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O. Introduction 

0.1. Aims and principles of design 

a) In defining the Algorithmic Language ALGOL 68, the members of 

Working Group 2.1 of the International Federation for Information 

Processing express their belief in the value of a common progranming 

language serving many people in many countries. 

b) The language is designed to communicate algorithms, to execute them 

efficiently on a variety of different computers, and to aid in teaching 

them to students. 

c) The members of the Group, influenced by several years of experience 

with ALGOL 60 and other programming languages, hope that the following 

has been achieved: 

0.1.1. Completeness and clarity of description 

The Group wishes to contribute to the solution of the problems of 

describing a language clearly and completely. It is recognized, however, 

that the method adopted in this Report may be difficult for the 

uninitiated reader. 

0.1,2. Orthogonal design 

The number of independent primitive concepts was minimized in order that 

the language be easy to describe, to learn, and to implement. On the 

other hand, these concepts have been applied "orthogonally" in order to 

maximize the expressive power of the language, and yet without introducing 

deleterious superfluities. 

0.1.3. Security 

ALGOL 68 has been designed in such a way that nearly all syntactical and 

many other errors can be detected easily before they lead to calamitous 

results. Furthermore, the opportunities for making such errors are 

~reatly restricted. 



0.1.4. Efficiency 

ALGOL 68 allows the programmer to specify programs which can be run 

efficiently on present-day computers and yet do not require sophisticated 

and time-consuming optimization features of a compiler; see e.g. 11.8. 

0,1.4.1. Static mode checking 

The syntax of ALGOL 68 is such that no mode checking during run time 

is necessary except during the elaboration of conformity-relations {8.1.2} 

the use of which is required only in those cases in which the programmer 

explicitly makes use of the flexibility offered by the united mode 

feature. 

0.1.4.2, Independent compilation 

ALGOL 68 has been designed such that the main line programs and procedures 

can be compiled independently of one another without loss of object program 

efficiency, provided that during each such independent compilation, 

specification - by means not given in this Report - of the mode of all 

nonlocal quantities is provided, 

0.1.4.3. Loop optimization 

Iterative processes are formulated in ALGOL 68 in such a way that 

straightforward application of well-kno,m optimization techniques 

yields large gains during run time without excessive increase of 

compilation time, 

0.2. Comparison with ALGOL 60 

a) ALGOL 68 is a language of wider applicability and power than ALGOL 60. 
Although influenced by the lessons learned from ALGOL 60, ALGOL 68 has 

not been designed as an expansion of ALGOL 60 but rather as a completely 

new language based on new insights into the essential, fundamental 

concepts of computing and a new description technique. 



0.2. continued 

b) The result is that the successful features of ALGOL 60 reappear in 

ALGOL 68 but as special cases of more general constructions, along 

with completely new features. It is, therefore, difficult to isolate 

differences between the two languages; however, the following sections 

are intended to give insight into some of the more striking differences. 

0.2.1. Values in ALGOL 68 

a) Whereas ALGOL 60 has values of the types integer, real, boolean and 

string, ALGOL 68 features an infinity of "modes", i.e. generalizations 

of the concept type, 

b) Each plain value is either arithmetic, i.e. of integral or real mode 

and then it is of one of several lengths, or it is of boolean, character 

or pattern mode. 

c) In ALGOL 60 composition of values is possible into arrays, whereas in 

ALGOL 68, in addition to such "multiple" values, also "structured" values, 

composed of values of possibly different modes, are defined and manipulated. 

An example of a multiple value is a character array, which corresponds 

approximately to the ALGOL 60 string; examples of structured values are 

complex numbers and symbolic formulae. 

d) In ALGOL 68 the concept of a "name" is introduced, i.e. a value 

which is said to "refer to" another value; such a name-value pair 

corresponds to the ALGOL 60 variable. However, any name may take the 

value position in a name-value pair and thus chains of indirect addresses 

can be built up. 

e) The ALGOL 60 concept of a procedure body is generalized in ALGOL 68 

to the concept "routine", which also includes the formal parameters, 

and which is itself a value and therefore can be manipulated like any 

other value. 



0.2.1. continued 

f) In contrast with plain values and multiple and structured values 

composed of plain values only, the significance of a name or routine or 

a multiple or structured value composed of names or routines, possibly 

amongst other values, is, in general, dependent on the context in which 

it appears. Therefore, the use of names and routines as values is subject 

to some natural restrictions related to their "scope". 

0.2.2. Declarations in ALGOL 68 

a) Whereas ALGOL 60 has type declarations, array declarations, switch 

declarations and procedure declarations, ALGOL 68 features the "identity­

declaration" whose expressive power includes all of these, and more. In 

fact, the identity-declaration declares not only variables, but also 

constants, of any mode and, moreover, forms the basis of a highly efficient 

and pow~rful para.meter mechanism. 

b) Moreover, in ALGOL 68, a "m:xie-declaration" permits the construction 

of new modes from already existing ones. In particular, the modes of 

multiple values and structured values may be defined this way; in addition 

a union of modes may be defined for use in an identity-declaration 

allowing each value referred to by a given name to be of one of the 

constituent modes. 

c) Finally, in ALGOL 68, a "priority-declaration" and an "operation­

declaration" permit the introduction of new operators, the definition 

of their operation and the extension or revision of the class of operands 

applicable to already established operators. 



0.2,3. Dynamic storage allocation in ALGOL 68 

Whereas ALGO~ 60 (apart fro~ the so-called "own dynamic arrays") implies 

a "stack"-oriented storage-allocation regime, sufficient to cope with a 

statically ( i.e. at compile time) determined number of values, ALGOL 68 
provides, in addition, the ability to generate a dynamically (i.e. at run 

time) determined number of values, which ability implies the use of 

additional, well established, storage-allocation techniques. 

0.2.4. Collateral elaboration in ALGOL 68 

Whereas, in ALGOL 60, statements are "executed consecutively", in 

ALGOL 68 "phrases" are "elaborated serially" or "collaterally". This last 

facility is conducive to more efficient object programs under many 

circumstances, and increases the expressive power of the language. 

Facilities for parallel programming, though restricted to the essentials 

in view ,of the none-too-advanced state of the art, have been introduced. 

0.2.5. Standard declarations in ALGOL 68 

The ALGOL 60 standard functions are all included in ALGOL 68 along 

with many other standard declarations. Amongst these are "environment 

enquiries", which make it possible to determine certain properties of 

an implementation, and "input-output" declarations, which make it 

possible, at run time, to obtain data from and to deliver results to 

external media. 

0.2.6. Some particular constructions in ALGOL 68 

a) The ALGOL 60 concepts of block, compound statement and parenthesized 

expression are unified in ALGOL 68 into "closed-clause". A closed-clause 

may be an expression and possess a value. Similarly, the ALGOL 68 

"assignation", which is a generalization of the ALGOL 60 assignment 

statement, may be an expression and, as such, also possesses a value, 



0.2.6. continued 

b) The ALGOL 60 concept of subscription is generalized to the ALGOL 68 

concept of "indexing", which allows the selection not only of a single 

element of an array but also of subarrays with the same or any smaller 

dimensionality and with possibly altered bounds. 

c) ALGOL 68 provides not only the multiple values mentioned in 0.2.1.c, 

but also "collateral-expressions" which serve to compose these values 

from other, simpler values. 

d) The ALGOL 60 for statement is modified into a more concise and 

efficient "repetitive statement". 

e) The ALGOL 60 conditional expression and conditional statement, unified 

into a "conditional-clause", are improved by requiring them to end with 

a closing symbol whereby the two alternative clauses admit the same 

syntactic possibilities. Moreover, the conditional-clause is generalized 

into a "case clause" which allows the efficient selection from an arbitrary 

number of clauses depending on the value of an integral expression. 

f) Some less successful ALGOL 60 concepts, such as own quantities and 

integer labels have not been included in ALGOL 68, and some concepts like 

designational expressions and switches do not appear as such in ALGOL 68, 

but their expressive power is included in other, more general, constructions. 



1. Language and metalanguage 

1.1. The method of description 

1.1.1. The strict, extended and representation languages 

a) The algorithmic language ALGOL 68 is a language in which algorithms 

can be described for execution by means of a computer, i.e. either an 

automaton or a human being. It is defined in three stages called the 

strict language, extended language and representation language. 

b) For the definition_partly the English language, and partly a formal 

language is used. In both languages, and also in the strict language and 

the extended language, the typographical marks of this report are used. 

These bear no relation to the typographical marks used in the represen­

tation language. 

1.1.2." The syntax of the strict language 

a) .The strict language is defined by means of a syntax and semantics. 

This syntax is a set of "production rules" for "notions", i.e. nonempty 

sequences of small letters, possibly interspersed with nonsignificant 

blanks and/or hyphens. 

b) A "list of notions" either is empty, or is a notion, or consists of 

a list of notions followed by a comma followed by a notion. 

c) A production rule for a notion consists of that notion, possibly 

preceded by an asterisk, followed by a colon followed by a list of 

notions, called a "direct production" of that notion, followed by a 

point. 

d) A "symbol" is a notion ending with 'symbol'. 



1.1.2. continued 

e) A "production" of a notion is either a direct production of it or 

a list of notions obtained by replacing in a production of that notion 

a notion by a direct production of that notion. 

f) A ''terminal production" of a notion is a production of that notion 

which consists of symbols and commas only. 

{The production rule of the strict language 

variable-point numeral: integral part option, fractional part. 

(5.1.2.1.b) contains~ direct production 

integral part option, fractional part 

of the notion 'variable-point numeral'·• A terminal production of this 

same notion is 

zero symbol, point symbol, one symbol. 

The notion 'zero symbol' is an example of a symbol. The line "twas 

brillig· and the slithy toves" is not a relevant notion of the strict 

language, ·in that it does not end with 'symbol' and no production rule 

for it is given (1.1.5 Step 3).} 

1.1,3. The syntax of the metalanguage 

a) The production rules of the strict language are partly defined by 

enumeration and are partly generated with the aid of a metalanguage 

whose syntax consists of a set of production rules for "metanotions", 

r.e. nonempty sequences of capital letters. 

b) A "l.ist of metanotions" either is empty or is a notion, or consists 

of one or more metanotions separated, and possibly preceded and/or 

followed, by notions and/or blanks. 

c) A production rule for a metanotion consists of that metanotion 

followed by a colon followed by a list of metanotions, called a direct 

production of that metanotion, fol.lowed by a point. 



1.1.3. continued 

d) A production of a metanotion is either a direct production of that 

metanotion or a list of metanotions obtained by replacing in a production 

of that metanotion a metanotion by a direct production of that 

metanotion. 

e) A terminal production of a metanotion is a production of that 

metanotion which is a notion. 

{The production rule 

TAG: LE'!TER. 

derived from 1.2.1.1 contains a direct production 'LEITER' of the 

metanotion 1TAG 1 • A particular terminal production of the metanotion 

'TAG' is the notion 'letter x symbol' (see 1.2.1,m, n). The production 

rule 

has an empty direct production. } 

1.1.4. The production rules of the metalanguage 

a) In the rule beginning with 'ALPHA' {1.2.1.n}, the point may be 

replaced arbitrarily often by a semicolon followed by an other letter 

followed by a point. 

b) The production rules of the metalanguage are the rules obtained 

from the rules in Section 1.2 as follows: 

Step: If some rule contains one or more semicolons, then it is replaced 

by two new rules, the first of which consists of the part of that rule 

up to and including the first semicolon with that semicolon replaced 

by a point, and the second of which consists of a copy of that part 

of the rule up to and including the colon, followed by the part of 

the original rule following its first semicolon, whereupon, the Step 

is taken again. 

{For instance, the rule 



1.1.4. continued 

TAG : LE'ITER ; TAG LE'ITER ; TAG DIGIT. 
from 1.2.1.1 is replaced by the rules 

TAG LE'ITER. 
TAG TAG LE'ITER; TAG DIGIT. 
and the second of these is replaced by 

TAG TAG LE'ITER. 
TAG TAG DIGIT. 
thus resulting in three rules from the original one. 

The reader may find it _helpful to read 

"followed by a" and "·" , as "or a". } 
"·" as "may be a","," as 

1.1.5. The production rules of the strict language 

The production rules of the strict language are the rules obtained in 

the following steps from the rules given in Chapters 2 up to 8 inclusive 

under Syntax: 

Step 1: Identical with the Step of 1.1.4,b; 

Step 2: If a given rule now contains one or more sequences of capital 

letters, then this (these) sequence(s) is (are) interpreted as (a) 

sequence(s) of metanotions occurring in Section 1.2 {The metanotions 

of 1.2 have been chosen such that this interpretation is unique.}, and 

then for each terminal production of such a metanotion, a new rule is 

obtained by replacing, in a copy of the given rule, all occurrences of 

·that metanotion by that terminal production, whereupon the given rule 

is discarded and Step 2 is taken; otherwise, the given rule is a 

production rule of the strict language. 

Step 3: A number of production rules for the notions 'other character 

token' and 'other multicharacter token' each of whose direct productions 

is a symbol different from any other symbol may be added. 

{The rule 

actual IDWPER bound: strict IDWPER bound. 

· derived from 7,1.1.r by Step 1 is used in Step 2 to provide two 

production rules of the strict language, viz. 

actual lower bound strict lower bound. 

actual upper bound strict upper bound. 



1.1.5. continued 

Note that 

actual lower bound: strict upper bound. 

is not a production rule of the strict language, since the replacement 

of the metanotion 11.0WPER' by one of its productions must be consistent. 

at each occurrence. Since some metanotions have an infinite number of 

terminal productions, the number of notions of the strict language is 

infinite and the number of production rules for a given notion may be 

infinite; moreover, since some metanotions have terminal productions 

of infinite length, some notions are infinitely long. For examples see 

4. 1 • 1 • 

Some production rules obtained from a rule containing a metanotion may 

be blind alleys in the sense that no production rule is given for some 

notion to the right of the colon even though it is not a symbol. } 

1.1.6. The semantics of the strict language 

a) A terminal production of a notion is considered as a linearly ordered 

sequence of symbols. This order, which goes from "left" to "right", is 

called the "textual order", and "following" ("preceding") stands for 

"textually imnediately following" ("textually immediately preceding") 

in the rest of this Report. Typographical ~isplay features, such as blank 

space, change to a new line, and change to a new page do not influence 

this order. 

b) A sequence of symbols consisting of a second sequence of symbols 

preceded and/or followed by (a) sequence(s) of symbols "contains" that 

second sequence of symbols. 

c) Unless otherwise specified {d}, a "paranotion" at an occurrence not 

under "Syntax", not between apostrophes and not within another paranotion 

stands for any terminal production of some notion; a paranotion being 

either 

i) a production of 'token' {3.0.1.a} ending with 'symbol', in which 



1.1.6. continued 1 

case it then stands for itself {e.g. "begin symbol"}, or 

ii) a notion whose production rule(s) do(es) not begin with an asterisk, 

in which case it then stands for any terminal production of itself 

{e.g. "basic-token" (3.0.1.b) stands for any terminal production of 

'letter token', 'denotation token', etc.}, or 

iii) a notion whose production rule(s) do(es) begin with an asterisk, in 

which case it then stands for any terminal production of any of 

its direct productions {e.g. "token" (3.0.1.a) stands for any 

terminal production of 'basic token', 'special token' or 'other 

token'.}, or 

iv) a paranotion followed by the letter "s", or a paranotion ending 

with the letter "y" in which that last letter has been replaced by 

the letters "ies", in which case it then stands for some number of 

the terminal product ions stood for by that paranot ion {e.g. "basic­

tokens" stands for some number of terminal productions of 'letter 

token' and/or 'denotation token', etc., and "pr:imariesu stands 

for some number of terminal productions stood for by 'primary'.}, 

or 
v) a paranotion whose first letter has been replaced by the corres­

ponding capital letter, in which case it then stands for the 

terminal productions stood for by that paranotion before the 

repl.acement {e.g. "Basic-tokens" stands for what "basic-tokens" 

stands for}, or 

vi) a paranotion in which a terminal production of 'MODE' has been 

omitted, in which case it then stands for any terminal production 

stood for by any paranotion from which the given paranotion could 

be obtained by omitting a terminal production of 'MODE' {e.g. "slice" 

stands for any terminal production of "MODE slice" (8.4.1.a), where 

"MODE" stands for any terminal production of the metanotion 'MODE' • } • 

{As an aid to the reader, paranotions are printed in a different font, 

and, when not under Syntax or between apostrophes, with hyphens instead 

of spaces. Moreover, as an additional aid, a number of superfluous rules 

beginning with an asterisk have been incl.uded. } 

d) When a paranotion is said to be a "constituent" of a second paranotion, 

then the first paranotion stands for any terminal production stood for 



1.1.6. continued 2 

by it according to 1.2.6.c which is contained in a terminal production 

stood for by the second paranotion but not contained in a terminal 

production stood for by either of these paranotions contained in that 

second terminal production. 

{e.g. j := 7 is a constituent assignation (8.8.1) of the assignation 

i := j := 7, but not of the serial-statement (6.1.1.b) i := j := 7; 

k := 2.} 

e) In Sections 2 up to 8 under "Semantics", a meaning is associated with 

certain terminal productions of notions by means of sentences in the 

English language, describing a series of processes (the "elaboration" 

of those terminal productions), each causing a specific effect. Any of 

these processes may be replaced by any process which causes the same 

effect. 

f) If a given sequence of symbols is a production of a given notion 

which is itself a production of another notion, then, except as 

otherwise specified, its elaboration as terminal production of that 

other notion consists of its elaboration as terminal production of the 

given notion. 

{e.g. the elaboration of random as a fitted-real-cohesion is its 

elaboration as a called-real-cohesion (8.2.0.1.e).} 

g) If something is left undefined or is said to be undefined, then 

this means that it is not defined by this Report alone, and that, for 

its q._efinition, information from outside this Report has to be ta.ken 

into account. 

h) This Report (possibly along with such information from outside it) 

associates a meaning specifically with programs {2.1.a} satisfying the 

"context conditions 11 
{ 4. 4}. 



1.1.7. The extended language 

The extended language encompasses the strict language; i.e. a program 

in the strict language, possibly subjected to a number of notational 

changes by virtue of "extensions" given in Chapter 9 is a program in 

the extended language and has the same meaning. 

{e.g. real, x., y., z means the same as (real, x., real, y, real, z); 

see 9.2.} 

1.1.8. The representation language 

a) The representation language represents the extended language; i.e. a 

progr>am in the extended language, in which all symbols are replaced by 

certain typographical marks by virtue of "representations", given in 

Section 3.1.1, and in which all commas {comnas, not comna-symbols} are 

deleted, is a program in the representation language and has the same 

meaning. 

b) Each version of the language in which representations are used which 

are sufficiently close to the given representations to be recognized 

without further elucidation is also a representation l·anguage. A version 

of the language in which notations or representations are used which are 

not obviously associated with those defined here but bear a one-to-one 

relationship with them, is a publication language or hardware language 

{i.e. a version of the language suited to the supposed preference of the 

human or mechanical interpreter of the language}. 



1.2. The metaproduction rules 

1.2.1. Metaproduction rules of modes 

a) MODE: FIXED; UNITED. 
b) FIXED : TYPE ; PREFIX MODE. 
c) TYPE: PLAIN; structured with a 1<1IELDS; PROCEDURE. 
d) PLAIN: INTREAL; boolean; character; pattern. 
e) INTREAL : mI'EGRAL ; REAL. 
f) IN'IEGRAL: IDNG integr-al. 
g) REAL: IDNG real. 
h) IDNG: EMPTY; long.LONG. 
i) EMPl'Y : • 

j) FIELDS : FIELD ; FIELDS and a FIELD. 
k) FIELD : MODE named TAG. 
1) TAG: I.ETI'ER; TAG I.ETI'ER; TAG DIGIT. 
m) I.ET,I'ER: letter ALPHA symbol. 
n) ALPHA : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; 1 ; m ; 

n; o·; p; q; r; s; t; u; v; w; x; y; z. 
o) DIGrr: digit zero symbol; digit FIGURE symbol. 
p) FIGURE: one; two; three; four; five; six; seven; 

eight; nine. 
q) PROCEDURE: procedure PARAMETY; 

procedure PARAMETY delivering a MODE. 
r) PARAMETY: with a PARAMETERS; EMPTY. 
s) P.ARAMETERS : PARAMETER ; PARAMETERS and PARAMEI'ER. 
t) PA.1AMEI'ER : MODE parameter. 
u) PREFIX: row of; reference to, 
V) UNITED : union of MODES mode. 
w) MODES : MODE ; MODES and MODE, 

{The reader may find it helpful to note that a metanotion ending 

in 1ETY 1 always has an empty production. } 



1.2.2. Metaproduction rules associated with modes 

a) PRIMITIVE : integral ; real ; boolean ; character ; pattern. 
b) ROWS: row of; row of ROWS. 

c) ROWSEI'Y: ROWS; EMPTY. 

d) ROWWSEI'Y: ROWSETY. 
e) NONROW TYPE ; reference to MODE ; UNITED. 

f) REFETY : reference to ; EMPTY. 
g) NONREF: TYPE; row of MODE; UNITED. 

h) NONPROC: PLAIN; structured with a FIELDS; row of MODE; 

reference to NONPROC; UNITED. 
i) LMODE: MODE. 
j ) RMODE : MODE. 

k) LMODES MODES. 

1) RMODES: MODES. 

m) LFIELDS FIEIDS. 

n) RFIµDS: FIEIDS. 
o) COMPLEX: structured with a real nrured letter r symbol 

lett~r e symbol and a real named letter i symbol 

letter m symbol. 

p) STRING: row of character. 
q) BITS: row of boolean. 

r) OI'HER boolean ; COMPIEX STRING. 

s) MABEL : MODE ; label. 

1.2.3. Metaproduction rules associated with phrases 

a) PHRASE: declaration; CLAUSE. 

b) CLAUSE: statement; MODE expression. 

c) SOME: serial; unitary; CLOSED; choice; THELSE. 
d) THELSE : then ; else. 

e) CLOSED: closed; collateral; conditional. 

f) COERCETY : COERCED ; EMPTY. 

g) COERCED: adapted; adjusted; fitted called peeled. 



1.2.4. Metaproduction rules associated with formulas 

a) OPERAND: MODE FORM. 
b) FORM: PlrrORITY ADIC formula; cohesion; assignation. 
c) PRIORITY: priority NUMBER. 
d) NUMBER : zero ; ONE ; TWO ; THREE ; FOUR ; FIVE ; SIX ; 

SEVEN ; EIGHI' ; NINE. 
e) ONE: zero plus one. 
f) TWO: ONE plus one. 

g) THREE : TWO plus one. 
h) FOUR: THREE plus one. 
i) FIVE: FOUR plus on~. 
j ) SIX : FIVE plus one. 
k) SEVEN: SIX plus one. 
l) EIGHI' : SEVEN plus one • 
m) NINE: EIGHI' plus one. 
n) ADIC: monadic; dyadic. 
o) OPERATOR: RMJDE IDDE PRIORITY monadic operator; 

IMODE·RMJDE IDDE PRIORITY dyadic operator. 

1.2.5. Other metaproduction rules 

a) VIOI'AL : virtual ; actual ; formal. 
b) LOWPER: lower; upper. 
c) LIGHI': loose; tight. 
d) ANY: sign; zero; digit ; point; exponent ; complex; string. 
e) NorION: ALPHA; NorION ALPHA. 
f) SEPARATOR: comna symbol; EMPI'Y; go on·s;ymbol; canpleter; sequencer • 

. {Rule e implies that all notions (1.1.2.a) are productions 

(1.1.3.d) of the metanotion (1.1.3.a) 1NarION 1 • For the use of this 

metanotion, see 3.0.1.e, f, g, h, i.} 

{"Well 'slithy' means 'lithe' and 

'slimy' • • • • You see it 's like a 

portmanteau - there are two 

meanings packed into one word." 

Through the Looking-glass, 

Lewis Carroll. } 



1.3. Pragmatics {Merely corroborative detail, intended to 

give artistic verisimilitude to an otherwise 

bald and unconvincing narrative. 

Mikado, W.S. Gilbert.} 

Scattered throughout this Report are "pragmatic" remarks included between 

the braces {and}. These do not form part of the definition of the 

language but are intended to help the reader to un4erstand the implications 

of the definitions and to find corresponding sections. 

{Some of these pragmatic remarks are examples written in the reference 

language. In these examples, identifiers are used out of context from 

their defining occurrences. Unless otherwise specified, these identifiers 

identify those in the identity-declarations of the standard-declarations 

in Chapter 10 (e.g. random from 10,3.k or pi from 10,3.a) or those in: 

inti, j, k, m, n; reai a, b, x, y; booi p, q, overflow; char c; 

format f ; bits t ; string s ; compZ w, z ; 

ref reai xx, yy ; [ 7 :n] reai x7, y7 ; [ 7 :m, 7 :n] reai x2 ; 

[1:n, 7_:n] reai y2; U:n] int i7 ; 

proa ref reai x or y = ~(random < • 5 I x I y) ; 

proa rea i ncos = (int i) : cos(2 X pi X i/n) ; 

proc reai nsin = (int i) sin(2 X pi X i/n) ; 

proc reai e = (reai u) : (arctan(u) - a + u - 7) ; 

exit: princeton: grenobZe: kootwijk: warsaw: zandvoort: amsterdam: x .- 7.} 



2. The computer and the program 

2.1. Syntax 

a) program: open, standard declarations, go on symbol, 

library declarations option, particular program, close. 

b) standard declarations : serial declaration. 

c) library declarations : serial declaration, go on symbol. 

d) particular program: label sequence option, CIDSED statement. 

{For standard-declarations see Chapter 10 and for closed-statements 

see 6.4. The specificat·ion of library-declarations is undefined. } 

2.2. Terminology {"When I use a word," Humpty Dumpty said, in 

rather a scornful tone, "it means just what 

I choose it to mean - neither more nor less." 

Through the Looking Glass, Lewis Carroll} 

The meaning of a program is defined in terms of a hypothetical "computer" 

which performs a set of "actions" {2.2.7}, the elaboration of the 

program {2 .3 .a}. The computer deals with a set of "objects" {2 .2. 1} between 

which, at any given time, certain "relationships" {2,2,2} may "hold". 

2.2,1. Objects 

Each object is either "external" or "internal". External objects are 

terminal productions {1.1.2.f} of notions, at different "occurrences". 

Internal objects are "values" {2 .2,3}, at different "instances". 

2,2.2. Relationships 

a) Relationships are either "permanent", i.e. independent of the program 

and its elaboration, or actions may cause them to hold or cease to hold. 

Each relationship is either between external objects or between an 

external object and an internal object or between internal objects. 
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b) The relationships between external objects are: 

"to contain" { 1 .1 .6 ,b}, "to be a constituent of" { 1. 1 .6 .d} and "to 

identify". 

c) An "identifier11 {4.1}, "indication" {4.2} or "op~rator" {4.3} at 

a given occurrence may identify the same identifier, indication or operator 

at a "defining" occurrence {4.1.2.a, 4.2.2.a, 4.3.2.a}. 

d) The relationships between an external object and an internal object 

are: "to denote" and "to possess". 

e) A "denotation" {5} denotes a value; this relationship is permanent. 

f) An identifier may denote a value and an operator may denote {more 

specifically} an "operation" {2,2,5}, This relationship is caused to 

hold by the elaboration of an "identity-declaration" {7.4} or operation­

declaration" {7,5}, respectively, and ceases to hold upon the end of 

the elaboration {6.4.2} of the smallest range {4.1 ,1 .e} containing that 

declaration. 

g) An external object considered as a terminal production of a given 

notion may possess a value {called "the" value of the external object 

when it is clear which notion is intended}. This relationship is caused 

to hold by the elaboration of the external object as terminal production 

of the given notion, and continues to hold until the next elaboration, 

if any, of the same occurrence of that external object is initiated, 

whereupon it ceases to hold. 

h) The relationships between internal objects {values} are: "to be of 

the same mode as", "to be equivalent to", "to be smaller than", "to be a 

component of" and "to refer to". 

i) A value may be of the same mode as another value; this relationship 

is permanent. 
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j) A value may be equivalent to another value {2.2.3.1.d, f} and a value 

may be smaller than another value {10.2.2.a, 10.2.3.a}. If one of these 

relationships is defined at all for a given pair of values, then either 

it does not hold, or it does hold and is permanent. 

k} A given value is a component of another value if it is a "field" 

{2.2.3.2}, "element" {2.2.3.3,a} or "subvalue" {2.2.3,3.c} of that 

other value or of one of its components. 

l) Any "name" {2.2.3.5}, except "nil" {2.2.3.5.a}, refers to one instance 

of another value. This relationship may be caused to hold by an 

"assignment" {8.8.2.a} of that value to that name and continues to hold 

until an instance of another value is caused to be referred to by that 

name. The words "refers to an instance of" are often shortened in the 

sequel to "refers to". 

2.2.3. Values 

Values are either 

"plain" values {2.2.3,1}, which are independent of the program and 

its elaboration, 

or "structured" values {2.2.3.2} or "multiple" values {2.2.3,3}, which 

are composed of other values in a way defined by the program, 

or "routines" {2.2.3,4}, which are certain sequences of symbols defined 

by the program, 

or names {2.2,3,5}, which are created by the elaboration of the program. 

2.2.3.1. Plain values 

a) A plain value is either an "arithmetic" value, i.e. an integer or 

a real number, or is·a truth value, character or pattern. 



2.2.3.1. continued 

b) An arithmetic value has a "length number", i.e. a positive integer 

characterising the degree of discrimination with which the value is 

kept in the computer. The number of integers (real numbers) of given 

length number that can be distinguished increases with the length number 

up to a certain length number, called the number of different lengths of 

integers (real numbers) {10.1.a, c}, after which it is constant. 

c) For each pair of integers (real numbers) of the same length number, 

the relationship to be smaller than is defined {10.2.2.a, 10.2.3.a}, and, 

moreover, a third integer (real number) of that length number may exist, 

called the first integer (real number) minus the other one {10.2.2.g, 

10.2.3.g}. Finally, for each pair of real numbers of the same length 

number, two real numbers of that length number may exist, called the 

first real number times (divided by) the other one {10.2.3.1, m}. 

d) Each integer of given length number is equivalent to a real number 

of that length number. Also, each integer (real number) of given length 

number is equivalent to an integer (real number) whose length number 

is greater by one, These equivalences permit the "widening" of an 

integer into a real number and the increase of the length number of 

an integral or real number. The inverse transformations are only 

possible on those real numbers which are equivalent to an integer of 

the same length number or on those values which are equivalent to 

a value of smaller length number. 

e) A truth value is either "true" or "false". 

f) Each character has an integral equivalent {10.1.h}, i.e. a 

nonnegative integer; this relationship is defined only in so far 

that different characters have different integral equivalents. 

g) A pattern is equivalent to a row of characters. 



2.2.3.2. Structured values {Yea, from the table of my memory 

I'll wipe away all trivial fond records. 

Hamlet, William Shakespeare.} 

A structured value is composed of a number of other values, its fields, 

in a given order, each of which is selected {8.6.2. Step 2} by a 

specific field-selector {7.1.1.e}. 

2.2.3.3. Multiple values 

a) A multiple value is composed of a "descriptor" and a number of other 

values, its elements, .each of which is selected {8.4.2. Step 7} by a 

unique integer, its "index". 

b) The descriptor, which "describes" the elements, consists of an "offset", 

c, and some number, n;;: O, of "quintuples" (1., u., d., s., t.) of 
i i i i i 

integers, i = 1 , ••• , n; 1. is called the i-th "lower bound", u. the i-th 
i i 

"upper bound", d. the i-th "stride", s. the i-th "lower state" and t. 
. i i i 

the i-th '!upper state". If any li > ui, then the number of elements in 

the multiple value is zero; otherwise, it is 

(u1 - 11 + 1) x ••• x (un - ln + 1). 

{These data suffice, given an n-tuple (r1 , •••• 

satisfying 1. ~ r. ~ u., to compute a unique index 
i i i 

c + (r1 - 11) x d1 + ••• + (rn - ln) x dn. 

r) of integers 
n 

from 

In a given instance of a multiple value, a state which is 0(1) indicates 

that the given value can (cannot) be "superseded" (2.2.3.5.d) by an 

instance of a multiple value in which the bound corresponding to the 

state differs from that in the given value. } 

c) A subvalue of a given multiple value is a multiple value composed of 

a descriptor which describes a subset of the elements of the given multiple 

value, and that subset. 



2.2.3.4. Routines 

A routine is a token-sequence which is the same as some closed-clause. 

2.2.3.5. Names 

a) There is one name, called nil, whose scope {2.2.4.2} is the program 

and which does not refer to any value. Any other name is created by 

the elaboration of an actual-declarer {7.1.2.c. Step 7, and refers to 

precisely one (instance of a) value} 

b) If a given name ref~rs to a structured value, then to each of its 

fields there refers a specific name which is uniquely determined by 

the given name and the field-selector selecting that field, and whose 

scope {2.2.4.2} is that of the given name. 

c) If a given name refers to a given multiple value, then to each of 

its subvalues and elements there refers a specific name which is 

uniquely determined by the given name and the descriptor of that 

subvalue or the index of that element, and whose scope {2.2.4.2} is 

that of the given name. 

d) When a given instance of a value is superseded by another instance 

of a value, then the name which refers to the given instance is caused 

to refer to that other instance, and, moreover, each name which refers 

to an instance of a multiple or structured value of which the given 

instance is a component {2.2.2.k} is caused to refer to the instance of 

the multiple or structured value which is established by replacing that 

component by that other instance. 

e) A value ceases to be referred to by a given name when another value 

is caused to be referred to by that name. 



2.2.4. Modes and scopes 

2.2.4.1. Modes 

a) Each value is of one specific mode, i.e. a terminal production of 

'MODE' {1.2.1.a}. 

b) The mode of an integer of length number one is I integral 1 , that of 

a real number of length number one is 'real', that of a truth value is 

'boolean', that of a character is 'character', and that of a pattern is 

'pattern'. 

c) The mode of an integer or real number of length number n > 1 is 

'integral' or 'real' respectively, preceded by (n - 1) times 'long'. 

d) The mode of a structured value is 'structured with' followed by one 

or more "field modes" separated by I and 1 , one corresponding to each 

field taken in the same order, each field mode being 'a' followed by 

the mode of the field followed by 'nrured' followed by the field-selector 

whieh selects that field. If two of these field-selectors are the same, 

then the mode is "enigmatic" {see 4.4.2}. 

{e.g. The mode specified by struat(int i, real i) is enigmatic, but 

that specified by struat(int i, struat(int i, j) j) is not. } 

e) The mode of a multiple value is the mode of its elements preceded 

by as many times 'row of' as there are quintuples in its descriptor. 

f) The mode of a routine is a terminal production of ''PROCEDURE' 
{1.2.1.q}. 

g) The mode of a name is 'reference to' followed by a mode. 
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h) A given mode is "adapted (adjusted, arrayed, united) from" another 

mode if the notion consisting of that other mode followed by 'operand' 

is a production of the notion consisting of 'adapted ( 1adjusted', 

'arrayed', 'united') followed by the given mode followed by 'operand' 
{see 8.2.}. 

{e.g. The mode specified by real is adjusted from the mode specified 

by ref real. } 

i) A mode "envelops" a given mode if it either is that given mode or 

is united from it. 

j) A given mode is "derived from" another mode if the given mode is a 

production of 'procedure PARAMETY delivering a LJ.VDDE', the other mode 

is a production of 'procedure PARAMEI'Y delivering a RMODE', the two 

productions of 'PARAJVJEI'Y' are the same and the production of 'LJ.VDDE' 

is adapted from the production of 'RMODE'. 

{The mode specified by real is widened from the mode specified by 

int, and thus the mode specified by proa(real) real is derived from the 

mode specified by proa(real) int. } 

k) Two modes are "related" if each is derived, adjusted or arrayed from 

one same mode {see 4.4.2.}. 

{e.g. The pairs of modes specified by real and proa real, int and 

[7 : n] int, proa union(int, ahar) and proa int are related.} 

1) The mode of a structured value "covers" a given mode if the largest 

mode in one of its field modes {d} is that given mode or, otherwise, 

covers it. 
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{e.g. In the context of the declarations 

sti>uct a = (E_a, bb) and 
struct b = (E_a., ;r,ef 13];) • 

the mode specified by E. covers those specified by E_ and!?_, whereas the 

mode specified by!?_ covers that specified by E. but not that specified by 

;r,ef £· } 

2.2.4.2. ,Scopes, inner and outer scopes 

a) Each value has one specific "scope". At each instance, a value has, 

moreover, one specific "inner scope" and "outer scope". 

b) The scope of a plain value is the program, 

that of a structured (multiple) value is the smallest of the scopes of 

its fields (elements), 

that of a routine possessed by a given external object is the smallest 

"range"- {4.1 .1.e} containing a defining occurrence of an identifier 

(indication), if any, applied but not defined within that external 

object and otherwise, the program, and 

that of a name is some {8.5.2.c} range. 

c) The inner (outer) scope of a value possessed by an external object 

whose value is constrained to have one fixed scope is that scope. 

d) The inner (outer) scope of a value possessed by an external object 

whose value is constrained to have one of a number of inner (outer) 

scopes, is the smallest (largest) of those inner (outer) scopes. 



2.2.5. Operations 

a) An operator denotes a monadic (dyadic) 11operation", i.e. a routine 

which map~ a (pair of) value(s) onto a value {7.3, 7.5, 10.2}. 

b) Operations on real numbers when said to be performed "in the sense 

of numerical analysis" {10.2.3.g, 1, m}, are performed on real numbers 

which may deviate slightly from the given ones; this deviation is not 

defined in this Report. 

2.2.6. Actions {Suit the action to the word, 

the word to the action. 

Hamlet, William Shakespeare.} 

An action is either "elementary", "serial" or "collateral". 

A serial action consists of two actions which take place one after the 

other. A collateral action consists of two actions merged in time; i.e. 

it consists of the elementary actions which make up those two actions 

provided only that each elementary action of each of those two actions 

which would take place before another elementary action of the same 

action when not merged with the other action, also takes place before 

it when merged. 

{What actions, if any, are elementary is undefined, except as 

provided in 6.4.2.c. } 

2.3. Semantics {"I can explain all the poems that ever 

were invented, - and a good many that 

haven't been invented just yet." 

Through the Looking Glass, Lewis Carroll.} 

a) The elaboration of a progr>am is the elaboration of the closed­

statement {6.4.1.a} consisting of the same sequence of symbols. 

{In this Report, the Syntax specifies the structure which a sequence 

of symbols has if it is a production of 'progr-am', and under Semantics 

the actions performed by the computer when elaborating a progr>am are 

described. Both are recursive.-} 



2.3. continued 

b) In ALGOL 68, a specific notation for external objects is used which, 

together with its recursive definition, makes it possible to handle and 

to distinguish between arbitrarily long sequences of symbols, to distinguish 

between arbitrarily many different values of a given mode (except 'boolean') 
and to distinguish between arbitrarily many modes, which allows arbitrarily 

many objects to occur in the computer and which allows the elaboration 

of a program to involve an arbitrarily large, not necessarily finite, 

number of actions. 

This is not meant to imply that the notation of the objects in the 

computer is that used in ALGOL 68 por that it has the same possibilities. 

It is, on the contrary, not assumed that the computer can handle 

arbitrary amounts of presented information. It is not assumed that these 

two notations are the same or even that a one-to-one correspondence 

exists between them; in fact, the set of different notations of objects 

of a given category may be finite. It is not assumed that the number of 

objects and relationships that can be established is sufficient to cope 

with the ~equirements of a given program nor that the speed of the 

copiputer is sufficient to elaborate a given program within a prescribed 

lapse of time. 

c) A model of the hypothetical computer, using an actual machine, is 

said to be an "implementation" of ALGOL 6·8, if it does not restrict 

the use of the language in other respects than those mentioned above. 

Furthermore, if additional restrictions are formulated defining a 

·language whose programs are a subset of the program, of ALGOL 68, then 

that language is called a "sublanguage11 of ALGOL 68. A model is said 

to be an implementation of a sublanguage if it does not restrict the 

use of the sublanguage in other respects than those mentioned above. 

{A sequence of symbols which is not a program but can be turned into 

one by a certain number of deletions or insertions of symbols and·not by 

a smaller number could be regarded as a program with that number of 

syntactical errors. Any program that can be obtained by performing that 

number of deletions or insertions may be called a "possibly intended" 

program. Whether a program or one of the possibly intended programs describes 

the process its writer in fact intended to describe is a matter which falls 

outside of this Report. } 



3. Tokens 

3.0. Syntax 

3.0.1. Introduction 

a)* token: basic token; special token; other token. 

b) basic token: letter token; denotation token; action token; 

declaration token; syntactic token; sequencing token; 

reservation token ; extra token. 

c) special token: quote symbol; canrrent symbol. 

d) other token: other character token; other multicharacter token. 

e) NarION option : NOTION ; EMPTY. 

f) chain of NOTIONS separated by SEPARATORs : NOI'ION; 
NarION, SEPARA'IDR, chain of NarIONs separated by SEPARATORs. 

g) NOTION list : chain of NOTIONs separated by comna symbols. 

h) NarION sequence : chain of NarIONs separated by EMPTYs. 

i) NOTION pack : open symbol, NarION, close symbol. 

{Examples: 

a)+ 11 
; pl,us 

b) a 0 ; + ; int ; if. ; . niZ ; for 
c) II ; C 

d) ? ; pZus 

e) 0 ; 

f) o .. 1., 2 ; 

g) 0 ; o, 7., 2 

h) 0 ; 000 ; 

i) (1., 2., 3) } 

{For letter-tokens see 3.0.2, for denotation-tokens see 3.0.3, for 

action-tokens see 3.0.4, for dec_laration-tokens see 3.0.,, for syntactic­

tokens see 3.0.6, for sequencing-tokens see 3.0.7, for reservation-tokens 

see 3.0.8, for extra-tokens see 3.0.9 and for other-character-tokens and 

other-multicharacter-tokens see 1.1.5. Step 3. } 



3.0.2. Letter tokens 

a) letter token LETI'ER. 

{Examples: 

a) a; n (see 1.1.4.a) } 

{Letter-tokens are constituents of identifiers (4.1.1.a), field­

selectors (7.1.1.i), character-denotations (5.1.4), row-of-character­

denotations (5.3) and pattern-denotations (5.1 .5). } 

3.0.3. Denotation tokens 

a) denotation token: number token; truefalse ;yinyang; asterisk symbol; 

format symbol; expression symbol; parameter symbol; flipflop; 

comma symbol; space symbol. 

b) number token: digit token; point symbol 

tlrres ten to the power symbol. 

c) digit token: DIGIT. 

d) truefalse : true symbol; false symbol. 

e) yinyang: yin symbol; yang symbol. 

f) flipflop : flip symbol; flop symbol. 

{Examples: 

a) 7 ; true ; ~ 

b) 7 . ; 10 

c) 7 ; 

d) true ; false 
e) ,; ; , 

f) J.. ; 2... } 

{Denotation-tokens are constituents of denotations (Chapter 5). Some 

denotation-tokens may, by themselves, be denotations, e.g. the digit-token 

7, whereas others, e.g. the expression-symbol, serve only to construct 

denotations • } 



3.-0.4. Action tokens 

a) action token : operator· token ; relater token ; value of symbol ; 

becomes symbol. 

b) operator token: or symbol; and symbol; not symbol; equals symbol; 

differs f'rom symbol ; is less than symbol ; is at most symbol ; 

j,.s at least symbol; is greater than symbol; plusminus; 

times symbol ; divided by symbol ; quotient symbol ; modulo symbol ; 

absolute value of symbol; lengthen symbol; shorten symbol; 

round symbol; sign symbol; entier symbol; odd symbol; 

representation symbol; real part of symbol; 

imaginary part of. symbol; conjugate symbol; binal symbol; 

to the power symbol. 

c) plusminus: plus symbol; minus symbol. 

d) relator token: is symbol; is not symbol; 

conforms to symbol; confonns to and becomes symbol. 

{Examples: 

a) + ; ·: := ; vaZ : = ; 

b) V ; A ; -, ; = =l= ; < ; s; ; ~ ; > ; + ; X ; / ; 

+ ; +: ; abs ; !:!!!!JJ.. . ; shor,t ; r,ound ; !!i:JE::.. ; en tier, ; odd ; r,epr, 

~; im ; conj; bin ; ~ ; 

c) +; -
d) :=: ; ::j:: ; : : ; : := } 

{Operator-tokens are constituents of formulas (8.1). An operator­

token may be caused to denote an operation by the elaboration of an 

operation-declaration (7.5). 

Relater-tokens are constituents of identity-relations (8.1.1) or 

conformity-relations (8.1.2). 

Becomes-symbols are constituents of assignations (8.8) } 



3.0.5. Declaration tokens 

a) declaration token: PRIMITIVE symbol; long symbol; 

reference to symbol; procedure symbol; structure symbol; 

union of symbol; local symbol; conplex symbol; bits symbol; 

string symbol; mode symbol; ADIC symbol; denotes symbol; 

operation symbol. 

{Examples: 

a) int; Z.ong ; ref; proc ; struct union ; Z.oc; 

EE!!J21 ; bits ; string ; mode dyadic ; = ; EE. } 

{Declaration-tokens are constituents of declarators (7.1), which 

specify modes (2.2.4), or declarations (7.2, 3, 4, 5). } 

3.0.6. Syntactic tokens 

a) syntactic token: open; close; elerrentary symbol; parallel symbol; 

sub symbol; bus symbol; up to symbol; at symbol; if symbol; 

THELSE symbol; fi symbol; of symbol; label symbol. 

b) open: open symbol; begin symbol. 

c) close : close symbol; end symbol, TAG option. 

{Examples: 

a) ( ; ) ; el.em ; par [ J 
b) ( ; begin ; 

c ) ) ; end ; end zero } 

{Syntactic-tokens are constituents of phrases, in which they separate 

terminal productions of notions or group them together. } 

) 



3.0.7. Sequencing tokens 

a} sequencing token: go on synt,ol; completion symbol; go to synt,ol. 

{Examples: 

a} ; ; • ; go to } 

{Sequencing-tokens are constituents of phrases, in which they 

specify the order in which phrases are elaborated (6.1). } 

3.0.8. Reservation tokens 

a) reservation token skip synt,ol nil synt,ol. 

{Examples: 

a) skip ; niZ} 

{Reservation-tokens are constituents of skips (6.2.1.e) and nihils 

(8.3.1 ~d). } 

3.0.9. Extra tokens and comments 

a) extra token: for symbol; from synt,ol; by symbol; to synt,ol; 

while syni:lol; do symbol; case synt,ol; plus i times symbol. 

b) comment: corrment symbol, corrment item sequence option, corrment symbol. 

c) conment item: basic token; quote symbol. 

{Examples: 

a) for ; from ; EJL ; to ; white ; do ; ~ i 

b) .£ with respeat to a 
c) liJ ; ,, } 

{Extra-tokens and comments may occur in phrases which, by virtue of the 

extensions of Chapter 9, stand for phrases in which no extra-tokens or 

conments occur. Thus, ii, program containing an extra-token or a conment is 

necessarily a program in the extended language, but the converse does 

not hold. } 



3.1. Symbols 

3.1.1. Representations 

a) Letter tokens 

symbol represent at ion 

letter a symbol a 

letter b symbol b 

letter c symbol C 

letter d symbol d 

letter e symbol e 

letter f symbol f 

letter g symbol g 

letter h symbol h 

letter i symbol i 

letter j symbol j 

letter k symbol k 

letter 1 symbol 7, 

letter m symbol m 

b) Denotation tokens 

symbol 

d.igit zero symbol 

digit one symbol 

digit two· symbol 

digit three symbol 

digit four symbol 

digit five symbol 

digit six symbol 

digit seven symbol 

digit eight symbol 

digit nine symbol 

point symbol 

t:l.lres ten to the power symbol 

' 

symbol representation 

letter n symbol n 

letter o symbol o 

letter p symbol p 

letter q symbol q 

letter r symbol r 

letters symbol s 

letter t symbol t 

letter u symbol u 

letter v symbol v 

letter w symbol w 
letter x symbol x 

letter y symbol y 

letter z symbol z 

representation 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 e 
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s~bol representation 

true symbol true 

false symbol false 

yin symbol ' 6 

yang symbol 
, 

9 

asterisk symbol ii! 

format symbol f. 

expression symbol ~ 
paraneter symbol 

flip symbol 7 

flop symbol 0 

comma symbol , 
space symbol .!. 

c) Action tokens 

symbol representation 

or symbol V or 

and symbol A and 

not symbol -, not 

equals symbol = 

differs from symbol ,I: tle!l 
is less than symbol < lss 

is at m::ist symbol ::; !:EE. 
is at least symbol ~ flS 
is gr'eater than symbol > grt 

plus symbol + 

minus symbol * 
times symbol X 

divided by symbol I 

quotient symbol gy.otient 

m::idulo symbol ¼.: mod 

absolute value of symbol abs 
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symbol representation 

lengthen symbol Zeng 

shorten symbol short 

round symbol round 

sign symbol !!i:Il!!:. 
entier symbol entier 

odd symbol odd 

representation symbol repr 

real part of symbol re 

imaginary part of symbol im 

conjugate symbol aonj 

binal symbol bin 

to the power symbol 1' power 
is symbol :=: is 

is not symbol ::j:: is not 

conforms to symbol .. malt. be 
conforms to and becomes symbol ::= malt. beaome 
value of symbol vaZ 

becomes symbol := 

d) Declaration tokens 

symbol representation 

integml symbol int 
real symbol reaZ 
boolean symbol booZ 
character symbol ahar 
pattern symbol format 
long symbol Zong 
reference to symbol i'ef 
procedure symbol proa 
structure symbol struat 
union of symbol union 
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symbol representation 

local symbol 7,oc 

complex symbol EE!!!El 
bits symbol bits 

string symbol string 

mode symbol mode 

monadic symbol monadia 

dyadic symbol dyadia 

denotes symbol = 

operation symbol EE. 

e) Syntactic tokens 

symbol representation 

open symbol ( 

begin symbol begin 

close symbol ) 

end symbol end 

elementary symbol elem 

parallel symbol par 
sub symbol [ ( 

bus symbol ] ) 

up to symbol 

at symbol at 

if symbol ( f:i. 
then symbol I then 

else symbol I else 

fi symbol ) ii 
of symbol £l 
label symbol 
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~) Sequencing tokens 

symbol 

go on symbol 

completion symbol 

go to symbol 

g) Reservation tokens 

symbol 

skip symbol 

nil symbol 

h) Extra tokens 

symbol 

for symbol 

from symbol 

by symbol 

to symbol 

while symbol 

do symbol 

case symbol 

plus i times symbol 

i) Special tokens 

symbol 

quote symbol 

conrnent symbol 

representation 

exit 

representation 

representation 

for 

i!!?!!J. 
EJi. 
to 

while 

do 

case 

l i 

representation 

C comment 



3.1.2. Remarks 

a) Where more than one representation of a symbol is given, any one 

of them may be chosen. 

{However, discretion should be exercised, since the text 

( a > b then b I a .fi, 
though acceptable to an automaton, would be more intelligible to 

a human in either of the two representations 

(a > b I b I a) 

or 

b) The fact that the representations of the letter-tokens given above, 

are usually spoken of as small letters is not meant to imply that the 

so-called corresponding capital letters could not serve equally well 

as representations. On the other hand, if both a small letter and the 

corresponding capital letter occur, then one of them is the representation 

of a~ other letter-token { 1.1.4.a}. 

c) If, in a text intended to be a program, a mark occurs which does 

not match one of the given representations and does not represent 

an other letter-token {1.1.4.a}, then it represents an other-token. 

d) A representation which is a sequence of underlined or bold-faced 

marks is different from the sequence of those marks when not underlined 

or in bold face. 

3.2. Semantics 

A character-token {5.1.4.1.b} denotes a character {2.2.3.1.a}; an 

other-I!lllticharacter-token {3.0.1.d} denotes a multiple value with 

more than one element, each being a character; a token {3.0.1.a} 

other than these denotes a multiple value with one or more elements, 

each being a character. 



4. Identification and context conditions 

4.1. Identifiers 

4. 1 • 1 • Syntax 

a)• identifier: MABEL identifier. 

b) MABEL identifier : TAG. 

c) TAG I.ETIER : TAG, IEITER. 

d) TAG DIGrr : TAG. DIGrr. 

e)• range: COERCEI'Y serial CLAUSE; PROCEDURE denotation. 

{Examples: 

b) X; XX; :cl amsterdam} 

{Rule b, together with 1.g.2.s and 1.2.1.1 gives rise to an infinity 

of production rules of the strict language, one for each pair of terminal 

productions of 'MABEL' and 'TAG'. For example, 

real identifier: letter a symbol letter b symbol. 

is one such production rule. One of the production rules of the strict 

language arising similarly from rule c is 

letter a symbol letter b symbol letter a symbol, letter b symbol. 

yielding a terminal production of 'real identifier'. 

See also 7.1.1 .g and 8.6 for additional insight into the function of 

rules c and d. } 

4.1 .2. Identification of identifiers 

a) At a. given occurrence, an identifier is either "defined" or "applied11
• 

It is defined if 

i) it occurs following a formal-declarer {7.4.1.a}, 

ii) within some range. it is the first occurrence of that identifier 

in a constituent flexible-lower-bound or flexible-upper-bound 

{7.1.1.u} of that range, or 

iii) it occurs in a label {6.1.1.g}; 

otherwise, it is applied. 



4~1.2. continued 

b) If, at a given occurrence, an identifier is applied, then it may 

identify a defining occurrence found by the following steps: 

Step 1: The given occurrence is called the "home" and Step 2 is taken; 

Step 2: If there exists a smallest range containing the home, then this 

range, with the exclusion of all ranges, if any, contained within it, 

is called the home and Step 3 is taken{; otherwise, there is no 

defining occurrence which the given occurrence identifies} 

Step 3: If the home contains a defining occurrence of the identifier, 

then the given occurrence identifies it; otherwise, Step 2 is taken. 

{In the closed-expression (bits x(707) ; abs x[2] = OJ, the first 

occurrence of xis a defining occurrence of a reference-to-row-of­

boolean-identifier. The second occurrence of x identifies the first and, 

in order to satisfy the identification condition (4.4.1), is also a 

reference-to-row-of-boolean-identifier.} 

{Identifiers have no inherent meaning. The defining occurrence of an 

identifier either is in a label (6.1.1.g) or is made to denote a value 

(2.2.3) by the elaboration of an identity-declaration (7.4.2).} 

4.2. Indications 

4 .2. 1 • Syntax 

a)• indication: MODE mode indication; PRIORITY ADIC indication. 

b) MODE mode indication : indicator ; mode standard. 

c) mode standard : string symbol ; 

long symbol sequence option, complex symbol; 

long symbol sequence option, bits symbol. 
d)~, priority indication: PRIORITY ADIC indication. 

e) PRIORITY ADIC indication: ADIC indication. 

f) ADIC indication: indicator; long symbol sequence option, 

operator token. 

g) indicator : other token. 



4.2.1. continued 

{Examples: 

b) primitive ; !!.E!!!EJ:. ; 
c) string ; 1EEfJ.. !!.E!!!EJ:. ; bits 

f) pZus ; + ; 'long abs 

g) primitive ; plus } 

4.2.2. Identification of indications 

a) At a given occurrence, an indication is either defined or applied. It 

is defined if it occurs preceding the equals-symbol in a mode-declaration 

{7.2.1 .a} or priority-declaration {7.3.1.a}; otherwise, it is applied. 

b) If, at a given occurrence, an indication is applied, then it may 

identify the indication at a defining occurrence found using the steps 

of 4.1.2.b, with "identifier" replaced by "indication". 

{Indications have no inherent meaning. The defining occurrence of an 

indication establishes that indication as a terminal production of 'MODE 

mode indication' (7.2.1.a) or 'PRIORITY ADIC indication' (7.3.1 .a).} 

4.3. Operators 

4.3.1. Syntax 

a)* operator: RMODE PRIORITY monadic operator 

I.MODE RMODE PRIORITY dyadic operator. 

b) RMODE MODE PRIORITY monadic operator : 

RMODE PRIORITY monadic operator. 

c) RMODE PRIORITY monadic operator : PRIORITY monadic indication. 

d) I.MODE RMODE MODE PRIORITY dyadic operator 

I.MODE RMODE PRIORITY dyadic operator. 

e) I.MODE RMODE PRIORITY dyadic operator: PRIORITY dyadic indication. 

{Examples: 

c) abs ; e) +} 



4 •. 3 .2. Identification of operators 

a) At a given occurrence, an operator is either defined or applied. It 

is defined if it occurs preceding the denotes-symbol in an operation­

declaration {7.5.1.a}; otherwise, it is applied. 

b) If, at a given occurrence, an operator is applied, then it may 

identify the operator at a defining occurrence found using the steps 

of 4.1.2.b, with Step 3 replaced by 

"Step 3: If the home contains a defining occurrence of an operator which 

is the same priority-indication as the given occurrence, and which 

{in view of the identification condition (4.4.1)} could be a defining 

occurrence of the given occurrence, then the given occurrence of the 

operator identifies the operator at that defining occurrence; 

otherwise, Step 2 is taken." 

{Operators have no inherent meaning. The defining occurrence of an 

operator is made to denote a routine (2.2.3.4) by the elaboration of an 

operation-declaration (7.5.2). 

A given occurrence of an indication may be both a priority-indication 

and an operator. As a priority-indication, it identifies its defining 

occurrence. As an operator, it identifies another defining occurrence, 

which denotes a routine. Since the occurrence of an indicator in an 

operation-declaration is an application as a priority-indication and 

a definition (but not an application) as an operator, it follows that 

the set of those occurrences which identify a given operator is a subset 

of those occurrences which identify the same priority-indication. 

In the closed-staterrent 

begin real x, y(7.5); dyadia min = 6 ; 

EE. real min = (real a., b) : (a> b I b I a); 

X := y min pi I 2 end 

the first occurrence of min is a defining occurrence of a priority-SIX­

dyadic-indication. At the second occurrence, the priority-indication 

min is applied and identifies the first occurrence, whereas, at the same 

textual position, the operator min is defined as a real-real-real­

priority-SIX-dyadic-operator and hence is also a real-real-priority-SIX-



4.3.2. continued 

dyadic-operator (4.3.1.d; i.e. ignoring the mode of the value which it 

delivers). At the third occurrence of min, it is an application of a 

priority-indication and, as such, identifies the first occurrence, 

whereas, at the same textual position, min is also an application of an 

operator, and, as such, identifies the second occurrence; this makes it 

(in view of the identification condition, 4.4.1) a real-real-priority­

SIX-dyadic-operator and hence, also because of the identification 

condition, a real-real-real-priority-SIX-dyadic-operator. This 

identification of the operator is made because 

i) min occurs in an operation-declaration, 

ii) y could be an adjusted-real-priority-SIX-dyadic-forrrn.llation, 

iii) pi/2 could be an adjusted-real-priority-SIX-monadic-forrrn.llation 

(since it is a priority-SEVEN-dyadic-forrrula) 

iv) min is a real-real-priority-SIX-dyadic-operator, and 

v) this combination of possibilities satisfies the identification 

condition. 

With this identification of the operator accomplished we now know that 

y is an adjusted-real-priority-SIX-dyadic-forrrn.llation and that pi/2 

is an adjusted-real-priority-SIX-monadic-formulation. If the identification 

condition were not satisfied, then the search for another defining 

occurrence would be continued in the same range, or failing that, in a 

surrounding range. } 
{Though this be madness, yet 

there is method in't. 

Hamlet, William Shakespeare.} 



4.4. Context conditions 

{Let a be the set of all terminal productions of 'program' as 

described in chapter 1. Let f3 be the set of all progr-ams in a which 

satisfy the context conditions, and let y be the set of all programs 

which are successfully assigned a meaning by this Report. The inclusion 

relations 

a :::, f3 :::, Y 

hold and are proper. The purpose of the context conditions is to select, 

for consideration in this Report, only those programs in f3. Whether or 

not the set of programs "in the language" is the set a or the set f3 or 

even the set Y, is a matter for individual taste. If the choice is f3, 

then the context conditions become syntax which is not written in the 

form of production rules. } 

4.4.1. The identification condition 

An identifier (indication, operator) at an applied occurrence, which is 

a terminal production of one or more notions ending with 'identifier' 

('indication', 'operator'), is a terminal production of all those same 

notions at its defining occurrence. 

4.4.2. The mode condition 

No declarer specifies an enigmatic mode {2.2.4.1.d}, a mode which envelops 

{2.2.4.1.i} two related modes {2.2.4.1.k}, or a mode which covers 

{2.2.4.1.1} itself. 

4.4.3. The uniqueness condition. 

No range, excluding all ranges contained within it, contains more than 

one defining occurrence of a given identifier or mode-indication, or of 

a monadic-indication (dyadic-indication, operator) as a terminal 

production of a given direct production of 'monadic indication' 

( 1 dyadic indication 1 • 'operator' ) , and• in a given range , no mode­

indication (priority-indication) occurs as a priority-indication 

(mode-indication); furthermore, no program contains an applied occurrence 

of an identifier, indication or operator which does not identify a 

defining occurrence. 



5. Denotations 

5.0.1 ;; Syntax 

a)* denotation: PLAIN denotation; BITS denotation STRING denotation; 

PROCEDURE denotation. 

{Examples: 

a) 3. 14 ; 101 ; "algol.!.report" (a I b I false) } 

5.0.2. Semantics 

(A denotation denotes a value; this relationship is permanent 

(see 2.2.2.a).} 

The mode of the value denoted by a denotation is obtained by deleting 

'denotation' from that direct production of the notion 'denotation', 

of which the given denotation is a terminal production. {e.g. The mode of 

"algol.:..report", which is a production of 'row of character denotation', 

is 'row of character'. } 

5.1. Plain denotations 

5,1.0,1. Syntax 

a)• plain denotation: PLAIN denotation. 

b) long INTREAL denotation: long symbol, INTREAL denotation. 

{Examples: 

a) 4096 ; 3. 14 ; true ; 'a~ ; t?z3di 

b) long 4096 ; long long 3.141592653589793} 



5.1.0.2. Semantics 

A plain-denotation denotes a plain value {.2 •. 2 •. 3. 1 }, but plain values 

denoted by different pla:in-denotations are not necessarily different. 

5.1.1. Integral denotations 

5.1.1.1. Syntax 

a) integral denotation: digit zero symbol; natural numeral. 

b) natural numeral: digit FIGURE symbol, digit .token sequence option. 

{Examples: 

a) 0; 4096; 

b) 7 ; 2 ; 3; 123 (Note that 00123 and -7 are not integral-denotations.) } 

5.1.1.2. Semantics 

The 11a· priori" value of an integral-denotation is the integer which in 

decimal notation is written as such. The value of a denotation of an 

integer of given length is its a priori value provided that this does 

not exceed the largest integer of that length {( 10.1.b); otherwise, the 

value is undefined (2.2.3.1.b)}. 

5.1.2. Real denotations 

5.1.2.1. Syntax 

a) real denotation: variable-point numeral; noating-point numeral. 

b) variable-point numeral : integral part option, fractional part ; 

integral part, point symbol. 

c) integral part: integral denotation. 

d) fractional part : point symbol, 

digit zero symbol sequence option, integral denotation 

e) floating-point numeral : stagnant part, exponent part • 
f) stagnant part integral denotation ; variable-point numeral. 

g) exponent part : t:imes ten to the power symbol, power of ten. 

h) power of ten: plusminus option, integral denotation. 



5.1.2.1. continued 

{Examples 

a) 0.000123 1.23e-4 b) .123 0.123 ; 123. 

c) 123; d) .123 ; .000123 

e) 1.23e-4 110+5 f) 1 1.23 ; 

g) e-4 ; h) 3 +45; -678 } 

5.1.2.2. Semantics 

a) The a priori value of a fractional-part is the a priori value of its 

integr-al.:.cienotation divided by ten, in the sense of numerical analysis, 

as many times as there are digit-tokens in the fractional-part. 

b) The a priori value of a variable-point-nt.nneral is the a priori value 

of its fractional-part if it has no integr-al-part and that of its 

integr-al-part if it has no fractional-part; otherwise, it is the sum in 

the sense of numerical analysis of the a priori values of its integr-al­

part and fractional-part. 

c) The a priori value of an exponent-part is ten raised to the a priori 

value of the integral-denotation in its power-of-ten if that power-of-ten 

does not begin with a minus-symbol; otherwise, it is one-tenth raised to 

the a priori value of that integr-al-denotation. 

d) The a priori value of a floating-point-numeral is the product in the 

sense of numerical analysis of the a priori values of its stagnant-part 

and exponent-part. 

e) The value of a denotation of a real number of given length is its 

a priori value provided that this does not exceed the largest real 

number of that length {(2.2.3.1.b, 10.1.d); otherwise, the value is 

undefined}. 



5.1.3. Boolean denotations 

5.1._3._1. Syntax 

a) boolean denotation truefalse. 

{Examples: 

a) tPUe ; false } 

5.1.3.2 •. Semantics 

The value of a true-symbol or false-symbol is true or false respectively. 

5. 1. 4. Character denotations 

5.1.4.1. Syntax 

a) character denotation: yin symbol, character token, yang symbol. 

b) character token: graphic; asterisk symbol. 

c) graphic : letter token; number token; plusminus; open symbol 

close symbol; space symbol ; quote symbol; comna symbol; 

times symbol; divided by symbol; equals symbol; other character token. 

{Examples: 

a) 'a' 

b) a 

c) a 

* . • 
7 + ; ( 

5.1.4.2. Semantics 

} ; ..!. ' , I = ? } 

The value of a character-denotation is the character denoted by the 

character-token enclosed between the yin-symbol and the yang-symbol. 



5.2. Row of boolean denotations 

5.2.1. Syntax 

a) BITS denotation long symbol sequence option, flipflop sequence. 

{Examples: 

a) 101 ; long 101 } 

5.2.2. Semantics 

a) The a priori value of a flip-symbol is true and that of a flop-symbol 

is false. 

b) The a priori value of a flipflop-sequence consists of the values of its 

flipflops taken in the same order and preceded by false an infinity of times. 

c) The value of a row-of-boolean-denotation is the multiple value 

{2.2.3.3} whose elements are the last n members of the a priori value of. 

its flipflop-sequence, where n stands for the value of L bits width 

{10.1.f}, (L standing for as many times long as there are long-symbols 

in the denotation) and whose descriptor has an offset 1 and one quintuple 

(1, n, 1, 1, 1). 

{If the value of bits width is, say, 5, then 101 denotes the same 

value as that possessed by the collateral-expression (false, false, true, 

false, true), but 701 is not a collateral-expression. } 



5.3. Row of character denotations 

5 .3.1. Syntax 

a) STRING denotation: 

quote symbol, string item sequence option, quote symbol. 

b) string item basic token; quote image; comment symbol; other token. 

c) quote image quote symbol, quote symbol. 

{Examples: 

a) "" ; "a" ; "abade" 

b) a ; "" ; E_ ; ? ; 

c) 1111 (Since a string may not follow a string, the production of 

'quote image' does not cause ambiguities.) } 

5.3,2. Semantics 

a) The "row value" associated with a symbol is a multiple value whose 

element·s are characters; if the symbol is a character-token, 

only element is the character denoted by the character-denotation 

containing that character-token; otherwise, the number of elements is 

one or more. 

b) The row value associated with a quote-image is the row value 

associated with the quote-symbol. 

c) The value of a row-of-character·-denotation is a multiple value 

whose elements are the elements of the row values associated with its 

string-items, taken in the same order, and whose descriptor has an offset 

1 and one ~uintuple (1, n, 1, 1, 1), where n stand for the sum of the 

numbers of elements of the row values associated with its string-items. 

{The denotation "ab" denotes a value which is the same as the value 

possessed by the collateral-expression ('a', 'b'), but "ab" is not a 

collateral-expression. } 



5.4. Routine denotations 

5.4.1. Syntax 

a)• routine denotation: PROCEDURE denotation. 

b) procedure with a PARAMETERS delivering a MODE denotation: 

formal PARAMETERS pack, virtual MODE declarer, parameter symbol, 

adapted MODE base. 

c) procedure with a PARAMETERS denotation : 

fonnal PARAMETERS pack, parameter symbol, basic statement. 

d) VICTAL PARAMETERS and a PARAMETER : 

VICTAL PARAMETERS, canma symbol, VICTAL P.ARAMEI'ER. 

e) formal MODE parameter : formal MODE declarer, MODE identifier. 

f) procedure delivering a MODE denotation: 

virtual MODE declarer, expression symbol, adapted MODE base, 

g) procedure denotation: expression symbol, basic statement. 

{Examples: 

b) (boo,7, a, b) booZ : (a I b I faZse) 

c) (ref int i) : (i > 0 I i := i - 1) 

d) booZ a~ b ; ref inti; [] real, x [1 : 10] real, y [int m int n] real, z 

e) booZ a ; ref int i ; 

f) real, ~(p I x I y) ; expr(p I x y) (9.2 

g) ~(n = 1966 I warsaw I zandvoort) } 

{For adapted-bases see 8.3.1,b and for basic-statements see 6.2.1.b. } 

5,4.2. Semantics 

A routine-denotation denotes that routine which would be obtained from it by 

i) placing an open-symbol before it and a close-symbol after it; 

ii) inserting a denotes-symbol followed by a skip-symbol following the 

last identifier in each constituent formal-parameter; 

iii) deleting the constituent virtual-declarer, if any, preceding the 

constituent parameter-symbol or expression-symbol; 

iv) replacing the parameter-symbol, if any, by a go-on-symbol, and 

v) deleting the expression-symbol, if any. 



5.4.2. continued 

{For the mode of a routine see 5.0.2.b. A routine is a value which 

may be accompanied by formal-parameters or not, and when called may 

deliver a value or not. The process described above implies that a 

routine-denotation denotes a token-sequence which is the same as a 

closed-clause (6.4.1.a), in which the formal-parameters, if any, have 

been transformed into identity-declarations (7.4.1). For the elaboration 

of routines see 8.1.0.2 (formulas), 8.2.1.2. (unaccompanied-calls) and 

8.7 (accompanied-calls). } 



6. Phrases 

6.0.1. Syntax 

a)• phrase 

b)* clause 

COERCEI'Y SOME PHRASE. 

COERCETY SOME CLAUSE. 

c)* expression: COERCEI'Y SOME MODE expression. 

d)• declaration: SOME declaration. 

e)• stateirent : SOME stateirent. 

f)* SOME phrase COERCEI'Y SOME PHRASE. 

g)ili SOME clause COERCEI'Y SOME CLAUSE. 

h)• SOME expression: COERCETY SOME MODE expression. 

6.0.2. Semantics 

a) The elaboration of a phrase begins when it is "initiated", it may be 

"interrupted", "halted" or "resUllled", and it ends by being "terminated" 

or "completed", whereupon, if the phrase "appoints" a unitary-phrase as 

its successor, the elaboration of that unitary-phrase is initiated, 

except in the case mentioned in 7.0.2.a. 

b) The elaboration of a phrase may be interrupted by an action {e.g. 

overflow} not specified by the phrase but taken by the computer if its 

limitations do not permit satisfactory elaboration. {Whether, after an 

interruption, the elaboration of the phrase is resUllled, the elaboration 

of some unitary-phrase is initiated or the elaboration of the program 

ends, is not defined in this Report.} 

c) The elaboration of a phrase may be halted {10.4.b}, i.e. no further 

actions constituting the elaboration of that phrase take place until the 

elaboration of the phrase is resumed {10.4.a}, if at all. 



6.0.2. continued 

d) A given clause is "protected" in the following steps: 

Step 1: If an identifier (indication) which also occurs outside the 

given clause is defined (as a m:x:le-indication or priority-indication) 

within it, then all occurrences of this identifier (indication) within 

tb.e given clause are replaced by one same identifier (indication) which 

does not occur elsewhere in the program and Step 1 is taken; otherwise, 

Step 2 is taken ; 

Step 2: If an indication which also occurs outside the given clause is 

defined as an operator within it, then all occurences of that 

indication which identify this defining occurrence and this defining 

occurrence itself are replaced by one same new indicator which does 

not occur elsewhere in the program and Step 3 is taken; otherwise, the 

protection of the given clause is complete; 

Step 3: A copy is made of the priority-declaration containing that 

indication which is identified by that operator; the occurrence of that 

indication in the copy is replaced by that new indicator; the copy thus 

modified, preceded by an open-symbol and followed by a go-on-symbol, is 

inserted preceding the given clause, a close-symbol is inserted following 

the given clause, and Step 2 is taken. 

{Clauses are protected in order to allow unhampered definitions of 

identifiers, indications and operators within ranges and to permit a 

meaningful call, within a range, of a procedure declared outside it.} 

{What's in a name? that which we call a rose 

By any other name would smell as sweet. 

Romeo and Juliet, William Shakespeare.} 



6.1 Serial phrases 

6.1.1. Syntax 

a) serial declaration: chain of unitary declarations separated by 
go on symbols. 

b) COERCETY serial CLAUSE: declaration prelude option, 

chain of COERCEI'Y CLAUSE trains separated by conpleters. 

c) declaration prelude : chain of unitary declarations separated by 

go on symbols, go on symbol. 

d) COERCETY CLAUSE train: label sequence option, 

staterrent prelude option, COERCEI'Y unitary CLAUSE. 

e) staterrent prelude : chain of unitary statements separated by 

sequencers, sequencer. 

f) sequencer: go on symbol, label sequence option. 

g) label : label identifier, label symbol. 

h) conpleter: conpletion symbol, label. 

{Examples: 

a) real, x ; real, y (7) ; int n = abs j ; 

b) n := n + 1 ; real, x; inti; x :=a+ 1 

c) real, x; inti; ; 

d) 7,: true l,7 : l,2 

e) X := X + 1 ; y := 

f) ; ; ; 1, : ; 

g) 1, : ; 

h) . 1,3 : } 

x := a + 1; it. x > 0 then goto 1,3 eZae x := 7 - x 

fi ; false. Z3 : y := y + 1 ; ~ ; 

1 - y ; 

{For unitary-phrases see 6.2 and Chapters 7 and 8.} 



6.1.2. Semantics 

a) The elaboration of a serial-declaration is initiated by initiating 

.the elaboration of its first constituent unitary-declaration. 

b) The elaboration of a serial-clause is initiated by protecting it 

{6.0.2.d} and then initiating the elaboration of its first constituent 

unitary-phrase. 

c) The completion of the elaboration of a unitary-phrase preceding a 

go-on-symbol initiates the elaboration of the first unitary-phrase 

textually after that go-on-symbol. 

d) The elaboration of a serial-phrase is 

i) interrupted (halted, resumed) upon the interruption (halting, 

resumption) of a constitutent unitary-phrase; 

ii) terminated upon the termination of the elaboration of a constituent 

unitary-phrase, and its successor {6.2.2.a} is appointed the 

successor of the serial-phrase. 

e) The elaboration of a serial-declaration is completed upon the 

completion of the elaboration of its last constituent unitary-declaration. 

f) The elaboration of a serial-clause is completed upon the completion 

of the elaboration of its last constituent unitary-clause or of that of 

a constituent unitary-clause preceding a completer. 

g) The value of a serial-expression is the value of that constituent 

unitary-expression the completion of whose elaboration completed the 

elaboration of the serial-expression, provided that the scope {2.2.4.2} 

of that value is larger than the serial-expression{; otherwise, the 

value of the serial-expression is undefined}. 

{In y := (x := 7.2; 2.3), the value of the serial-expression 

x := 7.2; 2.3 is the real number denoted by 2.3. In xx:= (reaZ r(0.1); r), 

the value of the serial-expression reaZ r(0.7); r is undefined since the 

scope of the name denoted by r is the serial-expression itself. } 



6.2. Unitary phrases 

6.2.1. Syntax 

a) unitary statement : basic statement; MODE assignation. 

b) basic statement : cohesive statement; called cohesion; 

called NONPROC cohesion; CLOSED statement. 

c) cohesive statement : Jump; skip; statement call; NONPROC expression call. 

d) Jump go to symbol option, label identifier. 

e) skip skip symbol. 

{Examples: 

a) goto warsaw; x := x + 7 ; 

b) goto (JZ'enob'le ; stop; random 

(x := 7; y := 0) ; (x := 7, y := 0) ; (p Ix:= 7 I y := 0) 

c) kootwijk; skip; setrandom (x) ;, det(y8, i7) 

d) goto amsterdam ; zandvoort ; 

e) skip} 

{For unitary-declarations see Chapter 7, and for unitary-expressions 

see Chapter 8. 

For assignations see 8.8.1.a, for called-cohesions see 8.2.1.1.b, c, for 

closed-statements see 6.4.1.a, for collateral-statements see 6.3.1.b, 

for conditional-statements see 6.5.1.a, for expression-calls see 8.7.1.b 

and for statement-calls see 8.7.1.c.} 

6.2.2. Semantics 

a) The elaboration of a Jump terminates the elaboration of the unitary­

clause which is that Jump, and it appoints as its successor the first 

unitary-clause textually after the defining occurrence {in a label 

(4.1.2)} of the label-identifier occurring in the jump. 

{Note that the elaboration of a Jump may terminate the elaboration of 

other phrases (6.1.2.d, 6.3.2.a).} 
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b) The elaboration of a skip involves no action. 

{Skips play a role e.g. in the semantics of routine-denotations 

(5.4.2.ii) and accanpanied-calls (8.7.2. Step 3). } 

6.3. Collateral phrases 

6.3.1. Syntax 

a) collateral declaration: collected declaration. 

b) collateral statement : collected statement. 

c) COERCETY collateral row of MODE expression 

COERCETY collected MODE expression. 

d) COERCETY collected PHRASE: parallel symbol option, open symbol, 

COERCETY unitary PHRASE, comma. symbol, COERCEI'Y unitary PHRASE list, 

close symbol. 

{Examples: 

a} (:rieaZ x, :rieaZ y) ; (and, by 9.2.b, h) :rieaZ x, y 

b) (:,:: := o, y := 7 J ; (:,:: := o, y := 7, z := 2) ; 

c) (x, n) ; (1, 2. 3, 4,5) } 

6.3.2. Semantics 

a) If a number of constituents of a given terminal production of a notion 

are "elaborated collaterally"• then this elaboration is the collateral 

action {2.2.6} consisting of the {merged} elaborations of these constituents, 

and is: 

i) initiated by initiating the elaboration of each of these constituents 

ii) interrupted upon the interruption of the elaboration of any of 

these constituents 

iii) completed upon the completion of the elaboration of all of these 

constituents; and 

iv) terminated upon the termination of the elaboration of any of these 

constituents, and if that constituent appoints a successor, then this 

is the successor of the given terminal production. 
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b) A collateral-phrase is elaborated in the following steps: 

Step 1: Its constituent unitary-phrases are elaborated collaterally 

{6.3.2.a} 

Step 2: If the collateral-phrase is a collateral-expression with n 

constituent unitary-expressions, then a new instance of a multiple value, 

which is then the value of the collateral-expression, is established 

as follows: 

If 

then values obtained in Step 1 are not of multiple ~ode 

then 

the new multiple value is composed of new instances of these n values, 

indexed in the same order from 1 ton, and a descriptor consisting of 

an offset 1 and one quintuple (1, n, 1, 1, 1) ; 

otherwise, 

then values obtained in Step 1 are of multiple mode, and 

if 

the lower (upper) bounds of the corresponding quintuples in their 

descriptors are the same, 

then 

the new multiple value is composed of n x r elements, each of which 

is a new instance of an element of each of then multiple values 

obtained in Step 1, the new instance of the j-th element of the 

value of the i-th constituent being given the index j + (i - 1) x r 

(where r stands for the number of elements of the multiple value of 

each constituent unitary-expression), and a descriptor which consists 

of an offset 1 and a first quintuple (1, n, r, 1, 1) followed by 

copies of them quintuples of the descriptor of the multiple value of 

one of the constituent unitary-expressions, subjected to the following 

modifications: 

Calling these quintuples (l., u., d., s., t.), i = 1, 2, •••• m, 
l l l l l 

i) for i = 1, 2, •••• m, the states s. and t. are set to 1 ; 
l l 

ii) d is set to 1, and 
m 

iii) for i = m, m-1, •••• 2, the stride d. 1 is set to (u. - 1. + 1) x d. 
l- l l l 

{; otherwise, 

the value of the collateral-expression is undefined}. 
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{The presence of a parallel-symbol makes it possible to control the 

progress of the elaborations of the constituent unitary-phrases by means 

of the synchronization routines of 10.4.} 

6.4. Closed phrases 

6.4.1. Syntax 

a) COERCEI'Y closed PHRASE: elementary symbol option, open, 

COERCEI'Y serial PHRASE, close. 

{Examples: 

a) (real, :c = u) ; eZem begin i := i + 1; j := j + 1 end inarement} 

{For serial-phrases see 6.1.} 

6.4.2. Semantics 

a) The elaboration of a closed-phrase is that of its constituent serial­

phrase. 

b) The value of a closed-expression is that, if any, of its constituent 

serial-expression. 

c) The elaboration of a closed-phrase which begins with an elementary­

symbol is an elementary action {2.2.6.a}. 

6.5. Conditional clauses 

6.5.1. Syntax 

a) COERCEI'Y conditional CLAUSE 

if symbol, COERCETY choice CLAUSE, fi symbol. 

b) COERCETY choice CLAUSE: 

condition, COERCETY then CLAUSE, COERCETY else CLAUSE option. 

c) condition: fitted serial boolean expression. 

d) COERCEI'Y THEI.SE CLAUSE: THEI.SE symbol, COERCEI'Y serial CLAUSE. 
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{Examples: 

a) (x > 0 I x I 0) ("adapted" in y := (x > 0 I x I OJ) 

f:t. ovex>flOL,J then exit fi ; 
b) x > 0 Ix I O; ovex,fl,OL,J then exit 

c) x > 0 ovex>fZow; 

d) I x ; 0 ; then exit } 

{For serial-clauses see 6.1.1.b.} 

6.5.2. Semantics 

a) A conditional-clause is elaborated in the following steps: 

Step 1: The condition is elaborated; 

Step 2: If the value of the condition is true, then the then-clause and 

otherwise the else-clause, if any, is selected; 

Step 3: The clause following the then-symbol or else-symbol of the clause 

selected in Step 2, if any, is elaborated; 

Step 4: If ·the conditional-clause is a conditional-expression, then its 

value is that of the clause elaborated in Step 3, if any; otherwise, 

its value is undefined, 

b) The elaboration of a conditional-clause is 

i) interrupted (halted, resumed) upon the interruption (halting, 

resumption) of the elaboration of the condition or the selected clause; 

ii) completed upon the completion of the elaboration of the selected 

clause, if any; otherwise, completed upon the completion of the 

elaboration of the condition; and 

iii) terminated upon the termination of the elaboration of the condition 

or selected clause, and, if one of these appoints a successor, then 

this is the successor of the conditional-clause. 



7. Unitary declarations 

7.0.1. Syntax 

a) unitary declaration: mode declaration; 

priority declaration; identity declaration; 

operation declaration; closed declaration; collateral declaration. 

{Examples: 

a) mode bits = [ 7 : bits width] booZ 

dya.dia plus= 7 ; 

int m = 4096 ; real, x 

proa int sgn = (real, x) 

212. int ... = (real a, b) 

booZ aompZete(faZse) 

: (x = 0 I 7 I sign x) 

(round at round b) 

(real x = u) ; real, x, y } 

7.0.2. Semantics 

a) If,during the elaboration of an expression contained within a unitary­

declaration, a jump is elaborated {6.2.2.a} whose successor is a unitary­
clause outside that declaration but within the smallest range 

containing it, then the further elaboration is undefined. 

b) An identifier or indicatio1, which was caused to denote an internal 

object by the elaboration of a declaration ceases to denote that object 

upon termination or completion of the elaboration of the smallest range 

containing that declaration. 

{For mode-declarations see 7.2, for priority-declarations see 7.3, 

for identity-declarations see 7.4, for operation-declarations see 7.5, 

for closed-declarations see 6.4 and for collateral-declarations see 6.3. 

The elaboration of the closed-expression 

begin[] : (go to e; 5)] int a; e : a[7] := 7 end 

is undefined, according to a. } 



7.1. Declarers 

7 • 1 • 1 • Syntax 

a)* declarer: VICTAL MODE declarer. 

b) VICTAL MJDE declarer : 

VICTAL J.VDDE declarator; MODE mode indication. 

c) VICTAL PRIMITIVE declarator : PRIMITIVE symbol. 

d) VICTAL long INTREAL declarator : 

long symbol, VICTAL INTREAL declarator. 

{Examples: 

b) roeaZ ; bits ; 

c ) int ; roe a Z ; boo Z ; aharo ; format 

d) 1E!!fJ. int ; long long roeal } 

e) VICTAL structured with a FIELDS declarator 

structure symbol, FIELDS declarator pack. 

f) FIELDS and a FIELD declarator : 

FIELDS declarator, comma symbol, FIELD declarator. 

g) MODE named TAG declarator : 

actual M'JDE declarer, MODE named TAG selector. 

h) MODE named TAG selector : 'l'AG. 

i)* field selector: FIELD selector. 

{Examples: 

e) str,uat(stroing name, roeal value) 

f) stroing name, roeal value 

g) stroing name 

h) name } 

j ) virtual reference to MODE declarator 

reference to symbol, virtual MODE declarer. 

k) actual reference to MODE declarator : 

reference to symbol, virtual MODE declarer. 

l) formal reference to NONREF declarator : 

reference to symbol, formal NONREF declarer. 

m) fonnal reference to reference to MODE declarator 

reference to symbol, virtual reference to MODE declarer. 
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{Examples: 

j) Pef [] Peal, 

k) Pef [] Peal, 

l) !:!:1(.7 : int n] Peal, 

m) Pef Pef [] Peal, } 

n) VICTAL ROWS NONROW declarator : sub symbol, VICTAL ROWS rower, 

bus symbol, VICTAL NONROW declarer. 

o) VICTAL row of ROWS rower : 

VICTAL row of rower, comna syrrbol, VICTAL ROWS rower. 

p) VICTAL row of rower : 

VICTAL lower bound, up to symbol, VICTAL upper bound. 

q) formal LOWPER bound : 

flexible LOWPER bound; strict LOWPER bound; virtual LOWPER bound. 

r) actual IDWPER bound : strict IDWPER bound ; virtual LOWPER bound. 

s) virtual IDWPER bound : EMPTY. 

t) strict IDWPER bound: fitted unitary integral expression. 

u) flexible LOWPER bound : integral declarator syrrbol, integral identifier. 

{Examples: 

n) [7 : m, 7 : n] Peal, 

o) 7 : m, 7 : n ; 

p) 7 : m 
q) int n i + .j 

r) i + j 

t) i + j 

u) int n} 

v) VICTAL procedure declarator : procedure symbol. 

w) VICTAL procedure with a PARAME'IERS declarator : 

procedure symbol, virtual PARAME'IERS pack. 

x) VICTAL procedure PARAMETY delivering a JVDDE declarator 

VICTAL procedure PARAMETY declarator, virtual MODE declarer. 

y) virtual MODE parameter : virtual JVDDE declarer. 
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{Examples: 

v) proa 
w) proa(rea'l., int) 

x) proa(rea'l, int) boo'l 

y) real, } 

z) VICTAL union of MODES mode declarator 

union of symbol, virtual MODES declarer pack. 

aa) virtual fJDDES and MODE declarer 

virtual fJDDES declarer, conma symbol, virtual JVDDE declarer. 

{Examples: 

z) union(int., bool,) 

aa) int, booi } 

{A declarer is, by rule b, either a declarator or a mode-indication 

(4.2.1.b). A declarator may contain a declarer and thus a mode-indication, 

but it never begins with one. 

Rule g, together with 1.2.1.k, 1, m, n, o, p and 4.1.1.c, d, leads to 

an infinity of production rules of the strict language, thereby enabling 

the syntax to "transfer" the field-selectors (i) into the mode of 

structured values, and making it ungrammatical to use an "unknown" field­

selector in a field-selection (8.6). Concerning the occurrence of a given 

field-selector more than once in a declarer, see 4.4.2, which implies 

that struat(rea'l x., int x) is not a (correct) declarer, whereas 

struat(real, x., struat(int x, bool, p)p) is. 

Notice, however, that the use of a given field-selector in two different 

declarers within a given range does not cause any ambiguity. Thus, 

struat(string name, ref aeU next) and 

Unk(ref Zink next, ref aeU va'lue) 

may both be present in some range. 
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Rules j , k, 1 and m imply that, for instance, ~ 7 : int n] r>ea7, x 

may be a formal-parameter (5.4.1.e), whereas r>ef~1: int n] r>eaZ x 

may not.} 

7. 1 .2. Semantics 

a) A given declarer specifies that mode which is obtained by deleting 

'declarer' and the ter.minal production of the metanotion 'VICTAL' from 

that direct production {1 .2.2.b} of the notion 'declarer' of which the 

given declarer is a production. 

b) A given declarer is developed as follows: 

Step: If it is, or contains, a mode-indication which is either an actual­

declarer not preceded by a reference-to-symbol, or a formal-declarer not 

preceded by two reference-to-symbols, then that indication is replaced 

by a copy of the constituent actual-declarer of that node-declaration 

{7.2._1.a} which contains the defining occurrence {4.2.2.b} of that 

indication, and the Step is taken again; otherwise, the development 

of the declarer is complete. 

{A declarer is developed during the elaboration of an actual­

declarer (c} or identity-declaration (7.4.2. Step 1). The exceptions 

concerning reference-to-symbols are made in order that the development 

of the actual-declarer in constructions like 

struct per>son = (int age, r>ef person father>) 

may be finite. } 

c) A given actual-declarer is elaborated in the following steps: 

Step 1: It is developed {b} ; 

Step 2: If it now begins with a structure-symbol, then Step 3 is taken; 

otherwise, if it now begins with a sub-symbol, then Step 4 is taken; 

otherwise, a new instance of an undefined value is considered, and 

Step 7 is taken; 

Step 3: All its constituent actual-declarers are elaborated collaterally 

{6.3.2.a}; the values referred to by the values {names} of these actual-
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declarers are made, in the given order, to be the fields of a new 

instance of a structured value, this structured value is considered, and 

Step 7 is ta.ken; 

Step 4: All strict-lower-bounds and strict-upper-bounds contained in it 

but not in any constituent declarer of it, along with its last constituent 

actual-declarer {following the sub-symbol} are elaborated collaterally 

Step 5: A descriptor {2.2.3,3} is established consisting of an offset.1· 

and as many quintuples as there are actual-lower-bounds (actual-upper­

bounds) contained in the given declarer but not in any constituent 

declarer of it; if the i-th of these actual-lower-bounds (actual-upper­

bounds) is a strict~lower-bound (strict-upper-bound), then 1.(u.) is 
l. l. 

set equal to its value and s. ( t. ) to 1 , and otherwise s. ( t.) is set to 
l. l. l. l. 

0 {and l. (u.) is undefined} ; 
l. l. 

Step 6: The descriptor is made to be the descriptor of a multiple value 

each of whose elements is a copy of the value referred to by the 

value {name} of the last constituent actual-declarer {Step 4}, and this 

multiple value is considered; 

Step 7: A name {2.2.3.5} different from all other names and whose mode 

is 'reference to' followed by the mode specified {7.1,2.a} by the actual­

declarer, is created and made to refer to the considered value; this 

name is then the value of the given actual-declarer upon the completion, 

if any, of its elaboration, 

7,2, Mode declarations 

7 .2. 1. Syntax 

a) rrode declaration: rrode symbol, MODE mode indication, equals symbol, 

actual MODE declarer. 

{Examples: 

a) mode bits = [ 7 : bits width] bool ; 

struat £E!!!f2l = (real re, im) (see 9,2,b, c.) ; 

union primitive= (int, real, bool, ahar, format) (see 9,2.b) } 



7.2.2. Semantics 

The elaboration of a rode-declaration involves no action. 

{Note that certain recursive mode-declarations may result in programs 

whose elaboration cannot be completed.} 

7.3. Priority declarations 

7.3.1. Syntax 

a) priority declaration: ADIC symbol, priority NUMBER ADIC indication, 

equals symbol, NUMBER token. 

b) zero token: digit zero symbol. 

c) ONE token digit one symbol. 

d) 'IWO token : digit two symbol. 

e) THREE token : digit three symbol. 

f) FOUR token: digit four symbol. 

g) FIVE token: digit five symbol. 

h) SIX token: digit six symbol. 

i) SEVEN token digit seven symbol. 

j ) EIGHI' token : digit eight symbol. 

k) NINE token : digit nine symbol. 

{Examples: 

a) monadia plus= 7 dyadia + = 6 dyadia lowest= 0} 

7,3,2. Semantics 

The elaboration of a priority-declaration involves no action. 

{For a summary of the standard priority-declarations, see the remarks 

in 8.1.0.2.} 



7.4. Identity declarations 

7.4.1. Syntax 

a) identity declaration : formal MODE declarer, MODE identifier, 

denotes symbol, actual IDDE paraireter. 

b) actual JYDDE paraireter: 

adapted unitary MODE expression; local MODE generator. 

{Examples: 

a) reai e = 2.718281828459045 ; int e = abs i ; 

reai d = re(z x eonj z) ; ref[,] reai ai = a[, :k] 

ref reai x1k = x1[k] ; !!E!!!2l unit = 1 ; 

proe int time= eloek f eyeles ; 

(The following declarations are given first without, and then with, 

the extensions of 9.2.) 

ref reai x = Zoe reai ; real x ; 

ref int sum = Zoe int (0) ; int sum{0) 

~., J real a = Zoe[1 :m, 1 :n] reaUx2) [1 :m, 1 :n] reai a(x2) 

proe(reai) real vers = (real x) : (1 - eos(x)) 

proe real vers = (real x) : (1 - eos (x)) ; 

ref proe(real) real p = ioe proe(real) real ; proe(real) real p ; 

ref proe(real) real q = Zoe proe(real) reaU (real x) : (x > 0 I x I 1)) 

proc real q((reaZ x) : (x > 0 I x I 1)) ; 

b) 7 ; Zoe real } 

{For local-generators see 8.5.1.b.} 

7.4.2. Semantics 

An identity-declaration is elaborated in the following steps: 

Step 1: Its constituent formal-declarer is developed {7.1.2.b} 

Step 2: Its constituent actual-parameter, and all strict-lower-bounds 

and strict-upper-bounds contained in the formal-declarer, as possibly 

modified by Step 1, but not contained in any constituent declarer of 

that formal-declarer, are elaborated collaterally {6.3.2,a} ; 

Step 3: If the value of the constituent actual-parameter refers to an 

element or subvalue of a multiple value {2.2.3.3} having one or more 

states equal to O, then the further elaboration is undefined; 
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Step 4: Each defining occurrence {4.1.2.a}, if any, of an identifier 

in a constituent flexible-lower-bound or flexible-upper-bound of the 

fonna.1-declarer is made to denote a new instance of the value of the 

corresponding bound in the {multiple} value of the constituent actual­

parameter ; 
Step 5: If the value of any constituent strict-lower-bound or strict­

upper-bound, or the value of any identifier {8.3.2.a} in a constituent 

flexible-lower-bound or flexible-upper-pound of the fo]1Jlal-declarer 

is not the same as that of the corresponding bound in the value of 

the constituent actual-parameter, then the further elaboration is 

undefined; otherwise, the constituent identifier following the 

constituent formal-declarer of the identity-declaration is made to 

denote the value of the constituent actual-parameter. 

{According to Step 5, the elaboration of the declaration 

[7 : 2] reaZ x = (7.2., 3.4, 5.6) 

is undefined, as is that of 

[7: int n, 7 int n] reaZ x = ((7.7, 7.2), (2.7, 2.2), 

(3.7, 3.2)).} 

7.5. Operation declarations 

7.5.1. Syntax 

a) operation declaration: operation symbol, OPERATOR declarator, 

OPERATOR, denotes symbol, OPERATOR body. 

b) RMODE MODE PRIORITY rronadic operator declarator: 

virtual RMJDE parameter pack, virtual MODE declarer. 

c) IMODE RMODE MODE PRIORITY dyadic operator declarator: open symbol, 

virtual IMODE parameter, comna symbol, virtual RMODE parameter, 

close symbol, virtual MODE declarer. 

d) RMODE MODE PRIORITY monadic operator body : adapted unitary procedure 

with a RMODE parameter delivering a MODE expression. 

e) LMODE RMODE MODE PRIORITY dyadic operator body : adapted unitary 

procedure with a IMODE parameter and a RMODE parameter delivering 

a MODE expression. 

f) * operator body : OPERATOR body. 
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{Examples: 

a) EE. real abs = (real a) : (a < 0 I -a I a) (see 9.2.e.) 

£2. .eEEl A = (bool a, b) : (a I b I false) 

b) '( !eal) real ; 

c) (bool, bool) bool 

d) (real a) : (a < 0 -a I aJ ; 

e) (bool a, b) : (a I b I false) } 

{For operators see 4.3.1, for virtual-parameters see 7.1.1 .y, for 

virtual-declarers see 7.1.1 and for unitary-expressions see Chapter 

8. See also routine-denotations (5.4). } 

7.5.2. Semantics 

.An operation-declaration is elaborated in the following steps: 

Step 1: Its constituent operator-body is elaborated; 

Step 2: Its constituent operator is made to denote the {routine which 

is the} value of the operator-body, 



10.1. Environment enquiries 

a) int int "lengths = 2_ the number of different "lengths of integers 2_ ; 

b} !!., int L ma:.c int = 2_ the Zargest L integral, vaZue 2_ ; 

c} int real, "lengths= 

2_ the number of different "lengths of real, numbers 2_; 

d) !!., real, L max real, = E. the "largest L real, vaZue E. ; 
e) !:._ real, L smaU real, = 2_ the smaUest L real, vaZue such that both 

!:._7 + L smaU real, > !!.,1 and !:._7 - L smaU real, < !:._7 E. ; 
f) int bits widths= 

2_ the number of different widths of standard bit rows!:.; 

g) int L bits width= 

2_ the number of bits in a standard L bit row E.; {10.2.6.a} 

h) .£E. int abs = (char a) : 

E. the integral, equivaZent of the vaZue of the characteJt "a" c ; 

i) 212. char repr = (int a) : 

c that character "x", if it exists, fol' which abs x = a !:. ; 

10.2. Standard priorities and operations 

10.2.0. Standard priorities 

a) dyadic v = 2, A= 3, = = 4, f = 4, < = 5, s = 5, ~ = 5, > = 5, + = 6, 

- = 6, X = ?, I = ?, f = ?, f: = ?, 4 = 8 ; 

b) monadic-,= 3, Zeng = ?, ~ = ?, ~ = 7, !!}.fl!!:.= ?, 

odd=?,+=?, - = ?, entier = ?, repr =?,re= ?, im =?,conj= 7, 

bin=?; 

c) monadic!:._ abs = ? ; 

10.2.1. Operations on boolean operands 

a) EJ2.. booZ v = (booZ a, b) (a ~ I b); 

b) EJ2.. booZ A = (booZ a, b) (a I b I faZse); 

c) EJ2_ booZ-, = (booZ a) : (a I faZse I true) ; 

d) E12.. booZ = = (booZ a, b) ((a A b) v (-,a A -,bJ) ; 

e) E12.. booZ :j: = (booZ a, b) : (-, (a = b)) ; 

f) EJ2_ int abs = (booZ a) : (a I 7 I oJ ; 



10.2.2. Operations on integral operands 

a) EE booZ < = (.I!_ int a, b) : .E. true if the L integral, vaZue of "a" is 

smaUer than that of ''b" and faZse otherwise .E. ; 
b) 2J2. booZ :;; = G. int a, b) : (-, (b < a)) ; 

c) 212. booZ = = (.I!_ int a, b) : (a :;; b A b :;; a) ; 

d) 2J2. booZ ,J = (.I!_ int a, b) (-, (a = b)) ; 

e) EE booZ ;,:: = (.I!_ int a, b) (b :;; a) ; 

f) 212. booZ > = (!:_ int a, b) : (b < a) ; 

g) 212. I:_ int _ = (.I!_ int a, b) : 

.E. the L integral, vaZue of "a" minus that of "b" .E. ; 
h) !!I?. I!. int - = G. int a) : (.I!_ 0 _ a) ; 

i) EE .I!_ int + = G. int a, b) : (a - - b) ; 

j ) !!2. .I!_ int + = G. int a) : a ; 

k) EE !!. int abs = (.I!_ int a) : ( a < !!_0 I _a I a) ; 

1) EE!!. int x = (!:_ int a, b) : (!:_ int s (!!_0), i( abs b) ; 

whiZe i 2:!!_1 do(s := s + a·; i := i -I:_1}; (b <!!_0 I -s Is)); 

m) EE !:_ int + = G, int a, b) _:. 

(b 'f: !!_0 I .I!_ int q(J;_O), :;."(abs a) ; whiZe(r := r - abs b) 2: I:_O do q := q + !!_1 ; 

( a < 10 A b 2: !!_0 v a 2: !!_0 A b < !!_0 I -q I q) ) ; 

n) !!I?. .I!_ int +: = G, int a, b) : ( a - a + b x b) ; 

o) EP. l!. ,£eaZ I = G. int a, b) : (.I!_ real ( a) I .I!_ real, (b)) ; 

p) EE "long .I!_ int Zeng = (.I!_ int a) : .E. the Zong L integral, vaZue equivaZent 

to the L integral, value of "a"~ ; 

q) 212. .I:, int short = ("long .I!_ int a) : .E. the L integral, vaZue, if it exists, 

equivaZent to the Zong L integral value of "a"~ ; 

r) EE .I!_ int ,t- = G. int a, int b) : 

(b 2: 0 I .I!_ int p G. 1) ; to b 1£ p : = p x a ; p) ; 

s) !!I?. booZ odd = G. int a) : (a +: 12 = !!_1) ; 

t) 21?. int~= (!:_ int a) : (a > LO I 7 I (a < LO I -7 I OJ) ; 



10.2.3. Operations on real operands 

a) .EE. boo 1,. < = (real a., b) : _£ true if the L real, vaiue of "a" is 

smaUer than that of "b" a:nd fal,se othe;puJise _£ ; 

b) .EE. bool :;; = (.!!_ real a., b) (-, (b < a)) ; 

c) .EE. bool, = = (.!:. real, a, b) (a :;; b A b :;; a) ; 

d) .EE. bool, # = (.!!_ real, a, b) : (-,(a= b}) ; 

e) .EE. booi ~ = (.!!_ real a, b) (b :;; a) ; 

f) .EE. bool, > = (.!:. real, a, b) : (b < a) ; 

g) .EE. .!!_ real, - = (.!!_ real, a., b) : _£ the L real, vaiue of "a" minus that of 

''b", in the sense of numeriaal, anal,ysis _£; {2.2.5.b} 

h) .EE. .!!_ real, - = (.!:. real, a) : (.!:.0 - a) ; 

i) EE..!!_ real, + = (.!:. real, a., b) : (a - - b) ; 

j) EE..!!_ real, + = (.!:. real, a) : a ; 

k) .EE..!!_ real, abs = (.!:. real, a) : (a < .!!_0 I -a I a) ; 

l) .EE. .!!_ real, x = (.!!_ real, a., b) : _£ the L real, vaiue of "a" times that of 

"b", in the sense of numeriaai analysis_£ ; {2.2.5.b} 

m) .EE. f real, I = (.!:. real, a, b) : _£ the L real, value of "a" divided by that 

of .t'b", in the sense of numeriaai anal,ysis _£; {2.2.5.b} 

n) EE. lE!!:a .!: real Leng = (.!!_ real, a) : 

_£ the 1,,ong L real, value equivaient to the L real, value of ''a"_£; 

o) .EE..!!_ real, short = (1,,ong f_ real a) : _£ the L real, vaiue., if it exists., 

.equivaient to the 1,,ong L real val,ue of "a"_£ ; 

p) E2. I: int round = (.!!_ real a) : E.. a L integral value, if one exists., 

equival,ent to a L real value differing by not more than one-hal,f 

from the L real vaiue of "a"_£ ; 

q) .EE. int !!:!:fl!!:.= (f real a): (a> !:_0 I 7 I (a< f0 I -7 I 0)); 

r) .EE. f int entier = (.!!_ real a) : {.!!_ int j (.!!_0) ; 

(j :;; a I e j := j + J:1 ; (j :;; a I e I j - .!!_7) 

r : j := j -. !:_1 ; .(j > a I r I JJJJ ; 



10.2.4. Operations on arithmetic operands 

a) 212...l!. real,£_= (I!. reaZ a,!:_ int b): (a£.!!. reaZ(b)); 

b) 212.. l!. reaZ g_ = (I!. int a., I!. real, b) : (I!. reaU a) P b) ; 

c) 212.. booZ .!! = (I!. reaZ a, !:_ int b) 

d) 212.. booZ !!. = (I!. int a., I!. reaZ b) 

(a!!.!:_ reaUb)) ; 

(I!. rea U a) !!. b) ; 

e) .EE.!:_ reaZ 4 = (I!. reaZ a., int b) (I!. real, p(!:_7) ; 

to abs b do p : = p x a ; fb ~ 0 I p I I!. 7 I p)) ; 



10.2.5. Complex structures and associated operations 

a) stru.at I: .EE!!!Pl = (!!_ real, re., im) ,; 

b) .EJ2_ I: real,~ = (!!_~a) : re .Et a ,; 

c) .EJ2_ .!!_ reaZ. im = (!!_ ~ a) : im .Et a ,; 

d) .EJ2_ .!!_ real, abs = (!!_ aompZ. a) : L sqrt( (re a) ,t. 2 + (im a) ,t. 2) ; 

e) .EJ2_ !!_ E!!!!PJ:. aonj = (!!_ EE!!!Pl a) : I: £9!!JEl(re a., - im a) ,; 

:r) .EJ2_ booZ. = = (!!_ ~ a., b) : (re a = ~ b " im a = im b) ; 

g) .EJ2_ booZ. =I = (!!_ .EE!!!Pl a., b) : (-, (a = b)) ,; 

h) .EJ2. .!!_ .EE!!!Pl + = (!!_ !!E!!!EJ:. a) : a ; 

i) .EJ2_ !!_ E!!!!PJ:. - = (!!_ aomp 7, a) : !!_ ~ ( - !:!!,_ a., - im a) ; 

j) .EJ2_ !!_ .EE!!!Pl + = (!!_ aompZ. a,. b) : !!_ ~(re a + ~ b., im a + im b) ; 

k) .EJ2_ !!_ E!!!!PJ:. - = (!!_ EE!!!Pl a., b) : !!_ E9!!JEl ( re a - ~ b., im a _ im b) ; 

l) EE I: E!!!!PJ:. x = (!!_ !!E!!!EJ:. a, b) : !!_ comp Ure a x ~ b - im a x im b., 

~ a x im b + im a x !:!!. b) ; 

m) £l?. !!_ E!!!!PJ:. / = (!:_ aompZ. a., b) : 

(!:_ ~ d = ~(b x aonj b) ; !!_ i:E!'!!12l n = a x aonj b ; 

!:_EE!!!Pl(re n / d., im.n / d)); 

n) .EJ2_ .18Ea. !!_ 2£!!!.Pl Z.eng = (!:_ EE!!!2l a) : 7,ong !:_ compl,(Z.eng ~ a., Zeng im a) ; 

o) 2J!. !!_ EE!!!Pl .short = (7,ong !!_ ~ a) : !!_ aompUshort ~ a., short im a) ; 

p) .EJ2_ .!!_ E?!!!2l E. = (!:_ aompl, a., !:_ int b) : (a E. !:_ EE!!!J2l(b)) ; 

q) EE !!_ 2£!!!.Pl E. = (!!_ EE!!!Pl a.. !:_ rea 7, b) : ( a E. !!_ EE!!!Pl (b)) ; 

r) .EJ2.!:..EE!!!ElE. =(!!_int a,!!_ aompl, b) : (!:_ aompUa) E. b); 

s ) .EE. !!_ E?!!!2l E. = (!!_ rea 7, a, !!_ E!!!!PJ:. b) : (!!_ .EE!!!Pl ( a) E. b) ; 

t ) .EJ2_ .!!_ .EE!!!Pl ,t. = (!!_ EE!!f21 a, int b) : ( !:_ aomp 7, p ( !:_ 7) ; 

to abs b do p := p x a; (b <'. 0 I p I !:_7 / p)) ; 



10.2.6. Bit rows and associated operations 

a) mode!:_ bits= [1: L bits width] booZ; {1_0._1.g} 

b) .EI?.. booZ = = ([1: int n] booZ a., b) : 

(£E21 c(true) ; for i to n do(a[i] ,:f. b[i] I c := faZae) ; c) ; 

c) .EI?.. booZ ,:f. = (p booZ a, b) : (-,(a= b)) ; 

d) .EE_ [] booZ v = ([1 : int n] booZ a., b) : ([1 n] booZ c ; 

fox> i to n do c[i] := a[i] v b[i] ; c) ; 

e) .EE_ [] booZ /\ = ([1 : int n] booZ a., b) : ([1 n] booZ c ; 

fox> i .:E£_ n do c[i] := a[i] " b[i] ; c) ; 

f') EJ!. booZ s = ([ J booZ a., b) : ( a v b = b) ; 

g) EI!. booZ ;;,: = ([] booZ a., b) : (b s a) ; 

h) .EE_ [) booZ 4 = ([1 : int n] booZ a., int b) : ([1 : n] booZ c(a) ; 

e: (b > 0 I b := b - 1; for i from 2 ton do 

c[i - 7) := c[i] ; c[n] := false; e 

I f : (b < o I b := b + 1 ; for i .f!:.E!!!. n Eli - 1 to 2 do 

c[i] := c[i - 7); c[7] :=false; f)) ; c); 

i) .£2. L int L abs.= (L bits a) : (L int c(LO) ; 

fox> i 1£. L bits width do c := £? x c + abs a[i] ; c) ; 

j) EJ2. !:_ bits bin= (_!:_ int a) : :f:1 a ;;,: f..O EJE!:. !:_ int aa(a); !:_ bits c ; 

for> i 1£. L bits width do(a := c t -7 ; c[ 7) := odd(aa +: !:_2) ; 

aa := aa + !:_2) ; c .fi ; 

10.2.7. Operations on character operands 

a) EJ2. booZ < = (char a, b) (abs a < abs b) ; {10.1.h} 

b) .EI?. booZ s = (char a, b) : (-, (b < a) J ; 

c) .EE_ booZ = = (char a., bJ (a s b " b s a) ; 

d) .EE_ booZ ,:f. = (char a., b) (-,(a= b)J ; 

e) EI!.. booZ 2: = (char a., b) : (b s a) ; 

f') .EI?.. boot > = (char a., b) (b < a) ; 



10.2.8. String mode and associated operations 

a) mode string = [ 7 : ] char ; 

b) EE. boo 1, < = ([1 : int m] char a, [ 7 : int n] char b) : 

(int i(7); int p = (m < n Im I n); bool, c; 

(p < 7 I n .-: 7 I e : <c := a[iJ = b[iJ I ((i := i + 7J :,; p I eJ) ; 

(c Im< n I a[i] < b[i]))); 

c) EE. boo'l :,; = (string a, b) (-, (b < a)) ; 

d) EE. boo'l = = (string a, b) (a :,; b A b :,; a) ; 

e) EE. bool, =) = (string a, b) (-, (a = b)) ; 

f) EE. bool, .-: = (string a, b) : (b s a) ; 

g) EE. bool, > = (string a, b) : (b < a) ; 

h) EE. string + = ([ 1 : int m] char a, [ 7 : int n] char b) 

([ 1 : m + n] char c ; 

c[ 1 : m] := a ; c[m + 1 : m + n : 7J := b ; c) ; 

i) EE. string + = (string a, char b) : (string s = b ; a + s) ; 

j) EE. string + = ( char a., string b) : ( strina s = a ; s + b) ; 

{The _operation defined in b implies that if 'a' < 'b' then 

"" < "a" ; "a" < "b" ; "aa" < "ab" ; "aa" < ''ba" ; "ab" < ''b". } 



10.3. Standard mathematical constants and functions 

a) I: real, L pi = !!.. 1r as a L real, vaZue ; see Math. of Comp. v. 16., 

1962., pp. 80-99 !!.. ; 

b) proa .!: real, L sqrt = <!:_ real, x) : !!.. if x ~ 0., the square root of "x" !!.. ; 
c) proc .!: real, L exp = <!:_ real, x) : !!.. the exponential, funation of "x" !!.. ; 

d) proa .!: real, L Zn = (I: real, x) : !!.. the natural, Zogarithm of "x" !!.. ; 
e) proa !!_ real, L aos = (!!_ real, x) : !!.. the aosine of "x" !!.. ; 

f) proa I: real, L araaos = (!!_ real, x) : 

!!.. if abs x :,; 7., the inverse cosine of "x", !!_0 :,; L araaos(x) :,; L pi!!.. ; 

g) proa .!: real, L sin, = (L real, x) : a the sine of "x" c • --- - _ .. 
h) proa I: real, L a:r>asin = (!!_ reaZ x) : 

!!.. if abs x :,; 7, the inverse sine of "x", abs L arasin(x) :,; L pi/!!_2 !!.. ; 
i) proa I: real, L tan = (!!_ real, x) : !!.. the tangent of "x" !!.. ; 
j) proa I: real, L a:r>atan = (!!_ real, x) : 

!!.. the inverse tangent of "x", abs L a:r>ctan(x) :,; L pi/!!_2 !!.. ; 

k) proa .!: real, L random = !E:£!:,_ !!.. the next pseudo-random L real, vaZue with 

uniform distribution on the interval, [.fO, .I:1) !!.. ; 
1) proa L. set random = <!:_ real, :,;) : 

!!.. aauses the next aaU of L random to deZiver the vaZue of "x" !!.. ; 

10.4. Synchronization routines 

a) proa up= (ref inti) : 

eZem(i := i + 1; .£ the eZaboration of aZZ phrases, if any, whose 

eZaboration is haZted, is resumed_£); 

b) proc down = (ref int i) : (do eZem(:f1 i > 0 then i := i - 1 ; Z eZse 

.£ if the aZosed-aZause replacing this comment is aontained in a 

unitary-phrase which is a aonstituent unitary-phrase of the smaZZest 

coZZateraZ-phrase, if any, beginning with a paraZZel-symboZ and 

aontaining this aZosed-clause, then the elaboration of that unitary­

phrase is haZted; otherwise, the further elaboration is undefined 

.£ fi) ; Z : skip) ; 



8. Unitary expressions 

8.0.1. Syntax 

a) COERCETY unitary MODE expression: COERCETY MODE formulation; 

COERCETY MODE assignation; COERCETY MJDE hop. 

b) COERCED MODE hop: jump; skip. 

{Examples: 

a) x + 2 x y ; y (in x := y) y := 3 i := j (in x .- i := j) ; () 

b) goto grenoble ; () } 

{For forrrnlations see 8.1 and for assignations see 8.8. } 

8.0.2. Semantics 

A jump {see also 6,2.1 ,d and 6.2.2,a} does not posses a value; the value 

of a skip {see also 6.2.1.e and 6.2.2.b} is undefined, 

8.1. Formulas 

8.1.0.1. Syntax 

a)• forrrnla: MODE PRIORITY ADIC forrrnla. 

b) COERCETY MODE forrrnlation: 

COERCETY MODE priority zero dyadic forrrnlation. 

c) COERCETY MODE PRIORITY dyadic forrrnlation : 

COERCETY MODE PRIORITY monadic fonnulation 

COERCETY MODE PRIORITY dyadic formula. 

d) MODE PRIORITY dyadic forrrnla : MODE PRIORITY confrontation 

adjusted L!VDDE PRIORITY dyadic fonnulation, 

IMODE RMODE MODE PRIORITY dyadic operator, 

adjusted RMJDE PRIORITY monadic formulation. 

MODE PRIORITY confrontation. 

e} COERCETY MODE PRIORITY monadic formulation : 
COERCETY l'IDDE PRIORITY plus one dyadic formulation; 

COERCETY MODE PRIORITY monadic formula. 

f) MODE PRIORITY monadic formula: MODE PRIORITY depression; 

RMODE MODE PRIORITY monadic operator, 

adjusted RMODE PRIORITY monadic formulation. 



8.1.0.1. continued 

g) boolean priority FIVE confrontation boolean identity relation; 

boolean conformity relation. 

h) COERCEI'Y MODE priority NINE plus one dyadic formulation 

COERCEI'Y MODE primary. 

{Examples: 

c) abs n a x b (priority 7) 

d) a < b V a= b (priority 2) 

e) X = y -, p ; (priority 4, 3) 

f} -,p (priority 3) 

g) ev :=: x ; ev: := e ( see 11 • 12 .r) 

h) a } 

{For operators see 4.3, for identity-relations see 8.1.1, for 

conformity-relations see 8.1.2, for depressions see 8.1.3, for adjusted­

operands see 8.2 and for primaries see 8.3. } 

8.1.0.2. Semantics 

A fornula is elaborated in the following steps: 

Step 1: A copy is made of the routine which is denoted by the operator at 

its defining occurrence {7,5,2, 4.3,2.b} ; 

Step 2: The copy obtained in Step 1, considered as a closed-expression, 
is protected {6.0.2,d} ; 

Step 3: If the operator is monadic (dyadic), then the skip-symbol(s) 

(mentioned in 5.4.2.ii) in the copy is (are) replaced by the (corres­

ponding) adjusted-operand(s) ; 

Step 4: The formula is replaced by the copy as modified in Step 3 and the 

elaboration of the copy is initiated. 

{A formulation is either a formula or another formulation, and a 

fonnula always contains an operator-symbol (or a relator-symbol or 

value-symbol). A coercion is activated by a fornula but is passed on from 

one formulation to another. There are effectively twenty priorities since the 

monadics occupy mezzanine positions. Not all priorities are represented by the 



8.1.0.2. continued 

standard operators. The following table summarises the operator-tokens 

and their prorities as declared in the standard-declarations (10.2.0). 

priority 0 1 2 3 4 5 6 7 8 9 

dyadic V A = < :, + X I • ¾: t 
'F > 2'. -

monadic -, abs leng short 

round !!i:.fI!!:. odd 

+ - entier repr 

~ im conj bin 

Observe that since expression-calls (8.7.1.b) in effect have a priority of 

ten, the closed-expression 
(proa int minus= (int a): (-a); -7 t 2 = minus(7) t 2) 

has the value false, 

Although the syntax defines the order in which fornulas are elaborated, 

parentheses may well be used to improve readability, e.g. 

(a A .b) v (-ia A -,b) instead of a A b v -, a A -, b. } 

8.1.1. Identity relations 

8.1.1.1. Syntax 

a) boolean identity relation: peeled reference to MODE relative, 

identity relator, peeled reference to MODE relative. 

b) COERCETY MODE relative : COERCETY JVIODE priority FIVE monadic formulation. 
c)• relative : COERCEI'Y MODE relative. 

d) identity relator: is symbol; is not symbol. 

{Examples: 

a) xx:=: yy; val xx:=: x or y (see 1.3.) 

b) xx; val xx; x or y ; 

d) :=: ; :#: } 

{For nnnadic-formulations see 8.1.0.1.e.} 



8.1.1.2. Semantics 

An identity-relation is elaborated in the following steps: 

Step 1: The two relatives are elaborated collaterally {6.3.2,a} 

Step 2: If the identity-relation contains an is-symbol (is-not-symbol), 

then the result yielded by its elaboration is true (false) if the 

values {names} obtained in Step are the same and false (true) 

otherwise. 

{Assuming the assignation xx:= yy := x (see 1.3), the value of the 

identity-relation xx:=: yy is false because xx and yy, though of the 

same mode, do not denote the same name (2.2.3.5.b). The value of the 

identity-relation val xx:=: x or y has a 1/2 probability of being true 

because the value possessed by val xx is the name denoted by x, and the 

fDUtine denoted by x or y (see 1.3), when elaborated, yields either the 

name denoted by x or, with equal probability, the name denoted by y. 

In the identity-relation, the programmer is usually asking a specific 

question concerning names and thus the level of reference is of crucial 

importance. Since no automatic depressing of the relatives is provided, it 

must be explicitly specified, if necessary, through the use of val or 

an equivalent device. Thus, xx:=: xis not an identity-relation but 

val xx:=: x and (xx:= xx) :=: x are. On the other hand, unaccompanied 

procedures will be called automatically so that x :=: x or y is also an 

identity-relation. 

Observe that the value of the formula 7 = 2 is false, whereas 7 :=: 2 

is not an identity-relation, since the values of its relatives are not 

names. Also, 

(bool a, b} : (a I b I false} :=: (bool b, a} : (b I a I false} 

is not an identity-relation, whereas 

(bool a, b} : (a I b I false} = (bool b, a) : (b I a I false} 

is a formula, but involves an operation which is not included in the 

standard-declarations. } 



8.1.2. Conformity relations 

8.1.2.1. Syntax 

a) boolean conformity relation: 

{I would to God they would either 

conform, or be more wise, and not 

be catched! 

Diary, 7 Aug. 1664, Samuel Pepys.} 

peeled reference to I.MODE relative, c.onfor.mity re lat or, RJVIODE relative. 

b) conformity relater: 

conforms to symbol conforms to and becomes symbol. 

{Examples: 

a) ea:: e (see 11.12,q) ev ::= e (see 11.12.r) 

b) . . ; : := } 

{For relatives see 8.1.1. } 

A conformity-relation is elaborated in the following steps: 

Step 1: .The two relatives are elaborated collaterally {6.3.2.a} 

Step 2: If the mode of the value of the left relative is 'reference to' 

followed by a mode which envelops {2.2.4.1 .i} the mode of the value of 

the right relative, then the value of the conformity-relation is true 

and Step 4 is taken; otherwise, Step 3 is taken; 

Step 3: If the value of the right relative refers to another value, then 

this other value is said to be the value of the right relative and 

Step 2 is taken; otherwise, the value of the conformity-relation is 

false and Step 4 is taken; 

Step 4: If the conformity-relater is a conforms-to-and-becomes-symbol and 

the value of the conformity-relation is true, then the value of the 

right relative is assigned {8.8.2.a} to the value of the left relative. 

{Observe that if the value of the right relative is an integer and the 

mode of the left relative is 'reference to' followed by a mode which 

envelops the mode 'real' but not the mode 'integral', then the value of 

the conformity-relation is false. Thus, in contrast with the assignation, 

no automatic widening from integral to real takes place. } 



8.1.3. Depressions 

8.1.3.1. Syntax 

a)• depression: MODE PRIORITY depression. 

b)* depressend: peeled MODE PRIORITY monadic forrrulation. 

c) MODE priority SEVEN depression : value of symbo:)., 

peeled reference to MJDE priority SEVEN monadic formulation. 

{Examples: 

c) vat xx; vat ec: (see 11.12.i)} 

8.1.3.2. Semantics 

A depression is elaborated in the following steps: 

Step 1: Its constituent depressend is elaborated ; 

Step 2: The value referred to by the value {name} of the depressend is 

the value of the depression. 



8.2. Operands 

8.2.0.1. Syntax 

a)• operand: COERCETY OPERAND. 

b)• COERCED operand: COERCED OPERAND. 

c) adapted OPERAND : adjusted OPERAND_; widened OPERAND ; arrayed OPERAND. 

d) adjusted OPERAND: fitted OPERAND; expressed OPERAND; united OPERAND. 

e) fitted OPERAND: OPERAND; called OPERAND; depressed OPERAND. 

{Examples: 

c) m n := m ; x := n := m (in [] real, x7 = (x := n := m)) 

d) x; x; x (in union(booZ, proa real,) bpr = x) 

e) 3. 74; random; x (in 3.14 +random+ x) } 

{For called-operands see 8.2.1, for expressea-operands see 8.2.2, 

for depressed-operands see 8.2.3, for united-operands see 8.2.4, for 

widened-operands see 8.2.5 and for arrayed-operands see 8.2.6.} 

{The coercion process may be illustrated by considering the analysis 

of random in random+ x. Supposing that [d6] stands for 'priority-SIX­
dyadic' and [m6] for 'priority-SIX-monadic', then random+ x, according 

to 10.2.3.i, 10.2.0.a and 8.1.0.1.d is a real-[d6]-formula and random 

must therefore be an adjusted-real-[d6J-formulation, which may be produced 

as a procedure-delivering-a-real-identifier (see 10.3.k and 7.4.1.a) as 

follows: 

adjusted-real-[d6]-formulation, 

adjusted-real-[m6]-formulation (8.1 .0.1 .c), 

adjusted-real-[d7]-formulation (8.1.0.1 .e), 

adjusted-real-[m7]-formulation (8.1 .0.1.c), 

adjusted-real-[d10]-formulation (8.1.0.1.e), 

adjusted-real-primary (8.1.0.1.h), 

adjusted-real-base (8.3.1.b), 

adjusted-real-cohesion (8.3.1.c), 

fitted-real-cohesion (8.2.0.1.d) 

called-real-cohesion (8.2.0.1.e), 

fitted-procedure-delivering-a-real-cohesion (8.2.1.1.b), 

procedure-delivering-a-real-cohesion (8.2.0.1.e) 

procedure-delivering-a-real-identifier (8.3.1.d). 



8.2.0.1. continued 

A coercion is derived from the context and is passed on through the 

syntactic analysis until it meets an operand (formula, cohes~on, 

assignation), where it is activated (called, expressed, depressed, united, 

widened, arrayed). In the above example, the coercion was actiyated by a 

cohesion resulting in an unaccompanied-call (8.2.1). The relevant 

semantics appears in 8.2.1.2, where it is explained that the routine 

denoted by ~andom must be elaborated and deliver a real value as the value 

of the left operand of the operator+. } 



8.2.1. Unaccompanied calls 

8.2.1.1. Syntax 

a)* unaccorq;ianied call: called OPERAND called cohesion 

stripped OPERAND. 

b) called OPERAND: fitted procedure delivering a OPERAND. 

c) called cohesion: fitted procedure cohesion. 

d) stripped OPERAND : peeled procedure delivering a OPERAND. 

e) peeled OPERAND : OPERAND ; stripped OPmww. · 

{Examples: 

b) random ( in random < • 5) 

c) atop (in; atop;) ; 

d) X Ory (in X or y := a) ; 

e) X; X or y (in X :=: X Or y) } 

8.2.1.2. Semantics 

An unaccorq;ianied-call is elaborated in the following steps: 

Step 1: The fitted-operand or peeled-operand is elaborated and a copy is 

made of {the routine which is} its value ; 

Step 2: The unaccorq;ianied-call is replaced by the copy obtained in Step 1, 

and the elaboration of the copy is initiated; if this elaboration is 

completed or terminated, then the copy is replaced by the unaccorq;ianied­

call before the elaboration of a successor is initiated. 

{See also 8.7.2, accompanied-calls. } 

8.2.2. Expressed operands 

8.2.2.1. Syntax 

a) expressed procedure delivering a OPERAND : expressible OPERAND. 

b) expressible OPERAND: OPERAND; expressed OPERAND; depressed OPERAND. 

c) expressed procedure cohesion: cohesive state:rrent. 



8.2.2.1. continued 

{Examples: 

a) 2 x random - 1 (in proa real r1(2 x random - 1)) 

c) zandvoort (in proa go-to= zandvoort) } 

8.2.2.2. Semantics 

An expressed-operand is elaborated in the following steps: 

Step 1: A copy is made of the expressible-operand or copesive-statement 

{itself, not its value} ; 

Step 2: That routine {5.4.2} which is obtained from the copy by placing 

an open-symbol before it and a close-symbol after it is the value of 

the expressed-operand. 

{If e1, e2 and e3 are label-identifiers, then the reader might 

recognise the effect of the declaration 

[1:3] proa switch= (e1, e2, e3) 

and the unitary-staterrent 

switah[i] 

however; the declaration 

[1:3] proa switah((e1, e2, e3)) 

is perhaps more powerful, since the asrignation 

switah[2] := e1 

is possible. 

The elaboration of !!EZ!:.(p Ix I -x) yields the routine ((p Ix I -x)), 

whereas that of the expressed-operand (p Ix I -x) yields either (x) or 

(-x), depending on the value of p. Similarly, the elaboration of 

!E!J!!:.(X := x + 1; y) yields the routine ((x := x + 1; y)), whereas that 

of the expressed-operand (x := x + 1; y) yields, apart from a change 

in the value of x, the routine (y). On the other hand, if C stands for 

a cohesive-statement (6.2 .1.c) or cohesion (8.3,1.c), then the elaboration 

of !!EZ!:. C and that of the expressed-operand C both yield the routine (CJ. } 



8.2.3. Depressed operands {"I ca'n't go no lower", said the 

Hatter, "I'm on the floor as it is". 

Alice's Adventures in Wonderland, 

8.2.3.1. Syntax Lewis Carroll.} 

a) depressed OPERAND fitted reference to OPERAND. 

{Example: 

a) x (in x + 2) } 

8.2.3.2. Semantics 

A depressed-operand is elaborated in the following steps: 

Step 1: The fitted-operand is elaborated 

Step 2: The value referred to by the name yielded in Step is the value 

of the depressed-operand. 

8.2.4. United operands 

8.2.4.1. Syntax 

a) united union of MODE and RMODES mode FORM: adjusted MODE FORM. 

b) united union of I.MODES and MODE mode FORM: adjusted MODE FORM. 
c) united union of I.MODES and MODE and F.JV!ODES mode FORM: adjusted MODE FORM. 

{Examples: 

a) one (inf+ one, see 11.12.ba) 

b) f (inf+ one, ibid.) ; 

c) caU (fdash, g)(in 11.12.af)} 

{In a range containing 

union ib = (int, bool)., rb = (real., bool); 

union rib= (real., ib); 

as declarations, 

ib ib1(1)., ib2(true) ; rb rb(true) ; 

rib rib7(7J., rib2(ib2J., rib3(7.5), rib4(p I 7 I true); 

are initialised declarations, but 

rib rib5(rb) 

is not. } 



8.2.5. Widened operands 

8.2.5.1. Syntax 

a) widened I.ONG real FORM : fitted I.ONG integral FORM. 

b) widened structured with a REAL narred letter r symbol letter e symbol 

and a REAL named letter i symbol letter m symbol FORM: 

widenable REAL FORM. 

c) widenable REAL FORM : fitted REAL FORM ; widened REAL FORM. 

{Examples 

a, b) 7 (in !!£!!!E.J:.(7 J) } 

8.2.5.2. Semantics 

A widened-operand is elaborated in the following steps: 

Step 1: The fitted-operand or widenable-operand is elaborated 

Step 2: If the value yielded by Step 1 is an integer, then the elaboration 

of the widened-operand yields that real number which is equivalent to 

that integer {2.2,3.1,d} and that real number is the value of the 

widened-operand; otherwise, it yields that structured {complex (10.2.5)} 

value composed of two fields, whose field-selectors are 

letter-r-symbol-letter-e-symbol and letter-i-symbol-letter-m-symbol, 
whose modes are the same as that of the value yielded in Step 1 and 

which are that value and zero respectively, and that structured value 

is the value of the widened-operand. 

8.2.6. Arrayed operands 

8.2.6.1. Syntax 

a) arrayed REFETY row of MODE assignation adapted REFETY MODE assignation. 

b) arrayed REFETY row of MODE PRIORITY ADIC formula 

adapted REFETY MODE PRIORITY ADIC formula. 

c) arrayed REFETY row of MODE cohesion: adapted REFETY MODE cohesion option. 

{Examples: 

a) x := 3. 74 (in [7 : int n] reaZ a= x := 3.14) 

b) x + y ( in [7 : int n] reaZ a = x + y) 

c) 7.2 ; (3.4, 5.6) 

(in [7: intm, 1: intn] realx7 =~i9.f_(, 7.2, (3.4, 5.6)))} 



8.2.6.2. Semantics 

.An arrayed-operand is elaborated in the following steps: 

Step 1: If it is an adapted-operand, then this adapted-operand is elabo­

rated, and Step 3 is taken; 

Step 2: A new instance of a multiple value {2.2.3.3} composed of zero 

elements and a descriptor consisting of an offset 1 and one quintuple 

(1, O, 1, 1, 1) is called the considered array, and Step 6 is taken 

Step 3: If the value of the adapted-operand is a name, then the value 

referred to by this name, and, otherwise, the value itself of the 

adapted-operand is called the considered value; if the considered 

value is a multiple value, then Step 5 is taken 

Step 4: A new instance of a multiple value composed of the considered 

value as only element, and a descriptor consisting of an offset 1 

and one quintuple (1, 1, 1, 1, 1) is called the considered array, 

and Step 6 is taken; 

Step 5: A new instance of a multiple value, called the considered array, 

is established, composed of the elements of the considered value and 

a descriptor which is a copy of the descriptor of the considered value 

into which the additional quintuple (1, 1, 1, 1, 1) {the value of the 

stride is irrelevant} is inserted before the first quintuple, and in 

which all states have been set to 1 ; 

Step 6: If the arrayed-operand is a terminal production of a notion 

beginning with 'arrayed reference to', then the value of the arrayed­

operand is the name which refers to the considered array, and, 

otherwise, is the considered array itself. 



8.3. Primaries 

8.3.1. Syntax 

a) COERCETY MODE primary : COERCETY MODE base ; COERCETY MODE n1hil. 

b) COERCETY MODE base: COERCETY CIDSED MODE expression; 

COERCETY MODE cohesion. 

c) MODE cohesion: MODE denotation; MODE identifier; MODE slice; 

nonlocal MODE generator; MODE named TAG selection; MODE expression call. 

d:) COERCED reference to M:>DE nihil : nil symbol. 

{Examples: 

a) re Ef. z ; nil 

b) (a I b I faZse) ; sin(b - a) ; 

c ) true ; x ; x2[ i, j] ; EE!!!EJ:.. ( 7, 0) 

d) niZ } 

father Ef. aZgol ; sin(b - a) 

{For collateral-expressions see 6.3.1.c, for closed-expressions see 6.4, 

for conditional-expressions see 6.5, for denotations see 5, for identifiers 

see 4.1, for slices see 8.4, for generators see 8.5, for field-selections 

see 8.6 and for expressions-calls see 8.7. } 

8.3.2. Semantics 

a) The value of an identifier is the value, if any, denoted by it at its 

defining occurrence {4.1.2, 7.4.2. Step 5}. 

{The identifier pi as declared in the standard declaration 10.3.a, 

is a real-identifier (and not a reference-to-real-identifier). The value 

it denotes cannot be changed by assignment. In fact, in this context, 

pi := 3 is not a production of 'assignation' (8.8.1.a). Similarly, the 

identifier sin as declared in 10.3.g is a procedure-with-a-real­

parameter-delivering-a-real-identifier (5.4,1.b) and sin := (reaZ) 

(x - x 4 3/6) is also not an assignation. The initialised declaration 

real, ppi(pi) creates a name denoted by the reference-to-real-identifier 

ppi, which name refers to the value of pi; moreover, another value may 

be assigned to that name. } 



8.3.2. continued 

b) {"but a grin without a cat! It's the most 

curious thing I ever saw in all my lif'e!", 

Alice's Adventures in Wonderland, 

Lewis Carroll.} 

The value of' a nihil is nil{, a name which does not ref'er to any 

value (2.2.3.5.a)}; its elaboration involves no action. 

8.4. Slices 

8.4.1. Syntax 

a) REFETY ROWSETY ROWWSETY NONROW slice : REFETY ROWS ROWSETY NONROW whole, 

sub symbol, ROWS leaving ROWWSETY indexer, bus symbol. 

b) NONREF whole : NONREF base ; called NONREF base. 

c) reference to NONREF whole : fitted reference to NONREF base. 

d) row of ROWS leaving row of ROWSETY indexer : 

tr:immer option, corrma symbol, ROWS leaving ROWSETY indexer; 

subscript, corrma symbol, ROWS leaving row of ROWSETY indexer. 

e) row of ROWS leaving EMPTY indexer : 

subscript, comma symbol, ROWS leaving EMPTY indexer. 

f') row of leaving row of indexer : tr:immer option. 

g) row of leaving EMPTY indexer : subscript. 

h) trimner : actual lower bound, up to symbol, 

actual upper bound, new lower part option. 

i) new lower part : at symbol, new lower bound. 

j) new lower bound: fitted unitary integral expression. 

k) subscript : fitted unitary integral expression. 

l)• trimscript : tr:immer option; subscript. 

{Examples: 

a) x1[i] ; x2[i, j] ; x2[i] ; x7[2:n:7] ; 

b) ( 7, 2, 3) ( in ( 7, 2, 3) [ i] ) ; 

c) x7 ; x2 ; 

d) 2:n:7, j ; i, 2:n:7 ; 

e) i, j ; 

f') 2:n:7 

g) i } 



8.4.1. continued 

{For bases see 8.3.1 .band for unitary-expressions see Chapter 8. } 

{In rule a, 'ROWS' reflects the number of tr:imscripts in the slice, 

'ROWWSETY' the number of these which are tr:l.mner-options and 'ROWSETY' 

the number of 'row of' not involved in the indexer. In the slices 

x2[i, j], x2[i, 2:], x2[i], these numbers are (2,0,0), (2,1,0) and 

(1,0,1) respectively. Because of rules hand 7.1.1.r, s, 2:3:7 ; 2:n 

2: ; :5 ; ::2 are trirrrners, while rules d and fallow trimmers to be 

omitted. } 

8.4.2. Semantics 

A slice is elaborated in the following steps: 

Step 1: The whole, and all subscripts, strict-lower-bounds, strict-upper­

bounds and new-lower-bounds contained in the indexer are elaborated 

collaterally {6.3.2.a} ; 

Step 2: That multiple value which is, or is referred to by, the value of 

the whole, is called the "considered array", a copy is made of 

its descriptor, and all the states {2.2.3.3.b} in the copy are set 

to 1 ; 

Step 3:· The tr:imscript following the sub-symbol is called the "considered 

tr:imscript", and a pointer, "i", is set to 1 ; 

Step 4: If the considered tr:imscript is not a subscript, then Step 5 is 

taken; otherwise, letting "k" stand for its value, if u. :;; k :;; 1. , then 
J. J. 

the offset in the copy is increased by (k - 1.) x d., the i-th quintuple 
J. J. 

is "marked", and Step 6 is taken; otherwise, the further elaboration 

is undefined 

Step 5: The values "l", "u" and 111 1 " are determined from the considered 

trimscript {trimner option} as follows: 

if the considered trimscript contains a strict-lower-bound (strict­

upper-bound), then 1 (u) is its value, and otherwise 1 (u) is 1.(u.) 
J. J. 

if it contains a new-lower-bound then 1 1 is its value, and otherwise 

l' is l ; 

if now 1. 
J. 

(1 - 1.) X 
J. 

otherwise, 

:;; 1 and u:;; u., then the offset in the copy is increased by 
J. 

d
1
., and then 1. is replaced by l' and u. by (l' - l) + u 

J. J. 

the further elaboration is undefined; 
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Step 6: If the considered trimscript is followed by a canma-syrnbol, then 

the trimscript following that comna-symbol is called the considered 

trimscript, i is increased by 1, and Step 4 is taken; otherwise, all 

quintuples in the copy which were marked by Step 4 are removed, and 

Step 7 is taken; 

Step 7: If the copy now contains at least one quintuple, then the 

multiple value composed of the copy and those elements of the considered 

array which it describes, is called the considered value; otherwise, 

that element of the considered array whose index is equal to the 

offset in the copy is called the considered value; 

Step 8: If the value of the whole is a name, then the value of the slice 

is a new instance of the name which refers to the considered value, 

and, otherwise, is the considered value itself. 

{A trimner restricts the possible values of a subscript and changes 

its notation: first, the value of the subscript is restricted to run 

from the value of the strict-lower-bound up to that of the strict-upper­

bound, both given in the old notation; next, all remaining values of 

that subscript are changed by adding the same amount to each of them, 

such that the lowest value then equals the value of the new-lower­

bound. Thus, the assignations 

y1[7 : n - 7] := x7[2 : n : 7J ; y7[n] := x7[7J ; x7 := y7 

effect a cyclic permutation of the elements of x7. } 



8.5. Generators 

8. 5. 1. Syntax 

{And as imagination bodies forth 

The forms of things unknown, the poet's pen 

Turns them to shapes, and gives to airy nothing 

A local habitation and a name. 

A Midsummer-night's Dream, William Shakespeare.} 

a)• generator: local JYDDE generator; nonlocal MODE generator. 

b) local MODE generator : local symbol, nonlocal MODE generator. 

c) nonlocal reference to MODE generator : 

actual MODE declarer, MODE initialisation option. 

d) MODE initialisation : 

adapted CIDSED MODE expression; MODE structure pack. 

e) structured with a FIELDS and a FIELD structure : 

structured with a FIELDS structure, canma symbol, 

structured with a FIELD structure. 

f) structured with a MODE named TAG structure : 

adapted unitary MODE expression; MODE structure pack. 

{Examples: 

b) J:EE..[7: 3] real, (1.2, 3.4, 5.6) 

c) person ; EE!!!Ji!:..(1, 0) ; EE!!!£1. ( z) 

(and in the context of 

string( "abs") ; 

str'uot nest= (int a, struot(reai b, bool, o) d) ) 

nest (1.. (2. 3, true)) 

d) ( z) ; ( 1, 0) ; 

e} 7., 0 ; 

f) 7 ; (2.3, true) } 

8.5.2. Semantics 

a) A given structure is elaborated in the following steps: 

Step 1: All constituent expressions and structures of the given structure 

are elaborated collaterally {6.3.2.a} ; 

Step 2: The values obtained in Step 1 are made, in the given order, 

to be the fields of a new instance of a structured value {2.2.3.2}, the 

value of the structure. 



8.5.2. continued 

b) A generator is elaborated in the following steps: 

step 1: Its actual-declarer {7.1.2.c} and initialisation, if not empty, 

are elaborated collaterally, the elaboration of a structure-pack being 

that of its constituent structure; 

step 2: If the .initialisation is not empty, then its value is assigned 

{8.8.2.a} to the result {name} of the elaboration of the actual­

declarer 

step 3: The value of the given generator, upon its completed elaboration, 

is the value {name} of the actual-declarer. 

c) The scope {2.2.4.2} of the value of a local-generator is the smallest 

range containing that generator; that of a nonlocal-generator is the 

program. 

{Extension 9.2.a allows 

r>ef r>eaZ x = Zoa r>eaZ 

to be written 

r>eaZ x • 

The closed-expression 

(r>ef r>eaZ :ex ; (x>ef r>eaZ x = r>eaUpi) ; xx := x) ; xx = pi) 

possesses the value true, but the closed-expression 

(r>ef r>eaZ :ex ; (r>eaZ x(pi) ; :ex := x) ; xx = pi) 

possesses an undefined value since the assignation xx:= x 

in this latter case violates the condition on scopes (8.8.2.a. Step 1). 

The closed-expression 

( (r>ef r>eaZ :ex ; real x(pi) ; xx := x) = pi) 

however, has the value true. } 

{Though the value of the offset in the descriptor of a multiple 

value is always initially 1, this may be changed by the action of a 

tr1rllm:r (see 8.4.2. Step 5). 



8.5.2. continued 2 

The generator 

[-2:3, 7:, 0:4] real 

would result in the name of a multiple value, with undefined elements, 

whose descriptor quintuples have the values 

i 1. u. d. s. t. 
l. l. l. l. l. 

1 -2 3 'l 

2 1 'l 'l 1 0 

3 0 4 'l 1 1 

The fact that t 2 = 0 means that the second upper bound is virtual and 

its value in the descriptor may be changed by assignment (8.8.2.a). } 

8.6. Field selections , 

8.6.1. Syntax 

a)• field selection: FIEID selection. 

b) REFETY FIELD selection: 

FIELD selector, of symbol, REFEI'Y selectend with a FIELD. 
c) REFETY selectend with a FIELD : 

REF'EI'Y structured with a FIELD whole; 

REFEI'Y structured with a LFIELDS and a FIELD whole; 

REFEI'Y structured with a FIEID and a RFIELDS whole; 

REFETY structured with a LFIELDS and a FIELD and a RFIEIDS whole. 

{Examples: The following examples are assumed in a range with the 

declarations 

atr>uat language = (int age, ref language father) ; 

language aZgol(9, language(73, niZ)); 

language pl7 = Zanguage(3, aZgoZ); 

b) age £f. pZ1 ; father £f. algoZ 

c) aZgoZ ; pZ7:} 

{Rule censures that the value of the whole has a field selected by the 

field-selector in the field-selection (see 7.1.1.e, f, g, h, and the remarks 

below 7.1.1. and 8.6.2). The use of an identifier which looks like a field-
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selector in the same range creates no ambiguity. Thus age Ef. algol := age 

is a (possible-confusing to the human) assignation if the second occurrence 

of age is also an adapted-unitary-integral-expression. } 

8.6.2. Semantics 

A field-selection is elaborated in the following steps 

Step 1: Its constituent whole is elaborated, and the structured value 

which is, or is referred to by, the value of that whole is considered 

Step 2: If the value of the whole is a name, then the value of the 

field-selection is a new instance of the name which refers to that field 

of the considered structured value selected by the constituent field­

selector; otherwise, it is a new instance of the value which is that 

field itself. 

{In the examples of 8.6.1, age Ef. algol is a reference-to-integral­

narned-[age]-selection, and, by 8.3.1.a, b, c, a reference-to-integral­

prima.ry, but age Ef. pl7 is an integral-narned-[age]-selection and an 

integral-pr:imary. {Certain pieces of text within a notion have a 

prolixity out of proportion to the information they convey. Thus [age] 

stands for 'letter-a-symbol-letter-g-symbol-letter-e-symbol' and 

[language] is likewise short for 'structured-with-a-integral-narned­

[age]-and-a-reference-to-[language]-nrured-[father]'. That certain notions 

have infinite length is clear; however, the computer can recognise them 

without full examination (see 7,1.2.b,).) 

It follows that age Ef. algol may appear as a destination (8.8.1.b) in 

an assignation but age EJ. pl7 may not. Similarly, algol is a·reference­

to-[language]-pr:imary but pl7 is a [language]-prima.ry and no assignment 

may be made to pl7. 

The selection father EJ. pl7, however, is a reference-to-[languageJ­

named-[fatherJ-selection, and thus a reference-to-[language]-pr:imary 

whose value is the name denoted by algol. It follows that the identity­

relation father Ef. pl7 :=: algol possesses the value true. If father 

Ef. pl7 is used as a destination in an assignation, there is no change in 

the name which is a field of the structured value denoted by pl7, but 

there may well be a change in the [language] referred to by that name. 



8.6.2. continued 

By similar reasoning and because the operators~ and im denote routines 

(10.2.5.b, c) which deliver values whose mode is 'real' and not 'reference­

to-real' , re Et z : = im -w is an assignation, but re z : = im -w is not • } 

8.7. Accompanied calls 

8.7.1. Syntax 

a)• accompanied call: CLAUSE call. 

b) fvKJDE expression call : 

fitted procedure with a PARAMEI'ERS delivering a fvKJDE base, 

actual PARAMETERS pack. 

c) statement call: fitted procedure with a PARAMETERS base, 

actual PARAMETERS pack. 

{Examples: 

b) sameZ.son(m,. (int j) : :x:7[j]J (in the scope of 

proa reaZ. sameZ.son = (int n, proa(int) reaZ. f) : 

begin Z.ong reaZ. s(long 0); 

for i ~ n do s := s + (Zeng f(i)) ,t- 2 ; 

short Z.ong sqrt(s) end) ; 

c) set random(:x:) ; (see 10.3.1.) } 

{For actual-parameters see 7,4.1.b and for fitted-bases see 

8.3.1.b. See also unacconapnied-calls, 8.2.1. } 



8. 7 ,2. Semantics 

An accanpanied-call is elaborated in the following steps: 

Step 1: The fitted-base is elaborated and a copy is made of {the routine 

which is} its value; 

Step 2: The copy obtained in Step 1, considered as a closed-clause 

is protected {6.0.2.d} ; 

Step 3: The copy obtained from Step 2 is modified by replacing the skip­

symbols (mentioned in 5,4.2.ii) in the textual order by the actual­

parameters taken in the same order ; 

Step 4: The accompanied-call is replaced by the copy as modified in Step 3, 

and the elaboration of the copy is initiated; if this elaboration is 

completed or terminated, then the copy is replaced by the accompanied­

call before the elaboration of a successor is initiated. 

{The expression-call sconelson(m, (int j) : xl[j]) as given in the 

examples of 8.7.1, is elaborated by first considering (Step 1) the closed­

expression 

((int n = skip~ proa(int) real f = skip) ; 

begin long real s(Zong 0); 

for i to n do s := s + (Zeng f(i)) + 2 ; 

short long sqrt(s) end). 

Supposing that n. f, sand i are not used elsewhere, this closed­

expression is protected (Step 2) without further alterat·ion. The actual­

parameters are now inserted (Step 3) yielding the closed-expression 

((int n = m, proa(int) real f = (int j) : xl[j]) ; 

begin long rea Z s (long O) ; 

for i to n do s := s + (Zeng f(i)) 4 2 ; 

short long sqrt(s) end) , 

and this closed-expression is elaborated (Step 4). Note that, for the 

duration of this elaboration, n denotes the same integer as that referred 

to by the name possessed by m, and f denotes the same routine as that 

denoted by the routine-denotation (int j) : xl[j]. During the elaboration 

of this and its inner nested closed-expressions (9,5.a), the elaboration 

of f(i} itself involves the elaboration of the closed-expresssion 

((int j = i); xl[j]), and, within this inner closed-expression, j denotes 

the same integer as that referred to by the name possessed by i. } 



8.8. Assignations 

8.8. 1. syntax 

a} :tVDDE assignation 

reference to MODE destination, becomes symbol, MODE source. 

b} reference to MODE destination : peeled reference to :tVDDE base. 

c} MODE source : adapted unitary MODE expression. 

{Examples: 

a} x := 0 ; x := y; x :=random; xx:= x; vaZ :x::;c := 7.2 ; 

x7[i] := y7[i] := (i = j I 7 I OJ ; (random< .5 Ix I y) := 1 

x or y := 3.4 (see 1.3.} } 

{For peeled-bases see 8.3.1.b and for adapted-unitary-expressions 

see 8.0.1.a.} 

8 .8 .2. Semantics 

a} A value is assigned to a name in the following steps: 

Step 1: If the given value does not refer to an element or subvalue of a 

multiple value having one or more states equal to zero {2.2.3.3.b}, and 

if the outer scope of the given name is not larger than the inner 

scope of the given value {2.2.4.2.c, d} and if the given name is not 

nil, then Step 2 is taken; {otherwise, the further elaboration is 

undefined;} 

Step 2: If the value (called the "target value") referred to by the 

given name is a multiple value or a structured value, then Step 3 

is taken; otherwise, the target value is superseded {2.2.3.5.g} by a 

new instance of the given value and the assignment is complete; 

Step 3: If the target value is a structured value, then Step 5 is taken; 

otherwise, applying the notation of 2.2,3.3.b to the descriptor of the 

target value, for i = 1, ••• , n, ifs.= 0 (t. = 0), then l. (u.} is 
i i i i 

set to the value of the i-th lower bound (i-th upper bound) in the 

descriptor of the given value; moreover, for i = n, n-1, •••• 2, the 

stride d. 1 is set to (u.-l.+1) x d.; finally, if some s. = 0 or 
i- i i i i 

ti= O, then the descriptor of the target value, as modified above, is 



8.8.2. continued 

made to be the descriptor of a new instance of a multiple value, which 

is then called the target value 

Step 4: If for all i, i = 1, ••• , n, the bound 1. (u.) 
l- l-

of the target value, as possibly modified in Step 3, 

in the descriptor of the given value, then Step 5 is 

the further elaboration is undefined} 

in the descriptor 

is equal to 1. (u.) 
l- l-

taken{; otherwise, 

Step 5: Each element (field) of the target value is superseded by a new 

instance of the value of the corresponding element (field) of the given 

value and the assignment is complete. {The order in which these elements 

(fields) are superseded is undefined.} 

b) An assignation is elaborated in the following steps: 

Step 1: Its constituent source and destination are elaborated collaterally 

{6.3.2.a} 

Step 2: The value of the source is assigned to the value {name} of the 

destination ; 

Step 3: The value of the assignation is the value of the source. 

{Observe that (x, y) := (1.2, 3.4) is not an assignation, since (x, y) 

is not a destination; indeed, the mode of the value of a collateral­

expression (6.3,1.c) does not begin with 'reference to' but with 'row of'.} 



9. continued 

X for one or more virtual-parameters {7.1.1.y} separated by comma-symbols, 

Y for oQe or more fo~-parameters {5.4.1.e} separated by comma-symbols, 
and 

Z for a forwa.1-declarer {7.1.1.b} all of whose forwa.1-lower-bounds and 

formal-upper-bounds {7.1.1 .q} are empty. 

9.1. Comments 

A comment {3,0.9.b} may be inserted between any two symbols {but see 9.b.}. 

{e.g. (m > n m In) may be written 

(m > n m .£ the larger of the tuJo .£In). } 

9.2. Contracted declarations 

a) ref ZI = Zoo H where Zand H specify the same mode {7.1.2.a} may be 

replaced by HI. 
{e.g. ref reaZ x = Zoo rieaZ may be written rieaZ x and 

ref £EE1.. p = Zoo booZ(t:rue) may be written booZ p(t:rue). } 

b) mode N = at:ruot may be replaced by striuot N = and mode N =~may 

be replaced by union N = • 

{e.g. mode E£!!.!2l:. = st:ruot(rieaZ rie, im) (see also 9.2.c) may be written 

at:ruct E£!!.!2l:. = (reaZ rie~ im). } 

c) If a given unitary-declaration (field-declarator 7,1.1.g') and 

another unitary-declaration (field-declarator) following a comma-symbol 

following the given unitary-declaration (field-declarator) both begin with 

an occurrence of the mode-symbol, of the structure-symbol, of the union-of­

symbol, of the monadic-symbol, of the dyadic-symbol, of the operation-symbol, 
or of one same declarer, then the second of these occurrences may be 

omitted. 

{e.g. reaZ x., rieaZ y(1.2) may be written rieaZ x, y(1.2) ; also 

reaZ x., reaZ y = 1. 2 may be written reaZ x, y = 1. 2, but the alert programmer 

will not wish to confuse himself by doing so (since xis a reference­

to-real-identifier and ya real-identifier.). 



9. Extensions 

a) An extension is the insertion of a connnent between two symbols or the 

replacement of a certain sequence of symbols, possibly satisfying certain 

:req,µ;i.rement1:1, by another sequence of symbols. 

b) No extension may be performed within a comment {3.0.9.b} or a row-of­

cha.racter-denotation {5.3}. 

c) Some extensions are described in the representation language, except 

that 

A stands for a unitary-expression {Chapter 8}, 

B for a unitary-expression, 
C for a unitary-clause {6.2. 1 ,a, 8}, 

D for the standard-declarations {2.1.b, 10} if the extension is performed 

outside the standard-declarations and otherwise for the empty sequence 

of symbols, 

E for a serial-expression {6.1.1.b}, 

F for a unitary-expression, 

G for one or more unitary-clauses separated by corrma-symbols, 

H for a declarer { 7. 1} , 

I for an identifier {4.1}, 

J for an identifier, 

K for an identifier, 

L for an identifier, 

L for zero or more long-symbols, 

M for an identifier, 
N for an indication {4.2}, 

0 for zero or one identifiers, 
p for an adapted-base {8.3.1.b}, 

Q for a choice-clause {6.5.1 .b}, 

R for a routine-denotation {5.4}, 

s for a unitary-statement {6.2.1.a}, 

T for a unitary-expression, 

u for zero or one virtual-declarers {7.1.1.b}, 

V for a virtual-declarer, 

W for a unitary-expression, 



9.2. continued 1 

Note also that mode E._ = bool,. mode !: = real may be written 

~ E._ = booZ,. !: = real, etc. } 

d) If' a collateral-declaration {6.3.1.a} does not begin with a parallel­

symbol, is not a constituent unitary-declaration of' another collateral­

declaration, none of' its constituent unitary-declarations is a collateral­

declaration, and only its first constituent unitary-declaration {af'ter 

application of' 9.3.c} begins with an occurrence of a mode-symbol, 

structure-symbol, union-of-symbol, monadic-symbol, dyadic-symbol, 

operation-symbol or declarer, then its f'irst open-symbol and last 

close-symbol may be omitted. 

{e.g. (real x, y, z) may be written real x, y, z. } 

e) proa(X) VI= R may be replaced by proa VI= R. 

f') 5!2.(X) UN = R may be replaced by £E_ UN = R. 

g) proa(X) UO(R) may be replaced by proa UO(R). 

{i.e., _the virtual-paraireters-pack may be omitted from the constituent 

fonnal-declarer of an identity-declaration (7.4) if' a routine-denotation 

is present, since its constituent formal-parameters display all the 

information given by the virtual-parameters. 
e.g., the declaration proa(real, real) real min = (real a, b) : 

(a> b I b I a) may be written 

proa real min= (real a, b) : (a> b I b I a). } 

h) An actual-parameter {7.4.1.b} of the form (Y) V: P may be replaced 

(Y) : P ; one of the form V fE!E!:._ P may be replaced by fE!E!:._ P. 

i) £E UN = (Y) V : P may be replaced by EE. UN = (Y) : P. 

{i.e., the constituent virtual-declarer which precedes the constituent 

parameter-symbol or expression-symbol of a routine-denotation (5.4) 

may be omitted if that routine-denotation occurs as an actual-parameter 

or operator-body (7.5.1.f.). 

e.g., the declaration proa real f = real !!!f!!JE:Jx := x + 1 ; a + 3) 

may be written proa real f = ~(x := x + 1 ; a + 3). } 



9.2. continued 2 

j) E!:.E!!.. UO((Y) V: P) may be replaced by proa UO((Y) :P) and 

proa UO(V ~ P) may be replaced by proa UO(~ P). 

{i.e., the virtual-declarer may also be omitted if the routine­

denotation, enclosed between an open-symbol and a close-symbol, forms the 

initialisation (8.5.1.d) of a generator (8.5). 

e.g., the generator 

proa reaUreal ~(:x: := :x: + 1 ; a + Z)) may be written 

proa real(~£J:x: := :x: + 1 ; a + Z)). } 

k) [:]maybe replaced by[], 

[:,.by[,, 

,. : ] by , ] and 

,:,.by,.,. 

{e.g. , the declarer ref [:] real may be written ref [] real and 

ref[:.,:,.:] real may be written ref(..,] real. } 

9.3. Repetitive statements 

a) begin(int J(F} .. int K = B., L = T) ; 

M : :!:.f. D(K > O I J s L,. K < O I J .: L I true) then 

int I = J ; (W I S ; (DJ := J + K) ; goto M) 

ii 
end , 

where J, K, Land M do not occur in W or S, may be replaced by 

for I f!:E!!!. F EJi. B to T while W do S , 

and if• moreover• I does not occur in W or S, then for I f!:E!!1. may be 

replaced by from. 

b) begin(int J(F}, int K = B); 

M : (int I = J ; (W I S ; (DJ := J + K) ; goto M)) 

end, 

where J, Kand M do not occur in W or S, may be replaced by 

for I from F EJi. B while W do S , 

and if, moreover, I does not occur in W or S, then for I f!:E!!1. may be 

replaced by l!:.E!E.• 



9.3. continued 

c) .f!:2!!!. 7 Eli. may be replaced by Eli.• 
d) EJi. 7 to may be replaced by to, and Eli. 7 whiZe may be replaced by whiZe. 

e) whiZe i:!:!:f:!!_ do may be replaced by do. 

{e.g. foP i .f!:2!!!. 7 EJi. 7 to n whiZe tl"Ue do x := x + a may be written 

ton do x := x + a. 

Note that to O do S and whiZe faZse do S do not cause S to be elaborated 

at all, whereas do S causes S to be elaborated repeatedly until it is 

terminated or interrupted. } 

9.4. Contracted conditional clauses {The flowers that bloom in the spring, 

Tra la, 

Have nothing to do with the case. 

Mikado, W.S. Gilbert.} 

a) (int I = A ; :!:.f. DI = 7 then C fi! may be replaced by~ A Ef. (C) 

b) (int I = A ; :!:.f. DI = 7 then C 

eZee ~(DI - 7) Ef. (G) fi! may be replaced by ~ A £t (C, G). 

{Examples of the use of such "case" clauses are given in 11.12.w, ap. } 

c) !!J:.E!!. if. Q ti ti may be replaced by , Q ti• 
{e.g., if. p then prinaeton else :!:1. q then gPenobZe eZse zandvooPt ti ti 

may be written 

f:t. p then prinaeton, 

:!:.f. q :!!!!:f!!!_ gpenob Ze e Zse zandvoor>t ti. } 

9.5. Complex values 

vaZ(I:_ PeaZ I= A, J = B; (D!:_!!E!!!El(I, J))) 

may be replaced by (Al B). 



11. Examples 

11.1. Complex square root 

A declaration in which compsqrt is a procedure-with-a-[complexJ­

parameter-delivering-a-[complexJ-identifier (Here [complex] stands for 

structured-with-a-real-named-letter~r-symbol-letter-e-syrnbol-and-a-real­

named-letter-i-syrnbol-letter-m-syrnbol.) : 

a) proc EE!!!EJ:. compsqrt = (compl z) : !: the square root whose real part 

is nonnegative of the complex number z c 

b) begin real x = ~ z 3 y = im z ; 

c) real rp = sqrt((abs x + sqrt(x t 2 + y t 2))/2); 

d) real ip = (rp = 0 I O I y/(2 x rp)) ; 

e) (x ;?: o I (rp l ipJ I (ip l (y ~ o I rp I - rpJJJ 

f) end compsqrt 

[complex]-expression-calls {8.7.1 .b} using compsqrt 

g) compsqrt(w) 

h) compsqrt(-3.74) 

i) compsqrt(- 7) 



11.2. Innerproduct1 

A declaration in which innerproduat1 is a procedure-with-a-integral­

parameter-and-a-procedure-with-a-integral-parameter-delivering-a~real­

parameter-and-a-procedure-with-a-integral-parameter-delivering-a-real­

parameter-delivering-a-real-identifier: 

a) proa reaZ innerproduat1 = (int n, proa(int) reaZ x, y) : 

aomment the innerproduat of two veators, eaah with n aomponents, 

x(i), y(i), i = 7, ••• , n, where x and y are arbitrary mappings 

from integer to real number aomment 

b) begin long rea Z s (Zang O) ; 

c) for i to n do s := s + Zeng x(i) x Zeng y(i} ; 

d) shorts 

e) end innerproduat7 

Real-expression-calls {8.7.1.b} using innerproduat7: 

f) innerproduat7(m, (int j) : i:71~'J, (.';;t ,'): ;;7Lu"J) 

g) innerproduat7(n, nsin, naos) 

11.3. Innerproduct2 

A declaration in which innerproduat2 is a procedure-with-a-reference­

to-row-of-real-parameter-and-a-reference-to-row-of-real-parameter­

delivering-a-real-identifier: 

a) proa real innerproduat2 = (ref[7 : int n] real a, b) : 

.Ethe innerproduat of two veators a and b with n elements!!.. 

b) begin long rea Z s ( long O) ; 

c) for i ton dos := s + Zeng a[i] x Zeng b[i]; 

d) short s 

e) end innerproduat2 

Real-expression-calls using innerproduat2: 

f) innerproduat2(x7, y7) 

g) innerproduat2(y2[2], y2[, 3]) 



11.4. Innerproduct3 

A declaration in which innerproduet3 is a procedure-with-a-reference­

to-integral-parameter-and-a-integral-parameter-and-a-procedure­

delivering-a-real-parameter-and-a-procedure-delivering-a-real-parameter­

delivering-a-real-identifier: 

a) proe real innerproduet3 = (ref inti, int n, proe real xi, yi) : 

eomment the innerproduet of two veetors whose n elements are the 

values of the expressions xi and yi and which depend, in general, 

on the value of i eomment 

b) begin long real s(long 0) ; 

c) fork ton do(i := k; s := s + leng xix leng yi); 

d) short s 

e) end innerproduet3 

A real-expression-call using innerproduet3: 

f) innerproduet3(j, B, x7Lj I, u7L/ + 7 JJ 

11.5. Largest element 

A declaration in which absmax is a procedure-with-a-reference-to-row-of­

row-of-real-parameter-and-a-reference-to-real-parameter-and-a-reference­

to-integral-parameter-and-a-reference-to-integral-parameter-identifier: 

a) proe absmax = (ref[ 7 : int m, 7 : int n] real a, 

b) E.. result E.. !:!!.[ real y, E.. subseripts E.. ref int i, k) : 

eomment the absolute value of the element of greatest absolute value 

of them by n matrix a is assigned toy, and the subseripts of this 

element to i and k eomment 

c) begin y := 0; 

d) for p to m do for q to n do 

e) :!:.[ abs a[p, q] <! y then y := abs a[i := p, k := q] Ji 
f) end absmax 

A statement-call {8.7.1.c} using absmax: 

g) absmax(x2, x, i, j) ,, 



11.6. Euler summation 

a) proa real euler = (proa(int) real f., real eps., int tim) : 

aomment the sum for i from 7 to infinity of f(i)., aomputed by means 

of a suitably refined eule:ra transformation. The summation is 

terminated when the absolute values of the terms of the transformed 

series are found to be less than eps tim times in suaaession. This 

transformation is partiaularly effiaient in the ease of a slowly 

aonve:ragent or divergent alternating series aomment 

b) begin int n(7), t; real mn, ds(eps); [7 76] realm; 

c) real sum((m[ 7] := f(7}}/2) ; 

d) for i from 2 while(t := (abs ds < eps I t + 7 I 7J) s tim do 

e) 

f) 

g) 

h) 

i) 
j) 

begin mn := f(i) ; 

k) sum 

1) end euler 

for k to n do begin mn := ((ds := mn) + m[k])/2 ; 

m[k] := ds end ; 

sum:= sum+ (ds := (abs mn < abs m[n] An< 76 

n := n + 7; m[n] := mn; mn/2 I mn)) 

An expression-call using euler: 

m) euler((int i) (odd i I -7/i I 7/i), 110-5, 2) 

11.7. The norm of a vector 

a) proa real norm= (ref[7 : int n] real a) : 

~ the eualidean norm of the vector a with n elements a 

b) (long real s (long 0) ; 

c) fork ton dos := s + (leng a[k]) 1' 2; 

d) short long sqrt ( s)) 

For a use of norm as an expression-call, see 11.8.d. 



11.8. Determinant of a matrix 

a) proa real det = (ref[ 7 : int n, 7 : int n] real a, 

b) .!:!!.JJ.7 : int n] int p) : 

aorrment the determinant of the square matrix a of order n by the 

method of Crout with row interahanges: a is replaaed by its triangular 

deaomposition l x u with all u[k, k] = 7. The veator p gives as 

output the pivotal row indiaes; the k-th pivot is ahosen in the k-th 

aolumn of l suah that abs l[i, k]/row norm is maximal aorronent 

c) begin[]: n] real v; real d(7), r(-7J, s, pivot; 

d) for i to n do v[i] := norm{a[i]) ; 

e) fork ton do 

f) begin int k7 = k - 7 ; ref int pk = p[k] ; 

g) .!:!!.f.[ , J real al = a[ , 7 : k 7], au = a[ 7 : k 7] ; 

h) .!:!!.f.[J real ak = a[k], ka = a[, k], apk = a[pk], 

i) alk = al[kJ, kau = au[, kJ ; 

j ) for i from k to n do 

k) begin ref real aik = ka[i] ; 

1) if.(s := abs(aik := aik - innerproduat2(al[i], kau))/v[i]) > r 

m) then r := s ; pk := i Ji 
n) end for i ; 

o) v[pk] := v[k]; pivot:= ka[pk]; 

p) for j to n do 

q) begin ref real akj = ak[j], apkj = apk[j] ; 

r) r : = akj ; akj : = if. j ::; k then apkj 

s) else(apkj - innerproduat2(alk, au[: k7, j]))/pivot fi; 

t) if. pk # k then apkj := -r fi 

u) end for j; 

v) d : = pivot x d 

w) end for k ; 

x) d 

y) end det 

An expression-call using det: 

z) det(y2, i7) 



11.9. Greatest common divisor 

An example of a recursive procedure: 

a) proe int ged = (int a, b) : 

e the greatest eommon divisor of two integers _q_ 

b) (b = O I a I ged(b, a .;-: b)) 

An expression-call using gad: 

c) ged(n, 724) 

11.10. Continued fraction 

An example of a recursive operation: 

a) ER.. real, / = ([7 : int n] real a, b) : 

eomment the vaiue of alb is that of the eontinued fraetion 

a/(b7 + a2/{l;y + ••• a,/un) •.• ) comment 

b) (n = 7 I a[7J/b[7J I a[7J/(b[7J + a[2 :: 7J/b[2 7]}) 

A formula using/: 

c) x7/y7 

{The use of recursion may often be elegant rather than efficient 

as in 11.9 and 11 ,10, See, however, 11.11 for an example in which 

recursion is of the essence,} 



11.11. Formula manipulation 

a) begin union form= (ref aonst., ref var., ref triple., ref aaU); 

b) struet aonst = (real value); 

c) struat var= (string name., real, value); 

d) struat triple= (form left operand., int operator, form right operand); 

e) struat function = (ref~ bound var., form body); 

f) struat aaU = (ref function function name., form parameter); 

g) int plus = 7., minus = 2., times = 3, by = 4, to= 5; 

h) ~ zero (0), one (7); 

i) .EE. boot = = (form a., ref ~ b) : 

(ref aonst ea; (ea : := a I val ea :=: b I false)) ; 

j) .EE. form + = (form a., b) : 

(a= zero I b I (b = zero I a I triple(a., plus., b)JJ; 

k) .EE. form - = (form a., b) (b = zero I a I triple(a., minus, b)J; 

1) .EE. form x = (form a., b) 

(a= zero vb= zero I zero 

m) .EE. form I = (form a., b) : 

(a= one I b I (b = one I a I 

triple(a., times., b))}); 

(a= zero A-, b = zero I zero I (b = one I a I triple(a., by, b))J; 

n) .EE. form t = (form a., ref aonst b) 

(a= one vb:=: zero I one I (b :=: one I a I triple(a., to., b))); 

o) proa form derivative of= (form e, £. with respect to£. ref EE!:_ x) 

p) begin ref aonst ea ; ref !:!E!_ ev ; ref triple et ; ref aaU ef ; 

q) :!:.f ea : : e then zero., 

r) ev : := e then(val ev · =· x I one I zero), 

s ) et : : = e then 

t) form u = left operand Ef. et, v = right operand Ef. et, 

u) udash = derivative of (u., E_ with respect to E_ x), 

v) vdash = derivative of (v., E. with respect to ax); 

w) EE!!!!_ operator Ef. et in 

x) udash + vdash, udash - vdash, 

y) u x vdash + udash xv, (udash - et x vdash)/v., 

z) v x u + aonst(ea ::= v; value Ef. ea - 7) x udash 



11. 11 • continued 

aa) ef : := e then 

ab) ref funation f = funation nome Ef. ef; 

ac) form g = parameter Ef. ef; 

ad) ref~ y = bound var Ef. f; 

ae) funation fdash(y, derivative of(body Ef. f, y)}; 

af) aall(fdash, g) x derivative of(g, x) 

ag) ii 
ah) end derivative; 

ai) proa real value of= (form e) : 

aj) begin ref aonst ea ; ref~ ev ; ref triple et ; ref aall ef; 

ak.) it ea .. - e then value Ef. ea, 

al) ev : := e then value Ef. ev, 

8I11) et : := e then 

an) real u = value of{left operand Ef. et), 

ao) v = value of(right operand Ef. et); 

ap) ~ operator Ef. et in 

aq) u + v, u - v, u xv, u Iv, exp(v x ln(u)} esaa, 

ar) ef : := e then 

as) ref funation f = funation name Ef. ef; 

at) value Ef. bound var EJ. f := value of(parometer Ef. ef); 

au) value of(body Elf) 

av) ii 
aw) end value of; 

ax) form f, g ; ~ a, b, x; 

ay) start here: 

az) nome Ef. a := "a" ; name Ef. b := "b" ; name Ef. x := 11x"· 

ba) read((value Ef. a, value Ef. b, value Ef. x)); 

bb) f :=a+ x I (b + x); g := (f + one) I (f - one); 

be) print((value Ef. a, value Ef. b, value Ef. x, 

value of(derivative of(g, E_ with respeat to ax))) 

bd) end example. 

{And what impossiblity would slay 

in common sense, sense saves another way. 

All's well that ends well, William Shakespeare.} 


