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P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

A simple M/M/1 /k queue with impatient customers is presented as a model for communication systems 
operating under overload conditions. The performance analysis and optimal control problem for this model 
are discussed. An efficient algorithm for computing the optimal control is presented along with numerical 
results. 
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1. INTRODUCTION 

In this paper we discuss the performance analysis and optimal control of an MIMI 1 lk queueing sys­
tem with impatient customers. The motivation of this investigation is the problem of overload for 
communication systems. 

The most familiar communication system is the telephone network. The operational units in this 
network are the so-called telephone-switches or -exchanges. During the last few years sophisticated 
exchanges of the Stored Program Controlled (SPC) type have been developed and installed. Most 
SPC-exchanges are composed of several modules: the Central Module (CM), the Switching Module 
(SM) and one or more Peripheral Modules (PM) (for example see figure 1.1). The Central Module 
takes care of the overall control functions of the system, the Peripheral Module is the interface to the 
various types of digital and analog user equipment and the Switching Module connects the modules 
to each other. 

The operations in the Central Module are carried out by one or more processors according to a 
stored program. Besides typical system operations, such as error handling, maintenance and 110 
functions, the main part of the workload of the processor is initiated through subscribers' call 
requests. Examples of such operations are generating a dial tone, receiving the requested phone 
number digits, checking the validity of the received digits and allocating the available hardware 
resources. 

An SPC-exchange in operation is a typical example of a queueing system where customers compete 
for a number of limited resources. The limitations stem from both the finite processor capacity and 
the limited number of hardware resources in the exchange. The performance of an SPC-exchange 
may therefore degrade significantly during periods in which the demands for service exceed the design 
capacity (cf. [6]). The response time of tasks scheduled for the processor may become relatively long 
and this may cause impatient customers to abandon their call request prematurely. Another type of 
impatient behaviour arises from the use of time-out mechanisms, for instance in the search for free 
allocatable hardware resources such as senders and receivers. When the time limit that was set for 
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such an operation, expires, a call request may be abandoned before the connection is established. In 
both cases processor capacity and memory space are wasted on tasks that do not lead to a successful 
connection. The aim of this investigation is to develop a control mechanism that regulates admission 
to the exchange to maximize the successful throughput under conditions of overload. 

~ -i PM t ~1 SM t ~ CM 
r-~ I ~~~~ 

I I 

L----r-.J 
I I 

L------.J 

FIGURE 1.1. A Stored Program Controlled Exchange. 

In [12] an M/G/1 queue with batch arrivals and service time discretization is presented as a model 
for switching systems. The successful throughput is expressed in the steady-state probabilities and a 
suggestion for an overload control is given. In [11] an approximate analysis is presented of an 
MIG/c queue where customers' call requests become successful according to a probability distribu­
tion that is dependent on the waiting time of a customer. A GI/G/l queue is introduced in [1] with 
limitations on the waiting and sojourn times of customers. Functional equations for the distribution 
functions of waiting times and stability conditions are established. The model we present differs from 
the models in [ 1 ], since we allow impatient customers to off er some workload to the server even if 
they abandon the queue. In [2, 3] models for call request processing and the stochastic control prob­
lem for these models are presented. 

In this paper we present a simple queueing system model of an SPC-exchange with impatient custo­
mers. In Section 2 we give a description of the model. It consists of an MIMI 1 lk queueing system 
where customers are served according to the First-Come-First-Served discipline. A newly arriving 
customer is admitted only if the waiting space of the queue is not fully occupied upon arrival, other­
wise he is lost. Once a customer has been accepted, his sojourn time limit is generated according to a 
general probability distribution, and the customer joins the queue if the server is busy or is served 
immediately otherwise. Subsequently the customer stays in the queueing system until his service is 
completed. The service completion of a customer is defined to be successful if the actual sojourn time 
of the customer has not exceeded his sojourn time limit. Our objective is to maximize the call comple­
tion rate which is defined as the mean number of successful service completions in equilibrium per 
time unit. In section 3 this performance measure is expressed as a function of the steady-state proba­
bilities of an MIM/llk queueing system and its dependence of the parameters is discussed. In sec­
tion 4 we introduce the optimal control problem for an approximating queueing system and derive the 
Hamilton-Jacobi equations for this problem. It is shown that the optimal control is bang-bang, i.e. 
arriving customers are either accepted or rejected without randomization. Furthermore sufficient con­
ditions are given to ensure that the opti.mill control is of the form where newly arriving customers are 
accepted if and only if the current number of customers does not exceed a certain level. In section 5 
an efficient algorithm for computing this optimal queue size is given and some numerical results are 
presented. We conclude this paper with some remarks and suggestions for further study. 
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to 

server is busv, or is served inunediatelv At the moment actual 
time"- i.e. waiting time plus Service time - is cornoa:reo 

set at the time of his arrival. If the actual sojourn time 
completion is called successful. 

We can view this M/M/l /k queueing system \\-ith customers as a queueing 
consisting of two parallel queues (see figure 2.l ). I is an MIG/ oo queue used to model 

sojourn of customers and queue 2 is an M/ M/l I k queue for service demands of customers. Both 
queues have identical arrival processes. Upon completion of a task queue I is examined to if 
the customer who generated the task is still present. If so then the service completion is successful. 

arrival 
process 

queue 
full 
? 

rejected 

queue 2 : tasks 

ID--
FIGURE 2.1. An M/M/l/k queueing system with impatient customers. 

Note that, although the sojourn time limit may already have been exceeded while waiting in the 
queue, the customer still remains in the queueing system to have his service demand fullfilled. This 
approach has been chosen, since in telephone exchanges even abandoned call requests offer some load 
to the processor. Furthermore, note that the time limit may be exceeded while the customer is being 
served. This is to account for the fact that a calling subscriber is not aware of the moment his service 
begins (e.g. when he is waiting for a dial tone, the exchange is executing tasks, although the subscriber 
is not aware of this). 

We conclude this description ·with a remark about the probability distribution function Fs of the 
sojourn time limit. We consider only Erlang and deterministic distributions, mainly because the 
Erlang-3 distribution seems a reasonable choice for describing customer impatience in telephone 
exchanges [ l] and the deterministic distribution because this is convenient for describing time-out 
mechanisms. 



4 

3. PERFORMANCE ANALYSIS. 

In this section we give a performance analysis of the queueing system we introduced in the preceding 
section. The performance measures we are interested in are the call completion rate and the rejection 
probability. 

The rejection probability R is simply the probability that an arbitrary arriving customer will be 
rejected, or equivalently finds the queue fully occupied. This measure will become of interest when 
considering so-called reattempts, i.e. attempts by customers to reenter the communication system after 
having been refused access. In this report we will however not consider reattempts. 

The call completion rate A is defined as the throughput of successful service completions, i.e. the 
mean number of successful service completions in equilibrium per time unit. We will express both 
measures in the equilibrium probabilities of an M/M/l/k queue. 

In this section we will take the viewpoint of the queueing system as in figure 2, i.e. customers have 
a sojourn time probability distribution function Fs and tasks have a service time with an exponential 
distribution with mean I / p.. Let p(n), n=O,. . .,k, denote the probability that n tasks are present in the 
queue in equilibrium. It is well known that p(n) is given by 

- 1-p n 
p(n) - I-p1<+I P ' n =O, · · · ,k, (3.1) 

where p=A./ p.. 
Due to PASTA (Poisson Arrivals See Time Averages) [13] the rejection probability R is equal to 

p(k), i.e. the probability that k tasks are present. 
When considering the call completion rate it is more convenient to look at arriving customers (or 

tasks) rather than departing tasks. Suppose a customer arrives and is accepted in the queue, where he 
finds n,n=O,. . .,k-1 tasks in front of him. The sojourn time of his task is the sum of n+ 1 independent 
exponentially distributed random variables, each with mean I/ p., or equivalently an Erlang-(n + 1) 
distributed random variable with mean (n + 1) / p.. Denote this variable by Sn+ 1• Let S denote the 
random variable corresponding to the sojourn time of the customer, i.e. a random variable with pro­
bability distribution function Fs and mean 1 / o. Furthermore let q(n) denote the probability that the 
sojourn time of the customer exceeds the sojourn time of his task. It is clear that 
q (n) = P { S >Sn + 1 } • Since in equilibrium the mean number of successful service completions per 
time unit equals the mean number of arriving customers per time unit whose sojourn times exceed the 
sojourn times of their corresponding tasks, we have 

k-1 
A=;\~ p(n)q(n). (3.2) 

n=O 

The following lemma gives expressions for the probabilities q(n). 

LEMMA 2.1. If S has an Erlang-m distribution then 

q(n)= 1-[ mo ]m ~ [m+J-1) [ µ. ]j 
mo+p. j=O } ma+µ. ' n =O, · · · ,k-1. (3.3) 

If S has a deterministic distribution then 

q(n)= 1 - e-p./a ~ +,, 
j=O of J. 

n =O, · · · ,k-1. (3.4) 

PROOF 

Let Fs be an Erlang-m distribution function with mean 1 / o, i.e. 
I 

F(t)= l j(morxm-le-maxdx r;;;a.O 
s (m -1)! o ' 

(3.5) 

and Fs.+, an Erlang-(n+ 1) distribution function with mean (n + 1) /µ.,i.e. 



l t 
F = -Jun+lx"e-iudx 1;;;.0 s... n' r • 

. 0 

We will prove by induction that 

mo+p. • 
I- [~]m 

q(n)= l I l I q(n-1)- [n+m-1) _.!!!!!.__'" --'!._" 
n mo + p. ma+ p. ' 

For n =Owe have 
00 I 

q(O)= j j dFs,(x)dF5 (t) 
0 0 

00 I 

= 1 j jµe-'"(ma'f't"'- 1e-"'01 dxdt 
(m-1)! o o 

= 1 - I Joo (mar tm - I e -<,,.o+">r dt 
(m -1)! 0 [ lm _ 1 _ ma 

mo+µ. 

Let n >0, then 
00 t 

q(n)= j J dFs •• ,(x)dF5(t) 
0 0 

00 I 

= I J jµ"+I x"e-p..r (ma)1" Im-I e-mot dxdt 
n!(m-1)! 00 

= q(n-1)- (ma'f'µ.n joo111+m-le-<mo+l''fldt 
n!(m -I)! 0 

_ ( I) (n+m-1)! [ ma ]m [ f.L ]" 
- q n - - n!(m -1)! mo+p. ma+µ 

From (7) one can easily derive (3). 
Let S be equal to l /a (deterministic), then for n =Owe have 

I/a 
q(O)= f p.e-,,.x dx 

0 

= l -e-l'-1°. 

For n >0 we have 

l I /a 
q(n)= - 1 J µ.11 +1 x" e-p.x dx 

n. o 

= q(n -1)- e-,,.;a L.. 
n ! er" 

5 

(3.6) 

n=O 

(3.7) 

n>O 

0 
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With the expressions (l)-(4) we can easily evaluate the influence of the parameters of the model on 
A and R. Some numerical examples are presented in section 5. 

4. OPTIMAL CONTROL 
In this section we discuss the optimal control of an M/M/ 1 queueing system with impatient custo­
mers. We first introduce some definitions and notations of counting processes and subsequently dis­
cuss the optimal control of an M/M/l queue with a general reward structure. A queueing system 
with impatient customers is then treated as a special example. 

4.1. Counting Processes. 
We let N denote the set of natural numbers {0,1,2, ... }, (n,§';P) be some probability space and 
(1!J;,t;::.O) a family of increasing a-algebra's on §'; i.e. for all O.s;;;;s.s;;;;t ~ c§; C<!f. A stochastic process 
( X1 , t ;;::. 0) is called adapted to §; if for all t > 0 6Jf = a(Xs ,s E[O, t]) C §;. In the sequel all stochastic 
processes are assumed to be adapted to §;. 

A counting process ( n1 , t ;;;;;. 0) is a process taking values in N that has unit jumps. An example of a 
counting process is a Poisson process, where the intervals between successive jumps are independent 
and exponentially distributed with a constant parameter. 

In most applications counting processes can be represented as 

t;;;;;. 0 

or 

t~O 

where (A1 , t;;;;;. 0) is a nonnegative process adapted to §; and (m1 , t;;;;;. 0) a (P, §;)-martingale. The 
process (i\1 , t ~ 0) is called the rate or intensity process of ( n1 , t ;;;;;. 0 ). For example a (P, §;)-Poisson 
process is a counting process with a deterministic rate process (i\ ( t), t ~ 0). Finally a counting pro­
cess ( n1 , t ~ 0) is called non-explosive if 

A thorough treatment of counting processes can be found in [5]. 

4.2. The optimal control of an MIMI ]-queueing system. 
Consider the M/M/1-queueing system as shown in figure 4.1. 

t~O, P-a.s. 

FIGURE 4.1. An M/M/1-queueing system with regulated arrivals. 

The number of customers present in the queue at time t is denoted as Q1• This queueing process 
( Q1 , t ;;::i: 0) is an N-valued process defined on (Q, §';P) and is of the form 

t~O (4.1) 
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~he~e Yr and Dr are non-explosive counting processes without common jumps. The above definition 
unplies that P-a.s. , Dr~ Qo + Y1 , t;;.?; 0 since Q1 is nonnegative. Q1 is called the state process and 
Qo is the initial state. For each t;;.?; 0 Y1 is the number of admitted arrivals in (O,t] and D1 the 
number of departures in (O,t]. These processes are constructed as follows. 

Customers arrive according to a point process (A, , t ;;.?; 0) which admits a constant deterministic 
intensity A> 0. Let { t11 }neN denote the sequence of stopping times that correspond to arrival times, 
then 

O<t1<t2< ··· <oo 

Upon arrival customers may be admitted to the queue or refused access. Let {Xn}neN be a sequence 
of {0,1 }-valued random variables, where if X11 = 1, then the customer arriving at time 111 is admitted 
to the queueing system; otherwise he is refused access. The number of admitted customers over the 
interval (O,t] is represented by the counting process ( Y1 , t;;;;;::: 0) where 

Y,= I X11I(1.~1)· 
n;;;.J 

(4.2) 

The service times { s11 } 11 e N of customers at the queue are assumed to be a sequence of i.i.d. random 
variables which are independent of A, (and hence of Y1), but which may depend on Q1• If we let the 
service time of a customer, when k customers are present, be exponentially distributed with mean 
I/ P.k > 0, then the departure process D, is a counting process that admits the intensity /LQ,_, where 
P-0 = 0. 

For the information patterns of these counting processes let GJ1 = o(As, 0 ~ s ~ t), 
~ = o(Qs, 0 ~s os;; t) and~= 6Jf- v~. Denote G11 = ~- v~, n ;;a.: 1, where 

~-=o(Asn{s<t11 };A3 e~,s;;;..oO) (4.3) 

and 

<Et= {A e ~IA n {t11~t}e6Jf-}. (4.4) 

We can interpret G11 as the cumulative information of (A1 , t ;;a.: 0) up to the instant t11 as well as that 
of ( Q1 , t;;;;... 0) up to the instant right before t11 • Based on the information pattern G11 , n ;;;...1, the 
admissible admission policies can be defined as follows. 

DEFINITION 4.1. An GJi-predictable process ( u1 , t ;;;;;::: 0) with u1 E [O, 1 ] is said to be an admissible admis­
sion policy if there exists a probability measure pu on (0 , <?I) such that ( A1 , t ;;;;... 0 ), (Dr , t ;;.?; 0) and 
( Y, , t ;;;;... 0) are counting processes with ( P" , ~ )-intensities A, P.Q, _ and A u, respectively. · 

The class of all admissible (random) admission policies will be denoted by U. With this definition 
and 111 an arrival time u1• can be interpreted as the probability of admitting the nth arriving customer 
given the information G11 • Moreover definition 4.1 ensures that any admissible policy u induces a pro­
bability measure P" under which the original distributions of (Ar , t ;;a.: 0) and (Dr , t ;;.?; 0) are not 
altered. For details on this approach see [4, 5 VII]. 

Consider now the following optimal admission problem. 

PROBLEM P. Given Q 0 = x e N, a > 0, and a function g:N ~[ 0, oo 1 find a u • E U such that 

where 

J~ ( u • ) = supu e u J~ ( u ) 

t 

J~ ( U )= limr.... 00 Eu [j e-a.i g( Qs- )dDs] 
0 

(4.5) 

(4.6) 
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and Eu denotes the expectation with respect to P". 

Note that problem P is formulated as an optimization problem for a discounted reward, although the 
call completion rate is formulated as a performance measure of the queueing system in equilibrium, 
i.e. a time-average reward. We study discounted rewards, however, mainly because the optimal con­
trol for this problem can easily be solved and because the average reward can be treated as the limit 
of the discounted reward as a i 0. 

The function g corresponds with a reward associated with the departure of customers. One can 
view g(k) as the probability that a service completion (or departure) is successful, given there are k 
customers in the service center immediately before the departure. In principle this probability can be 
determined exactly, but it will be a function of the past of the state process. Therefore it is approxi­
mated by 

g(k)= l(k >0) [ µk-~ ]k-l' 
µk-l (J 

kEN (4.7) 

where I/ a is the mean sojourn time of a customer as defined in section 3. Equation (4.7) may be a 
reasonable approximation, because in equilibrium a departing customer on the average leaves behind 
as many customers as he faced on arrival. Considering this we can approximate g(k) by the probabil­
ity that a customer's service will become successful, given he finds k - l customers in the queue at his 
arrival epoch, i.e. q( k - 1) as defined in section 3. Since g( Q1 _ ) is a non-negative '!fr-predictable 
process, (4.6) can also be written as 

I 

J~(u)= lim1-> 00 Eu[j e-asg(Qs- )µQ,_ ds] 
0 
t 

= limr__. 00 P [j e-as g( Qs )µQ, ds] 
0 

since Dr admits the (Pu, §;)-intensity µQ,-. 
Note that in the original description of the problem, the admission policy was of the impulsive con­

trol type, meaning that a decision Xn had to be made at time tn for each n ~ L With an appropriate 
transformation (see e.g. [5] VII.3) the optimal admission problem is equivalent to the intensity control 
problem formulated above. 

4. 3. The dynamic programming equation. 
In this subsection sufficient conditions for an optimal admission policy for problem P are given. 
These conditions are expressed in terms of a dynamic programming equation. With this equation we 
show that the optimal control is of bang-bang type, i.e. new customers are either accepted or rejected 
without randomisation. Furthermore we give sufficient conditions for the optimal control being of the 
type where new customers are admitted if and only if the present number of customers does not 
exceed a certain number (like window flow-control in communication networks, cf [8]). 

First we define the following two transition maps A , D : N ~ N by A k = k + 1 and 
Dk= max(O, k -1) respectively. Admission of a customer at time t then corresponds to a transition 
Q1 - ~A Q1 _ and a departure corresponds to a transition Q1 _ ~ D Qr _ . 

The next theorem, which is presented without proof, gives sufficient conditions for the optimal 
admission policy. 

THEOREM 4.2. (Dynamic programming equation) If the function V: N ~ [ 0, oo ) solves the following 
equation 

O= - a V(k) + g(k) 

+AmUuE[O,l]{u[V(Ak)-V(k)]} +µk[V(Dk)-V(k)], (4.8) 



then J~(u·) = V(x) and the optimal control u· is given by 

u;= {1 ~ V(AQ1-)- V(Q1 -)>0 
0 if V (A Q, _ ) - V ( Q, _ ) is;;; 0 

9 

(4.9) 

The solution V is called the value function of problem P. The proof of the theorem is analogous to 
that of ([4] Lemma 3), and can be found by standard dynamic programming techniques. It can be 
shown that the solution to equations (4.8) and (4.9) exists and is unique (cf. [10]). Furthermore one 
can see that the optimal control is bang-bang, since the term in (4.8) that has to be maximized is 
linear in u. From ( 4.9) one can also see that the optimal control value depends only on the number 
of customers present. We can therefore also represent the optimal control as a control law 
u • : N - { 0, I }, which uses only the state of the queueing process. From now on we won't distin­
guish between the control process and the control law. 

Although theorem 4.2 gives us a sufficient condition for the optimal control, solving the equations is 
a formidable computational task. Firstly one has to impose a sufficiently large maximum queue size, 
say /, to avoid dealing with an infinite set of equations. Secondly, finding the optimal policy amounts 
to proposing a possible control u (i.e. a function u: N1--+ { 0, I }, a total of 21+ possibilities), solving 
equation (1.8) with IDlllue[O,lJu[V(Ak)-V(k)] replaced by uk[V(Ak)-V(k)] and checking the 
59lution J..:'( k ) whether it is consistent with the control u, i.e. uk = I if and only if 
V( Ak) - V( k ) > 0. Without any knowledge about the optimal control, finding the optimal control 
in the worst case amounts to solving 2' + 1 sets of I+ I linear equations. 

From these considerations we may deduce that any preliminary knowledge about the structure or 
form of the optimal control might be very useful in finding the optimal control. For instance, if we 
know that the optimal control is of the type u; =I< Q._ < r > for some t, 0 E;; t is;;/, then we only have 
to solve I + 1 sets of I + I equations, a significant reduction in computational effort. 

The following lemma gives sufficient conditions for the optimal control being of this type. 

LEMMA 4.3. Let u • : N - { 0, I } be the optimal control for problem P. 
(i) If there exists an 11 EN such that for all k, I E;;; k is;; 11, g(k) ~ g(k -1), then for all 

k , 0 E;; k < I i. we have u; = I. 
(ii) If there exists an 12 EN such that u;, = 0 and for all k, k ~ 12, g(k) ~ g(k + 1), then for all 

k, k ;;;.,: 12, we have ui = 0. 

PROOF. Both proofs are given by complete induction. 
Let v• :N -+R be the solution of (4.8) and (4.9) corresponding to the optimal control u·. 
x*:N-Rby 

• {V*(O) 
x (k)= V(k) - v*(k -1) 

• k =O 
, k >0. 

Equations (4.8) and (4.9) can now be written as 
k 

and 

O= -a~x·(i)+g(k)+;\.uix*(k+l)-l'kx*(k), keN 
i=O 

u;= {~ ifx*(k+l)>O 

ifx 0 (k+l)E;;O. 

Define 

(4.10) 

(4.11) 

(4.12) 

(i) Let Ii EN be such that for all k, 1 is;; k E;; / 1 , g(k) > g(k -1). We have to prove that x • (k) > 0 
for all k, 1 E;; k E;; / 1. Equation (4.11) for k = 0 and k = 1 reads 
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O= - ax*{O) + g(O) + AUo x·(l) 

O= - a(x.(O) + x·(l)) + g(l) + Auj x·(2) - µ1 x·(l) 

respectively. Subtracting (4.13) from (4.14) gives 

A(u0 x·(l)- ui x·(2)) = - ax·(l) + (g(l)- g(O)) - µ1 x·(I). 

(4.13) 

(4.14) 

(4.15) 

Suppose now that u0 = 0, or, equivalently, x·(l) ~ 0. Since uj x·(2);;;:... 0, we then have the left-hand 
side of (4.15) smaller than or equal to zero and the right-hand side strictly greater than zero. From 
this contradiction we may deduce that u0 = 1. The proof of uk = 1 for k , 1 ~k < 11 proceeds in a 
similar way. 
(ii) Let /2 EN be such that u;, = 0, or, equivalently, x·(/2 +1) ~ 0, and g(k) ;;;;;i. g(k + 1) for all 
k , k ;;;;;i. I 2 • Define x : N ~ R by 

x(k)= k-I (4.16) {
x.(k) O~k~/2 
[g(k) - a i~O x(i) ][a+ JLk 1-1 k > /2 

We first prove that x(k) ~ 0 fork> /2• 

(ii.a) Let k = /2 + 1. From the definition of x and x· we have 

x(/2 + l )(a+ µ1,+d 
I, 

= g(/2+1)-a ~x(i) 
i=O 
I, 

= g(/2 + 1) - a~ x·(i) 
i=O 

~o 

by the induction assumption x • ( /2 + 1) ~ 0 and by uk x • ( k + 1) ;;:;>.: 0 for all k. 
(ii.b) Suppose that fork e N, k > /2 , x(k) ~ 0. It will be shown that then x(k + 1) ~ 0. 

x(k + 1 }(a+ ILk+I) 
k-1 

= g(k + 1)-g(k)-ax(k)+g(k)-a ~ x(i) 
i=O 

= g(k + 1)- g(k)-ax(k) +(a+ µk)x(k) 

= g(k + 1)-g(k)+IL!cx(k) 

~o 

by the induction assumption and g(k + 1) - g(k) ~ 0, hence x(k + 1) ~ 0. Now the definition of 
x and the fact that x(k) ~ 0 fork> /2 imply that x is the solution of the system of equations 

k 
O= -a ~x(i)+g(k)+AIIWCu.e(O,l)ukx(k+ 1)-µkx(k) 

i=O 



Bec,ause 
:::::: 0 if 

of has a it follows that .\'. ( k ) ::c k ) for all k E l"i so 

4A. there exists an t E .Iii' that 

!: ( k -· l ) < k ) for all k . l ~ k ~ t 
g ( k ··- i ) :;;;;. k ) for au k . k > f 

l tf 
--

0 if 

that the 

... <J( 

. ;;;. k" 

?Roof. Part of lemma 4.6 ensures that u; ::::: l if _ < t and 
- :;;;;. k. \'\,lth k. = infh N { k I 1/ ( k ) = 0 } . 

0 

7l 

ensures that u; = 0 if 

For instance the example of g given in equation satisfies ( 4. if /.'* .;;;;. /.'* .. 1, for all k , k ;;;. I. 
This c,an be seen, since 0) = 0 and fork .;;;;;. I we have 

k+l)= [14:~0] 

[IT~/µ, r 
..;;; [ i Y" 

1 + O' li./c l .l 

.. l !+.; .. _, r· 
= g(k) 

The condition 14: ..;;; !iJc _ 1 is not an unrealistic one for one-server queues with queue-dependent service 
rates, since the service rate is likely to decrease 'With the number of customers in the queue, mainly 
because of the increasing amount of overhead. In the next subsection we present an algorithm for 
computing k • if g satisfies ( 4.17). 

As we stated in subsection 4.2, the average reward can be treated as the limit of the discounted 
reward as a! 0. To do this we first have to extend the notation of the value function to Va : N - R 
to denote its dependency on the discount factor a. The result is stated in the next theorem. 

THEOREM. 4.5. If g is bounded and if there exists an M < oo such thar 

IV,.(i)-V.,(O)j<M 

/or all a > 0 and i E N, then the optimal average reward is equal to lim,, i o a Va ( 0 ). 

(4.18) 

The proof of the theorem can be found in [9], Theorem 7.7. We have not been able to prove whether 
(4.18) holds, but we have observed this bound in numerical examples. Furthermore, in most cases, as 
presented in section 5, the optimal policies for all a .;;;;. 10- 10 are equal. 

4.4. An algorithm for determining the optimal policy. 
Suppose we have a reward rate g: N -[ 0, co) that satisfies g( 0) = 0 and 0 < g( k + I)..;;; g( k) for 
k ;;;;i: l. These conditions are satisfied for ex.ample if g(k) = I 1k >O} q(k - l) with q(k) defined as 
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m 4.4 we know that the optimal is of the form u; = J 1 Q. < k 

'"''!·"-'"" 1hat we know that k • :;;;. k for some k. In order to check whether k • = k we have to 
cmres1po11111ir1i:; u. This can be rewritten as the matrix equation 

gk v, 
with'~~ . vk : + I ..... I 0. ·x: ) defined 

g' ::= 0 I (Jl k -i.. j ) If 
~ :~~·"·~1..""'' '~ 

and 

=1 0),. .. , 

and ~ 1 >< + 1 _. R given by 
A -}I. 

(4.19) 

-/lk -I a+µ.k -l +A -,\ 
-14 0:+14 

-µ.k+I a+µ.k+I 

and check the solution whether 

l~l~k 

and 

Vk(k);;>.= Vk(k + i). 

Solving (4.18) can be done by standard LU-decomposition [7], using the diagonal entries of A.1: as 
pivots and starting v.-ith column zero. 

Let A ~nl = M,, · · · M !l A.k , 0 ~ n ~ k + l, denote the matrix that is obtained after the nth step of 
the LU-decomposition, i.e. the matrix where all the entries under the diagonal in the columns 0 to n 
are eliminated. A~k - l) has the following fonn 

A~k - I) [0,0) -,\ 

A~k-llp, 1J -A. 

(4.20) 
A~k-ll[k-1,k-l] -A. 

A~k-ll[k,k] 

-p.k+I a+µk+I 

Let ti,n 1 = M,, · · · M 0 gk. Then from ( 4.20) one can easily check whether the solution Vi satisfies 
Vi( k + l) ~ Vi( k) since Vi must also satisfy A~k-I) Vi = g~k-I), and consequently 

Vi[k}= g~-ll[kJ/ A~k-ll[k,k] 

and 

Vi[k+l [g(k+l)+J'k+1Vk(k)J/{a+µk+1} 



lf this solution would not 

·-/\ 

'[l,lj -X 

then mu next 
~ v. t .::.:. g~ • l . can 

-i,k-1] ··-;\ 

A~k +A 
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1 can thus be computed from - !J, enabling us to solve the dynamic programming equa-
one set of linear equations by incorporating the inequality check into the LU­
of the solution. From the above discussion one can easily see that we can compute the 

v11""""' value k • by the following algorithm. 

ALGORITHM 4.6. 

{declarations} 
HUGE : {arbitrary large integer} 
i,k : integer; 
g,diag, V : array[O .. HUGE] of real; 
found : boolean; 

=false; 
k:=O; 
for i: =0 to HUGE 
00 

g[i]: = g,; 
diag[i]: =a + µ, 

od; 

{LU decomposition} 
while ((k<HUGE) and not found) 
00 

if (g[k + l l + /-4.: + 1 g[k]/diag[k])/diag[k + l ]~g[k]/diag[k] 
then 

found:= true; 
g[k + l ]: = g[k + l] + 111< + 1glk]/diag[k] 

else 
diag[k]: = diag[k. J + !..; 
diag[k + 1}: =diag[k + l]-;\1-4.: +1 /diag[k]; 
g[k + l]: = g[k + l]+ ~ + 1glkjldiag[k] 

fi; 
if not found then k: = k + 1 ti; 

od; 
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{computation of V(i)} 
V[k+ l]: = g(k+ l]/diag[k+ I] 
V[k]: = g(k]I diag(k] 
for i: =k-1 downto 0 
do 

V[i]:=(g[i]+AV[i+ l])ldiag[i]; 
od 

5. NUMERICAL RESULTS. 
In this section we present some numerical examples of the performance analysis and computation of 
the optimal control law. 

The first system is an MIMI l/k queue with mean service time equal to 1.0 and the sojourn times 
of customers Erlang-3 distributed with mean 20.0. The optimal value for k as derived from the 
dynamic programming equation is equal to 8, where we have used in the equations an arrival rate 
A= 0.8, discount factor a= 10- 10 and reward rate g(k) as defined in equation (4.7). 

The call completion rates and blocking probabilities of this queue for various values of k and p (or 
equivalently A since µ. = 1.0) are shown in figures 5.1 and 5.2 respectively. From figure 5.1 we may 
conclude that, although k = 8 is optimal for p = 0.8, the MIMl118 queue behaves well also under 
overload, i.e. for values of p ranging from 1.0 to 2.0. 

The second system we present is equal to the first one, with the exception that the mean sojourn 
time is now equal to 50.0. The optimal value for k, using the same A, a and g ( k ), in this case is 
equal to 15. The call completion rate is given in figure 5.3. The graph of the blocking probability is 
the same as of the first system, since the equilibrium distribution of the number of tasks in both 
queues does not depend on the sojourn time distribution of the customers. 
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"---k=30 

------k=40 
............................... k=50 
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FIGURE 5.1. Call completion rate for an MIMI Ilk queue with Erlang-3 
distributed sojourn times with mean 20.0. 
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FIGURE 5.2. Blocking probabilities for an M/M/l/k queue. 
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FIGURE 5.3. Call completion rate for an M/M/l/k queue with Erlang-3 
distributed sojourn times with mean 50.0. 
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