal : a ; '1 |

k) op abs = (L real a) Lreal : (a=< L0 | -a | a) ; _

1) op x = (L real a, b) L real : ¢ the value of 'a' times that of ' ¢ ;
{2.2.3.1.c} IR o

m) op / = (L real a, b) L real : ¢ the value of 'a' divided by that of
b' e ; {2.2.3.1.c} | ' .

n) op leng = (L real a) long L real :
e the long L real value equivalent to the value of 'a' ¢ ; {2.2.3.1.4}

o) op short = (long L real a) L real : ¢ the L real value, <f it
exists, equivalent to the value of 'a' ¢ ; {2.2.3.1.d}

p) op round = (L real a) L int : ¢ a L integral value, if one exists,
equivalent to a L real value differing by not more than one-half

from the value of 'a' ¢ ;

a) op sign = (L real a)int : (a>L0 | 1|t a<Lo | 11 0) ;
(L real a) L int : (L int § := L0 ;

r) op entier

while § <ado §i=4g + L1 ;
while § >ado di=d =Ll ; d) s
s) op L= (L real a, b) L compl : (a, b) ;

10.2 .5, Operations on arithmetic operands

(L real a, L int b) L real : a P (L real : b) ;

a) op P =

b) gg£=(_g_§_@£a,g_reaZb)£reaZ:(_I_,reaz;a)pb;;
¢) op R = (L real a, L int b) bool : a R (L real : b) ;
d) op B = (L int a, L real b) bool : (L real : a) Rb ;

¢) op L= (Lzeala, Lintb) L compl : (a, b) ;

£) opi=(Linta, Lreal b) L compl : (a, b) ;

g) op * = (L real a, int b) L real : (L real p := LT ;.

toabs bdop =pxa; (bz0|p|Ll/pl);
10.2.6. Operations on character operands

= (char a, b) bool : abs a < abs b ; {10.1.h}

a) op <

b) op < £ (char-a, b) bool : = (b < a) ;

¢c) op == (char a, b) bool : asbabsa ;
a) op # = (char a, b) bool : —(a=Db) ;



10 .2 .6, continued

e) op 2z = (char a, b) bool : b<a _,"- 
f) op > = (¢har a, b) bool ¢ b <a ;
g) op + = (char a, b) string : (ay b) ;

10.2.7. Complex structures and associa.tea ope’rations‘_ '

a) struct L compl = (L real re, im) ;

b) op re = (L compl a) L real :'re of a ;

¢) op im= (L conpl a) L real : imof a ;

a) _QQ_C_Z_Z?_-_S_=(_Z_J__Cﬂ_ﬂﬁza)é__lﬂ_e_g_?_;LSC[I‘#(?_@_Q‘I‘Z*’_’L‘_I{I_.C.Z”I‘Z)’;

e) op conj = (L compl a) L compl : rea L -ima ; ;
f) op == (L compl a, b) bool : re a=reb Aima=1imb ;
g) op#

(L compl a, b) bool :—(a =D0b) ;

h) op + = (L compl a) L compl : a ;

i) op - = (L compl a) L compl :~realL - ima ; ,
i) op+ = (Lcompla, b) Lcompl : (rca+reb) L (ima+imb) ;
k) op - = (L compl a, b) L compl : (re a -~ reb) 1 (ma -imb) ;
1) op x = (L conpl a, b) L compl : |

(re a x e b ~ima x imb) L (re @ x im b + im a x re b) ;
m) op /= (L comla, b) L gompl : B
(L real d = re(b x conj b) ; L compl n = a x conj b ;

(ren [ d) L (immn /[ d)) ; '
n) op leng = (L compl a) long L compl : leng re a 1 leng im a ;

o) op short = (long L compl a) L compl : short re a L short im a ;

p) op P = (L compl a, L int b) L compl : a P (L compl : b) ;

q) op P= (L compl a, L real b) L compl : a P (L compl : b) ;.
r) op P= (L int a, L compl b) L compl : (L compl :Qa)gb,-,:-
s) op B = (Lrel a, L compl b) L compl ¢ (L compl : a) Pb ;
t) op + = (L compl a, int b) L compl : (L compl p := L1 ; '

toabs bdopi=pxa; (bz2z0|p | L1/ pl);
10.2.8. Bits structures and associated operations

a) struct L bits = ([ 1 ¢ L bits width] bool L F) ; {See 10.1.g}
{The field-selector is hidden from the user in order that he may

. not ‘break open the structure; in particular, he may not subscript.
the field., } | : -
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b)

_ -\
d)

£)

g)
h)

J)

k)
1)

op == (L bu’:s a, b) booZ
(for < to L bits width do ((L F o __f a)E'b] # (L Fo _f b)[v,] l ZJ
true ‘fc_z_Z_s_e_) ‘ . - :

op # = (L Ints a, b) booZ "—(aq = b) _;

op Vv = (L Znts a, b) Lbzts :

(L bm‘:s ¢ ; for i to L. bits width do R

(L F of e)[Z] = (L F of a)lZ] v- (LF_fb)[z] H c)

A= (L bits a, b) L bits :

(L bits ¢ ; for © to L bits width do _

(L F of e)[2] = (L F of allZ] A (L F_j_‘b)['z',] H c)

S

A
il

op (L bits a, b) bool : (a Vv b) =b ;
op 2= (L bits a, b) bool : b < a ;
op. t+ = (L bits a, int b) L bits :

if abs b < L bits width thenL bits ¢ i=a ; to abs b do
(b > 0 | for i from 2 to L bits width do (L F of e)[i=11 =
(L F of e)lil ; (L F of ¢)IL bits width] := false |
for © from L bits width by =1 to 2 do (L F of e)lil:=
(L F of e)li-71 ; (L F of ¢)L71] := false) ; e fi ;
_2_9_1_93=(Lb7,ts a) L int : |
(L int ¢ = L0 ; for i to L bits width cZo
c:=_I_,_2xc+g_b_§_(LF_fa)E7,],c), ' ;
op bin = (Linta) Lbits : if a > L0 then |
Lint b :=a ; L bits ¢ ; for © from L bits width by -1 to 1 do
((LFof e)[] +=odd b ; b 1=b + L2) ; e fi ;
op elem = (int a, L bits D) bool ¢ (L F of b)lal ;
op L btb = ([ 1:] bool a) L bits :
(int n = upb a ; (n < L bits width | L bits ¢ ;
for < to L bits width do (L F of e)li] := (i < L bits width -n|false|
a [7 - L bits width + nl) ; el)) ; : '

10.2.9. Bytes and associated operations

a)

b)
c)
)

struct L bytes = ([1: L bytes width] char L F) ; {See 10.2 B.a and.
10, 1.k} ) ’

op < = (L bytes a, b) bool. : (string : a) < (string : b) ;

QES=“‘(_@_M_e_§a,b)égg_g:'ﬁ(b<a); I

op == (L bytes a, b) bool : a<b Ab <a
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e) op # = (L bytes a, b) bool :—(a = D) ;
£) op 2 = (L bytes a, b) bool : b sa;
g) op > = (L bytes a, b) bool : b < a ;
h) op elem = (int a, L bytes b) cka;{: (L F of b)lal ;
i) op L ctb = (string a) L bytes :
(int n = upb a ; (n < L bytes width | L bytes ¢ ;
for © to L bytes width do (L F of e)li] :=
(2 <n | al2] | mull character) ;el)

10.2.10. Strings and associated operations

a) mode string = [1 : flex] char ;

b) op < = (string a, b) bool :
(1l_7}_§m=gg_b_a,n=yp_lzlb;g§p_7_t_p=(m<nlmln),
int 2 =1 ; boole; (p<1 | n2Tfe:

(¢ i=aldl =blil |t (L =1+ 1) sp el ;
(¢ | m<n | alid <bl<1))) ;

c) op <= (string a, b) bool :—(b < a) ;

a) gg_==(stm'ma,b)booZ:'asb/\bﬁa;

e) op # = (string a, b) bool :"(a = b) ;

f) op 2= (string a, b) bool : b £ a ;

g) op > = (string a, b) bool : b < a ;

h) op R = (string a, char b) bool : a R (string : b) ;

i) op R = (char a, string b) bool : (string ¢ a) R Db ;

j) op + = (string a, b) string : ' '
(int m= upb a, n=upb b ; (7 :m +nl char ¢ ;
ell smli=q ;elm+ 7T :m+nl] :=b 5 ce);

k) op + = (string a, char b) string : a"’+ (stiﬂing 2 b)

1) op + = (char a, string b) string : (string : a) +b ;

{The operations defined in b, h and i imply that if abs "a” < abs '"b",

then nn < Ilall R Ilaff < Ilb” : Ilaall < Ilab" 3 llaall < Ilball 3 Ilabll < "bHB }

10.2.11. Operations combined with assignations

(ref L int a, L int b) ref Lint : a :=a - b ;

(ref L real a, L real b) ref L real : a :=a = b ;

a) op mirus

b) op minus

c) op minus = (ref L compl a, L compl b) ref L compl : a i=a - b ;
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(ref L int a, L Znt b) ref L int : a :=a + D ;

d) op plus = ‘
e) op plus = (ref L real a, L real b), ref L real : a :=a +b ;
f) op plus = (ref L compl a, L compl 'b) ref Lcompl : a :=a +b ;

g) op times = (ref L int a, L int b) ref L int : a :=a X b ;

h) op times = (ref L real a, L real b) ref L real : a :=a xDb ;

i) op times = (ref L compl a, L compl b) ref L compl : a :=a* b ;
J) op overb=(ref L int a, L int b) ref L int : a :=a + b ;

k) op modb = (ref L int a, L int b) ref L int : a :=a +: b ;
1) op div = (ref L real a, L real b) ref L real : a :=a [ b ;
m) op div = (ref L compl a, L compl b) ref L compl : a :=a [/ b ;

n) gpQ=(r_g_ﬁQreaZa,'le_7_zj;_b)r_@i_L_reaZ-'a,Q(_@_reaZ bl
o) op @ = (ref L compl a, L
"p) op @ = (ref L compl a, L real b) ref L compl : a @ (L compl : b) ;

int b) ref L compl : a § (L compl : D) ;

a) op plus = (ref string a, string b) ref string : a :=a + b ;
r)." op prus = (string a, ref string b) ref string : b :=a +bDb ;

s) op plus = (vef string a, char b) ref string : a :=a+ b ;
= (char a, ref string b) ref string : b :=a + b ;

t) op prus

10.3. Standard mathematical constants and functions

a) L real [ pi =¢ a I real value close to w ; see Math. gf Comp.
v. 16, 1962, pp. 80-99 ¢ ;

b)  proec L sqrt = (L real ®) L real : ¢ if « = L0, a L real value
close to the square root of 'x' e

¢) proc L exp = (L real =) L real : ¢ a L real value, if one exists,
close to the ewponential function of 'z' e

d) proc L in = (L real x) L real : ¢ a L real value, if one exists,

+ close to the natural logarithm of 'z' ¢ ;

e) proc L cos = (L real x) L real : ¢ a L real value close to the

cosine of 'xz' ¢ ;

f) proc L arccos = (L real x) L real : ¢ if abs x < L1, a L real
value close to the inverse cosine of 'z',
L0 = L arccos(x) < L pi ¢ ;

g) proc L sin = (L real «) L real : ¢ a L real value close to the

sine of 'x' ¢ ;
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'h) proec L arcsin = (L real x) L real : ¢ if abs x < L1, a L real value

| close to the inverse sine of 'x', abs L arcsin(x) < Lpi / L2 ¢ ;

i) proec L tan = (L real x) L real :
¢ a L real value, if one eacist's_, close to the tangent of 'z' ¢ ;‘

j) proe L arctan = (L real x) L real :
¢ a L real value close to the imverse tangent of 'x',
abs L arctan(x) < Lpi / L2 ¢ ;

K) proc L real L random = L last random := ¢ the next pseudo-random L real
value after L last random from a uniformly distributed sequence on ‘
the interval (L0, _I_,_i) e - | |

1) L real L last random :=L . § ;

10.4. Synchronization operations

a) op down = (ref int dijkstra) : (do(if dijkstra 2 1 then
digkstra minus 1 ; 1 else ¢ <f the closed-statement replacing this

comment ig contained in a unitary-phrase which is a constituent
unitary-phrase of the smallest collateral-phrase, if any, beginning
with a parallel-symbol and containing this closed~statement, then
the elaboration of that unitary-phrase is halted {6.0.2.c} ;
otherwise, the further elaboration is undefined ¢ fi) ; 1 : skip) ;
b) op up = (ref int dijkstra) : (dijkstra plus 1 ; ¢ the elaboration
18 resumed of all phrases whose elaboration is not terminated but
s halted because the name possessed by 'digkstra' referred to a

value smaller than one ¢) ;

{See 2.2.5; for insight into the use of down and up, see E.W. Dijkstra,
Cooperating Sequential Processes, EWD123, Tech. Univ. Eindhoven, 1965,
and also 11,13, }



10.5. Transput declarations {"So it does!" said Pooh. "It goes in!"
"So it does!" said Piglet. "And it comes out!"
"Doesn't it?" said Eeyore. "It ‘goes in
and out like anything.,"
Winnie-the-Pooh, A.A., Milne.}

10.5.0. Transput modes and straightening

10.5.0.1. Transput modes

a) mode % simplout = Iunion(ﬁ Lint %, + L real 4, + L compl %,
bool, char, string) ; | , ’
b) mode % outtype = union(t DL int t, ¥ D L real %, ¥ D bool %,
t D char 1, + D outstruct 1) ;
c) ‘mode % outstruct = c an actual-declaver specifying a mode united
from {4.4.3.a} all modes, except that specified by tamrof,
which are structured from {2.2.4.1.4} only modes from which the

mode specified by outtype is united c;
d) mode % tamrof = struct(string F1 ) ;{See the remarks under 5.5.8);
e) mode % intype = union(t ref D L int +, ¥ ref D L real %,

t ref D bool %, ¥ ref D char %, t ref D outstruct >})

10 5.0. 2. Stralghtenmg

a) op % straightout = (outtype xz) [1 simplout :

¢ the result of "straightening" 'z' ¢ ;

b) op % straightin = (intype x) []1 ref simplout :

¢ the result of straightening 'z' ¢ ;

The result of straightening a given value is a multiple value obtained

in the following steps:

Step 1: If the given value is (refers to) a value from whose mode that
specified by simplout is united, then the result is a new instance of
a multiple value composed of a descriptor consisting of an offset
1 and one quintuple (1, 1, 1, 1, 1) and the given value as its only.
element, and Step 4 is taken;

Step 2: If the‘giVen value is (;efers to) a multiple valﬁe then, letting
n stand for the number of elements of that value, and Y5 for the
result of straightening its i-th element, Step 3 is taken otherwise,
letting n stand for the number of fields of the (of the value_referred
to by the) given value, and y; for the result of straightening its i-th
field, Step 3 is taken ;
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Step 3: If the given value is not (is) a name, then, letting m. stand for
the number of elements of Yo the result is a new instance of a multiple
value composed of a descriptor consisting of an offset 1 and one
quintuple (1, m + .o +m, 1, 1, 1) and elements, the l-th of which,
where 1 =m, + ... +m ., + j, is the (is the name referring to the)
j~th element of Yy for k=1, see, nand j =1, coecy mw, .

Step L4: If the given value is not (is) a name, then the mode of the result
is 'row of' ('row of reference to') followed by the mode specified by

stmplout. , .

»

10.5.1. Channels and files

{aa) '"Channels", "backfiles" and files model the transput devices of

the physical machine used in the implementation.

bb) A channel corresponds to a’device, e.g. & card reader or punch,

a magnetic drum or disc, to part of a device, e.g. a plece of core
memory, the keyboard of a teleprinter, or to a number of devices, e.g.

a bank of tape units or even a set-up in nuclear physics the results

of which are collected by the computer. A channel has certain properties
(10.5.1.1.d: 10.5.1.1.n, table I).
A "random access" channel is one for which set possible (10.5.1.1.e)

is true and a "sequential access" channel is one for which set possible
is false.
The transput devices of some physical machine may be seen in more than
one way as channels with properties. The choice made in an implement-
ation is a matter for individual taste. Some possible choices are given

in table I.

ce) All information on a given channel is to be found in a number of
backfiles. A backfile (10.5.1.1.b) comprises = three~-dimensional array
of integers (bytes of information), the book of the backfile; the lower
bounds of the book are all one, the upperbounds are nonnegative integers,
the maxpage, maxline and maxchar of the backfilej furthermore, the back-
file comp;izes the position of the "end of file", i.e. the page number,
line‘numbér and char number up to which the backfile ié filled with in-
formation, the current position and the "identification-string" of the

backfile.



max nmb files

1

"

1

1

1

properties card reader card punch magnetic tape unit line printer
| reset possible false false true true true false

set péésible false false false false false false

get possible true false true true false false

put possible false true false true true true

bin possible false true false true false false

idf possible false false true true true false
max page 1 1 very large _very large very large very large
max Line large very large 16 large 60 60
max char T2 80 8h large hh 14k

stand comy a U8~ or 6l-character code 6hi-char code some code line-pr code | line-pr code

1

properties magnétic disc magnetic drum paper tape reader tape punch
reset possible true true true false false false
set possible true " false true false false false
get possible true | true true true true false
put posstble true true true false false true
bin possible true true true false true false
idf possible true true true false false false
max page 200 1 1 1 1 1
max line 16 1 256 very large very large very large
max char 128 524088 256 80 150 L
stand conv some code some code some code 5-hodle code T-hole code lathe code
max mb files 10 4 32 1 1 1

sTouueyo oTqrssod swos Jo sotqasdoxd I FIAYIL
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dd) After the elaboration of the declaration of chainbfile (10.5.1.1.c),
all backfiles form the chains of backfiles referenced by chainbfile, each
backfile chained’ to the next one by its field next.

- Examples: o |
a) In a certain implementation, channel six is a line printer.

It has no input information, chainbfile [6] is initialized to

refer to a backfile the book of which is an integer array with upper
bounds 2000, 60 and 144 (2000 pages of continuous stationery), with
both the current position and the end of file at (1, 1, 1) and next
equal to nil. All elements of the book are left undefined.

b). Channel four is a drum, divided into 32 segments each being one page

R of 256 lines of 256 bytes. It has 32 backfiles of input information

(the previous contents of the drum), so chaimnbfile [4] is initialized to
refer to the first backfile of a chain of 32 backfiles, the last one
having next equal to nil. Each of those backfiles has an end of file

at position (2, 1, 1).

c)‘ Channel twenty is a tape unit. It can accommodate one tape at a time;
one input tape is mounted and another tape laid in readiness. Here,
chainbfile [20] is initialized to refer to a chain of two backfiles.

Since it is part of the standard declarations, all input is part of the

program, though not of the particular-program.

ee) A file (10.5.1.2.a) is a structured value which comprizes a reference
to a backfile, and the information necessary for the transput routines to
work with that backfile. A backfile is associated with a file by means of
open (10.5.1.2.b), create (10.5.1.2.c) or establish (10.5.1.2.d). -
A given channel can accommodste a certain number (10.5.1.1.n) of backfiles
at any stage of the elaboration. The association is ended by means of
scrateh (10.5.1.2.u), close(10.5.1.2.8) or Lock (10.5.1.2.t).

ff) When a file is "opened" on a channel for which <df possible is

false, then the first backfile is taken from the chain of backfiles for that
channel, and is made the bfile of the file, obliterating the previous
backfile, if any, of the file.
When a file is opened on a channel for which Zdf possible is true, then,
if the élven identification string is empty, then the first backfile,

and, otherwise, the first backfile which has that identification string,

is taken from the chain of backfiles for the channel; this backfile is made

the bfile of the file.
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| gg) When a file is "established" on a channel, then a backfile is
generated (8.5) with a book of the given size, the given identification=~
string and both the current position and the end of file at (1, 1, f);
when a file is “created" on a channel, then a file is established with

a backfile the book of which has the maximum size for the channel and an

empty string as its identification string.

hh) When a file is "scratched", then its associated backfile is
obliterated.

ii) When a file is "closed", then it is attached to the chain referenced
by chainbfile of the channel. Another file may now be opened with this
backfile by a suitable call of open.

3j) When a file is "locked", then it is attached to the chain referenced

by lockedbfile of the channel. No file can now be opened with this backfile.

kk) A file comprizes some fields of the mode 'procedure boolean',
'procedure with reference to character parameter boolean' or 'procedure
with integral parameter boolean', routines which are called when in

transput certain error situations arise.
After opening or creating a file, the routines provided yield the value

‘false when called, but the progreammer may assign other routines to those
fields, If the elaboration of such a routine is terminated, then the trans-
put routine which called it can take no further action; otherwise, if it
yields the value true, then it is assumed that the error situation has been
remedled in some way, and, if possible, transput goes on, but if it yields
the value false, then undefined is called, i.e., some gensible system action

is taken (rr).

Thesé routines are:

a) logilcal file end, which is called when during input from a file on a
sequential channel the end of file of its backfile is passed. If the
routine yields the value true, then transput goes on, and if it yields

false, then some sensible action is taken.
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c)

Example:
 The programmer wishes to count the number of integers on his input-
tape. The file intape was opened in a surrounding range. If he writes
begin int n := 0 ; logical file end of intape := goto f ;
do(get (intape, loc int) ; n plus 1) ; f : print (n)
end,
then the assignment to the field of intagpe violates the scope restrict-
ions (; the scope of the routine (: goto f) is smaller than the scope
of Zntape), so he has to write ' .
begin int n = 0 ; file auxin := intape ;
logical file end of auxin := goto f ;
égfget(auxin, loc int) ; nplus 1) ; £ : print (n)
end.,

physical file end, which is called when the maxpage, the maxline or
the maxchar of the backfile of a file is exceeded.
If the routine yields the value true, then transput goes on, and if
it yields false, then some sensible action is taken.
Example:

The programmer wishes automatically to give a new line at the end of
a line and a new page at the end of a page on his file f :

proc bool new.line page = :

((line ended (f) | new line (f)) ;

(page ended (f) | new page (f)) ; true) ;

char error, which is called

when, during formatted input, a character is read which does not
agree with the frame specifying it (5.5.1.m) or

when, during input, at the current position an uninterpretable character
is present (10.5.1.nn),

with a reference to a character, suggested as a replacement.

The routine provided by the programmer may give some other character

instead of the suggested one. If the routine yields true, then that

suggested character as possibly modified by the routine is used, and,

3

if it yields false, then some sensible action is taken.



10.5.1. continued 4"

Example:
The programmer wishes to print a list of all such disagreements. He
assigns to the field char error of his file f
((ref char sugg) bool :
char k ; backspace (f) ; int p = page number (f),
1L = line number (f), ¢ = char number (f) ; get (f,k) ;
print ((new line, "at", p, 1, ¢, "present.,'""", K,

IHIII.’ . suggested;llll”" Sugg, IIIIII. H)) 3 true )) .

d) wvalue error, which is cealled when during formatted transput an attempt
is made to transput a value under control of a picture with which it
is not compatible, or when the number of frames is not sufficient.

If the routine yields true, then the current value and picture are
skipped, i.e., transput goes on at 5.5.1.dd Step 5; if the routine
yields false, then first, on output, the value is output by put, and

next some sensible action is taken.

e) format end, which is called when during formatted transput the format
is exhausted while still some value remains to be transput.
If the routine yields true, then transput goes on (so the routine
must have provided a new format for the file), and, if the
routine yields false, then the current format is repeated,ki.e.,

first picture again is made to be the current picture of the file.

f) other error, which is called with some actual-integral-parameter,
when during transput some other error situation arises. ‘
No call of this routine occurs explicitly in the standard-prelude,
and neither the meaning of its actual-parameter nor that of the value
vielded, is defined in this Report.
This routine may, in some implementation, be called when an incorrig-.
ible hardware error occurs which makes transput involving this file
impossible. (The programmer may provide a routine which then closes the

file and opens it on some obther channel.)

11) The comv of a file is used by the transput routines in the conversion of -
characters to and from integers in the Book of the bfile of the file.
After opening, creating or establishing s filé, stand conv of the
channel is used, but some other "conversion key" may be provided by the

progremmer by a call of make conv (10.5.1.88),
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N Qp Qutppt, tﬁé.giyen cHaracter ig convérted to‘fﬁat intégér, if any,
in the'conversipn key, wﬁgsé ordinal numﬁér is:tﬁé intégral eqﬁivalént :
of that character; what action iIs taken when an attempt is made to convert a
character with an integral eqﬁi&alént exceeding the upper bound of the
conversion key, is left undefined ;

on input, the givep integer is converted to that charactef, if any,
© whose integral equivalent is the lowest ordinal number for which the element
of the”conyersion key is equal to that given integer; if no such character
exigts, then char error is called with a space (parity error, nonexisteﬁt

code).

mm) The #erm of a file is used in reading strings of a variable numbér
of characters, where either the end of line or any of the charactérs of
term serves as a terminator (see 5.5.1.jj and 10.5.2.2.4d). This
terminator string may he provided by the programmér.

nn) On a channel for which reset boééible‘is”tfde,ua file may be
"reset", causing its position to be (1, 1, 1). On a sequential access
file the end of file remains at the position up to which the backfile
contains information, but when after resetting any output is done, the

end of file is first set at the current position.

00) On a random access channel a file may be "set", causing its position

to be the given position.

pp) On files opened on &.sequential access channel, binary and nonbinary
transput may not be alternated, i.e. after opening, creating or resetting
such a file, either is possible, but, once one has taken place on the file,

the other may not until the file has been reset again.

qq) On files opened on a sequential.access channel for which put
. possible and get possible both are true, nonbinaryinput and output may

be alternated, but it is not allowed to read past the end of
fileo ) . . ) ‘w;

rr) When in transput something happens which is left undefined, for in-
stance by an explicit call of undefined (10.5.1.2.y), this does not imply
that the elaboration is catastrophically and immediately terminated, but
only that some sensible action is taken which is not or cannot be de-
scribed by this Report alone, and is generally implementation dependent.
For instance, in some implementation it may be possible to set a tape
unit to any position within the logical file, even if set possible is

false (o0o0).
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Example:

begin file f1, f2 ; [1 : 10000 int = ; int n ;
open (f1, , channel 2) ;
f2 :=f1; ¢ nbw f1 and f2 can be used interchangeably ¢
make conv(fl, flexocode) ; make comv(f2, telexcode) ;
¢ now f1 and F2 use different codes; flexocode and
telexcode are defined in the library declaration for
this implementation ¢ '
reset (f1) ; ¢ consequently f2 is reset too ¢
for i while —logical file ended (f1) do
(n :=1 ; get (f1, x=[2])) ;
¢ too bad if there are more than 10000 integers in the input ¢
reset (f1) ;
for © to n do put (f2, x[<]) ;
reset (f2) ; close (f2)
¢ f1 is now closed too ¢

end }



10.5.1.1. Channels

a) int rmb channels = ¢ an integral—-clause indicating the number of
_ transput ehannels in the zmplementatwn 4
) -S'tlf’uct % Bf‘tZe (L1: flex, 1 : flex, 1 : iZex]mt Z:'vooR

. znt lpage, ZZine,' Zchaﬁ, page, line, char, maxpage, maxline,

maxchar, string tdf, ge_ﬁ bftile nextL )
¢) [7: mb channels] rvef bfile % cha'mbfile = ¢ some appropriate

initialization {see 10.5.1.dd} ¢;

a) L[7: nmb channels] bool reset poss/ine = ¢ a row-of-boolean-clause,

indicating which of the phyéical devices corresponding to the
charnels allow resetting {e.g. rewinding of a magnetic tape} c;
é) L7 ¢ mmb channels] bool set possible = ¢ a row-of-boolean-clause,
~ indicating which devices can be accessed at random ¢;
T) '. L7 : »mmb channels] bool get poséible = ¢ a row-of-boolean clause,
: indicating which devices can be used for input ¢;
-8) [7: mmb channels] bool put possible = ¢ a row-of-boolean-clause,
indicating which devices can be used for output ¢;
h) (7 : mb channels] bool bin possible = ¢ a row-of-boolean—clause,
. tndicating which devices can be used for binary transput c; |
1) 07 : mmb charmels] bool <df possible = ¢ a row-of-boolean—clause,
‘ indicating on which devices backfiles have an identification ¢;
3) L7 : mmb channels] int max page = ¢ a .row-of—integral—clause,
giving the maximum number of pag-e-s per file for the channels ¢;
k) L7 : mnb channels] int max line = ¢ a row-of-integral-clause,
giving the maximun number of lines per page c;
1) L7 : nmb channels] int max char = ¢ a row-of-integral-clause,
giving the maximum mumber of characters per line c;

m) [7 ¢ b channels] stz'uct(proc L] nt F) stcmd conv = ¢ a elauéé :

giving the standard converswn Zceya for the chanrzeis {‘, other

conversmn keys may b_e provlded by the Zzbrary«prelude} e

n) [7 : mmb channels] int max mmb files = ca r*ow—of-zntegr‘al—clause,'

giving the maximm numbers of files the channels can accommodate
o) L[7 : mmdb channels] int % nmb opened files;

for © to mmb channels do nmmb opened files [Z] := 0;
p) L7 ¢ mmb channels] ref bfile % lockedbfile;

for i to mmb channels do lockedbfile [1] i= nil;

Q
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q) ' proc file available = (int channel) bool :
nmb opened files [channell < max nmb files Lchannell; |

10.5.1.2. Files

a) ‘struct file = (bfile % bfile, int % chan, ref int % forp,
N ref bool % state def, % state get, % state bin, % opened,
ref string % format, string term, [0 : flex] int conv,
proc bool logical file end, physical file end, format end,
value error, proc (ref char) boo.Z char error, proc (int) bool

other error) ; ‘
b) proc open = (ref file file, string idf, int ch) :
Zf file available (ch)
‘then ref ref bfile bf := chainbfile [ch] ;
while (yef bfile : bf) :#: nil do
(idf of bf = idf v idf = "" v < <df possiblelch] |
L | bf i= next of bf) ; »wzdefiﬁed.
L : file := (bf, ch, int := 0, bool := false,
bool, bool, bool := true, nil, "" , F of stand convlehl, false,
false, false, false, (ref char a) bool : false , skip] ;
(ref vef Bfile : BfS := next of Bf i -
numb opened files Lch] plus 1
else undefined fi;
¢) proc create = (ref file file, int ch) :
establish (file, ynax page [chl, max line [ehl, max char [chl, ch) ;
d) proc establish = (ref file file, string idf, int mp, ml, me, ch) :
if file available (ch) A mp < max page [ch] A
ml < max line [ch] A me < max char [ch]
then bfile bf = (L1 : mp, 1: ml, 1 : mel int, 1, 7, 1,1, 1, 1,
mp, mil, me, tdf, nil) ; ’
file := (bfile := Df, int := ch, int := 0, bool := false, _
bool, bool, bool := true, nil, » ¥ of stand convlehl, false; false,

false, false, (ref char a) bool : false. , sk’k}) N
mmb opened files [chl plus 7
else undefined fi ;
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e) proc set = (file file, int p, 1, ) :
Zf set possible Lchan of filel A opened of file

then page of bfile of file :=p ; line of bfile of file := 1 ;
char of bfile of file := ¢ ; check ple (file)
A else wndefined fi; ' '
f) proc reset = (file file) :
if reset possible [chan of filel A opened of file
then page of bfile of file := 1 ; line of bfile of file := 1 ;

char of bfile of file := 1 ; state def of file := false
else undefined fi;
g) proc % check ple = (file file) : if opened of file
then (—(logical file ended (fv,Ze) | Zogical file end of file |:
line ended (file) Vv page ended (file) v file ended (file)
| physical file end of file | true) | undefined)
else undefined fi;
h) proc line ‘ended = file file) bool : (opened of file |
int e = char of bfile of file ; ¢ < 0 V ¢ > max char of bfile of
file); ‘ |
i) proc page ended = (file file) bool : (opened of file |
int 1 = line of bfile of file ; 1 < 0 vV 1 > max line of bfile of
file); |
J) proc file ended = (file file) bool : (opened of file |
int p = page of bfile of file ; p < 0 vV p > max page of bfile _.t
file);
k) proc logical file ended = (file file) bool : (opened of file |:
— set possible [chan of filel A state def of file A state get of file |
bfile b = Dfile of file ;
int p = page of b, lp = Ilpage of b, 1 = line of b, 1l = lline of b,
char of b, le = lchar of b ;
(p<iIp | false |:. p>1lp | true |:. T <1l | false |+ 1> 11 |
true | ¢ = le) | false);
1) proc % get string = (file file, ref [1: ettherichar sl :
if get possible [chan of filel A opened of file
then ref int p = page of bfile of file, L = line of bfile of file,
@ = char of bfile of file ;

c
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if = set possible [ehan of filel thef state def of file
then (state bin of file | undefined) fi ;
 state def of file := state get of file := true ;
state bin of file := false ;
for < to upb s do
(check ple (fetel 3 for § from 0 to uph conv of file do
((conv of file)lj] = (Book of Bfile of filellp,l,e] | s[i] :=
repr J 5 e) 5 char k :="." ; s[i] := ((char ervor of file)(k) .|
K | undefined;"."). e : ¢ plus 1) B
else undefined fi;
m) proc % put string = (file file, string s) :
if put possible [chan of filel A opened of file
then ref int p = page of bfile of file, L = line of bfile of file,
e = char of bfile of file ;
if T set possible [eh] thef state def of file ' .
then (state bin of file | undefined) fi ;
state get of file := state bin of file := false ;
state def of file := true ;
(check ple (file) ; (book of bfile of file)lp, 1, el :=
" eonw of filellabs s(z1] ; ¢ plus 7 ;
(p = Ilpage of bfile of file A 1 = lline of bfile of file
| (e > lehar of bfile of file | lchar of bfile of file := c)
| Ipage of bfile of file :=p ; lline of bfile of file := 1 ;
lohar of bfile of file := c))
else undefined fi;
n) proc char in string = (char e, ref int <, string s) bool :
(for k to upb s do (¢ = s[kl | © = k; 1) ; false. 1 : true) ;
o) proc space = (file file) :
(char of bfile _o_ifﬁle plus 1 ; check ple (file)) ;
p) proc backspace = (file file) :
(char of Dfile of file minus 1 ; check ple (file));
q) proc new line = (file file) :
(line of bfile of file plus 1 ; char of bfile of file :=1 ;
check ple (file));
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r) proc new page = (file file) :
(page of bfile of file plus 1 ; line of bfile of file := char of
bfile of file := 1 ; check ple (file));
s) proc close = (file file)
(opened o _f f‘zZe | int ch = chan of file:;
next of bfile of file := chainbfv,' le[ el ,
chainbfilelch] := bfile of file ;
opened of fil‘e = false ; nmb opened files [ch]minué 1) ;
%) proc lock = (file file) : o
opened of file | int ch = chan o of file ; ref _M bf = bfile of file ;
page of Df := line of bf := char o of bf :
next of bf := lockedbfilelch] : 3
lockedbfilelch] := bf ;
opened of file := false ; nmb opened filesch] minus 1) ;

u) proc seratch = (file file) :

(opened of file | opened of file := false ;

nmb opened fileslchan of filel minus 1) ;
(file f) int : (opened of f | char of bfile of f) ;
(file f) int : (opened of f | line of bfile of f) ;
(file f) int. : (opened of f | page of bfile of f) ;

¢ some sengtble system action {10.5.1. vv} e ;

]

v) proc char number

W) proc line mumber
x) proc page number
y) proc % undefined

]

z) proc make conv (ref file f, struct (proec [] int Fl eJ
conv of f :=F of ¢ ;

10.5.1.3. Standard channels and files

a) int stand in channel = ¢ an integral-clause such that get possible
[stand in channell] is true and idf possible ['stand in channel] is ..
false ¢ ;

b) int stand out channel = ¢ an integral-clause such that put possible
[stand out channell is true and idf possible [stand out channell-is

false ¢ ;

¢) int stand back channel
Letand back channell, set possible [stand back charnell, get possible

[stand back channell, put possible [stand back channell] and bin possible
Lstand back channell are true and <df possible Lstand back channell is

= ¢ an integral-clause such that reset possible

false ¢ ;
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a) file % f ; open (f, stand in channel) ;
file stand in = f ;

e) open (f,, stand out channel) ;
[ile stand out = f ;

f) open (f,, stand back channel) ;
file stand back = f ;

{Certain "standard files" (d, e, f) need not (and cannot) be opened
by the programmer, but are opened for him in the standard declarations; ’
print (10.5.2.1.a) can be used for output on stand out, read (10.5.2.2.a)
for input from stand inm, and write bin (10.5.L.1.a) and read bin

(10.5.4.2.a) for transput involving stand back, = The programmer need not
close these standard files, since they are locked in the Standard-postlude. }

10.5.2. Formatless transput

10.5.2.1. Formatless output

{For formatless output, print and put can be used. The elements of

the given value of the mode specified by [] union (outtype, proc (file))

are treated one after the other; if an element is of the mode specified
by proc (file) (i.e. a "layout procedure"), then it is called with the
file as its parameter; otherwise, it is straightened (10.5.0.2), and the
resulting values are output on the given file one after the other, as

follows:

aa) If the mode of the value is specified by L int, then first, if there
is not enough room on the line for I int width + 2 characters, then
this room is made by giving a new line and, if the page is full, giving
a new page; next, when not at the beginning of a line, a space is given
and the value is edited as if under control of the picture

n(L int width ~ 1)z+d. _ ‘
bb) If the mode of the value is specified by L real, then, first, if

there is not enough room on the line for L real width + L expwidth + §
characters, then this room is mede; next, when not at the beginning of
a line, a space is given, and the value is edited as if under control of

the picture +d.n(L real width - 1)den(L expwidth = 1)z+d.



10.5.2.1. continued

cc) If the mode of the value is specified by L compl, then first,
if there is not enough room on the line for 2 x (L real wédtk +
L exp width + 5) + 2 characters, then this room is made; next, when
not at the beginning of a new line a space is given, and the value
is edited as if under control of the picture +d.n(L real width - 1)
den(L expwidth - 1)z+d "." ¢ + d.n(L real width -1)den(L expwidth
- 1)z+d, '
dd) If the mode of the value is specified by [] char then its elements
are written one after the other. |
ee) If 'bI'le.mode of the value is specified by char then, first if the
line is full room is made; then the character is written.
ff) If the mode of the value is specified by bool then, if the value
is true (false) then the character possessed By tﬁg flip-~ (flop-)
symbol is output as in ee. }

a) proc print = ([1 union (outtype, proc (file)) x) :

put (stand out, x) ;
b) proc put = (file file; [71 :1 union (outtype, proc (file)) x) :
begin outtype ot ; proc (file) pf ;
for i to wb e do
(ot ::= xl<]; pf ::= x2[Z] | pf (file)l
L7 :] simplout y = straightout ot ;
for g to upb y do
(string s ; bool b ; char ¢ ;
(f (L int 2 ; (£ ::= ylgl |
s =L int string (<, L int width + 7, 10) ;

sign supp zero (s, 1, L int width [[} ] ;
(¥ (L real x ; (x ::=yljl | s := L real conv (x)))}) ;
(¥ (L compl 2 ; (3 ::= yljl | s := L real conv (re z)
+ ", " L real conv (im 2))) %) ;
(b i:=ylgl | s = (b | "1" | "9")) ; v
(¢ ::= ylgl | nextple (file) ; put string (file, c¢) ; end) ;
(s ::= ylgl | putstring (file, s) ; end) ;
ref int ¢ = char of bfile of file ; int ¢ 1 =c, n=upb s ;
ecplus (e 1 =1 |n]|n+1);
(line ended (file) | next ple (file) | e :=c 1) ;
put string (file, (¢ =1 | s | "." + s8)) ;
end : skip))

end 3

————






10.5.2, 1. coutinued 2

¢) proc L int string = (L int x, int w, r) string : (r > 1 Ar <17 |
stying ¢ = ; L int n :=abs x ; L int lr = Kr ; A
for © tow = 1 do (dig char (S (n #:.1lr)) prus e¢ ; n overb 1lr);
(n=L0 | (¢ 2L0 | ™" | V) ¢ | ") | ") ;
d) proc L real string = (L real x, int w, d, e) string :
(d20ArAe>0nrd+e+dsw | |
. Lreal g =L10 4+ (w-d~e~4) ; Lreal h=g xL.1T;
Lreal y :=ghsx; intp :=0;
while y = g do (y times L.1 ; p plus 1) ; .
(y > L0 | whiley <hdo Ap-1>-10+ e do (y times L10; p minus 1));
(y + L5 xL1 +dzgly =h; pplus i) ; A '
Ldec string (¢ 20 | y | ~y), w-e -2, d) +
Mo+ int string (p, e + 1, 10)) ;
e) proc L dec string = (L real x, int w, d) string :
.(_@;s_x<£,_70+(w—d-Z)'/\dZOAd-l-stlstrings:=_;
L real y = (abs & + L.5 x LT +d) x L1 + (w~d=~2);
for © to w - 2 do s plus dig char (int ¢ =8 entier (ytimes LI10) ;
y minus K c 5 c)) ;
(xéol”+”I”~”)+s[7:w-—d-2]+".”+s[w-d-—7:]),'
£) proc % dig char = (int x) char : ("07123456789abedef"” [x + 11 ) ;

{In connection with 10.5.2.1.c,d,e, see Table II.}

g) proc % sign supp zero = (ref string e, int L, u) :
for i from 1 + 1 to u while o1 = "0" do
(elZ] = el - 7] ; e[z - 1] := ") ;
h) iZnt L int width = (int ¢ =1 ;
while L10 * (¢ = 1) < L1 x L max int do ¢ plus 1 ; c) ;
i) int L real width=1- S entiterl In (L small real) |/ L In (L10)) ;
j) iInt L exp width = 1 + § entier
(L In (L In (L max real) / L In (L10)) / L In (L10)) ;
k) proc % L real comw = ( L real x) string : V

(string s := L real string (x, L real width + L exp width + 4,

L real width - 1, L exp width) ; sign supp zero (s, L real width + 4,
L real width + L exp width + 3) ; 8) ; '
(file file) : (opened of file |

(iine ended (file) | new line (file)) ;

(page ended (file) | new page (filell);

i

1) proc % nextple



10.5.2.2, Formatless input

{For formatless input, read and get can be used. The elements of the

given value of the mode specified by [] uwnion (intype, proc (file)) are

treated one after the other; if an element is a layout procedure, then it

is called with the file as its parameter; otherwise, it is straightened

(10.5.0.2), and to the resulting names values are assigned, input from

the given file as follows:

aa) If the name refers to a value whose mode is specified by L Znt, then,
first the file is searched for the first character that is not a space
(giving new lines and pages as necessary); next the largest string is
read fromithe file that could be indited under control of some ‘
picture of the form 7(K2)dd or +n(k1J"."n(k2)dd; this string is converted
to an integer by L string int. |

bb) If the name refers to a value whose mode is specified by L real, then,
first the file is searched for the first character that is not a space;
next the largest string is read from the file that could be in-
dited under control of a picture of the form +n(k7)". "n(kd)d or n(ka2)d
followed by .n(k3)dd or ds. possibly followed by en(kd) ”_,__” + n(ks)m. "
n(k6)dd or en(k5)"."n(k6)dd; this string is converted to -

a real number by L string real.

cc) If the name refers to a value whose mode is specified by L compl, then,
first a real number is input as in bbandassigned to the real part;
next the file is searched for the first character that is not a space;
next a plus i times is expected; finally, a real number is input and
assigned to the imaginary part.

dd) If the name refers to a value whose mode is specified by [] char, then,
if both upper- and lowerstate of the value are one then as many chafacters
are read as the value has elements; if not both states are one, then
characters are read from the line under control of the terminator string
referenced by the file (5.5.1.JJ, 10.5.1.mm); the string with those cha-
racters as its elements is then the resulting value.

ee) If the name refers to a value whose mode is specified by char, then,
first, if the line is full a new line is given, and, if the page is full,

a new page is given; next the character is read from the file.
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ff) If the name refers to a value ﬁhose mode is specified by bool, then,
first the file is searched for the first character that is not a space;
then a character is read; if this character is that possessed by the flip-
(flop-)symbol , then the resulting value is true (false); if the character

is neither of those, then the further elaboration is undefined. }

a) proc read = (L1 union (intype, proc (file)) =) :
get (stand in, x) ;
'b) proc get = (file file, [1 : 1 union (intype, proc (file)) =) :
begin intype it ; proc (file) pf ; char k ; priority ! =8, ? = 8 ;
for & to uph @ do |
(it = 2l2] ;5 pf ::= x[Z] | pf (file)
L7 ¢ ] pref stmplout y = straightin it ;

op ? = (string s) bool :
(outside (file) | false |: get string (file, k) ;
char in string (k, loc int, s) |
true | backspace (file) ; false) ;
op [ = (string s, char c¢) char :
(ge+ string (lee, k) 3 ch,:w in stmng (k, loc int, s) | & |

char sugg s ( ( c&ar error o ___ﬁ filel (sugg) |

suQ’g 1 undef‘med c][
| proc skip spaces = :“while (newtple(file) ; ? ".") do skip ;
proc string read dig = string : ,

(string ¢ := "0123456789"!"0" ; while ? "0123456789" do t plus k; t) ; .
proc string read num = string :

(char t := (skipspaces; ?"+=" | k | "+") ;
uhile 2 "." do skip ; t + read dig) ;
proec String read reql = stm,ng :

(string ¢ := read mum ; (? "." | t plus "." + read dig ;
(? ”elo”'l t plus ”'10” | read num) ; t) ;
for g to upb y do
(ref bool bb ; ref char cc ; ref string ss ;
(+ (ref L int << ; (i ::= y[4] |
‘ (ref L int : i2) := L string int (vead num, 10))) %) ;
- (+ (rvef L rgaZ xx 5 (xx ::= yl[g]|
(ref L real : wx) := L string real (read rveal))) %) 3
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(4 (ref L compl 2z ; (zz i:= W51 | get (file, re of az) ;
skip spaces "”i"”'l” ; get (file, im o of az)))}) ;

(bb ::= ylgl | skip spaces ;i (ref bool bb) :=

(2 "1_" | true |1 ? "0" | false | undefined; true)) ;

ylgd | nextplc (fi’l,,e) ; get stm‘ﬁg (file, ce)) ;

i

(ce ::
yLdl |+ lus ss n ups es | get string (file, ss L1). |

i

(ss i
string t i= ; whﬂe {line ended (file) | false |:
? term of file | backspace (file) ; f‘alse | true)do t plus k ;

(ref string : ss) := _
tlat(lws 8s | lwb ss |: ups es | 1~ uph t + upb ss | 1)])))3@_2“;

c) ;2_____ L string int = (string «, int r) L int :
(r>7Ar<77I.L_;@gnw_@p;gmlrmgg«;%wmwx;
‘for i from 2 to wdo m i=mn x Ly + K (int d = char dig (x[Z]) ;
(d < | d); (2011 = ™" | n |2 gl7] = """ | wn)) ;
d)" proc L string real = '(st:mlng; x) L real :
(int e ; ((char in string ("1o", e, x) 'l'ﬁq |
char in string ("e", e, x)) | L string dec F(_mEZ e - 11)x

L10 t string int (xle + 1:1,10) | L string deec (xJJ) ;

e) proc L string dec = (string «) L real : (int w = upb x ;

Lreql v := LO ; int p 5 (char in stm'ng (”., "ops x) |
7 :w- 2] char s = x[2 : p-—7]+pr+7],

for i tow~ 2 dor s=Lwxuop+

K (int d = char dig (sL2]) ; (d < 10 ( dl) ;

(l?1] = """ | p | 2l7] = "= | «p) x L, T 4 (w=p) |
L string dec. (x + "."))) ;

£) proc % char dig = (ghar x) int :
(mt Z 3 (char in stmng (2, Z, "0723406789abcd@f") I z - 7 J
undefmed a))

g) proc % outside = (file f) bool : line ended (f) v page ended (f) v L
file ended (f) ;

10.5.3. Formatted transput

{For the significance of formats see format-denotations (5.5).}

a) Erocyfomat = (file file, tamrof tamrof) :
(forp of file := 1 ; format of file := collection list pack
("(" + F1 of tamrof + "), loc int = 1)) ;

L

i
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b)

c);.

)

e')’

f)

g)

h)

i)

/

21"00‘% collection list pack = (string s, ref int p) string :

(string t := collection (s, p) ;
while slpl = "," do & plus "," + collection (s, p) ;
pplus 1 ; t);

proc % collection = (stﬂng g, ref int p) string :
(int n, q 5 string f-:= (p plus 1 ; <insertion (s, p)) ;
q :=p ; replicator (s, p, n) ;
(slpl = "(" | string t = collection list pack (s, p) ;
tondo fplust | p s=q ; f plus pleture (s, p, Loell : 141 int)) ;

f + insertion (s, pl) ;

.proc % insertion = (gtrings, ref int p) string :

(int q = p ; skip imsertion (s, p) ; slq ¢ p ~11) ;
proc % skip insertion = (string s, ref int p) :
while (p > upb s | false |: skip align (s, p) | true |
skip lit (s, p)) do skip ;
proc % skip dlign = (gtring &, ref int p) bool :
@'_@_q = p ; replicator (s, p, loc int) ;
(char in string (slpl, loc int, "z y p L k") |
pplus 1 ;3 true | p = q ; false)) ;
proc % replicator = (string s, ref int p, n) :

(string t = ; while char in string
(slpl, loc int, "0123456789") do (t plus slpl ; p plus 1) ;
no= (t=""1 7| string <nt (™" + E, 710))) ;

proc % skip lit = (string s, ref int p) bool :

(int q = p ; replicator (s, p, loc int) ;
(S[p] = hnun l Mﬁ (sl:p E_EZ}Z 7] = M l s[p E_L_Z_"_,i 7] = HHNH
true) do skip ; true | p = q ; false)) ;
proc % picture = (string format, ref int p,
refl] int frame) string :
begin int n ; int po = p ; priority ? = 8 ; bool a ;
op ? = (string s) bool : :
(skip insertion (format, p) ; p > upb format | false |
int q = ps replicator (format, p, n) ;a :=q =p ;

(formatlpl = "s" | p plus 1) ;
(char in string (format [pl, loc int, s) |
« pplus 1 ; true | p :=q ; falgse)) ;

w



10.5.3. cont-inued 2
proc intreal pattern = (refll : 7] int frame) bool :
((num mould (framel® : 41 ) | framelll:= 1 ; 1) ;
(2 " " |y mum mould (frmé[&: 51 ) | framell] :=2 ; 1) ;
(2 "e" |: mum mould (ﬁame,w 7T )] frame"U]:;:‘ 33 1) ;
false. 1 : true) ;-

proc num mould = (refll : 3].' int frame) kool :
((7 "o" | framel1] :=n) ; (2 "a" | framel3] plus n) ;
(7 "t | framel2] =1 ¢ 2 U=t | franel2] := 2) ;
while 7 "dz" ig_f?mne[(s’] plus n ;
formatlpl = ", " v formatlpl = """ v formatlpl = ")") ;
proc string mould = (refl] int frame) bool : (? "t" | true |
while ? "a" do framel4lplus n ; formatlpl = "," v '
formatlpl = ")) ; , |
for < to 14 do framel<] := 0 ; framel2] := 10 ;
(intreal pattern (framell : 71) | (2 " |
framelll plus 2 ; intreal pattern (framel8 : 141)) ; end) ;
(string mould (frame)| framell] := ( frameld4]l =1 A a | 9 |
6) ; end) ; (2 "B" | framell] := 8 |: 2 "e" | framell] := 7 |
framell1] := 0 ; end) ; ’
(formatlp] = "(" |
while ? "(," do skip lit (format, p) ; p plus 1) ;

[}

end: skip imsertion (format, p) ; format [po : p = 11
end ;

{In connection with 10.5.3.i see Table IIT.}

10.5.3.1. Formatted output

a) proc outf = (file file, tamrof tamrof,[] outtype x) :
(format (file, tamrof) ; out (file, x=)) ;
b) proc out = (file file, [T :1 cuttype &) :
begin string format = format of file; ref int p = forp of file ;
for k to upb  do
(L7 21 simplout y = straightout x[k] ; int q, § = 0 ;
L7 ¢ 74lint frame ; ‘




10.5.3.1. continued

krep.- ) g}___u§_‘7 3 step :
while (do insertion (file, fomat, p) 3 p> upb f‘omat [
. false | formatlpl = ",") doppm_j (7 >upb y | end) ;
’ (p > upb format | (—format end of file | p s=1 ) ; step) s
q i=p; pwture (format, q, frme) ;
( j?rcmze[?] l int, real, real, compl, compZ stmng_, inteh,
bools char) ;
int: (¥ (Lint ©; (4 1= yldd | ‘
edit L int (file, 1:_, format, p, frame) ; r'ep)) %) ;3 incomp ;
real: (¥ (L real xz g (x: yEg] | '
edit L reql (sze, x, fomat,p, frame) ; rep)) $) 5
(¥ (L int ©; (€ :=ylgl |
edit L real ( f‘LZe, 7,, fomat, Ds ﬁ*ame) rep)) $) ; Zncomp ;.
compl: (% (L compl z 5 (3 = yljl |
| edit L compl (f'v,'Ze_‘ 3, format, p, frame) ; repl)) %) ;
(4 (Lreal @ ; (x ::= ylg] | |
edit L compl ( sze, @, format, p, frame) ; rep)) 1) ;
(¥ (L Znt 2 ; (T s:= ylgd | .
edit L compl (ftZe, i, format, p, frame) ; rep)) ) ; incomp ;
string: ([flex : flex'] char & ;
(8 1= yldl |: framel4] = 0 | put (file, &) |
edit string (file, sl1, format, p, frame) ; rep)) ;
char: (char cjle ti= yl[j] | _
edit string (file, e, format, p, frame) ; rep)) ; incomp ;

- intch: (int 2 5 (2 = ylgl |
edit choice (file, i, format, p) ; rep)) ; incomp ;
bool: (bool b ; b 1= yl41 | -
edit bool (file, b, format, pl. ; repl)) ;
incomp: (value error of file | rep | put (file, y[g]) 3 undefined) ;
end : skip)

end ;



10.5.3.'1 . continued 2

4 c) R___op_V edif L int = (_fz,_Z_e_ f, L zm‘; Z, stmng f‘oz’mat
vef int p, [lint fr) : :
(stmng s = I int stmng (Z, fr[4] + 1, fr[2])
(g = " | (mvalue error of f | put (f', z) s undefmed) |
edit string (f, s, format, p, fr')))

\‘,

da) proc % edit L real = (file f, L real «, stmng format
ref int p, Llint fr) :
" (string s = stringed L real (x, frl; int & =~ 1;

(1 char in string (10", ©, s) | char in string (e, t, s))
(t = upb s | ( —wvalue error of f | put (fyi) ; undefmed) |
edit stmng (f', s, format, p, frl))); ' :



10.5.30 10 COn‘tinued 3

e) p_r__*é_c_ % stringed veal = (L real x, L1 int fr) string :
C (frl71 = 2 | L dec string (x, fr(4] + fr(5] + 2, frl51) | |
| L veal string (m, frl4] + fo(51 + frl7] +-4, frL6], fel73)) 5
£) p_ﬁg_g % edit L comp-Z = (file f, L compl ER E]‘gi_zz_v_b_,fr) : '
edit string (f, (L1 : 14) int g = fr ; g [11 mimus 2 ;
etringed L real (re 2, gl71 : 71) + " "+ stringed L real
(im 2z, gl8 : 141)), format, p, fr) ;
g) proc % edit string = (file f, string x, format,
- ref int p, U] int frame) ; |
.begin int pli= 1, n ; bool supp ; string e := x ; Priority ? =8 ;
‘ op. 7 = (stfving 8) bool: ‘ A
(do insertion (file, format, p) 5 p > upb format |
false | int q = p ; replicator (format, p, n) ;
(supp := format(pl = "s" | p plus 7) ;
(char in string (formatlpl, loc int, 8) |
pplus 1.; true | p :=q 5 false)) ;
proc copy = ({—supp | put string (f, slp1l)) ; pl plus 1) ;
proc intveal mould = :
(? "p! 5 sign mould (frame(3l) ; int mould ;
(2 """ 1 copy ; int mould |: slpll= " " | pl plus 1) ;
(? "e" | copy ; sign mould (framel6l) ; <int mould)) ;

proc sign mould = (int sign) : (sign = 0 | (g[pl] = "=t |;
-~ value error of file | undefined) ;-
S[?”, 5".('.9[1.97] - Il+n‘] (sign I'"‘*‘", IILII) ‘ ) 3
(7 "z" | sign supp zero (s, pl, pl +n) | n = 0) ;
ton+1doecopy; pplus 1) ; '
proc int mould = : _
(L : (7 "3" | bool zs :i= true ; to n do
(slp7] = "0" A zs | put string (file, ".") ;
pT plus 7 | zs := false ; copy) ; 1) ;
(7 "d" | to n do copy ; 1)) ; .
pro¢ string mould = :
while ' ? g do to n do copy ;
(framel1] = 6 v frame[1] = g | string mould |: intreal mould ;
framel1]l > 8 | p plus T ; copy ; intreal mould)

&

end ;



10.5.3.1. contimued ¥~

h) proc % edit c.hov,‘cek= (file f, int é_, string format, ref int p) :
(e >0 | do insertion (f, format, p) ," p plus 2 ;
to e <7 do (skip it (format p) ; format[p] = MM
p p_____ 7 | undefined) ; ' '
do lit. (f, format, p) ;
while formatlpl # ")" do (p p_____Y 3 skv,p Lit (format_, p)) ;

p plus 1 | undefined) ; :
i) proc % edit bool = (file fs bool b, string fozﬁnat, ggi_@_@_p) :
(do imsertion (f, format, p) ; (formatlp + 7] = "(" | .
poplus 8 ; (b | do it (f, format, p) ; p plus 1 ; skip lit |
(format, p) | skip lit (format, p) ; pplus 17 5 do Uit (f, format, pl) |
' put string (f, (b | "1" | "0"))) ; p plus 1) ;
3) PEQ.‘:‘. % do insertion = (file f, string s, ref int p)):
- while (p > upb s | false |: do align (f, s, p) | true |
do Uit (f, s, p)) do skip ; |
k) proc % do align = (file f, string s, ref int p) bool:
.' (int q = p ; int n ; replicator (s, p, n) ;
(slpl = "z" | to n do space (f) ; 1 |:

slpl = "y" | to n do backspace (f) ; 1 |:

slpl = "p" | to n do new page (f) ; 1 |:

slpl = "1" | to n do new line (f) RAE ‘
8lpl = "k" | char of bfile of f : s L) s p=q s false.

1:pplus 1 ; true) ;
1) proec % do Uit = (file f, string s, ref int p) bool :
(int q = p ; int n ; replicator (s, p, n) ; (slpl = Muun |
M (s[p E,-_L_uﬁ_ '/:l = HUHNH I SEP M 7:] = uin l ?_1_'_’14__?_) dg_
put string (f, slpl) ; true | p = q ; false)) ;

10.5.3.2., Formatted input

a) proc inf = (file file, tamrof tamrof, [1 intype x) :

(format (file, tamrof) ; in (file, x)) ;
D) E_zj_o_q_in = (file fiZe, L7 :1 Zntype x) :

begin string format = format of file ; ref int p = forp of file ;
for k to uph @ do
(C7 :1 ref simplout y = straightin x[kl ; int q, § = 0 ;
L7 ¢ 74] int frame ;

L)




Crep : §plus 1 ; step : : : ,
while ( exp insertion (file, format, p) s p> formatl
N f_a_ng | formatlpl = ",") do p plus 7 ; (§ > upb y | end) ;
o (p > __p___format | (~format: end of file | p :=17) 5 step)
q = p ; picture (format, q, frame) ;
( f'rame[ﬂ | int, veal, real, campl, compl, stmng, inteh, bools char);
nt: - (% (_z_’_gﬁL int 27 3 (i1 3= y[gl |
i indit L int (f"LZe, i1, f'or'mat, p, frame) ; rep)) 1) 5 incomp ;
real: (¥ (ref L real xx ; (xx i:= ylgl | ’
R indit L real (faZe, xx, fomat_, p, frame) ; vep)) 1) ; ﬁncomp H
compl: (4 (ref L compl 2z ; (zz ::= ylgl | _
’ , indit L compZ (j-‘zZe, 24, fomat, ps frame) ; rep)) 1) ; incomp ;
“string: (ref string se ; String t; (ss ::= ylJgl|
(framel 4] = 0| get (file, ss) | ,

, indit string (file, ¢, format, p., frame) ; gsl[] := %) ;v rep)) ;
char: (ref char. cc;. string t; (ce = ylgl | indit string (file, 7‘;_,:
' | format, 2 f‘rame) (ggf_‘ char : ce) i= t{11; rep) | ‘incomp);
intch:  (vef int i1 ; (i1 i:= ylgl | ‘

' | indit choice (f'?lZe,’ it, format, p) ; rep)) ; incomp ;
bool: (ref bool bb ; (bb i:= yljl |

. indit bool (file, bb, format, p) ; rep)) ;
ineomp: (value error of file | rep | undefined) ;

end : skip)
end ;

¢) proec % indit L int =
(file f, ref L int <, string format, ref int p, [1 int fr) :
.(stmlng t 3 indit string (f, t, format, p, fr) ; '
1 := L string int (¢, frl21)) ;
d) proec % indit L real = ,
(file f, ref L real x, string format, ref int p, L1 int fr) :
(string t ; indit string (f, t, format, p, fr)‘_:

x =L string real (t)) ;

e) proc % indit L compl =
(f‘iZe fs ref L compl z, string format, ref int p, [] int fr) :
(str'mg t s int € ; indit string (f, t, format, p, fr) ;
3 := (char in string ("|", <, t) | . _
(L str'mg real (t[1 : < = 71) 1 L string real (tLi + 7 : 1)))) ;




10.5.3.2. continued 2. .- - 5

£) proc % indit string = | :
| (file f, ref string t, string format, ref int p, L1 int frame) :
‘begin int n ; bool supp ; char k ;'string ac= i

priovity ? =8 , !'= 8 3
;'*éﬁ‘f?";"'('striné 8) bool : - | LT .
(exp insertion (format, p) ; p > uph fomdi:l- false | |
int q = p ; replicator (format, p, n) ;

(supp := formatlpl = "s" | p plus 1) ;
(char in string (formatlpl, loc int, &) |
p plus 1 ; true | p = q ; false)) ; |
QE J= stéih}ﬁs,: char c) stuzém'ng : : ‘

(char in string (hext, loc int, s) | (supp | " | k)|
char sugg = ¢ ;((char evror of f)(sugg) | sugg ) -

undefined ; ¢)) ;

proc char next = : (get string (f, k) ; k) 5
proc intreal mould = : “ |
(2 "o ; sign mould (framel81) ; int mould ;
(2 " xplus "L T Int mould
(72 Me" | x plus "eyq" S """ ;3 sign mould (framel6]) ;
tnt mould)) ;
proc sign mould = (int sign) : (sign = 0 | x plus "™+ |
int § =05 (72" | ni=0); for i ton + 1
while newt = " do § 1= i ;
@ plus (k= "=t v k= " A gign =1 |k |
(k # "" | § minus 1 ; backspace(f)) ; "minen)
for © fron g + 1 ton + 1 do x plus "0125456789"/"0") ;
proc int mould = : (1 : ;
(7 "3 | dnt § 5 for < to n while newt = "." do § := 4
backspace (f) ;
from § to n do m plus "0723456789" 1 mon ; 1) ;
(7 "d" | to n do « plus "0123456789" ! "o" ;1)) ;
proc string mould = while? "a" do to n do = plus
(supp | ", " | next) ; o
(framel 1] = 6 v framel1] = & | string mould |: tntreal mould ;
frame(1] > & | "|" [ + iwtreal mould] ; t := & ;
end ;




10.5.3.2. continued 3
g). p______7 mdu, chowe =
(file f, r'ef nt: c_, stmnq foz'mai: Jg_i_'mt p)
(exp msertwn (fs format, p) ; p plus 2 5 ¢ = 1;
while ask lit (f, format, p) do :
(¢ plug 7 ; formatlpl ="," | p plus 7 | undefined) ;
while formatlpl # ")" do (p plus 1 ; skip lit (format, p)) ;
p plus 1 ; éxp insexrtion (f, format, pl) ; '
h) proc % indit bool = ‘
(file f, ref bool b, string format, ref int p) :
(exp insertion (f, format, p) ; (formatlp + 11 = "(" l
p plus 2 ; (b :=ask lit (f, format, p) |
p plus 1 ; skip it (format, p) |: '
p plus 1 ; ask Lt (f, format, p) | undefined) |
char k ; get string (f, k) ; b := (k = "I" | true |:
k= up—n, I f_a__zﬁé,)) 3
p plus 1 ; exp insertion (f, format, p)) ;
i) proc % exp insertion = (file f, string s, ref int p) :
while (p > upb s | false |: do align (f, s, p) | true |
exp lit (f, s, p)) do skip ;
i) proc % ewp lit = (file f, string s, ref int p) bool :
(int q = p ; int n ; replicator (s, p, n) ; |
(slpl=tntt | gnt p=p ; tondo (p i=r;
M (s[p EZ_LL‘?_ 7] = i I SEp B_Zl"_'i 7] l e ] m%) ie..
(g__@_ k ; get string (f, k) ; k # slpl | undefined)) ; true |
p i=q ; false)) ;
k) proc % ask lit = (file f, string s, ref int p) bool :
(int ¢ = char of f ; int n ; replicator (s, p, n) ;
| (sfp] = M| gnt p=p gy tondo (p i=r;
while (slp plus 71 = """ | slp plus 11 = """ | twe) do
(char k ; get string (f, k) ; k¢ slpl | 1)) ; true.
Z‘. yﬂ% (s[p 22_7:‘;3. 7] = nnn I S[p EZEE 7:] o= "h"" l fguﬁ) @M‘;
char of f = ¢ ; false)) ;




10.5.L4. Binary transput

a) proc % to bin = (filé f» simplout x) L1 int :
¢ a value of mode 'row of integral' whose lower bound is one,
and whose upper bound depends on the walue of 'f' and on the
mode of the value of 'x' ; furthewmore, ‘
x = from bin (f, x, to .bin (f,.x)) ¢ ;

b) proec % from bin = (file f, simplout v, U] int y) simplout :

¢ a value, if one exists, of the mode of the actual parameter
corresponding to v, such that '
y = to bin (f, from bin (f, v, y)) ¢ ; :
{On soiie channels a more straightforward way of transput is available.
Some properties of this binary transput depend on the particular

implementation, others can be deduced from 10.5.k4. }
10.5. 4.1, Binary output

a) proc write bin = (L] outtype x) : put bin (stand back, z) ;
) proc put bin = (file file, [1 :1 outtype a) :
if bin possiblelchan of filel A opened of file A put possiblelchan of filel
then if™ set possiblelchan of filel thef state def of file
then (state get of file V™ state bin of file | undefined)
else state def of file i= state bin of file := true ; ‘
state get of file := false ’
-y
for k to upb & do

(L7 :1 simplout y = stratghtout x[k] ;
for § to upb y do :
(L7 :1 Zint bin = to bin (file, yLjl); bfile b = bfile of file ;
ref int p = page of b, 1 = line of b, ¢ = char of b ;
for i to upb bin do (mext ple (file) ; check ple(file) ;
book of blp, 1, el := binl<] ; ¢ plus 7 ;
(p = lpage of b A 1 = 1lline of b |
(¢ > lehar of b | lehar of b i= c) |
lpage of b :=p ; lline of b = 1 ; lehar of b = c))))
else undefined

I




' 10.5.4.2, Binary "input

a) p_____ read bin = (L] intype x) : get bin (stand back, x) ;
b) proc get bin = (file file, U7 :1 Zntype x) :
Zf bin posszble[chan of f‘LZe] A opened of J%Ze A get posstble[chan of file]
then if set possiblelehan of filel thef state def o of sze
. then (Tstate get of file V— state bin of file | undefined)
- else state def of file :i= state bin of f‘zle =
 state get of file := true
It
for k to wh = do |
(L7 :] ref simplout y = stratghtin xlK] ;
for § to vpb y do
([7 :]1 Znt bin := to bin (file, yl41); bfile b = bfile of file ;
fer 1 to upb bin do do (newt ple (file) ; check ple (file) ;
binlé) i= boo of blpage of b, line of b, char of bl ; |
char of b plus 1) ; |
(% (ref L int it ; (2 3=yl |

(ggfgﬂzg 2 2t) = from bin (file, i<, Znn))) 1) ;
(3 @.ei.@.m.am (am 1em 4050 |

(ref L real : from bin (file, wxs bin))) H
(t+ (ref L comQZ 53 3 (zz =:y[J] |

(ref L compl : 3) i1:= from bin (file, 2z, biﬁ))) ‘1’) K

(ref string se ; (ss si= gyl |
(ref string : ss) ::= from bin (file, ss, binl)) ;
(ref char cc ; (cc t:i= yl[j] |
(ref char : cc) ::= from bin (file, cc, binl)) ;
(vef bool bb ; (bb ii= y[4l | "
(vef bool : bb) ::= from bin (file, bb, bin)l) 1))
else undef‘tned -
Iz ' {But Eeyore wasn't listening. He was
taking the balloon out, and putting it
back again, as happy as could be. ...

Winnie~the~Pooh,. A.A. Milne. } .
10.6 Standard postlude _—— : L e e

a) lock (stand in) ;
lock (stand out) ;
lock (stand back)



1, Examples
11.1. Complex sguare root

A declaration in which eompsgrt is a procedure-with-[complex]-
- parameter-[complexl-mode~identifier (here [complex] stands for
structured-with~-real-field-letter-r-letter-e-and-real-field~letter=i--

letter-m. ) ¢

a) proc compsqrt = (compl z) compl 3 ¢ the square root whose real

part is nomnegative of the complex mmber z &
b) Dbegin real @ =re 2, y = im 3 3
" ¢) real rp = sqrt ((_a};gx-!—sqr*t(x+2+y+2)]22)5
d) real ip=(rp=0 1|01y / (2xwp));
e) (x20|xp | ip labsip | (y20|rp | -wpl)
£) end ‘

[complex]-calls {8.6.2} using compsqrit:
g) compsqrt (w)
h)' .compeqrt (- 3.14)
i) compsqrt (-1)




11.2. Innerproductl

A declaration in which immerproductl is a procedure-with-integral-
parameter-and-procedure-with-integral-parameter-real~parameter-
and-procedure-with-integral-parameter-real~paraneter-real-mode-identifier:

a) proc imnerproductl = (int n, proc (int) real =, y) real !
comment the inmnerproduct of two vectors, each with n components,
x(i), y(i), €2 =1, «ou, n, where x and y are arbitrary mappings
from integer to real mumber comment ,

b) begin long real & := long 0 ;
c) for ¢ to n do 8 plus leng x(i) x leng y(Z) ;

d) short s
e) end

Real-calls {8.6.2} using innerproduct :
f) innerproductl (m, (int j) real : x1ljl, (int j) real : y1[41)
g) imnerproducti (n, nsin, neos)

11.3. Innerproduct2

A declaration in vhich Znnerproduct? is a procedure-with-reference-
to-row-of -real~paramet er~and-reference~to-row-of-real-parameter-real~

mode-identifier:

8) proe innerproduct? = (refl1 :1 real a ; refl1 : upb al real b) real .
¢ the innerproduct of two vectors a and b with equal wumber of

elements ¢
b) begin long real s = long 0 ;
¢) for i to upb a do s plus leng al<l x leng bL<] ;
d) ghort s ’
e) end

Real~calls using <mnnerproduct?:
f) <innerproduct? (xl1, yi) S
g) inmnerproduct? (y2021, yal, 31)




11.4. Innerproduct3 , ~
A declaration in which Zmmerproduct3 is a procedure-with-reference-
to-integral ~parameter-and-integral-paramneter-and-procedure~-real-paramet er-

and-procedure-real ~parameter-real-mode~identifier:

8) proc innerproductd = (ref int <, int n, proc real xi, yt) real i

comment the innerproduct of two vectors whose n elements are the
values of the expressions xt and yi and which depend, in general, )
on the value of i comment

b) begin long real s = long 0

¢) for ktondo (4 =k s s plus leng =i x leng yi) ;

" 4) sghort o

e) end

A regl-call using Znnerproducts:
f) imnerproductd (j, 8, «1Lfl, yild + 71)

11.5. Largest element

A declaration in which absmax is a procedure-with-reference-to~row=
of-row-of -real-parameter-and-reference~to-real-parameter-and-reference-
to-integral-paraneter-and-reference~to~-integral-parameter-mode-identifier:

a) proc absmax = (refl1 :, 1 :1 real a, ¢ result ¢ ref real y,

'b) : ¢ subscripts ¢ ref int i, k) v
comnent the absolute value of the element of greatest absolute value
of the matrix a is assigned to y, and the subseripts of this elanent

' to 1 and k comment

¢) beginy = -7 ;

a) for p to T upb a do for q to 2 upb a do

e) if abs alp, ql > y then y := abs al (1 :=pl, (k = ql}] fi

£) end

Void-calls {8.6.2} using absmax:
g) absmax (x2, x, £, J)
h) abemax‘(x8, », loc int, loc int)

i AT




a)

b)

c)

a)
e)
)
g)
h)
i)
3)
k)
1)

11.6. Euler summation

proc euler = (proc (int) real f, real eps, int tim) real :
conment the sum for i from 1 to infinity of f(i), computed by means
of a suttably fefinedEuZer transformation. The sunmation ie
terminated when the absolute values of the terms of the trcmsformeﬁ
series are found to be less than eps tim times in succession. This

© transformation is particularly efficient in the case of a slmﬂy
convergent or divergent alternating series comment

begin int n := 1, t; real mn, ds := eps; [T : 161 real m ;
real sum = (ml1] := £(1)) /[ 2 ; |
~ for ¢ from 2 while (t := (abs ds < eps | t + 1 | 1)) < tim do
begin mn := f(1) ; ; | o
for k to n do begin mn := ((ds :=mn) +mlkl) / 2 ;
mlk] := ds end; o
sum plus (ds i= (abs mn < abg mln] A n < 16 |
ng__l_vg_;_7;ml2,n]:=inn3mn/2 | mn))
end ; /
- eum : :
end

memt——

A call using euler: , -
m) euler ((int i) veal : (odd 2 | =1 # £ | 1 / 2), Tig=5, 2)

11.7. The norm of a vector -

a)

b)
c)

a)

proec norm = (refl1 i1 real a) real :
¢ the euclidean norm of the vector ¢
" (long real s := long 0 ;
for k to upb a do e plug leng alkl + 2 ;
short long sqrt(s))

For a use of norm as a call, see 11.8.d.




11.8. Determinant of a matrix ,

a) ggg_q:det = (refl1 s, 1 1] real a, refll upb al int p) real :

b) ifupba=2uba o

c) then int n = upb a ; . }
comment the determinant of‘ the sﬁuare matrix a of order n by
the method of Crout‘ with row interchanges:y a i8 replaced by ite
triangular decomposition 1 x u with all ulk, k1 = 1. The vector p" '

 gives as output the pivotal row indices; the k-th pivot is chogsen

in the k-th column of 1 such that abs U<, k1 / row norm is
maximal comment ‘

a) [71 :nlreal v; real d :=1, r = =1, g, ptvot 5
‘e)  for i tondo vl<] = norm (al<l) ;

£)  forktondo

g) begin int ki = k - 1 ; ref int pk = plk] ;

n) vefl,] real al =al, 1 : k11, au = al? ¢ k7] ;.

i) refl] real ak = alkl, ka = al, k1, apk = alpkl,

J) alk = allkl, kau = aul, k1 ; B

k) for i from k to n do

1) | begin ref real aik = kalil ; ,

m) if (s 3= gbs (aik mimus innerproduct 2 (all<l, kau))
vlZl) > »

n) then v =8 ; pk i= 1 fi

o) end ;

p) "vipk] := vlk] ;pivot := kalpkl ;

a) for 4 to n do

r) begin ref real akj = akljl, apkj = apkljl ;

8) . pi=akf 5 akj = Lf § < Kk then apki

t) else (apkj - inmerproduct? (alk, aul, 1)) [ pivot fi ;

u) if pk # k then apkj i= -v fi

v) end ; |

W) d times pivot

x) cend 3

) d

z) ik

A call using det:
aa) det (y2, i1)




11.9. Grestest common divisor A
An example of a recursive procedure:"’
a) proc ged = (int a, b) int =
- the greatest common. divieor of two integers

b) (b=0|absalged (b, as: b))

A call using ged:
e) ged (n, 124)

11,10, Continued fraction
"An example of & recursive -opera.tion:
a) op /= (L1 +1peal a 3 [1: upb al real b) real
comment the value of a/b ie that of the continyed fraction

a, / (b + ay / (b oo @ /b Jooo) comment
b) (gpg =0 | o | %011/ (BL1D + al3:] / bL2:1))

A formula using /: , : ) oy

. e) x1 /) yt

{The use of recursion may often be ei'ega.nt rather than efficient
as in 11.9. and 11.10. See; however, 11.11 and 11.14 for examples in,
vhich recursion is of the essence.}
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11.11. Formula manipulation

'}8

' %eq’m ref const ec; vef var ev; ref triple et; ref call ef,

begin union form = (ref const, ref var, rvef triple, rvef calll;

struct const = (real value);

struct var = (string nome, real value);

gtruct triple = (form left operand, int Opemtor, form right opercmd),
struct function = (ref var bound var, i body) ;

struct eall = (ref function funetion name, form parameter),

int plus = 1, minus = 2, timeg = 3, by = 4, to = 55

const zero, one; value of zero := 0; value of one::= 13

g]_)_ = = (form a, ref congt b) booZ
(gg_ﬁ const ec; fec ii= a | ec := : b l false));
op + = (form a, b) form
(a=2evo | b |: b =2ero | a | ¢ Ze = (a, plus, b));
- = (form a, b) fpm 2 (b= zero tm le = (a, minue, bl);
_%_k= form a:b)f : (a = zero zem zero :a=;ne ,b"
: b = one triple := (a, times, b));
op [/ = (form a, b) form : (a = zero (b zero) | zero
|: b = one I a | triple := (a, by, b))
4 = (form a, ref const b) form : (a = one (b :=: zero)

|: B :=: one | a | triple := (a, to, b))
derivative of = (form e, ¢ with respect to ¢ ref var x} form :

case ev, et; ef ::= e in
v ¢ (ev :=: x | one | zero), |
¢ et ¢ begin form u = left operand %f et, v = right operand of et,
udash = derivative of (u, Swith respect to ¢ x),
vdash = derivative of (v, fwith respect to ¢ x);
cage operator of et in
" udash + vdash, udash - vdash,
u x vdash + udash x v, (udash - et/x vdash) [ v,
(ec :3=v | v x u ¢
{const global c; value of ¢ := value o _i ee ~ 13 o) ¥ udash)
esac
end ,
¢ ef ¢ begm ref function f = function name of ef;
form g = parameter of efs; :
ref var y = bound var _o_£ fs
functwn global fdash := (y, derivative of (body of f, y))
call := (fdash, g)) x demvatwe of (g, x)

e
out ¢ ec § zero
esac ¢ ev, et, ef, ec ¢
end d ¢ derivative ¢-:

af) proc value of = ( form e) real :

ag)
ah)
ai)
aj)
ak)
al)
am)
an)

ao)”

ap)
aq)

begin ref const ec; ggf var ev; ref t EZe et; ref call ef;
case ec, ev, et, ef 1:= ¢ m

¢ ec ¢ value o __fee,
¢ ev ¢ value of ev,
¢ et ¢ begin real u = value of (left operand o d_i et),

v = value of’ (right operand of et)

case operator of et in
Tu v, u=v, uxv, exp (vxin (u) esac

end ,
¢ef¢ begm ref function f = function name of ef;
value of bound var of f := value of (parameter of ef);
value of (body of f
end
esac ¢ ec, ev, et, ef ¢

end ¢ value of ¢




11.11, continued

ar) form global f, form global g;

var giobal a := ("a", ~J, var global b := ("b", ), var global = :=("zf,

as) start heve: read ((value of a, value of b, value of x));
at)f=a+0"/(btm)gg“(j‘+one) (fmone),
an) print ((value of a, value of b, value of =,

11.12.

a)

ab)
ac)
ad)
ae)
af)
ag)
ah)

ai)

ak)

value of (derivative of (g, ¢ with respect to ¢ x))))

end ¢ example of formula manipulation

Informetion retrieval

mode ra = ref auth, rb = ref book

begin

gtruct auﬁh = (atmrzg name, ro next, rb book),
book = (string title, rb ne:ci:)

ra auth, first auth := nil, last auth; rb book;
gtrivg. name,,emtle’, int i; file input, output;
format format = $r30al, 80ald}

Qrac update =
(ra : fivet auth) :=: nil
f;hen auth := first auth := last auth := auth :=
(name, nil, nil)
else auth := first auth; while (ra : auth :%: mZ) do*
(name = name of auth | known | auth := next of auth);
last auth := next of last auth := auth := auth :=
(name, nil, nill; known : skip
fi ¢ end declaration prelude e
open (mput“remote in); open {output,,remote out);

é'?oui;f (output, ¢p

client:

author:

P‘Z&bi//:

list:

“

"to.enter. a, new. author, . type, ""author"”, . a. space, . and, his,_
name. "1
"to.enter. a, new. book, . type. ""book"" , , a. space, . the. name. ofs
thegauthor’,.,a.new line. and, the@twle, 7
"for, a. listing. of . the. books. < by. an, author, , type, ""1igt"",
a. space, . and, hia,name. "1
"to, find. the, author, . Of o @, book, , type. " find" "y s . new, Lines
ond. the. title. "l
Ilto emd”type "”endﬂll’aZ$ 1" l’l)

1a7’Lf(1,m;z9utj e ("author”, "book", “Zv,st” "rind", "end","")§, 1);

case i in author, publ, list, find, end error esac;

inf (input, format, namel); update; clzent,

inf(input, fomat (namey titlel)); update;

if (rb : book of auth) :=: nil
then book ef auth = book := (title, nil)

else book = book of auth; while (rb : next of book) :4: mZ da

(title = title of book | client | book 1= next o ___Bf bookJ,
(title ¢ title of book | mext of book := book :
(title, nill))
fis cant;

Inflinput, format, name); update;
"odtf(output $p"author:, "30aZZ$‘, name) ;

if Lrb': book of auth] =t nil
then put (outpui: "mo. pubZzeamons")

‘else while (vb : book) :%: nil do

begin if F line mumber (output) = max line [remote out]
f;hen outf (output, '$41k"continued, on, next. page"p
Tauthor: . "30a41k”&ontmued"ll$‘ name)
fi; outf' (output, $80a2.§, “title of book) ;
book := next of book
end

fi: eanm

v)
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11.12. continued

al) fmﬁu m_f(mput, $180al $, title); auth : first‘aut'h;

amg - E)”hzle (ra : a:ut‘h)k:+: ntl do

an - Degin book := book of auth;

80) , while (rb : bagk) + nil do

ap) T if title = title gj}‘_ “Dook

aq) then outf(output, §1"author:,"30a$ name of auth); elient’
ar) else book := next of book

as) fi; auth := next of auth

at) end; to 2 do new line (output);

au) _fautput unknown') ; elient;

av) f end: put (output, (new page, "ezgned, off" closel));

av) ; - close (input).

ax) |error: put (output, (new line, "mv,stake,otry.agam. "))9

ay '-d. .. new line (imput); elient I
en

"
S

11.13. Cooperating sequentisl processes

a) begin int nmb magazme slots, nmb producers, nmb cornsumers;
b)  read ((nmb magazine slots, mmb producers, nmb consumers));
e) [1: nmb producers] file infile, [1 : nmb consumers]) tle outfile;
a) . for i to mmb producers do open (wlee [£1, inchanmnel [(7]);

¢ inchannel and outchannel are defined in a surroundmg ranqe g
e) for i to nmb consumers do open (outfile [L], outchanmel (i});
£) mode page = [1 : 60, 1 : 132) char;
g) {1 : nmb magazine slote) ref page magazine;
h) int ¢ pointers of a eyclic magazine ¢ index := 1, exdex := I,
i) ¢ gemaphores ¢ full slots := 0, free aZots t= nmb magasine slots,
1) ¢ binary semaphores ¢ in buf‘fer busy := 1, out buffer busy := I
k) proe par call = (proc (int) p, int n) ‘

: ¢ calle n incarnations of p in parallel i
1) 2 (n> 0| par (p (n), par eall (p, n-1))]}
m) oc producer = (int ¢) : do (page page; get(mﬁle {21, pagel;
down free slots; de down in buffer busy;
o)  magazine |index] := page; index modb wmb magazme slots plus 1;
p) up full slots; up in buffer busyl) ;
q) proc consumer = (int i) : do (page page;
r) down full slots, down out buffer busy;
8) page := magazine [exdex]; exdex modb nmb magazine slote Zua 1;
t) up free slots; up out buffer busy; put (outfile [i], page
u) par (par call (producer, wmb producers),
par ceall (consumer, nmb eonsumers),!
end

11.1k Towers of Hanoi

a) begin prog p = (int me, de, ma) : (ma > 0 |

b) P D (me, 6 - me - de, ma - 1);
¢) _ out (stand out, (me, de, ma)) :
I¢ move from peg ‘me’ %o peg 'de’ piece 'ma’
a) p (6 -me - de, de, ma ~ 1)};
e) for k to 8 d (outf (stand out, 81"k "9zdi,
THOO(2 4k + 15) ¢ 16) (z(z(«.u’s(d)m)m)m)w%* k)
) p (1,02, %))



12. Glossary

12,1. Technical terms

Given below are the locations of the first, and sometimes other, in=-
structive appearances of a number of words which, in Chapters 1 up to 10 of
this Report, have a specific technical meaning. A word appearing in differ=
ent grammatical forms (e.g., "contain", "contains", "contained", "contain=
ing") is given once, usually as infinitive (e.g., "contain").

action 2.2, 2.2.5 elaborate collaterall: y 6.2.2.a
ALGOL 68 program bL.h : elaboration 1.1.6.h, 6.0.2.8
apostrophe 1.1.6.c element 2.2.2.k .
applied occurrence 4,1.2.a . end of file 10.5.1.cec

appoint 6.0.2.a ' English language 1.1.1.b

a priori value 5.1.0.2. b . envelop 1.1.6.]

arithmetic value 2.2.3.1.a environment enquiry 10.1
assign 2.2.2.1, 8.3.1.2.c equivalent to 2.2.2.h

asterisk 1.1.2.a establish a file 10.5.1.gg
automaton 1.1.1.a S expect 5.5.1.8g

backfile 10.5.1.a8,cc - extended language 1.1.1.a
balance 6 " extension 1.1.7

blind alley 1.1.2.4 external object 2.2.1°

case clause 9.h.c,d fjalse 2.2.3.1.e

channel 10.5.1.aa,bb field 2.2.2.k

character 2.2.3.1.8,f file 5.5.1.8a, 10.5.1, 10.5:1.ee
close a file 10.5.1.1ii firm position 8.2

collateral 2.2.5.a, 6.2.2.8 firmly coerced from U.lk. 3.&
colon 1.1.2.8 follow 1.1.6.a

comma 1.1.2.a » formal langunage 1.1.1.b
compatible 5.5.1.dd,nn . format 2.2.3, 2.2.3.4, 5.5
compile 2.3.c : halt 6.0.2.a

component of 2.2.2.h hardware language 1.1.8.b
composite 3.1.2.d heap 8.5.1

complete 6.0.2.8 hipping 8.2, 8.2.7

computer 1.1.1.a hold 2.2

conformity case clause 9.lk.g home 4.1.2.b
" constant 5 human being 1.1.1.a
constituent 1.1.6.e - hypernotion 1.3

contain 1.1.6.b hyphen 1.1.6.c.iv

conversion key 5.5.1.ff identification string 10.5.1.cc
copy 2.2.k.1.a identify 2.2.2.b,c

create a file 10.5.1.8g implementation 2.3.c

defining occurrence 2.2. 2.c9 h.1.2.a index 2.2.3.3.a

denote 1.1.6.c indication-applied occurrence k4.2. 2.a
deproceduring 8.2, 8.2.2 indication—-defining occurrence
dereferencing 8.2, 8.2.1 2.2.2.c, 4.2.2.a
descendent 1.1.6.e indit 5.5.1.mm '
describe 2.2.3.3.b “initiate 2.2.2.g, 6.0.2.8
descriptor 2.2.3.3.8 input 5.5.1.aa, 10.5

develop T.1.2.D inseparable 2.2.5.8

direet constituent 1.1.6.e instance 2.2.1

direct descendent 1.7.6.e integer 2.2.3.1.a,b,c,d

direct production 1...2.c¢ integral equivelent 2.2.3.1.f
divided by 2.2.3.1.- internal object 2.2.1

edit 5.5.1.11 : interrupt 6.0.2.a



12.1. continued

_in the reach of I.h.2.c production rule 1.1.2.a

in the sense of numerical analysis production tree 1.1.6.e

2.2.3.1.c productive 1.1.2.d
large syntactic marks 1.1.2.a ' proper (program) L.k
Jayout procedure 10.5.2.1 , protect 6.0.2.4
length number 2.2.3.1.b . protonotion 1.1.2.b e
list of metanotions 1.1.3.c _ publication language 1.1.8.b
list of notions 1.1.2.c C quintuple 2.2.3.3.b
literal 5 ' random access 10.5.1.bb
lock & Ffile 10.5.1.j] reach L.bh.2. a, L.h.2.c
loosely related 4.h.3.c ' read 5.5.1,3]
lower bound 2.2.3.3.b0 real number 2.2.3.1. a,b c,d ,
lower state 2.2.3.3.b refer to 2.2.2.h '
meaningful program L4.h related 4.4.3.b
member 1.1.2.4 relationship 2.2, 2.2.2
metalanguage 1.1.3.8 tepetitive statement 9.3
metamember 1.1.3.d representation 1.1.8.a .
metanotion 1.1.3.a /representation language 1.1.1.8 -
minus 2.2.3.1.c reset a file 10.5.1.nn
mode 1.1.6.i, 2.2.h.1.8 ) resume 6.0.2.a
multiple value 2.2.3, 2.2.3.3 routine 2.2.2.f, 2.2.3.h
name 2.2.2.1, 2.2.3.5 : rowing 8.2, 8.2.6
Wt 2.2.2.1, 2.2.3.5. 8 scope 1.1.6.1, 2.2.3.5.a
notion 1.1. 2 a ' scratch a file 10.5.1.hh
object 2.2, 2.2.1 : select 2.2.3.2, 2:.2.3.3.8

object program 2.3.c semantics 1.1.2.a
occurrence 1014606-, 20291 ' ' Semicolon 1 1 2 a8
offset 2.2.3.3.b ' ' sequential access 10. 5o1obb

offspring 1.1.6.e ' serial 2.2.5.a

of the same mode as 2.2.2.h set a file 10.5.1.00

~open & file 10.5.1.Lf shield b.h.kh.a

operator-applied occurrence 4.3.2.8  show h.h.b.b

operator~defining occurrence smaller than 2.2.2.h

. 2.2.2.¢c, 4.3.2.a small syntactic marks 1.1.2.a

or*glnal 1.1.6.c soft position 8.2

other syntactic marks 1.1.2.a sort 6

output 5.5.1.a8, 10.5 standard declaration 10.a
overflow 6.0.2.b standard file 10.5.1.3
paranotion 1.1.6.c standard mathematical constant 10.3
pass on 6 standard mathematical function 10.3
permanent 2.2.2.a : standard operation 10.2

plain value 2.2.3, 2.2.3.1 . standard priority 10.2.0

point 1.1.2.a straightening 5.5.1.dd, 10.5.0.2
portrayal 2.2.h.1.4 strict language 1.1.1.a
position of the file 5.5.1.ff stride 2.2.3.3.b

possess 2.2.2.d string 5.3.2

possibly intended 2.3.c strongly coerced from L.k.3.a
pragmatic 1.3 . strong position 8.2

precede 1.1.6.a . structured value 2.2.3, 2.2.3.2
preelsboration 1.1.6.i structured from 2.2.k4.1.d
premode 1.1.6.1 . subvalue 2.2.2.k

prescépe 1.1.6.1 successor 6.0.2.a

present 5.5.1.ff supersede 8.3.1.2.a

prevalue 1.1.6.1 suppress 5.5.1.11

proceduring 8.2, 8.2.3 : symbol 1.1.2.b

production 1.1.2.e synchronization operation 10.h
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syntactic position 8.2 , undefined 1.1.6.k
" syntax 1.1.2.a united from h 4.3.a
terminal production 1.1.2.f . uniting 8.2, 8.2.4
terminate 6.0.2.a : ‘ A upper bound 2.2.3.3.b
terminator-string 5.5.1.3J upper state 2.2.3.3.b
textual order 1.1.6.8 , value 1.1.6.1i, 2.2.3
times 2.2.3.1.c visible descendent 1.1.6.e
transput 5.5.1.a8, 10.5 voiding 8.2, 8.2.8 .
transput declaration 10.5 : weak position 8.2
twe 2.2.3.1.e . widening 2.2.3.1.4, 8.2, 8 2.5
truth value 2.2.3.1.a,e write 5.5.1.8¢

[ .

{Denn eben, wo Begriffe fehlen,
Da stellt ein Wont zun nechten Zeif sich ein. ;
Faust, o J.W. von Goethe.}

12.2. Paranotions

Given below are the indicators of the rules yielding production rules.
for the originals of the given paranotions and other protonotions.or giving
representations for the given symbols. Ordinary type font without hyphens is:
used in order to shorten the text using hyphens in a conventional way. ‘

absolute value of symbol 3.1.1.¢c character frame 5.5.5.b
action token 3.0.k.a = pattern 5.5.5.a
actual declarator T.1.1.c,d;e,l,0,p, characters to bytes symbol 3.1.1.d
= declarer T.1.1.Db , Wwsce character - 3.1.1.4
= lower bound T.1.1.% : = token 3.0.9.d
~ parameter T.l4.1.b - choice clause 6.4.1.c,d
= row of rower T.l.1.r . clause 6.1.1.2, 6.2.1.b,c,d, f,
» upper bound T.1.1.t o 6.3.1.8, 6.4.1.a, 8.1.1.8
adic indication L.2.1.g - train 6.1.1.a
alignment 5.5.1.i : | closed clause 6.3.1.a
and symbol 3.1.1.c ' close symbol 3.1.1.e
assignation 8.3.1.1.a . coercend 8.2.0.1.a
at symbol 3.1.1.e . cohesion 8.5.0.1.a _
balance 6.2.1.e collateral clause 6.2.1.b,c,d,f
base 8.6.0.1.a,b ' - declaration 6.2.1.8
basic token 3.0.1.a | collection 5.5.1.b
begin symbol 3.1.1.e comma symbol 3.1.1.e
binal - 3.1.1.c comment 3.0.9.b
bits denotation 5.2.1.8 . = jtem 3.0.9.c
= gsymbol 3.1.1.4 = gymbol 3.1.1.1
boolean choice mould 5.5.4.b completer 6.1.1.1
- = denotation 5.1.3.1.8 completion symbol 3.1.1.f
- pattern 5.5.4.8 + complex frame 5.5.6.c
booleans to bits symbol 3.1.1.c - pattern 5.5.6.a
boolean = 3.1.1.d ' = gsymbol 3.%1.1.d
“bus = 3.1.1.e condition 6.4.1.b

conditional clause 6.L4.1.8

conformity relation 8.3.2.1:a

- relator 8.3.2.1.b ,
conforms to and becomes symbol 1% PR Y

by = 3.1.1.h

bytes = 3.7.1.4
call 8.6.2.1.a
caption T.5.1.b

cast 8.3.h.1.8 « = gymbol 3.1.1.c
« of gymbol 3.1.1.c . i confrontation 8.3.0.1.a

chain 3.0.1.c¢ _ = token 3.0.k.a .
charascter denotation 5.1.4.1.a i conjugate pf symbol 3.1.1.c¢
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constant 6.0.1.d file symbol 3.1.1.d

P

decleration 6.2.1.a, T.0.1.8 fi - 3.1.1.e

- prelude 6.1.1.b . flexible - 3.1.1.d4

= token 3.0.5.8& : flipflop 3.0.3.e

declarer T.1.1.8 flip symbol 3.1.1.b

denotation 5.0.1.a ’ floating point mould 5.5.3.d
- token 3.0.3.a =« & pnumeral 5.1.2.1.e
destination 8.3.1.1.c flop symbol 3.1.1.Db :
differs from symbol 3.1.1.c formal declarator T.1. 1.c,d,e,m,n,o,p,
digit eight 3.0.3.d ' = declarer T.1.1.b . Wyee
= = gymbol 3.1.1.b = lower bound T.1.1.v

- five 3.0.3.d - parameter 5.4.1.e 5
= = gymbol 3.1.1.D ‘ - row of rower T.1.l.r '
= four 3.0.3.d . = yupper bound T.1.1.v

w = gymbol 3.1.1.b : . format denotation 5.5.1.a -

- frame 5.5.2.€ . © = symbol 3.1.1.d .

= nine 3.0,3.d , . . formatter - 3.1.1.b

- = gymbol 3.1.1.b formula 8.%.1.a

= one 3.0.3.d 3 - for symbol 3.1.1.h :

= e symbOl 3.1o1ab fractional pa.rt 501020106.

- geven 3.0.3.4 frame 5.5.1.r -

= = gymbol 3.1.1.b from symbol 3.1.1.h.

- six 3.0.3.d generator 8.5.1.1.8

= = gymbol 3.1.1.Db ~ global ~ 8.5.1.1.¢c

= three 3.0.3.4 =~ gymbol 3.1.1.h

w = gymbol 3.1.1.Db - goon = 3.1.1.fF

- token 3.0.3.c ' = t0 = 3.,1.1.f

. .~ two 3.0.3.4 hip token 3.0.8.a

= = gymbol 3.1.1.b : identifier 4.1.1.a ‘

- zero 3.0.3.d4 identity declaration T.lh.1.a

~ = gymbol 3.1.1.D - relation 8.3.3.1.a
" divided by and becomes symbol 3.1.1.c = relator 8.3.3.1.b

= « gymbol 3.1.1.¢ . - if symbol 3.1.1.e

do - 3.1.1.h imaginary part of = 3.1.1.c
down = 3.1.1.c : indexer 8.6.1.1.k

dyadic formula 8.4.1.h. indicant 1.1.5.b

« indicant 1.1.5.b indication 4.2.1.a

= indication 4.2.1.4 ' insert 5.5.1.e

- operator 4.3.1.d : . insertion 5.5.1.d .
dynamic replication 5.5.1.h integral choice pattern 5.5.2.f

. either symbol 3.1.1.d4 , . - = denotation 5.1.1.1.a
else clause 6.4.1.e . , = mould 5.5.2.d
= if symbol 3.1.1.h X = part 5.1.2.1.c

= pattern 5.5.2.a
= gymbol 3.1.1.d

= gymbol 3.1.1.e

end symbol 3.1.1.e ' ig at least = 3.1.1.c
entier - 3.1.1.c - ~ = most = 3.1.%1.c
"equals = 3.1.1.c = greater than = 3.1.1.c
exit 2.1.e = less = = 3.1.1.c
exponent fram 5.5:3.F - = not = 3.1.1.c

= parh 5 1, o8 = symbol 3.1.1.¢
expression 6 a1ob lébel 6.1.1.k

extra token 3.0.9.8 o = ijdentifier 4.1.1.b

false symbol 3.1.1.b = gymbol 3.1.1.e
field declarstor f 1:1.8 _ lengthen = 3.1.1.¢
- selector T.1.1.i : letter & 3.0.2.b
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- letter a symbol 3.1.1.Db

- aleph 3.0.2.b

=1 3.0.2.D B
w o gymbol 3.1.7.8a

= ¢ 3.0.2.b

hadiad Synlbol 30151.8;

b d 300020b

= = gymbol 3.1.71.a

= e 3.0.2.b

= = gymbol 3.1.1.a

= f 3.0.2.b

o e Symbol 3@1-1\;84

- g 3.0.2.b

s '3‘ Sy‘mbOl 3-1010&

= h 3.0.2.b .

- . Symbol 391-&10&

) bl i 3'0‘2.h

= = gymbol 3.1.1.a

- § 3.0.2.b

= - SymbOl 3&10103

= k 3.0.2.b .

= ~~gymbol 3.1.1.a

-1 3.0.2.b

= = gymbol 3.1.1.a

=" m 3‘002nb

bl Symbol'361a1oa

= n 3.0.2.b

= = gymbol 3.1.1.8&

- 0 3.0.2.%

= = gymbol 3.1.1.8

= p 3.0.2.b

= = gymbol 3.1.1.a

- g 3.0.2.b

« w gymbol 3.1.7.8

w1 3,0.2. D

- = gymbol 3.1.1.a

= 8 300-20 b

= = gymbol 3.71.%1.8

s t 300029b
- token 3.0.2.8

= % gymbol 3.1.1.a

~

list 3.0.1.4
= proper 3.0.1.g
~ geparator 3. 0.1, T

,llteral 5:.5.1.]

local generator 8.5.1.1.b

- symbol 3.1.1.d

long denotation 5.1.0.1 b

=~ gymbol 3.1.1.d

loose replicatable suppressible
character frame 5.5.1.m

w ow digit = 5.5.1.m

= = zero ~ 5,5.1.m

~ suppressible character = 5.5. 1.m T
= = complex = 5.5.1.m :

=~ = exponent = 5.5.7.m

= = point - 5, 5 1.m

lower bound of symbol 3.1. 1.0

= gtate - = 3.1.1.c

minus and becomes = 3.1.1.¢

= gymbol 3.1.1.c

mode declaration T.2.1.8

- identifier 4.1.1.b

- indication 4.2.1.b

- gbandard 4.2.1.c

= gymbol 3.1.1.c

modulo and becomes symbol 3.1.1.c
= gymbol 3.1.1.c

monadic formula 8.h.1.g

= jindicant 1.1.5.b

~ indication h.2.1.f

~ operand 8.4.1.F

- operator 4.3.1.e

new lower bound 8.6.1.1.h

= = = part 8.6.1.1.g

nil symbol 3.1.1.g

net = 3.1.1.¢c

number token 3.0.3.b
odd symbol 3.1.1.c
of = 3.1.1.e

one token T.3.1.b

= plus one = T.3.1.c

»

®

- u 3.0.2. Db = = = plus one = T.3.1.d

= = gymbol 3.1.1.8 = = = = wplus one - 7T.3.1.e

= v 3.0.2.b : T e e e e om e = plus one = T.3.1.f

= w gymbol 3.1.1l.& = 00memm e s = plus one ~ T.3.1.g
-y 3,0.,2.p  mmem e = = o« = o= plyg one =

= = gymbol 3.1.1.8 : T.3.1:.h
- x 3,0.2. e e oo an oo plus one =
- - Symbol 3-10103 : ’ 7»3:105.
= v 3.0.2. b N Tt R w = ow o= plus one
= = gymbol 3.1.1.a = T.3:1:9
-z

3.0.2. b . open symbol 3.1.1.e
« « gymbol 3.1.1.8 5 operand 8.4.1.c

library postlude 2.1.f operation declaration T.5.1.8
- prelude 2.1.c = gymbol 3.1.1.4
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operator 4.3.1.a,b,¢ selection 8.5.2.1.a

- token 3.0.k4.b sema 5.4.1.d
- option 3.0.1.D , sequence 3.0.71.d

or symbol 3.71.1.¢ o -~ proper 3.0.1.g

over and becomes = 3.1.1.c sequencer 6.1.1.J

= symbol 3.1.1.c : ‘ sequence separator 3.0. 1.8
. pack 3.0.1.h , : i sequencing token 3.0.T.a

package 3.0.1.1 serial clause 6.1.1.a

parallel symbol 3.1.1.e shorten symbol 3.1.1.c

parameters pack T.1.1.bb sign frame 5.5.1.p

particular program 2.1.d = mould 5.5.1.1

phrase 6.0.1.a = gymbol 3.1.1.c .

picture 5.5.1.c single declaration 6.1.1.d

plain denotation 5.1.0.1.8 skip symbol 3.1.1.g

plus and becomes symbol 3.1.1.c glice 8.6.1.1.a

plus i times - 3.1.1.c source 8.3.1.1.F

plusminus 3.0.k.c space symbol 3.1.1.b

plus symbol 3.1.1.c , special token 3.0.10.a

point freme 5.5.3.c stagnant mould 5.5.3.e

« gymhol 3. 1.1.d4 = part 5.1.2.1.F

power of ten 5.1.2.1.1 standard postlude 2.1.g

primary 8.1.1.4 = prelude 2.1.b

priority declaration 7.3.1.& statement 6.0.1.c

- one indication k.2.1.e « interlude 6.1.1.i

- - operator 4.3.1.b - prelude 6.1.1.c

~ gymbol 3.1.1.d strict lower bound T.1. 1.u
‘procedure 6.0.1.f - = upper = T.1l.1.u

= gymbol 3.1.1.d string denotation 5.3.1.a

program 2.1.8a ' = frame 5.5.7.c

prus and becomes symbol 3.1.1.c - item 5.1.4.1.D

quote image 5.1.b4.1.c - pattern 5.5.7.a

=~ gymbol 3e1.1¢i ~ gymbol 3.1.1.d

radix 5.5.2.c . structure 6.2.1.g,h

= mould 5.5.2.b = display 6.0.1.g

range h.1.1.e - symbol 3.1.1.d

real denotation 5.1.2.1 subscript 8.6.1.1.1

= mould 5.5.3.b sub symbol 3.1.1.e

= part of symbol 3.1.1.c suite of clause trains 6.1.1.f.g

= pabtern 5.5.3.a suppressible character frame 5:5.1 q

= gymbol 3.1.1.4 = complex = 5.5.1.q

reference to symbol 3.1.1.4 = digit = 5.5.1.q

replicatable suppressible character - exponent - 5.5.1.q

frame 5.5.1.n : « point = 5.5.1.q

- = digit = 5.5.1.n syntactic token 3.0.6.a

« zero = 5.5.1.n tertiary 8.1.1.b

replicated literal 5.5.1.k th element of symbol 3.1.t.c

replication 5.5.1.8 then clause 6.k4.1.e

replicator 5.5.1.f . = if sywbol 3.1.1.h

representation of symbol 3.1.1.c = gymbol 3.1.1.e

round - 3.1.1.c times and becomes symbol 3.1.1.c

routire denotation 5.k, 1°a5b ' « ten to the power choice 5.1.2.1.h

row of character denotation 5.3.1.b = = = = = symbol 3.1.1.b -

= = = pottern 5.5.7.b R = gymbol 3.1.1.c

« displey 6.0.1.h ‘ to = 3.1.1.h

secondary 8.1.1.c ' = the power = 3.1.1.c¢
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transformat 5.5.8.1.a variable 6.0.1.e

trimmer 8.6.1.1.fF = point numeral 5.1.2.1.b

trimseript 8.6.1.1.] _ virtual declarator T.1.1.c,d,e,1,0,p,
true symbol 3.1.1.b o - declarer T.1.1.b wsce
union of = 3.1.1.d = lower bound T.1.1.s

unit 6.1.1.e = parameter T.1.1.y

unitary cleause 8.1.1.8 = row of rower T.1l.1.r

= declaration T.0.1.a = upper bound T.1.1.8

upper bound of gymbol 3.1.1.c = yoid declaver T.l.l.z .

« gtate = = 3.1.1.¢ while symbol 3.1.1.h

up = 3.1.1.c zexo frame 5.5.71.0

el to - 3s1t1ee ‘ ’
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