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1. INTRODUCTION 

our paper aims at presenting a thorough study 

of the semantics of a number of concepts in 

concurrency. We concentrate on shuffle and 

synchronization merge, local and global 

nondeterminacy, and deadlocks. Somewhat more 

specifically, we provide a systematic analysis of 

these concepts by confronting, for three sample 

languages, semantictechniques inspired by earlier 

work due to Hennessy and Plotkin ([13,20]) 

proposing an operational approach, De Bakker et al. 

([3,4,5,6]) for a denotational one, and the Oxford 

School ([8,18,19,21]) serving - for the purposes of 

our paper - an intermediate role. 

our operational semantics is based on 

transition systems ([14]) as employed successfully 

in [13,20]; applications in the analysis of proof 

systems were developed by Apt [1,2]. Compnred with 

previous instances, our definitions exhibit various 

novel features: (i) the use of a model involving 

languages with finite and infinite words (cf. Nivat 

[17]); (ii) the use of full recursion (based on the 

copy rule) rather than just iteration; (iii) an 

appealingly simple treatment of synchronization; 

(iv) a careful distinction between local and 

global nondeterminacy; (v) the restriction to 

uniform concurrency. 

Throughout the paper we only consider uniform 

statements: by this we mean an approach at the 

schematic level, leaving the elementary actions 

uninterpreted and avoiding the introduction of 

notions such as assignments or states. Many 

interesting issues arise at this level, and we feel 

that it is advantageous to keep questions which 

arise after interpretation for a treatment at a 

second level inot dealt with in our paper) . 

We shall study three languages in increasing 

order of complexity: 

L0 : shuffle (arbitrary interleaving) + local 

nondeterminacy (section 2) 

L
1

: synchronization merge+ local nondeterminacy 

(section 3) 

L2 : synchronization merge + global nondeterminacy 

(section 4) 

For Li with typical elements s, we shall present 

transition system Ti and define an induced 

operational semantics Oi[s] ,i=0,1,2. we shall 

also define three denotational semantics V.[s] 
l. 

based, for i=0,1 on the "linear time" (LT) model 

which employs sets of sequences and, for i=2, on 

the "branching time" (BT) model employing 

processes (commutative trees, with sets rather 

than multisets of successors for any node, and 

with certain closure properties) of [3,4,5]. 

Throughout our paper we provide Vi only for Li 

when restricted to guarded recursion (each 

recursive call has to be preceded by some 

elementary action); we then have an attractive 

metric setting with unique fixed points for 

contractive functions based on Banach's fixed 

point theorem. (Our Oi do assign meaning to the 

unguarded case as well.) 

Our main question can now be posed: Do we 

have that 

ll.ll 0.[s] = V.[s] 
l. l. 

We shall show that (1.1) only holds for i=O. For 

the more sophisticated languages Li, i=l,2, we 

2 

cannot prove (1.1). In fact, we can even show that 

there exists no Vi satisfying (1.1), i=l,2. Rather 

than trying to modify oi (thus spoiling its 

intuitive operational character) we propose to 

replace (1.1) by 



where ai, i=l,2, is an abstraction operator which 

forgets some information present in Vi[s]. The 

proof of (1.2) requires an interesting technique 

of introducing a transition based intermediate 

semantics I,[s]. For i=l we shall show that 
1. 

Ii[s] = Vi[s]. Next, we introduce our first 

abstraction operator a 1 (turning each failing 

communication into an indication of failure and 

deleting all subsequent actions) and prove that 

The case i=2 is more involved,because L1 has 

local, and L
2 

global nondeterminacy. Consider a 

choice a or c, where a is some autonomous action 

and c needs a parallel c to communicate. In the 

case of local nondeterminacy (written as au c) 

both actions may be chosen; in the global 

nondeterminacy case (written as a+ c, + as in CCS 

[16]) c is chosen only when in some parallel 

compound c is ready to execute. Therefore, L
1 

and 

L
2 

exhibit different deadlock behaviours. 0
2 

is 

based on the transition system T2 which is a 

refinement of T
1

, embodying a more subtle set of 

rules to deal with nondeterminacy. The 

denotational semantics V
2 

is as in [3,4,5]. In 

order to relate v2 and 02 we introduce the notion 

of readies and associated intermediate semantics 

r2' inspired by ideas as described in [8,18,19,21]. 

I
2 

involves an extension of the LT model with 

some branching information (though less than the 

full BT model) which is amenable to a treatment 

in terms of transitions. The proof of the desired 

result is then obtained by relating the semantics 

02, v2 and r2 by a careful choice of suitable 

abstraction operators. 

As main contributions of our paper we see 

1. The three transition systems Ti, in particular 

the refinement of T
1 

into T2
• 

2. The systematic treatment of the denotational 

semantics definitions (for the guarded case) 

together with the settling of the relationship 

0 i = ai 0 Vi. (a0 identity). 

3. Clarification of local versus global 

nondeterminacy and associated deadlock 

behaviour. 

4. The intermediate semantics I 1 
and, in 

particular, r2. 

2. THE LANGUAGE L
0

: SHUFFLE AND LOCAL NONDETERMINACY 

Let A be a finite alphabet of elementary 

actions with a EA. Let x,y be elements of the 

alphabet Stmv of statement variables (used in 

fixed point constructs for recursion). As syntax 

for s E L
0 

we give 

A term µx[s] is a recursive statement. For example, 

according to the definitions to be proposed 

presently, the intended meaning of µx[(a;x)ub] is 

the set {aw}ua*.b, with a the infinite sequence 

of a' s. 

2.1. The transition system T0 

Let Atr = df. A* u Awu A*.{.L}, with A* the set of 

all finite words over A, A*.{.L} the set of all 

(finite) unfinished words over A, and Aw the set of 

all infinite words over A, and .L4 A. Let w,u,v 

denote elements of Atr, and let A be the empty 

word. We define .L.w = .L for all w. 

A configuration is a pair <s,w> or just a 

word w. A transition relation is a binary relation 

over configurations. A transition is a formula 

<s,w> + <s',w'> or <s,w> + w' denoting an element 

of a transition relation. A transition system is 

a formal deductive system for proving transitions 

3 



based on axioms and rules. Using a self-explanatory 

notation, axioms have the format 1 + 2, rules have 

the 1 _,. 2 I format 
3 

_,. 
4 

. Also, 1 + 2 3 abbreviates 1 + 2 

and 
1+213 1+2 1+3 

1 + 3, and 4+5f"6 abbreviates 
4

_,. 
5 

and 
4

_,. 
6 

For a transition system T, T 1- ( 1 + 2) expresses 

that transition 1 + 2 is deducible from system T. 

We now present the transition system T
0 

for 

Lo: 

<s,w>+w, wE A u A*.{.L}. For WE A* we put 

(elementary action) 

<a,w> + w.a 

(local nondeterminacy) 

<s
1 

u s
2

,w> + <s
1

,w> I <s2 ,w> 

(recursion) 

<µx[s],w> + <s[µx[s]/x],w> 

where, in general,s[t/x] denotes substitution 

of t for x in s 

(sequential composition) 

<s
1 

,w
1

> + w' I <s' ,w'> 

(shuffle) 

<s
1

,w
1

> + w' I <s' ,w'> 

2.2. The operational semantics 00 

We show how to obtain 0
0 

from T0 . We define 

the set 0
0
[s] by putting we 0

0
[s] iff one of the 

following three conditions is satisfied (always 

taking <s ,w > = df.<s,A>): 
0 0 ' 

1. There is a finite sequence of T
0
-transitions 

2. There is an infinite sequence of T
0
-transitions 

00 

where the sequence <wn>n=O is infinitely often 

increasing, and w = supnwn (sup with respect to 

prefix ordering). 

3. There is an infinite sequence as in 2, but now 

wn+k = wn for some n and all k <: O and w w • .l 
n 

4 

Examples. 0
0
[(a

1 
;a

2
) II a

3
] = {a

1 
a

2
a

3 
,a

1 
a

3
a

2
,a

3
a

1 
a

2
}, 

* . w ' 
0

0
[µx[ (a;x) u b]] = a .b u {a } , 0

0
[µx[ (x;a) u b]] = 

= b.a* u {.L}. 

Remark: Observe that systems such as T
0 

are used 

to deduce (one step) transitions 1 + 2. Sequences 

of ~uch transitions are used only to define 0
0
[.] 

2.3. The denotational semantics V
0 

We introduce a denotational semantics V
0 

for the 

language L
0 

based on an approach using metric 

spaces (rather than the more customary cpo's) as 

underlying structure. This section is based on [3]; 

for the topology see [10]. We recall that Vi is 

defined only for the guarded case: Each µx[s] is 

such that all free occurrences of x in s are 

sequentially preceded by some statement. 

For u E A tr let u[n], n <: 0, be the prefix of u 

of length n if this exists, otherwise u[n] u. 

E.g., abc[2] = ab, abc[S] = abc. We define a 

natural metric don Atr by putting 

d(u,v) = 2-maxfnl u[n] = v[n]} 

-"' with the understanding that 2 

d(abc,abd) 

0. For example, 

(Atr,d) is a complete metric space. For X_sAtr we 

put X[n] = {u[n] I u ex}. A distance d on subsets 

X,Y of Atr is defined by 

d(X,Y) = 2-maxfnl X[n] Y[n]} 

Let C denote the collection of all closed subsets 

of Atr. It can be shown that (C,d) is a complete 

00 

metric space. A sequence <Xi>i=O of elements of C 

is a Cauchy sequence whenever 

sequence, we write limi Xi for its limit (which 

belongs to C by the completeness property). 



A function $: tC,dl + (C,d) is called 

contracting whenever, for all X,Y, d($(X),$(Y)) s;a. 

d(X,Y), for some real number a with Os;a< 1. A 

classical theorem due to Banach states that in any 

complete metric space, a contracting function has 

a unique fixed point obtained as limi $i(X0 J for 

arbitrary starting point x0 . 

We now define the operations .,u, 11 on C in the 

following way: 

a. X,Y_!:A*uA*.{J.}. For X.Y and XuY we adopt the 

usual definitions (including the clause 

l..u = l. for all u). For xlJ Y we introduce as 

auxiliary operator the so-called left-merge lL 

(from [7]). 'we put xii Y = (XlL Y) u (YlL X), where 

!Lis given by XlLY = U{ulLYI UEX}, £lLY = Y, 

alLY = a.Y, l.lLY = {J.}, and (a.u)lLY = 

a. ({u} II Y). 

b. X,YE C, X.Y do not consi.st of finite words only. 

Then X op Y limi (X[i] op Y[i]), for 

op€ {.,u,11}. In [3] we have shown that this 

definition is well-formed and preserves closed 

sets, and the operations are continuous (for 

this finiteness of A is necessary). 

We proceed with the definition of V0[s] for 

sE L
0

• We introduce the usual notion of 

environment which is used to store and retrieve 

meanings of statement variables. Let f = Stmv-+ C 

be the set of environments, and let YE r. we write 

y • = df · y<X/x> for a variant of y which is like Y 

but such that y• (x) = x. we define V
0

: L
0 

+ (f-+ CJ 

as followc:.: 

DEFINITION. 

V
0
[a] (y) = {a}, V

0
[s

1 
op s 2 ] (y) = V0

[s 1] (y) op 

V
0
[s

2
] (y), for opE {.,u,11}, V

0
[x] (y) = y(x) ,and 

V
0
[µx[s]] (y) = limixi, where x0 

{l.} and 

X = V [s] (y<Xl.,/x>) 
i+l •· 0 

5 

By the guardedness requirement, each function 

$ = AX. V
0
[s] (y<X/x>) is contracting, <Xi>i is a 

Cauchy sequence, and limiXi equals the unique 

fixed point of $. 

Remark. An order-theoretic approach to the 

denotational model is also possible (cf. [9,15]). 

However, for our present purposes this has no 

special advantages. In fact, the order-theoretic 

app~oach does not provide a direct treatment for 

the unguarded case either, it seems to require a 

contractivity argument for uniqueness of fixed 

points just as well, and, last but not least, as 

far as we know, it cannot be used as a basis for 

the BT model. 

2.4. Relationship between 0
0 

and V
0

• 

we shall prove (for statements s without free 

statement variables, and omitting y). 

THEOREM 2.1. 0
0 

= V
0

. 

The proof relies on four lemmas. 

LEMMA 2. 2. 0 
0 

is homomorphic over • , u, II . 

LEMMA 2.3. (guarded case only). Consider a µ-term 

µx[s]. Let Q be the (auxiliary) statement such 

that <Q,w> + w.l.. Let s(O) = Q, s(n+l) = s[s(n) /x]. 

Then 0
0
[µx[s]] = limn0

0
[s(n)]. 

PROOF. This involves a detailed analysis of 

transition sequences; it introduces in particular 

the notion of truncating a sequence after n 

applications of the recursion axiom involving the 

considered µ-term. 

LEMMA 2.4. (guarded case only). For each s, 0
0

[s ] 

is a closed set. 

Caution. This is not true for the unguarded case. 

* For example, 0
0

[µx[ (x;a) u b]] = {J.} u b.a . This set 

is not closed since its limit point baw is not in 

it. 

LEMMA 2.5. (this is the crucial lemma relating 00 



without free statement variables, and let 

x. 
l. 

0
0
[ti], i=l, .• ,n. Then 

Vo[s] (y<xi/xi>~=l) = Oo[s <ti/xi>~=l] 

PROOF. Structural induction on s. 

3. THE LANGUAGE L1 : SYNCHRONIZATION MERGE AND 

LOCAL NONDETERMINACY 

Let A be a finite alphabet, let Cs_ A with 

c E c (the communications) and let a€ A\C. Let there 

be given a bijection -, C+ C (matching 

communications a la CCS/CSP) with c = c. Let T €A 

be a special symbol serving as a meaning for the 

skip statement, and let o be an element not in A 

indicating failure. We always have o.w = o. Let 

Atr A*uAwuA*.{o,1-} 
0 

tr 
u,v,w now range over A0 • As syntax for SE L1 we 

give 

3.1. The transition system T1. 

The system T1 consists of T
0 

extended with: 

<s,w> + w for wEAwuA*.{o,l.}. For wEA* we have 

(communication) 

<c,w> -+ <fail,w> an individual communication 

fails 

(skip) 

<skip,w>-+ w .. T 

(failure) 

(synchronization) 

<ell C,w> -+ <skip,w> 

<c;s
1 

II C,w> -+ <skip;s
1 

,w> 

<ell C;s
2

,w> <skip;s
2

,w> 

(commutativity and associativity of merge) 

<s
1 

II s
2

,w> + <s' ,w'> 

<s
2

11 s
1 

,w> + <s' ,w'> 

<sill (s211 s3),w> + <s',w'> 

<(s
1

11 s
2

JI/ s
3

,w> + <s',w'> 
, and symmetric. 

Remark. Note that associativity/commutativity of 

merge are provable in T
0

. 

3.2. The operational semantics 0
1 

0
1
[s] is defined similarly to 0

0
[s] • Now failing 

communications result in o, successful communica-

tions (through the synchronization rule) in 

addition in T. 

Examples. 0
1
[c] = {o}, 0

1
[Ca;b) u (a;c)] = {ab,ao}, 

0
1
[cll c] ={o,T}. We observe too many o's here: to 

do away with such appearances of deadlocks in case 

an alternative is present, we postulate - for the 

remainder of section 3 only the axiom 

C3.1J {o}ux=x for X i' f/J 

(Formally, we should now take congruence classes 

in Atr with respect to (3.1); we do not bother to 

be that precise.) Taking (3.1) into account, the 

above examples now become 0
1
[c] = {o}, 

01[Ca;blu (a;cl]= {ab}, 0
1
[cil c]= {T}. 

It is important to observe that the two statements 

(a;b) u (a;c) and a ; (b u c) obtain the same 

meaning by 01 . Section 4 will provide a more 

refined treatment. 

3.3. The denotational semantics V1• 

This is as in section 2,3. but extended/modified 

in the following way (omitting y-arguments for 

simplicity): 

V
1
[c] = {c}, V1[skip] = {T}, V

1
[fail] = {o}, 

V
1
[s

1
11 s

2
] = V

1
[s

1
] II V

1
[s

2
], where, for X,Ys_Atr, 

we define XII Y = (XU.. Y) u (YU.. X) u (X I Y) . Here the 

operations U.. (left-merge) and (communication) 

are defined as follows: First we take the case 

that X,Y consist of finite words only. 

6 



x lL y U{w LLYI wEx}, 1- LLY = {1-}, o LLY = {o}, 

£ lL y Y, a lLY = a.Y, (a.w) lLY = adw}!I Y). 

Also, XIY = {(wlu): wEX, u E Y}, where 

for w' ,u' not of such a form. If X or Y contains 

infinite words, the definition is completed by 

takin~ limits. (The definition of xii Y is from 

[7].) 

3.4. Relationshipbetween 0
1 

and V
1

. 

We do not simply have that 

(Take s = c for a counter example. Then 0 
1 
[c] = { o}, 

V1[c] = {c}). We even have that: 

THEOREM 3.1. There does not exist any denotational 

(implying compositional) semantics V satisfying (*). 

•The proof is based on 

LEMMA 3. 2. 0 1 does not behave compositionally over 11. 

Proof. We show that there exists no "mathematical" 

operator 11 0 such that 0 1[s 1 11 s 2
] = 0 1[s

1
] llv 

0 1
[s2

]. Consider the programs s
1
=c, s 2

=c in L
1

. 

Then 0 1[s1] = 0 1[s
2

] = o. Suppose now that llv 

exists. Then {o} = 0[s 1 I
I s 1

] = 0[s 1
] 11 0 

0[s 1] = 

O[s1] llv O[s2]= O[s1ll s2]= {T}. 

Contradiction. D 

We remedy this not by redefining T
1 

(which 

adequately captures the operational intuition for 

L1l, but rather by introducing an abstraction 

mapping a 1 
such that 

( **) 01 
= a 1 

o V 1 • 

We take a 1 = syn1 
defined by (WsA~r) 

syn
1 

(W) {wl WE W does not contain cE c} u 

{w.ol 3w' ,c' such that w.c' .w' E W, 

w contains no c} 

The right-hand side of this definition should be 

taken with respect to (o.w = o and) {o} u X = X, 

X ~ 0. Informally, syn1
replaces unsuccessful 

synchronization by deadlock and keeps this ·in case 

there is no alternative. 

We cannot prove ( ** l,' by a direct structural 

induction on s (because syn
1 

does not behave 

homomorphically). Rather, we introduce an 

* 
intermediate semantics 11

: we modify T
1 

into T
1 

which is the same as T1 
but for the communication 

axiom which now has the form 

* (communication ) 

<c,w> -+ w.c 

* We base 11 on T1 
just as we based 0

1 
on T

1
• We 

can now prove 

LEMMA 3.3. For all s,s' E L
1 

and w,w• E (A\C)* 

T
1 

t- <s,w> + w' I <s' ,w'> 

iff 

T~ r <s,w> + w' I <s' ,w'> 

Proof. Structural induction on the deductions in 

This lemma immediately leads to 

THEOREM 3.4. 01 [s] = synl (1 i [s] ) 

Next we show 

Proof. Combine ideas of section 2.4 with a proof 

D 

7 

that I 1 behaves compositionally over 11 (as defined 

in section 3.3). 

Remark. This proof recalls Apt's merging lemma 

[1,2]. 

By combining theorems 3.4, 3.5 we finally 

obtain our desired result 

4. THE LANGUAGE L2
: SYNCHRONIZATION MERGE AND 

GLOBAL NONDETERMINACY 

The syntax for SE L
2 

is given by 



Here "+" denotes global nondeterminacy; the 

notation is from ccs[16]. 

4.1. The transition system T2 . 

T2 is like T1 , but without the axiom for local 

nondeterminacy, and without the axiom for 

communication (<c,w> + <fail,w>). Additionally, 

we have 

(global nondeterminacy) 

[µ-unfolding] 

<s
1 

,w> -+ <s' ,w> 

[selection by elementary action] 

<s
1 

,w> -+ w' I <s' ,w'> 
~~~~~~~..,-,~~.,..----,.- where w' ~ w 
<s

1
+s

2
,w>-+ w' I <s' ,w'> ' 

[selection by communication/synchronization] 

<s
1 

II s
3 

,w> -+ <s' ,w• > 
, where the 

transition in the premise involves 

synchronization between actions from s
1 

and s 3 

[commutativity of +] 

<s 1+s2,w> + w' I <s' ,w'> 

<s
2
+s

1 
,w> + w' I <s' ,w'> 

< cs 1 +s 2J II s
3

,w> + w' I <s' ,w• > 

«s2+s1JJI s
3

,w> + w' I <s' ,w'> 

Remark. Associativity of + is derivable. 

We see that global nondeterminacy is more 

restrictive than local nondeterminacy. In fact, 

<s
1
+s

2
,w> -+ w1 I <s' ,w 1 > implies 

<s
1

us
2

,w>-+ w'T <s',w'> but not vice versa. 

Example. <auc,w> +* w.O,<auc,w> +* w.a, but 

<a+c,w> +* w.a only. In the case of global 

nondeterminacy, the communication transitions of 

s
1

+s
2 

depend on the communication transitions of 

s 1 and s
2 

in some global cont.;xt s 1 II s 3 or s 2 II s 3• 

8 

This formalizes the communication as present in 

languages like CSP, ADA or OCCAM. 

4.2. The operational semantics 02 

0
2 

is derived form T2 in the usual way. In 

addition, however, we now have to consider the 

case that we have a finite sequence 

<sn,w~ + .•• deducible. We then deliver wn.o as 

element of 0 2[s] . The pair <.sn ,wn> is then called 

a deadlocking configuration. 

Example. 02[(a;b)+(a;c)] = {ab,ao}, 

02[a; (b+c)] = {ab}. 

4.3. The denotational semantics V
2

• 

We follow [3,4,5] in introducing a branching time 

semantics for L
2

• Let AJ. = df • Au {J.}. Let P n, 

n;?; 0, be defined by 

where P(.) denotes all subsets of (.), and let 

Unpn. We define a metric don PW (for its 

definition see [3,4,5]) and take P as the 

complet~on of PW with respect to d. It can be 

shown that P satisfies the domain equation 

P = Pclosed(AJ. u (AJ. x P)) 

Finite elements of Pare, e.g., {[a,{b
1 
}J,[a,{b2 }J} 

or {[a,{b1 ,b
2

}J}. Thus, the branching structure is 

preserved. An infinite element is, e.g., the 

process p which satisfies the equation 

p = {[a,p],[b,p]}. The empty set is a process and 

takes the role of o. Note that in the LT framework, 

0 cannot replace Q since by the definition Of 

concatenation (for LT) we have a.0 = 0 which is 

undesirable for an element modelling failure. (An 

action which fails should not cancel all previous 

actions.) In the BT framework, {[a,0]} is a process 

which is indeed different from 0. Since, clearly, 

0 u p = p for all sets (processes) p, we can do 



without explicitly imposing a counterpart of rule 

(3.1) for o. 

Operations .,u,ll, limits and continuity, 

fixed points of contracting operations are as in 

[3,4,5]. For example, for p,qE PW, we put 

(plL q) u (qlL p) u(plqJ where 

plL q {xlL q: x E p}, all q = [a,q] ,J.lL q = J., 

[a,p']llq = [a,p'll q], and plq = U{(xlyJ: xEp, 

y E q}, where [c,p' JI [c,q' J = {[T ,p' II q']}, 

cl[c,q') = {[T,q')}, [c,p'Jlc = {[T,p')}, 

clc = {T}, and (xlyl = 0 when x,y are not of one 

of these four forms. 

It is now straightforward ·to define 

V
2

: L
2 

+ (f
2

+P), where r
2 

= Stmv + P, by 

following the clauses in the definition of V
0

, V
1

• 

Thus we put V
2
[a] (y) = {a}, V

2
[ s

1 
op s 2] (y) 

V
2
[s

1
] (y) op V

2
D:s

2
] (y), V

2
[x] (y) y(x), and 

V2[µx[s]] (y) = limipi' where p 0 

Pi+l = V2[s] (y<pJx>l 

4.4. Relationship between 0
2 

and V
2

. 

we shall show that 

{J.} and 

for suitable a
2

. In fact, a
2 

is defined in two 

steps: 

1. First we define syn2 : P + P for p E P w 

syn
2

(p) ={al aEp and aic} u 

{[a,syn
2 

(q)] I [a,q] E p and a i c} 

and we put syn2 (p) = limn(syn2 (pn)). 

Example. Let p = V
2

[(a+c) II (b+c)] • Then 

syn
2

(p) = {[a,{b}],[b,{a}],T}. 

2. Next, we define traces: P+P(A~r) by (finite 

case only displayed) : 

traces (p) U{traces (x): x E p} if p # 0 

{o} if p = 0 

where traces(a) {a}, traces([a,q]) a.traces(q). 

We now put 

df. a
2 

= traces o syn
2

, 

but we cannot (yet) prove (*), because, similarly 

to a 1 , a 2 
does not behave'homomorphically. 

Therefore, we try an intermediate semantics 1
2

• 

This cannot be based on a simple LT model as the 

following argument shows: 

Let us try for 1
2
,similarly to 1

1
, the addition of 

the axiom <c,w> + w.c to T
2

• Now consider the 

programs s
1 

s a; (c1+c
2
J, s 2 s (a;c1) + (a;c2

J, 

s s cl. Then 02[s1 II s] = {aT} # {aT ,ao} 

0
2
[s2

11 s]. However, 1
2

D:s
1
11s]=12

D:s
2

11 s]. Thus 

whatever a we apply to 12
[.] , the results for 

s 1
ll s, s 2

11 swill turn out the same. 

Our solution to this problem is to introduce an. 

intermediate semantics 12 which, besides recording 

all traces in A~r, also records a very weak 

information about the local branching structure 

of the process. This information is called a ready 

set or deadlock possibility: it is a subset X of 

C. Informally, X indicates the set of 

communications c which are ready to synchronize 

with any other matching communication c from 

another parallel compound (for the notion of ready 

set cf. [8,11,18,19,21]). Formally, take 6 = P(C). 

For x E 6, let x = {cl c E x}. The ready domain R is 

R P( tr tr , . . * 
now = A u A .u). The transition system T2 

consists of all axioms and rules of T2 
together 

* with (for w E A ) . 

(i) <c,W> + W.C 

(ii) <c,w> + w.{c} 

(iii) <fail,w> + w.0 

(iv) 
<s

1
,w> + w.X <s

2
,w> + w.Y 

<s
1
+s

2
,w> + w.XUY 

9 



(v) 
<s

1
,w> + w.X <s2 ,w> + w.Y 

<s1 11 s
2

,w> + w.XUY 
XnY = ~-

, where 

Axioms (ii), (iii) introduce deadlock 

possibilities/ready sets. Rule (iv) says that 

s
1
+s

2 
has a (one-step) deadlock possibility only 

if s
1 

and s
2 

have, and rule (v) says that s 1 II s
2 

has a (one-step) deadlock possibility if both s
1 

and s2 have, and no synchronization is possible. 

* We omit the natural definition of I
2 

from T
2

• 

Examples ( I 2 semantics) 

(i) I 2[a; (b+c)] = {ab,ac}. 

Proof. We explore all transition sequences 

* in T2 starting in <a; (b+c),A>: 

(1) <a,i\> + a ( e lem. action J 

(2) <a; (b+c) ,A> -+ <b+c,a> (seq.comp.: (1 J) 

(3) <b.a> + ab (elem.action) 

(4) <c,a> + ac (comm.) 
'><a. {c} 

(5) <b+c.a> + ab (glob.nondet.: 

"' ac (3)' (4)) 

No more transitions are 

deducible for <b+c,a>. 

(6) Thus 

<a; (b+c) ,A>+ <b+c ,a> + ab 

' ac 

are all transition sequences 

starting in <a; (b+c),A>. 

This proves the.claim D 

(ii) I
2
[a;b + a;c] = {ab,ac,a.{c}}. 

Proof. Here we only exhibit all possible 

transition seque.nces in T; starting in 

<a; (b+c) ,A>: 

<a;b+ a;c,i\> - <b,a> ..... ab 

" <c,a> - ac 

"- a.{c} 

For the further results the following lemma is 

important: 

D 

10 

LEMMA 4.1. For all s,s' E (A\c)* the following 

holds: 

1. T2 t- <s,w>+w'I <s' ,w'> iff T; ... <s,w>+w'l<s' ,w'> 

2. <s,w> is a deadlocking configuration for T
2 

iff 

. * 
there exists some X,5:C with T2 ~<s,';1>+w.X. 

Let now w range over A tr = A* u Aw u A*. {1.} and let 

W range over R = P(AtruAtr.ll). we define the 

. * R p tr abstraction operator syn
2

: -+ (A
0 

) by 

syn; (W) = { w I w E W does not contain any 

c E c} u 

{wol 3XE LI: w.XE w} 

we have 

Next, we wish to relate I 2 with the full BT 

semantics V2 • To this end, we introduce the 

abstraction operator readies: P + R by defining 

readies(p) as follows (finite case only). Let 

ai,bj EA. We put 

readies(p) U{readies (x): x E p} u 

{A.x!x = {a
1

, •• ,am,b
1

, .. ,bn}EC} 

where readies (a
1
.) ={a.}, readies ([b.,q.]) = 

l. J J 

bj.readies (qj). 

THEOREM 4. 3. I 
2 

= readies 0 V2 . 

Proof. (i) readies behaves homomorphically on 

.,+,II. (ii) I
2

<µx[s]J can be obtained by applying 

readies to the fixed point definition of µx[s] 

* . LEMMA 4.4. traces o syn
2 

= syn2 o readies 

Summarizing, we have our final 

THEOREM 4.5. 02 = traces o syn2 ° Vz-
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