
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.W. de Bakker, J.J.Ch. Meyer, E.R. Olderog, J.I. Zucker

Transition systems, infinitary languages

and the semantics of uniform concurrency

Department of Computer Science Report CS-R8506 March

,........,,,,,. ..
BNJ!iotheek

~Wiskundeenfnformdoa
Amsterdam

Transition Systems, lnfinitary Languages and the

Semantics of Uniform Concurrency

J.W. de Bakker
Centre for Mathematics and Computer Science, Amsterdam

J. J.Ch. Meyer
Free University. of Amsterdam

E. R. Olderog
Christian-Albrechts-Universitat, Kiel

J.I. Zucker
State University of New York, Buffalo

Transition systems as proposed by Hennessy & Plotkin are defined for a series of three languages featuring
concurrency. The first has shuffle and local nondeterminancy, the second synchronization merge and local
nondeterminacy, and the third synchronization merge and global nondeterminacy. The languages are all
uniform in the sense that the elementary actions are uninterpreted. Throughout, infinite behaviour is taken
into account and modelled with infinitary languages in the sense of Nivat. A comparison with denotational
semantics is provided. For the first two languages, a linear time model suffices; for the third language a
braching time model with processes in the sense of De Bakker & Zucker is described. In the comparison
an important role is played by an intermediate semantics in the style of Hoare & Olderog's specification
oriented semantics. A variant on the notion of ready set is employed here. Precise statements are given
relating the various semantics in terms of a number of abstraction operators.

1980 Mathematics Subject Classification: 68810, 68C01.
1982 CR Categories: D.3.1, F.3.2, F.3.3.

Key Words & Phrases: concurrency, operational semantics, denotational semantics, transition systems,
uniform languages, infinitary languages, shuffle, synchronization, local nondeterminacy, global
nondeterminacy, linear time, branching time, specification-oriented semantics, ready set.

Notes:
1. The research of J. W de Bakker is partially supported by ESPRIT project 415: Parallel Architectures and
Languges;
2. This report will be published in the Proceedings 1 fh ACM Symposium on Theory of Computing.

Report CS-R8506
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1. INTRODUCTION

our paper aims at presenting a thorough study

of the semantics of a number of concepts in

concurrency. We concentrate on shuffle and

synchronization merge, local and global

nondeterminacy, and deadlocks. Somewhat more

specifically, we provide a systematic analysis of

these concepts by confronting, for three sample

languages, semantictechniques inspired by earlier

work due to Hennessy and Plotkin ([13,20])

proposing an operational approach, De Bakker et al.

([3,4,5,6]) for a denotational one, and the Oxford

School ([8,18,19,21]) serving - for the purposes of

our paper - an intermediate role.

our operational semantics is based on

transition systems ([14]) as employed successfully

in [13,20]; applications in the analysis of proof

systems were developed by Apt [1,2]. Compnred with

previous instances, our definitions exhibit various

novel features: (i) the use of a model involving

languages with finite and infinite words (cf. Nivat

[17]); (ii) the use of full recursion (based on the

copy rule) rather than just iteration; (iii) an

appealingly simple treatment of synchronization;

(iv) a careful distinction between local and

global nondeterminacy; (v) the restriction to

uniform concurrency.

Throughout the paper we only consider uniform

statements: by this we mean an approach at the

schematic level, leaving the elementary actions

uninterpreted and avoiding the introduction of

notions such as assignments or states. Many

interesting issues arise at this level, and we feel

that it is advantageous to keep questions which

arise after interpretation for a treatment at a

second level inot dealt with in our paper) .

We shall study three languages in increasing

order of complexity:

L0 : shuffle (arbitrary interleaving) + local

nondeterminacy (section 2)

L
1

: synchronization merge+ local nondeterminacy

(section 3)

L2 : synchronization merge + global nondeterminacy

(section 4)

For Li with typical elements s, we shall present

transition system Ti and define an induced

operational semantics Oi[s] ,i=0,1,2. we shall

also define three denotational semantics V.[s]
l.

based, for i=0,1 on the "linear time" (LT) model

which employs sets of sequences and, for i=2, on

the "branching time" (BT) model employing

processes (commutative trees, with sets rather

than multisets of successors for any node, and

with certain closure properties) of [3,4,5].

Throughout our paper we provide Vi only for Li

when restricted to guarded recursion (each

recursive call has to be preceded by some

elementary action); we then have an attractive

metric setting with unique fixed points for

contractive functions based on Banach's fixed

point theorem. (Our Oi do assign meaning to the

unguarded case as well.)

Our main question can now be posed: Do we

have that

ll.ll 0.[s] = V.[s]
l. l.

We shall show that (1.1) only holds for i=O. For

the more sophisticated languages Li, i=l,2, we

2

cannot prove (1.1). In fact, we can even show that

there exists no Vi satisfying (1.1), i=l,2. Rather

than trying to modify oi (thus spoiling its

intuitive operational character) we propose to

replace (1.1) by

where ai, i=l,2, is an abstraction operator which

forgets some information present in Vi[s]. The

proof of (1.2) requires an interesting technique

of introducing a transition based intermediate

semantics I,[s]. For i=l we shall show that
1.

Ii[s] = Vi[s]. Next, we introduce our first

abstraction operator a 1 (turning each failing

communication into an indication of failure and

deleting all subsequent actions) and prove that

The case i=2 is more involved,because L1 has

local, and L
2

global nondeterminacy. Consider a

choice a or c, where a is some autonomous action

and c needs a parallel c to communicate. In the

case of local nondeterminacy (written as au c)

both actions may be chosen; in the global

nondeterminacy case (written as a+ c, + as in CCS

[16]) c is chosen only when in some parallel

compound c is ready to execute. Therefore, L
1

and

L
2

exhibit different deadlock behaviours. 0
2

is

based on the transition system T2 which is a

refinement of T
1

, embodying a more subtle set of

rules to deal with nondeterminacy. The

denotational semantics V
2

is as in [3,4,5]. In

order to relate v2 and 02 we introduce the notion

of readies and associated intermediate semantics

r2' inspired by ideas as described in [8,18,19,21].

I
2

involves an extension of the LT model with

some branching information (though less than the

full BT model) which is amenable to a treatment

in terms of transitions. The proof of the desired

result is then obtained by relating the semantics

02, v2 and r2 by a careful choice of suitable

abstraction operators.

As main contributions of our paper we see

1. The three transition systems Ti, in particular

the refinement of T
1

into T2
•

2. The systematic treatment of the denotational

semantics definitions (for the guarded case)

together with the settling of the relationship

0 i = ai 0 Vi. (a0 identity).

3. Clarification of local versus global

nondeterminacy and associated deadlock

behaviour.

4. The intermediate semantics I 1
and, in

particular, r2.

2. THE LANGUAGE L
0

: SHUFFLE AND LOCAL NONDETERMINACY

Let A be a finite alphabet of elementary

actions with a EA. Let x,y be elements of the

alphabet Stmv of statement variables (used in

fixed point constructs for recursion). As syntax

for s E L
0

we give

A term µx[s] is a recursive statement. For example,

according to the definitions to be proposed

presently, the intended meaning of µx[(a;x)ub] is

the set {aw}ua*.b, with a the infinite sequence

of a' s.

2.1. The transition system T0

Let Atr = df. A* u Awu A*.{.L}, with A* the set of

all finite words over A, A*.{.L} the set of all

(finite) unfinished words over A, and Aw the set of

all infinite words over A, and .L4 A. Let w,u,v

denote elements of Atr, and let A be the empty

word. We define .L.w = .L for all w.

A configuration is a pair <s,w> or just a

word w. A transition relation is a binary relation

over configurations. A transition is a formula

<s,w> + <s',w'> or <s,w> + w' denoting an element

of a transition relation. A transition system is

a formal deductive system for proving transitions

3

based on axioms and rules. Using a self-explanatory

notation, axioms have the format 1 + 2, rules have

the 1 _,. 2 I format
3

_,.
4

. Also, 1 + 2 3 abbreviates 1 + 2

and
1+213 1+2 1+3

1 + 3, and 4+5f"6 abbreviates
4

_,.
5

and
4

_,.
6

For a transition system T, T 1- (1 + 2) expresses

that transition 1 + 2 is deducible from system T.

We now present the transition system T
0

for

Lo:

<s,w>+w, wE A u A*.{.L}. For WE A* we put

(elementary action)

<a,w> + w.a

(local nondeterminacy)

<s
1

u s
2

,w> + <s
1

,w> I <s2 ,w>

(recursion)

<µx[s],w> + <s[µx[s]/x],w>

where, in general,s[t/x] denotes substitution

of t for x in s

(sequential composition)

<s
1

,w
1

> + w' I <s' ,w'>

(shuffle)

<s
1

,w
1

> + w' I <s' ,w'>

2.2. The operational semantics 00

We show how to obtain 0
0

from T0 . We define

the set 0
0
[s] by putting we 0

0
[s] iff one of the

following three conditions is satisfied (always

taking <s ,w > = df.<s,A>):
0 0 '

1. There is a finite sequence of T
0
-transitions

2. There is an infinite sequence of T
0
-transitions

00

where the sequence <wn>n=O is infinitely often

increasing, and w = supnwn (sup with respect to

prefix ordering).

3. There is an infinite sequence as in 2, but now

wn+k = wn for some n and all k <: O and w w • .l
n

4

Examples. 0
0
[(a

1
;a

2
) II a

3
] = {a

1
a

2
a

3
,a

1
a

3
a

2
,a

3
a

1
a

2
},

* . w '
0

0
[µx[(a;x) u b]] = a .b u {a } , 0

0
[µx[(x;a) u b]] =

= b.a* u {.L}.

Remark: Observe that systems such as T
0

are used

to deduce (one step) transitions 1 + 2. Sequences

of ~uch transitions are used only to define 0
0
[.]

2.3. The denotational semantics V
0

We introduce a denotational semantics V
0

for the

language L
0

based on an approach using metric

spaces (rather than the more customary cpo's) as

underlying structure. This section is based on [3];

for the topology see [10]. We recall that Vi is

defined only for the guarded case: Each µx[s] is

such that all free occurrences of x in s are

sequentially preceded by some statement.

For u E A tr let u[n], n <: 0, be the prefix of u

of length n if this exists, otherwise u[n] u.

E.g., abc[2] = ab, abc[S] = abc. We define a

natural metric don Atr by putting

d(u,v) = 2-maxfnl u[n] = v[n]}

-"' with the understanding that 2

d(abc,abd)

0. For example,

(Atr,d) is a complete metric space. For X_sAtr we

put X[n] = {u[n] I u ex}. A distance d on subsets

X,Y of Atr is defined by

d(X,Y) = 2-maxfnl X[n] Y[n]}

Let C denote the collection of all closed subsets

of Atr. It can be shown that (C,d) is a complete

00

metric space. A sequence <Xi>i=O of elements of C

is a Cauchy sequence whenever

sequence, we write limi Xi for its limit (which

belongs to C by the completeness property).

A function $: tC,dl + (C,d) is called

contracting whenever, for all X,Y, d($(X),$(Y)) s;a.

d(X,Y), for some real number a with Os;a< 1. A

classical theorem due to Banach states that in any

complete metric space, a contracting function has

a unique fixed point obtained as limi $i(X0 J for

arbitrary starting point x0 .

We now define the operations .,u, 11 on C in the

following way:

a. X,Y_!:A*uA*.{J.}. For X.Y and XuY we adopt the

usual definitions (including the clause

l..u = l. for all u). For xlJ Y we introduce as

auxiliary operator the so-called left-merge lL

(from [7]). 'we put xii Y = (XlL Y) u (YlL X), where

!Lis given by XlLY = U{ulLYI UEX}, £lLY = Y,

alLY = a.Y, l.lLY = {J.}, and (a.u)lLY =

a. ({u} II Y).

b. X,YE C, X.Y do not consi.st of finite words only.

Then X op Y limi (X[i] op Y[i]), for

op€ {.,u,11}. In [3] we have shown that this

definition is well-formed and preserves closed

sets, and the operations are continuous (for

this finiteness of A is necessary).

We proceed with the definition of V0[s] for

sE L
0

• We introduce the usual notion of

environment which is used to store and retrieve

meanings of statement variables. Let f = Stmv-+ C

be the set of environments, and let YE r. we write

y • = df · y<X/x> for a variant of y which is like Y

but such that y• (x) = x. we define V
0

: L
0

+ (f-+ CJ

as followc:.:

DEFINITION.

V
0
[a] (y) = {a}, V

0
[s

1
op s 2] (y) = V0

[s 1] (y) op

V
0
[s

2
] (y), for opE {.,u,11}, V

0
[x] (y) = y(x) ,and

V
0
[µx[s]] (y) = limixi, where x0

{l.} and

X = V [s] (y<Xl.,/x>)
i+l •· 0

5

By the guardedness requirement, each function

$ = AX. V
0
[s] (y<X/x>) is contracting, <Xi>i is a

Cauchy sequence, and limiXi equals the unique

fixed point of $.

Remark. An order-theoretic approach to the

denotational model is also possible (cf. [9,15]).

However, for our present purposes this has no

special advantages. In fact, the order-theoretic

app~oach does not provide a direct treatment for

the unguarded case either, it seems to require a

contractivity argument for uniqueness of fixed

points just as well, and, last but not least, as

far as we know, it cannot be used as a basis for

the BT model.

2.4. Relationship between 0
0

and V
0

•

we shall prove (for statements s without free

statement variables, and omitting y).

THEOREM 2.1. 0
0

= V
0

.

The proof relies on four lemmas.

LEMMA 2. 2. 0
0

is homomorphic over • , u, II .

LEMMA 2.3. (guarded case only). Consider a µ-term

µx[s]. Let Q be the (auxiliary) statement such

that <Q,w> + w.l.. Let s(O) = Q, s(n+l) = s[s(n) /x].

Then 0
0
[µx[s]] = limn0

0
[s(n)].

PROOF. This involves a detailed analysis of

transition sequences; it introduces in particular

the notion of truncating a sequence after n

applications of the recursion axiom involving the

considered µ-term.

LEMMA 2.4. (guarded case only). For each s, 0
0

[s]

is a closed set.

Caution. This is not true for the unguarded case.

* For example, 0
0

[µx[(x;a) u b]] = {J.} u b.a . This set

is not closed since its limit point baw is not in

it.

LEMMA 2.5. (this is the crucial lemma relating 00

without free statement variables, and let

x.
l.

0
0
[ti], i=l, .• ,n. Then

Vo[s] (y<xi/xi>~=l) = Oo[s <ti/xi>~=l]

PROOF. Structural induction on s.

3. THE LANGUAGE L1 : SYNCHRONIZATION MERGE AND

LOCAL NONDETERMINACY

Let A be a finite alphabet, let Cs_ A with

c E c (the communications) and let a€ A\C. Let there

be given a bijection -, C+ C (matching

communications a la CCS/CSP) with c = c. Let T €A

be a special symbol serving as a meaning for the

skip statement, and let o be an element not in A

indicating failure. We always have o.w = o. Let

Atr A*uAwuA*.{o,1-}
0

tr
u,v,w now range over A0 • As syntax for SE L1 we

give

3.1. The transition system T1.

The system T1 consists of T
0

extended with:

<s,w> + w for wEAwuA*.{o,l.}. For wEA* we have

(communication)

<c,w> -+ <fail,w> an individual communication

fails

(skip)

<skip,w>-+ w .. T

(failure)

(synchronization)

<ell C,w> -+ <skip,w>

<c;s
1

II C,w> -+ <skip;s
1

,w>

<ell C;s
2

,w> <skip;s
2

,w>

(commutativity and associativity of merge)

<s
1

II s
2

,w> + <s' ,w'>

<s
2

11 s
1

,w> + <s' ,w'>

<sill (s211 s3),w> + <s',w'>

<(s
1

11 s
2

JI/ s
3

,w> + <s',w'>
, and symmetric.

Remark. Note that associativity/commutativity of

merge are provable in T
0

.

3.2. The operational semantics 0
1

0
1
[s] is defined similarly to 0

0
[s] • Now failing

communications result in o, successful communica-

tions (through the synchronization rule) in

addition in T.

Examples. 0
1
[c] = {o}, 0

1
[Ca;b) u (a;c)] = {ab,ao},

0
1
[cll c] ={o,T}. We observe too many o's here: to

do away with such appearances of deadlocks in case

an alternative is present, we postulate - for the

remainder of section 3 only the axiom

C3.1J {o}ux=x for X i' f/J

(Formally, we should now take congruence classes

in Atr with respect to (3.1); we do not bother to

be that precise.) Taking (3.1) into account, the

above examples now become 0
1
[c] = {o},

01[Ca;blu (a;cl]= {ab}, 0
1
[cil c]= {T}.

It is important to observe that the two statements

(a;b) u (a;c) and a ; (b u c) obtain the same

meaning by 01 . Section 4 will provide a more

refined treatment.

3.3. The denotational semantics V1•

This is as in section 2,3. but extended/modified

in the following way (omitting y-arguments for

simplicity):

V
1
[c] = {c}, V1[skip] = {T}, V

1
[fail] = {o},

V
1
[s

1
11 s

2
] = V

1
[s

1
] II V

1
[s

2
], where, for X,Ys_Atr,

we define XII Y = (XU.. Y) u (YU.. X) u (X I Y) . Here the

operations U.. (left-merge) and (communication)

are defined as follows: First we take the case

that X,Y consist of finite words only.

6

x lL y U{w LLYI wEx}, 1- LLY = {1-}, o LLY = {o},

£ lL y Y, a lLY = a.Y, (a.w) lLY = adw}!I Y).

Also, XIY = {(wlu): wEX, u E Y}, where

for w' ,u' not of such a form. If X or Y contains

infinite words, the definition is completed by

takin~ limits. (The definition of xii Y is from

[7].)

3.4. Relationshipbetween 0
1

and V
1

.

We do not simply have that

(Take s = c for a counter example. Then 0
1
[c] = { o},

V1[c] = {c}). We even have that:

THEOREM 3.1. There does not exist any denotational

(implying compositional) semantics V satisfying (*).

•The proof is based on

LEMMA 3. 2. 0 1 does not behave compositionally over 11.

Proof. We show that there exists no "mathematical"

operator 11 0 such that 0 1[s 1 11 s 2
] = 0 1[s

1
] llv

0 1
[s2

]. Consider the programs s
1
=c, s 2

=c in L
1

.

Then 0 1[s1] = 0 1[s
2

] = o. Suppose now that llv

exists. Then {o} = 0[s 1 I
I s 1

] = 0[s 1
] 11 0

0[s 1] =

O[s1] llv O[s2]= O[s1ll s2]= {T}.

Contradiction. D

We remedy this not by redefining T
1

(which

adequately captures the operational intuition for

L1l, but rather by introducing an abstraction

mapping a 1
such that

(**) 01
= a 1

o V 1 •

We take a 1 = syn1
defined by (WsA~r)

syn
1

(W) {wl WE W does not contain cE c} u

{w.ol 3w' ,c' such that w.c' .w' E W,

w contains no c}

The right-hand side of this definition should be

taken with respect to (o.w = o and) {o} u X = X,

X ~ 0. Informally, syn1
replaces unsuccessful

synchronization by deadlock and keeps this ·in case

there is no alternative.

We cannot prove (** l,' by a direct structural

induction on s (because syn
1

does not behave

homomorphically). Rather, we introduce an

*
intermediate semantics 11

: we modify T
1

into T
1

which is the same as T1
but for the communication

axiom which now has the form

* (communication)

<c,w> -+ w.c

* We base 11 on T1
just as we based 0

1
on T

1
• We

can now prove

LEMMA 3.3. For all s,s' E L
1

and w,w• E (A\C)*

T
1

t- <s,w> + w' I <s' ,w'>

iff

T~ r <s,w> + w' I <s' ,w'>

Proof. Structural induction on the deductions in

This lemma immediately leads to

THEOREM 3.4. 01 [s] = synl (1 i [s])

Next we show

Proof. Combine ideas of section 2.4 with a proof

D

7

that I 1 behaves compositionally over 11 (as defined

in section 3.3).

Remark. This proof recalls Apt's merging lemma

[1,2].

By combining theorems 3.4, 3.5 we finally

obtain our desired result

4. THE LANGUAGE L2
: SYNCHRONIZATION MERGE AND

GLOBAL NONDETERMINACY

The syntax for SE L
2

is given by

Here "+" denotes global nondeterminacy; the

notation is from ccs[16].

4.1. The transition system T2 .

T2 is like T1 , but without the axiom for local

nondeterminacy, and without the axiom for

communication (<c,w> + <fail,w>). Additionally,

we have

(global nondeterminacy)

[µ-unfolding]

<s
1

,w> -+ <s' ,w>

[selection by elementary action]

<s
1

,w> -+ w' I <s' ,w'>
~~~~~~~..,-,~~.,..----,.- where w' ~ w 
<s

1
+s

2
,w>-+ w' I <s' ,w'> ' 

[selection by communication/synchronization] 

<s
1 

II s
3 

,w> -+ <s' ,w• > 
, where the 

transition in the premise involves 

synchronization between actions from s
1 

and s 3 

[commutativity of +] 

<s 1+s2,w> + w' I <s' ,w'> 

<s
2
+s

1 
,w> + w' I <s' ,w'> 

< cs 1 +s 2J II s
3

,w> + w' I <s' ,w• > 

«s2+s1JJI s
3

,w> + w' I <s' ,w'> 

Remark. Associativity of + is derivable. 

We see that global nondeterminacy is more 

restrictive than local nondeterminacy. In fact, 

<s
1
+s

2
,w> -+ w1 I <s' ,w 1 > implies 

<s
1

us
2

,w>-+ w'T <s',w'> but not vice versa. 

Example. <auc,w> +* w.O,<auc,w> +* w.a, but 

<a+c,w> +* w.a only. In the case of global 

nondeterminacy, the communication transitions of 

s
1

+s
2 

depend on the communication transitions of 

s 1 and s
2 

in some global cont.;xt s 1 II s 3 or s 2 II s 3• 

8 

This formalizes the communication as present in 

languages like CSP, ADA or OCCAM. 

4.2. The operational semantics 02 

0
2 

is derived form T2 in the usual way. In 

addition, however, we now have to consider the 

case that we have a finite sequence 

<sn,w~ + .•• deducible. We then deliver wn.o as 

element of 0 2[s] . The pair <.sn ,wn> is then called 

a deadlocking configuration. 

Example. 02[(a;b)+(a;c)] = {ab,ao}, 

02[a; (b+c)] = {ab}. 

4.3. The denotational semantics V
2

• 

We follow [3,4,5] in introducing a branching time 

semantics for L
2

• Let AJ. = df • Au {J.}. Let P n, 

n;?; 0, be defined by 

where P(.) denotes all subsets of (.), and let 

Unpn. We define a metric don PW (for its 

definition see [3,4,5]) and take P as the 

complet~on of PW with respect to d. It can be 

shown that P satisfies the domain equation 

P = Pclosed(AJ. u (AJ. x P)) 

Finite elements of Pare, e.g., {[a,{b
1 
}J,[a,{b2 }J} 

or {[a,{b1 ,b
2

}J}. Thus, the branching structure is 

preserved. An infinite element is, e.g., the 

process p which satisfies the equation 

p = {[a,p],[b,p]}. The empty set is a process and 

takes the role of o. Note that in the LT framework, 

0 cannot replace Q since by the definition Of 

concatenation (for LT) we have a.0 = 0 which is 

undesirable for an element modelling failure. (An 

action which fails should not cancel all previous 

actions.) In the BT framework, {[a,0]} is a process 

which is indeed different from 0. Since, clearly, 

0 u p = p for all sets (processes) p, we can do 



without explicitly imposing a counterpart of rule 

(3.1) for o. 

Operations .,u,ll, limits and continuity, 

fixed points of contracting operations are as in 

[3,4,5]. For example, for p,qE PW, we put 

(plL q) u (qlL p) u(plqJ where 

plL q {xlL q: x E p}, all q = [a,q] ,J.lL q = J., 

[a,p']llq = [a,p'll q], and plq = U{(xlyJ: xEp, 

y E q}, where [c,p' JI [c,q' J = {[T ,p' II q']}, 

cl[c,q') = {[T,q')}, [c,p'Jlc = {[T,p')}, 

clc = {T}, and (xlyl = 0 when x,y are not of one 

of these four forms. 

It is now straightforward ·to define 

V
2

: L
2 

+ (f
2

+P), where r
2 

= Stmv + P, by 

following the clauses in the definition of V
0

, V
1

• 

Thus we put V
2
[a] (y) = {a}, V

2
[ s

1 
op s 2] (y) 

V
2
[s

1
] (y) op V

2
D:s

2
] (y), V

2
[x] (y) y(x), and 

V2[µx[s]] (y) = limipi' where p 0 

Pi+l = V2[s] (y<pJx>l 

4.4. Relationship between 0
2 

and V
2

. 

we shall show that 

{J.} and 

for suitable a
2

. In fact, a
2 

is defined in two 

steps: 

1. First we define syn2 : P + P for p E P w 

syn
2

(p) ={al aEp and aic} u 

{[a,syn
2 

(q)] I [a,q] E p and a i c} 

and we put syn2 (p) = limn(syn2 (pn)). 

Example. Let p = V
2

[(a+c) II (b+c)] • Then 

syn
2

(p) = {[a,{b}],[b,{a}],T}. 

2. Next, we define traces: P+P(A~r) by (finite 

case only displayed) : 

traces (p) U{traces (x): x E p} if p # 0 

{o} if p = 0 

where traces(a) {a}, traces([a,q]) a.traces(q). 

We now put 

df. a
2 

= traces o syn
2

, 

but we cannot (yet) prove (*), because, similarly 

to a 1 , a 2 
does not behave'homomorphically. 

Therefore, we try an intermediate semantics 1
2

• 

This cannot be based on a simple LT model as the 

following argument shows: 

Let us try for 1
2
,similarly to 1

1
, the addition of 

the axiom <c,w> + w.c to T
2

• Now consider the 

programs s
1 

s a; (c1+c
2
J, s 2 s (a;c1) + (a;c2

J, 

s s cl. Then 02[s1 II s] = {aT} # {aT ,ao} 

0
2
[s2

11 s]. However, 1
2

D:s
1
11s]=12

D:s
2

11 s]. Thus 

whatever a we apply to 12
[.] , the results for 

s 1
ll s, s 2

11 swill turn out the same. 

Our solution to this problem is to introduce an. 

intermediate semantics 12 which, besides recording 

all traces in A~r, also records a very weak 

information about the local branching structure 

of the process. This information is called a ready 

set or deadlock possibility: it is a subset X of 

C. Informally, X indicates the set of 

communications c which are ready to synchronize 

with any other matching communication c from 

another parallel compound (for the notion of ready 

set cf. [8,11,18,19,21]). Formally, take 6 = P(C). 

For x E 6, let x = {cl c E x}. The ready domain R is 

R P( tr tr , . . * 
now = A u A .u). The transition system T2 

consists of all axioms and rules of T2 
together 

* with (for w E A ) . 

(i) <c,W> + W.C 

(ii) <c,w> + w.{c} 

(iii) <fail,w> + w.0 

(iv) 
<s

1
,w> + w.X <s

2
,w> + w.Y 

<s
1
+s

2
,w> + w.XUY 

9 



(v) 
<s

1
,w> + w.X <s2 ,w> + w.Y 

<s1 11 s
2

,w> + w.XUY 
XnY = ~-

, where 

Axioms (ii), (iii) introduce deadlock 

possibilities/ready sets. Rule (iv) says that 

s
1
+s

2 
has a (one-step) deadlock possibility only 

if s
1 

and s
2 

have, and rule (v) says that s 1 II s
2 

has a (one-step) deadlock possibility if both s
1 

and s2 have, and no synchronization is possible. 

* We omit the natural definition of I
2 

from T
2

• 

Examples ( I 2 semantics) 

(i) I 2[a; (b+c)] = {ab,ac}. 

Proof. We explore all transition sequences 

* in T2 starting in <a; (b+c),A>: 

(1) <a,i\> + a ( e lem. action J 

(2) <a; (b+c) ,A> -+ <b+c,a> (seq.comp.: (1 J) 

(3) <b.a> + ab (elem.action) 

(4) <c,a> + ac (comm.) 
'><a. {c} 

(5) <b+c.a> + ab (glob.nondet.: 

"' ac (3)' (4)) 

No more transitions are 

deducible for <b+c,a>. 

(6) Thus 

<a; (b+c) ,A>+ <b+c ,a> + ab 

' ac 

are all transition sequences 

starting in <a; (b+c),A>. 

This proves the.claim D 

(ii) I
2
[a;b + a;c] = {ab,ac,a.{c}}. 

Proof. Here we only exhibit all possible 

transition seque.nces in T; starting in 

<a; (b+c) ,A>: 

<a;b+ a;c,i\> - <b,a> ..... ab 

" <c,a> - ac 

"- a.{c} 

For the further results the following lemma is 

important: 

D 

10 

LEMMA 4.1. For all s,s' E (A\c)* the following 

holds: 

1. T2 t- <s,w>+w'I <s' ,w'> iff T; ... <s,w>+w'l<s' ,w'> 

2. <s,w> is a deadlocking configuration for T
2 

iff 

. * 
there exists some X,5:C with T2 ~<s,';1>+w.X. 

Let now w range over A tr = A* u Aw u A*. {1.} and let 

W range over R = P(AtruAtr.ll). we define the 

. * R p tr abstraction operator syn
2

: -+ (A
0 

) by 

syn; (W) = { w I w E W does not contain any 

c E c} u 

{wol 3XE LI: w.XE w} 

we have 

Next, we wish to relate I 2 with the full BT 

semantics V2 • To this end, we introduce the 

abstraction operator readies: P + R by defining 

readies(p) as follows (finite case only). Let 

ai,bj EA. We put 

readies(p) U{readies (x): x E p} u 

{A.x!x = {a
1

, •• ,am,b
1

, .. ,bn}EC} 

where readies (a
1
.) ={a.}, readies ([b.,q.]) = 

l. J J 

bj.readies (qj). 

THEOREM 4. 3. I 
2 

= readies 0 V2 . 

Proof. (i) readies behaves homomorphically on 

.,+,II. (ii) I
2

<µx[s]J can be obtained by applying 

readies to the fixed point definition of µx[s] 

* . LEMMA 4.4. traces o syn
2 

= syn2 o readies 

Summarizing, we have our final 

THEOREM 4.5. 02 = traces o syn2 ° Vz-



REFERENCES 

[1] K.R. Apt (1981), Recursive Assertions and 

Parallel Programs, Acta Inf. 15, pp.219-

232. 

[2] K.R. Apt (1983), Formal Justification of a 

Proof System for Communicating Sequential 

Processes, J. Assoc. Comput. Mach.,30(1), 

pp.197-216. 

[3] J.W. de Bakker, J.A. Bergstra, J.W. Klop & 

J.-J.Ch. Meyer (1983), Linear-Time and 

Branching Time Semantics for Recursion 

with Merge, Theoretical Computer Science 

~ (1984), pp.135-156. 

[4] J.W. de Bakker & J.I. Zucker (1982), 

Denotational Semantics of Concurrency, in 

Proceedings 14th Assoc.Comput.Mach. Symp. 

on Computing, pp.153-158. 

[5] J.W. de Bakker & J.I. Zucker (1982), 

Processes and the Denotational Semantics 

of Concurrency, Inform. and Control 54 

(1/2), pp.70-120. 

[6] J.W. de Bakker & J.I. Zucker (1983), 

Compactness in Semantics for Merge and 

Fair Merge, in: E. Clarke & D. Kozen 

(eds.), Proceedings Workshop Logics of 

Programs, Pittsburgh, Springer LNCS, 164, 

pp.18-33. 

[7] J.A. Bergstra & J.W. Klop (1984), Process 

Algebra for Synchronous Communication, 

Information and Control 60 (1984) ,pp.109-137. 

[8] s.D. Brookes, C.A.R. Hoare & A.W. Roscoe 

(1984), A Theory of Communicating 

Sequential Processes, J.Assoc.Comput. 

Mach.2_!:.(3), pp.560-599. 

[9] M. Broy (1983), Fixed Poirit Theory for 

communication and Concurrency, in: 

D. Bjwrner (ed.), Proceedings IFIP 

Working Conference on Formal ~escription 

of Programming Concepts II, North-Holland 

Amsterdam, pp.125-148. 

[10] J. Dugundji (1966), Topology, Allen and 

Bacon, Rockleigh, N.J. 

[11] N. Francez, D.J. Lehmann & A. Pnueli (1984), 

A Linear-History Semantics for Languages 

for Distributed Programming, Theor.Comp. 

Sc. 32(1/2), pp.25-46. 

[12] w.G. Golson & w.c. Rounds (1983), Connections 

between Two Theories of Concurrency: 

Metric Spaces and Synchronization Trees, 

Inform. and Control ~(2/3), pp.102-124. 

I I 

[13] M. Hennessy & G.D. Plotkin (1979), Full 

Abstraction for a Simple Parallel 

Programming Language, in: J. Beevar (ed.), 

Proceedings 8th MF<;:S, LNCS 7 4, Springer, 

Berlin/New York, pp.108-120. , 

[14] R. Keller (1976), Formal Verification of 

Parallel Programs, Comm. Assoc. Comput. 

Mach. 19, pp.371-384. 

[15] J.-J.Ch. Meyer (1984), Fixed Points and the 

Arbitrary and Fair Merge of a Fairly 

Simple Class of Processes, Techn. Reports 

IR-89/IR-92. Free University, Amsterdam. 

[16] R. Milner (1980), A Calculus for Communicating 

systems, LNCS 92, Springer, Berlin/New York. 

[17] M. Nivat (1979), Infinite Words, Infinite Trees, 

Infinite Computations, in Proceedings Found. 

of Comp. Sc. III.2, Mathematical Centre 

Tracts 109, Amsterdam, pp.3-52. 

[18] E.-R. Olderog & C.A.R. Hoare (1983), 

Specification-oriented Semantics for 

Communicating Processes in: J. Diaz (ed.), 

Proceedings 10th Int. Coll. on Autom., 

Langu. and Programming, pp.561-572. 

[19] E.-R. Olderog & C.A.R. Hoare (1984), 

Specification-oriented Semantics for 

Communicating Processes, Techn. Monograph 

PRG-37, Oxford Univ. Progr. Research Group. 

[20] G.D. Plotkin (1983), An Operational Semantics 

for CSP in: D. Bjwrner (ed.), Formal 

Description of Programming Concepts II, 

North-Holland, Amsterdam, pp.199-223. 

[21] w.c. Rounds & S.D. Brookes (1981), Possible 

Futures, Acceptances, Refusals, and 

Communicating Processes, in Proceedings 

22nd Symp. Found. of Comp. Sc., IEEE, 

pp.140-149. 


