
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

Computer Science/Department of Software Technology

J.W. de Bakker, J.-J.Ch. Meyer

Metric semantics for concurrency

Report CS-R8803 January

E.ibl1otheek
Cenfr~m voor Wistumde en lnformatica

Amsterdan>

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

l l' I'

Copyright © Stichting Mathematisch Centrum, Amsterdam

METRIC SEMANTICS FOR CONCURRENCY

J. W. de Bakker

Centre for Mathematics and Computer Science
Kruislaan 413, NL-1098 SJ Amsterdam I

Free University of Amsterdam

J.-J.Ch. Meyer

Free University of Amsterdam
De Boelelaan 108 l, NL-1081 HV Amsterdam

ABSTRACT

An overview is given of work we have done in recent years on the seman­

tics of concurrency, concentrating on semantic models built on metric struc­

tures. Three contrasting themes are discussed, viz. (i) uniform or schematic

versus nonuniform or interpreted languages; (ii) operational versus denotational

semantics, and (iii) linear time versus branching time models. The operational

models are based on Plotkin 's transition systems. Language constructs which

receive particular attention are recursion and merge, synchronization and global

nondeterminacy, process creation, and communication with value passing. Vari­

ous semantic equivalence results are established. Both in the definitions and in

the derivation of these equivalences, essential use is made of Banach's theorem

for contracting functions.

Keywords: concurrency, operational semantics, denotational semantics, transi­

tion systems, process creation, synchronization, metric spaces, domain equa­

tions, contracting functions, global nondeterminacy.

1985 Mathematics Subject Classification: 68Q55, 68Q10

1987 Computing Reviews Categories: D.1.3, D.3.1, D.3.3, F.1.2, F.3.2.

1. Introduction

We present an expository account of work we have been pursuing in recent years on the seman­
tics of concurrency, concentrating on those models which are built on structures from metric
topology. We shall exhibit semantic definitions for a variety of programming notions relating to

concurrency, viz. recursion with merge (parallel execution in the interleaving sense), synchroni­

zation and global nondeterminacy, process creation, and communication with value passing. We
hope to demonstrate the power of metric methods, both in the semantic definitions themselves
and in the establishment of particularly succinct derivations of equivalence results between
Report CS~R8803
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

- 2 -

operational and den<'tational semantic models.

Three contrasting themes will recur in our considerations (cf [BKMOZ] for a more ela­
borate treatment). Firstly, there is the familiar distinction between operational and denotational
semantics. The former will always be based on transition systems which are variations on the
elegant systems of Hennessy and Plotkin ([HP],[Pl2],[Pl3]). The latter will throughout be
defined compositionally, with (unique) fixed points to deal with recursion. Such fixed points
exist on the basis of Banach 's theorem for contracting functions. In fact, this theorem is abso­
lutely pervasive in our technical considerations: a good deal of our definitions and theorems
ultimately rely on it. Secondly, we shall contrast uniform and nonuniform languages. The former
are schematic in the sense that their elementary actions are uninterpreted, and the rrieaniilgs
rendered by our definitions involve entities with a strong flavour of formal language theory.
More specifically, sets of (possibly infinite) words or tree-like objects are delivered. Nonuni­
form languages have interpreted elementary actions. They include notions such as (individual)
variables, assignments, states and state transforming functions. As we shall demonstrate, it
requires additional tools to set up a framework in which one may merge such functions.
Thirdly, we shall be concerned with both linear time (LT) and branching time (BT) models.
Typical examples are sets of words versus trees (with some further properties not stated here)
over some alphabet A. In the former, moments of choice are abstracted away which are present
in the latter. We recall the classical example of the LT set {ab ,ac} versus the two different
trees in BT:

a a
a

b c b c

The genealogy of the work described in the present paper is as follows: Ancestors are
Ni vat's work on metric techniques in semantics ([Ni]) and Plotkin 's work on resumptions in
power domains ([Pll]) . In [BZ I] we described a general method to solve domain equations
using metric techniques. [BZ2] is an example of a specific semantic application. A substantial
il1'1provement on [BZ 1] is given in [AR] where the scope of the method in [BZ 1] was clarified
and, even better, considerably generalized. A comparison of LT and BT models for recursion
with merge was first made in [BBKM]. In [BMOZ], [BKMOZ] a systematic comparison of
operational and denotational models was developed, both for recursion and merge, for syn­
chronization with (forms of) nondeterminacy, and for nonuniform languages. Somewhat simul­
taneously we have devoted a number of papers to the design of semantic models for the parallel
object oriented language POOL ([ABKR 1, ABKR2, AB]), dealing, besides with various other
notions:' with process creation. An essential step on the way to substantial simplification of the
sometimes quite elaborate arguments in [BMOZ], [AB] was performed in [KR]. Here the full

- 3 -

power of the unique fixed point argument, not only in defining but also in comparing semantic

models, was first exploited.

In parallel to the metrically based semantic studies, we have also continued to work with

models based on partial orders, were it only to relate order-theoretic models to metric ones. In

addition, for the metric models as we use them, the requirement that all sets considered be

closed is vital, and the metric theory fails when phenomena inducing nonclosed sets are encoun­

tered. Examples of comparative studies, in particular relating to the 'elemental' combination of

recursion with merge, are [BM], [BMO]. An extensive application of order-theoretic tools,

specifically to deal with fair merge (the result of which is in general nonclosed) is described in

[M]. Another language notion which is not directly amenable to metric techniques is that of

hiding (cf. [MO]). Finally, we mention [MV] where an order-theoretic counterpart of the topo­

logical notion of compactness is studied. In fact, we might have paid some attention to (conse­

quences of) compactness requirements below as well, but we have decided not to do so for rea­

sons of space.

We are at present investigating further applications of the metric method in semantics.

Two prime examples are uniform (or 'logicless') versions of logic programming, and more

advanced concepts in object-oriented programming.

Acknowledgements

The work described below would not have been possible without the essential contributions of

the Amsterdam concurrency group and its affiliates. We acknowledge in particular the work of

Joost Kok and Jan Rutten who first realized the crucial role of contractivity arguments in com­

paring concurrency semantics. Pierre America, Ernst-Rudiger Olderog and Jeff Zucker have

worked together with us on the papers [BMOZ], [AB], both of which were instrumental for the

present paper.

2. Mathematical Preliminaries

2.1 Notation

The phrase 'let (x E)X be such that ... ' introduces a set X with variable x ranging over X such

that For X a set, &'(X) denotes the collection of all subsets of X, and &' 11"(X) is the collec­

tion of all subsets of X which have property 7f'. The notation f: X-+ Y expresses that f is a func­

tion with domain X and range Y. We use the notation f {y Ix}, with x E X and y E Y, for a

variant off, i.e. for the function which is defined by

{
y if x =x'

f{ylx}(x') = f(x') otherwise

- 4 -

If f: X-+ X and f (x) =x , we call x a fixed point off.

2.2 Metric Spaces

From standard topology (e.g. [Du], [En]) we assume known the notion of (ultra)metric space
(M ,d) with distance or (ultra)metric d. We use the notions of closed subset X of (M ,d), of
continuous mapping (M 1,d 1)-+(M 2,d z), of completeness of a metric space, and of isometry
(:=)between metric spaces (M 1,d 1) and (M 2,dz). A mappingf:(M 1,d 1)-+(M 2,dz) is called
contracting whenever, for all x ,y E M 1, we have d 2(f (x) ,f (y)) ~a· d 1 (x ,y), with 0~a<1.
If the same condition holds with a= 1, we call f non distance increasing (ndi). Clearly, a con­
tracting or ndi mapping is continuous. A central role is played below by

Proposition 2.1 (Banach). Let f:(M,d)-+(M,d) be contracting, and let (M,d) be complete.
Then f has a unique fixed point x 0 and, for any y, x 0 = lim i Ji (y), where f 0 = Ax · x ,
f+I =fofi.

2.3 Metric Spaces of (Sets of) Words

Let A be a (finite or infinite) alphabet, let A* (Aw) denote the collection of all finite (infinite)
words over A , and let A 00 =df. A* u Aw. Let e denote the empty word. For each u E A 00

, u (n)
is the prefix of u of length n, if this exists, and u (n) = u, otherwise. We define a metric d on
A 00 by putting d(u,v) =2-n, where n =sup{k I u(k) =v(k)}. Thus, d(u,v) =T00 =0 if
u=v. We have

Proposition 2.2. (A 00 ,d) is a complete ultrametric space.

Let 9' = &' nc(A 00
) denote the collection of all nonempty closed subsets of A 00

• Let, for X E 9',
X(n) = {u(n) ju EX}. We define a metric d on fF by putting d(X,Y) =Tn, where
n = sup{k I X(k) =Y(k)}. For example, d({abc ,ef },{abcd ,efg }) = r 2 • We have

Proposition 2.3. (9',d) is a complete ultrametric space.

On A 00 and 9' we have the usual concatenation operator '· '. For subsequent purposes, we are
interested in the subset Q of 9' consisting of either {e} or of elements X in 9' which do not con­
tain e.

2.4. Domain Equations and Resumptions

We briefly recall the notion of a (metric) domain equation. The general form of such an equa-
tion is

p := !ffe{P) (2.1)

- 5 -

or, more precisely, (P ,d p) = l!F((P ,d p)}, where the mapping f¥ (technically a functor from the

category of complete metric spaces to itself, but we do not have to be aware of this) is built up

as follows: $ is either a constant (delivering some complete (A ,d A)), a transformation id a

which maps (M ,d) to (M ,a·d) for some real a, or composed from already given components

by operations such as cartesian product, disjoint union, (restricted) function spaces, or the

'closed subset of' mapping. We have no room to discuss details which are described at length

in [BZI] or [AR] (see also [BK] for the connection between such P and spaces obtained through

bisimulation from synchronization trees as, e.g., in [Mi]). It is sufficient to know that isometries

such as

P =: {p 0} U (A XP) (2.2)

p = {po} U /§' closed(A Xid v,(P)) (2.3)

(2.4)

all have well-defined solutions as complete metric spaces. (On later occasions, the mappings

id 0 will, for simplicity, be assumed implicitly). Elements of such P are either finite (and then

equal to p 0 or in some P n + 1 = $(P n)), or infinite and then satisfy p = lim nP n , with p n E P n .

Occurrences of P in terms ... XP on the right-hand side of these equations justify the terminol­

ogy of resumptions: For example, for p E P with P as in (2.4), p (* p 0) is a function which,

when supplied with argument a EA turns itself into, among other things, some <b ,p' >. In

later applications we shall read this with the connotation: process p maps a to b and then turns

itself into process p' as resumption.

For subsequent purposes, we note that, if the constant spaces (A ,d A), (B ,d 8), . . . are

assumed to be ultrametric, then the solutions P (as in (2.2) to (2.4)) are also ultrametric.

Example: Elements from P as in (2.3) are, e.g., {<a,{<b,p 0 >,<c,p 0 >}>} and

{<a,{<b,p0 >}>,<a,{<c,p 0 >}>}. These may be pictorially represented by the trees from

section 1. No such distinction is present in the set Q, where both objects are represented by the

set {ab ,ac }.

3. Recursion and Merge

The first language we consider is a simple extension of the traditional (uniform) sequential

languages, obtained by adding the programming construct of parallel execution or merge s 111s2

of the two statements s 1 and s2 • By a traditional (uniform) language we mean here a language

which has (uninterpreted) elementary actions taken from some alphabet A, sequential composi­

tion, nondeterministic choice and recursion. It is well-known that these four concepts put

together in the customary way - the exact syntax follows in a moments - yield the expressive
"'

power of context-free languages, here taken in the general sense of languages over finite and

infinite words over A. Thus, we may rephrase the object of study in the present section as

- 6 -

infinitary context-free languages extended with merge or shuffle, where the latter notion is the
standard operation of language theory. This combination of (basic notions with) recursion and
merge was first studied in [BBKM] (denotational LT and BT models) and [BMOZ, BKMOZ]
(operational vs. denotational LT models). The presentation below essentially follows [KR],
though our returning here to the format of simultaneous recursion - rather than employing pos­
sibly nested µ-constructs - allows a considerably more concise treatment.

We build the syntax starting from

• a (not necessarily finite) alphabet A , with elements a ,b ,c , ...

• a set 3''1UU. of procedure variables x 1,x 2, •••• It will be convenient to assume that each pro­
gram uses exactly the procedure variables in the initial fragment X'= {x 1,. •• ,x n} of ,q>-,

for some n ~ 0.

We start with

Definition 3.1 (Syntax).

a (statements). The class (s E)P 1 of statements is given by

b (guarded statements). The class (g E)P 1g of guarded statements is given by

c (declarations). The class (D E) 'lilecl 1 of declarations consists of n -tuples
D =x 1 ~g 1 , ... ,xn~gn or<xi~gi>i,forshort,withx; E ffandg; E P 1g.

d (programs). The class (t E) ~ 1 of programs consists of pairs t = <D Is >, with
D E 'lilecl I and s E p l ·

Examples

I. <
x 1 ~ a ;x 2 u b ;x 3,

x 2 ~bub;x 1 u a ;x 3;x 3,

x 3 ~ a u a ;x 1 u b ;x 2;x 2,

lx1>

2. < x ~a ;(b llx) I {c llx) >

Remarks

I. All•'gi occurring in a declaration D::<x;~gi>i are required to be guarded, i.e.
occurrences of x E a: in gi are to be preceded by some g (which, by clause b, has to

- 7 -

start with an elementary action). This requirement corresponds to the usual Greibach con­

dition in formal language theory.

2. We have adopted the simultaneous declaration format for recursion rather than the µ,­

formalism which features constructs such as, for example, c llµx [a ;(µ.y [b 1;y ;b2 u b 3] II x)].

As remarked already, the avoidance of (nested) µ,-constructs allows for a simpler deriva­

tion of the main semantic equivalence result to follow.

We proceed with the definitions leading up to the operational semantics for s E fJ! 1 and

t E ~ 1. It is convenient to extend fJ! 1 with a special 'empty statement' E which performs no

action (it will obtain {€}as its meaning). We put fJ! 1' = fJ! 1 u {E}. The operational semantics is

based on transitions (following the operational semantics techniques of Structured Operational

Semantics, cf. [HP, Pl2, Pl3]). Here, transitions are four-tuples in fl! 1xA X9/Jed 1Xfl! 1', written

in the notation

a
s-+ s'

D

with s E fJ! 1, a E A, D E fiJed 1, s' E fJ! 1'. We present a formal transition system T 1 which

consists of axioms and rules. Transitions which are given as axioms hold by definition. More­

over, a transition which is the consequence of a rule holds in T 1 whenever it can be established

that, according to T 1, its premise holds (or, in later sections, its premises hold). We shall

employ below self-explanatory notational variants of the format for the rules. T 1 is given in

Definition 3.2 (transition system T1). Lets ,s' ,s E fJ! 1, a E A, D E 9/Jed 1.

a
a-+ E

D

a
s-+ s' I E

D
a

s·s-+ s' ·s Is
' D '

a
s-+ s' IE

D
a

sus-+ s' I E
D

a
sus-+ s' I E

D

a
g-+ s' IE

D
,with x *=g in D a

x-+ s' IE
D

a
s-+ s' I E

D
a

s lls -+ D s' lls I s
a

s lls -+
0

s lls' I s

(Elem)

(SeqComp)

(Choice)

(Ree)

(ParComp)

- 8 -

a b
We next define how to collect the successive transitions s - D s', s' - D s ",. .. , starting from

some t = <D Is>, into its operational meaning @[t]. We use Q as introduced in section 2.3.

Definition 3 .3.

a. The mapping (;}: ~ 1-Q is given by

(;} [<D Is>] = (;} D [s] .

b. The mapping (;} D: .!l' 1'-Q is given by: (;} D [E] = {e}, and for s =t:E,

where the transitions are with respect to T 1•

It may not be obvious that the function (;} D is well-defined. This is in fact a consequence of the
following

Lemma 3.4. Let the operator <I>:(.P 1'-Q)-(Jl' 1'-Q) be defined as follows: For any

.af D : .!l' 1'-Q we put<!>(!¥' D)(E) = {e}, and, for s =t:E,

Then <I> is a contracting mapping with (;} D as its fixed point.

Proof. Clear from the definitions and Banach's theorem. D

Example. @[<x <=a;x ub Ix>]= {aw} ua*·b.

Remark. As explained in [BMOZ], if we were to drop the guardedness restriction for the gi in
D, the operational meaning of <D Is> (based on the definitions in [BMOZ]) is not necessarily
a closed set, and definition 3.3 would not, in general, yield the desired result. (Definition 3.3
always gives closed sets as results.)

The next step is the development of the denotational model. We use Q as before, and now
also define various semantic operators: Q xQ-Q, viz. the operators of union ('U '), composi­
tion (' 0 ') and merge ('II').

Definition 3.5. For each X E Q we write Xa = {u EA
00 I a ·u E X}.

a. XuY=X,ifY={e}.

x u y = y' if x = {E}.

Otherwise, X u Y equals the set-theoretic union of X and Y.
"'

b. Let op stand for 0 or II. Let <P be any ndi mapping: Q xQ-Q. Let
<I> 0P :(QxQ-Q)-(QxQ-Q) be defined as follows:

- 9 -

{

Y, if X= {e}
~ 0(cf>)(X)(Y) = UaeA {a·cf>(X

0
)(Y) jX

0
=F0},otherwise

~u(c/>)(X)(Y) = ~o(cf>)(X)(Y) u ~o(cf>)(Y)(X)

c. We now put 0 =fixed point (~ o), II =fixed point (~ 11).

We have

Lemma 3.6. The operators u, 0 , II are well-defined and ndi (and, hence, continuous).

Proof. Clear for u. For the other operators, another appeal to Banach's theorem suffices. D

The denotational semantic definitions employ the usual notion of environment. Let

('Y E)r = fi>1Hl4-+Q be the set of environments, i.e. of mappings from procedure variables to

their meanings. We define

Definition 3. 7 (denotational semantics for .ft' 1, ~ 1). Below we often suppress parentheses

around arguments of functions.

a. .At:~ 1-+Q is given by .At [<D Is>] = fll [s] 'YD.

<X 1, ... ,Xn > =fixed point<~ 1,. •• ,~n >

where~ j: Qn-+Q is given by~ /Y 1) ••• (Yn) = flJ [gj] -y{Yilxd i.

c. fll[a]-y= {a}, fll[x]-y=-y(x), fl'[s 1ops2]-y= fl'[s 1]-yop fll[s 2]-y,

for op E {;,u,11} and op E { 0 ,u,ll}, respectively.

Examples. fll[a;(buc)]'Y = fll[(a;b)u(a;c)]'Y = {ab,ac} .

.,lt[<x <:a;(bllx) Ix>]= lim;X;,whereX;+ 1 =a·(bllX;),andX0 E Q is arbitrary.

Remark. The (unique) fixed point in clause b exists by the guardedness requirement which

ensures the contractivity of the ~ j.

The above definitions of the operational and denotational semantics have been tuned such

that the.proof of@= .At is now no longer a major undertaking (as it was in [BMOZ]). We fol­

low the approach as in [KR] (cf. [HP], [AP] for a similar approach in an order-theoretic frame­

work) with the additional simplifications due to our replacing µ-constructs by simultaneous

- 10 -

recursion. We prove

Theorem 3.8. For all t E ~ 1, (fJ [t] = v« [t].

Proof. Let us put flJ D [s] =df. flJ [s] 'YD. By the definition of @ and lemma 3.4, it is suffi­

cient to show that, for s E fl' 1, (*):ft> D [s] =<I>(fiJ D)(s). The proof proceeds in two stages;

first for g E !JI 1g and next for any s E !JI 1.

Stage I. Take g E !JI 1g. We prove (*) by induction on the complexity of g. We only treat the

case that g = g 111g2, the other cases being simpler. We have:

a
U {a·fl>v[s] I g 111g2 --+Ds} = (def.T1)

a
U {a·fl>v[s'llg2] I g1--+Ds'} u U {a·flJD[g1lls"] (def. ft>)

a
U {a-Cfl>v[s']llfl>v[g 2]) I g 1--+Ds'} u

a
U {a·(fl>v[g 1]11flJD[s"]) I g 2 --+Ds"} = (ind. hyp.)

a
U {a·(<l>(flJv)(gi)llflJD[s"]) I g 2 --+Ds"}

<l>(flJ DHg1)ll<l>(flJ vHgz) = (ind. hyp.)

91! D[g1] 11 ft> v[g2] (def.flJ)

9/! D[glllgz] ·

Stage 2. Take s E !JI 1. We prove (*) by induction on the complexity of s. All cases are as in

stage 1, but for the case s =x , with x =x i E Br. We have
a a

<l>(flJD)(xi) = U {a·fl!v[s] lx;--+Ds} = U {a·9/!D[s] lg;--+Ds} (withx; ~g; in

'!/!) = (by stage 1, the desired result holds for g i E f17 1g) '!/! D [g i] = (by the fixed point pro­

perty) flJ D [x i] . D

4. Synchronization and Global Nondeterminacy

We discuss an extension of !JI 1 with two new features. Firstly, we add a form of synchroniza­

tion in the tradition of CCS [Mi] or CSP [Ho]. Secondly, we replace the nondeterministic choice

(s 1 u sz) of section 3 by a new form of nondeterminism, written as s 1 +s2 • The latter is called

global (sometimes also external) nondeterminism. In the presence of synchronization, the
former variety is then called local. For an extensive discussion of these two notions we refer to

[BMOZ] and the papers cited there. The interesting point with the notion of global nondeter­

minacy is that it needs some form of non-LT denotational semantics to make sufficient distinc­

tions. For example, assuming that a ,b are normal actions and ,; is a communication action

- 11 -

(which requires a corresponding c in a parallel component to establish sysnchronization), we

want to assign different denotational meanings to s 1 = a ; (b + c) and s 2 = (a ; b) + (a ; c). A

simple LT model would not capture the operational intuition (which treats s 1,s2 differently,

details follow), since it would deliver the outcome {ab ,ac} in both cases (cf. the example fol­

lowing definition 3. 7).

We shall present below a branching time (BT) denotational model for !R 2 which indeed

provides the desired refinement to distinguish between qi [s 1] and qi [s2].

The syntax and operational semantics for fJ! 2 exhibit only minor differences with those for

P 1. Firstly, we assume a subset (c E)C~A of communications, and assume moreover a map­

ping-:C-+C, such that (writing c for-(c)) we have c=c. Finally, we postulate a special ele­

ment 7 E A \C which will be used as outcome for a successful synchronization between an

action c and its counterpart c. For this we refer to the rule(s) Synch in definition 4.2.

Definition 4.1 (Syntax). Let A be as just described, and Pi:' as in section 3.

a (s E Pi). s ::=a Ix I s 1;s2 I s 1+s2 I s 111s 2, withx E Pr

b (g E JJ!l). g ::=a I g;s I g,+g2 I g1llg2

c (DE '3Yedi). D = <xi<=gi>i,xi E Pr,gi E JJ!l.

d (t E ~~ 2). t = <D Is>. D E '3Jed2, s E JJ! 2.

e. !l?2' = !l?2U {E}

The transition system T 2 is given in

Definition 4.2. The transition system T 2 contains Elem, SeqComp , Ree and ParComp from T 1•

Moreover, it contains the rules (s ,s' ,s ,s 1,s2,s" E fJ! 2, a E A, c E C, D E '3Jed i)

a
s--+ s' I E

D
a

s +s--+ s' I E
D

a
s +s --+ s' I E

D

c c
S l --+ S

1
, S2--+ S"

D D
T

s lls --+ s' lls" l 2 D

c c
s l --+ D s' ' s 2 --+ D E
-----7 ----, and a symmetric rule

s 111s 2 --+ D s'

c c
S1-+DE, S2-+DE

T

s 111s 2 --+ D E

(GloCho)

(Synch 1)

- 12 -

c
Remark. By Elem, we now also have that c -+ D E.

In order to define (fJ for ~~ 2, we provide a slight variation on the set Q used in section
3. We introduce a new symbol o EE A , modelling failure , and we put A 1;°'' = A* u Aw u A* · o.
Thus, A 0

00 extends A 00 by adding all finite sequences over A to which o is appended. Further­
more, we put ff 0 = .o/' nc (A 0

00
), and we take R to be the subset of ff 0 consisting of either { e} or

of {o}, or of elements X in ff0 that do not contain e or o. We shall again use X ,Y to range
over R, and use the notation Xa as before. (Note, however, that elements in X 0 now may end
with o.) We give

Definition 4.3 (operational semantics for ~ 2, :£ z).

a. ():~~ 2-+R isgivenby&[<Dls>] = &v[s].

b. (fJv:fR 2'-+R isgivenby: (fJv[E] ={e},andfors::;!:E,

{

{o}, if {a Is !D s': a EEC}

U {a · (fJ D [s'] I s -+ D s' , a EE C}, otherwise,

=0

where the transitions are with respect to T2 •

As in section 3, (fJ D may be shown to be well-defined by a contractivity argument.

Example. (fJv[a;(b+c)] = {ab}, (fJv[(a;b)+(a;c)] = {ab,ao}.

The denotational model for :£ 2 assumes a domain (p E)P of branching time processes
(cf. section 2.4) satisfying the isometry

P = {po} U i1' closed(A XP) (4.1)

Here we assume the discrete metric on A . Typical processes are

• the 'nil process' p 0 and the empty process 0 (the empty set), corresponding to the LT
objects {E} and {o}, respectively,

• {<a,{<b,p0 >}>,<a,{<c,p0 >}>}, which is different from

{<a ,{<b ,p0>,<c ,po>}>},

e the infinite process p =limnPn• where Pn+I = {<a ,pn >,<b ,pn >}.

We recall from section 2.4 that P is a complete ultrametric space, and that elements of P are
either finite or satisfy p = lim nP n, for p n finite. We draw attention to the difference between

- 13 -

{o} E R and 0 E P. There is no problem in incorporating 0 into P. In particular, we have

that <i({<a,p 1>},{<a,p 2>}) = ~·d(p 1 ,pi) holds, even for p 1 or p 2 equal to 0. (This fol­

lows from the implicit use of id*(P) on the right-hand side of (4.1).) On the other hand, since

a · 0 = 0, including 0 into R would invalidate the contractivity property

d(a ·X 1,a ·Xi) = ~·d(X 1 ,Xi).

We next define the semantic operators op : P x P-+ P , for op E { u , 0 , II} , as natural varia­

tions on those of definition 3.5.

Definition 4.4.

a. p u q = p, if q =po,

p u q = q, if p =Po·

Otherwise, p u q equals the set-theoretic union of the sets p and q.

b. Let op stand for 0 or II. Let </> be any ndi mapping: P xP-+P. Let

<I> op : (P xP-+P)-+ (P xP-+P) be defined as follows:

{

q, ifp=p0

<I> o(<f>)(p)(q) = {<a ,</>(p')(q) > I <a ,p' > E p}' otherwise

tP11(</>){p)(q) = <f>o(</>)(p)(q) U <f>o(</>)(q)(p) U ;p l(p}(q)

where(/> I :P xP-+P is given by

:P1(p)(q) = {<r,</>(p')(q')> I <c,p'> E p,<c,q'> E q}

c. We now put 0 =fixed point(<I> o), II= fixed point(<I> 11).

We have again that the operators u ,0 ,11 are well-defined and ndi (and, hence, continuous).

The denotational definitions are now easy variations on the ones in section 3. Let

('y E)r 2 = !!r-+ P. Now .At:~ 2 -+ P and fib : .sl' 2 -+(r 2 -+ P) are defined in

Definition 4.5 (denotational semantics for .sl' 2, &>i~ i) .

a. .At[<D Is >] = fib [s] 'YD •

- 14 -

with C!Pj :Pn_.p is given by, for j=l, ... ,n, C!Pj(q 1) ••• (qn) = fti[gj]'Y{qJx;L·

c. ~[a]'Y= {<a,p 0>}. ~[x]'Y='Y(x),

~[s 1 ops2]'Y=~[s 1]'YOP~[s2]-y, for op E {;,u,11} and op E { 0 ,u,ll}, respec­

tively.

Examples. ~[a ;(b +c)] 'Y = {<a,{ <b ,p 0 >,<c ,p 0>} > },

ft![(a ;b) +(a ;c)] 'Y = {<a,{ <b ,po>} >,<a,{ <c .Po>}>},

vtt[<x <=a ;(b llx) Ix>] = limiPi, where Pi+I = {<a,{ <b ,p0>} llp; > }.

We see that ~ [s] 'Y contains traces of unsuccessful communications which are not present in

@ D [s]. For example, ~ [c] 'Y = { <c ,p 0>}, t!JD [c] = o. Moreover, the elements delivered

by ~[s]'Y are branching time objects (in P) and the elements delivered by @D[s] are linear,

time objects (in R). We therefore define an abstraction operator abs :P_.R which links the

two meanings: given an argument p, abs deletes <c , ... > branches from p, and collapses the

branching time structure into the set of all 'paths' in the process p.

Definition 4.6 (abstraction). We define abs as fixed point of the contracting mapping

it abs: (P-+R)-+(P-+R) given as follows: Let if; E P-+R. Writing ;/;abs as shorthand for

it abs(t/;), we put

;/; abs(po) {t},

and, for p -=Fp 0 ,

{
{o},if{a I <a,p'> Ep,a EEC}= 0

;/;abs(P) = U{a·t/;(p') I <a,p'> Ep,a EE C},otherwise.

It can now be shown that

Theorem4.7. Foreacht E ~2, @[t] = (abs 0 ,4f)[t].

We omit the proof which is an extension of that of theorem 3.8. Details are given in [KR].

5. Process Creation

We now turn to the study of a simple uniform language with processt creation as central

feature. We couch the notion of process creation in the framework of the language fl! 3 (with
"

tThe programming notion of 'process' as studied in section 5 has nothing to do with the mathematical notion
of 'process' appearing in section 4.

- 15 -

induced ~ 3). This language is like !/! 1 (or ~ 1), but with the construct of merge replaced

by the construct new (s): execution of new (s) creates a new process with body s, to be exe­

cuted in parallel with the already existing processes. (A more precise definition follows in a

moment.)

We first encountered the notion of process creation during our study of the semantics of

POOL, a parallel object-oriented language. In [ABKR 1,2] we have designed operational and

denotational semantics for POOL, and in [AB] we massaged these definitions such that the

equivalence of the two semantics for process creation could be shown. What follows below is a

new presentation, which could be simplified considerably thanks to another application of a con­

tractivity argument.

We assume A and X as in section 3. (For simplicity, this section has no (c E)C~A, and

'u' again replaces '+ '.)

Definition 5.1 (Syntax).

a (s E !£3). s ::=a Ix I s 1;s2 I s 1us2 I new(s), with x E :?J:'

b (s E !I!l). g ::= h I g 1;g2 I g 1ug2 I new(g)

(h EH). h ::=a I h;s I h 1Uh2

c (D E IJ/Jed3). D = <x; ~gi >;, X; E a:, gi E !J!l, i = l, ... ,n.

d (t E &1~3). t = <Dls>,D E IJ/Jed3,S E P3.

Remark. The complications in the definition of (g E)SR l are caused by the following

phenomenon: We want to make sure that occurrences of x in g are guarded by some statement

which starts with an elementary action a. Without the precaution as taken in clause b (i.e.,

adopting a syntax for !J! l, analogous to !/! 1g, of the form g : : = a I g ; s I g 1ug2 I new (g)), a

statement new(a);x would qualify as guarded. As we shall see later, the intended meaning of

new (a) ;x is the same as that of the unguarded Ul' i-)statement a llx, allowing execution of x

before a. This would violate the desired contractivity of the function(s) associated with the

declarations; hence, the need for the more involved definition.

Before providing the formal semantic definitions, we first present an informal explanation

of process creation. The execution of s is described in terms of a dynamically growing number

of processes which execute statements in parallel in the following manner (all steps are with

respect to some given D):

1. Set an auxiliary variable i to 1 and set s 1 to s, the statement to be executed. A process,

numbered 1, is created to execute s 1•

2. Pr<'.lcesses 1 to i execute in parallel. Process j executes s j (1 ~j ~ i) in the usual way in

case s j does not begin with some new (s') statement.

- 16 -

3. If some process j (1 ~j ~ i) has to execute a statement of the form new (s'), then the vari­

able i is set to i + 1, s i is set to s' , and a new process with number i is created to execute

s i. Process j will continue to execute the part after the new (s') statement. Go to step 2.

4. Execution terminates if all processes have terminated their execution.

We proceed with the formal semantic definitions. We use a somewhat extended transition for­

malism which involves constructs defined in

Definition 5.2.

a. The set (r E) 9'~ of sequents is defined by r : : = E J s; r, with s E fl! 3.

b. The set (e E)3'a-t of parallel constructs is defined bye::= r 1, ••• ,rn, n if; 1.

Transitions in T 3 are elements of gia-t XA x <;i)ed 3 x 3'a-t , written in the notation

a
e - 0 e'.

a
We shall often encounter instances of transitions written as ... ,r , ... - D ••• ,r' , Here r (r') is

a component of e (e '), and the notation implies that all terms at the dots (...) are unaffected by
the transition. Mutatis mutandis, such notation also applies to transition rules.

Definition 5.3 (transition system T3).

a
... ,a ; r , ... - D .. .,r,. ..

a
... ,s 1;(s2;r),. .. - D e

a
... ,(s 1;si);r,. .. -

0 e

a
... ,s;r, ... - D e

a
..• ,(sus);r, ... -

0 e
a

•.. ,(sus);r, ... -
0 e

a
... ,g;r, ... -D Q
-----0..,..---, with x <= g in D
... ,x ;r, ... -D Q

a
•.. ,r, ... ,s;E -De

a
... ,new(s);r , ... - D e

(Elem)

(SeqComp)

(Choice)

(Ree)

(New)

- 17 -

Note that in the rule (New), if the transition in the consequence has n components on its left­

hand side, then the lransition in the premise has n + 1 components on its left-hand side.

Example. new (a; new (b; c)); d; E
a -D

d c

d;E , new(b ;c);E

d;E,E,c;E -D E,E,c;E -D E,E,E.

The operational semantics associated with T 3 is described in

Definition 5.4.

a. fJ:~ 3-Q is given by @[<D Is>] = @D[s;E].

b. @D: &'at-Q is given by:

{

{e}, if e=E,E, ... ,E
OD[E] = a u {a ·@D [e'] I e-De'}, otherwise,

where the transitions are with respect to T3.

Remark. W ell-definedness of 0 D follows as usual.

b -D

We continue with the denotational definitions. Let Q and the operators u ,II be as in sec­

tion 3 (' 0 ' plays no role here). Besides the usual environments, we also introduce the set of so­

called continuations 'lion! which, in the present setting, coincides with Q. We have, altogether,

the following domains and functions:

(X E)Q, (X E)riont= Q

('y E)I'3 = .tr-(riont-Q), ~ E riont-Q

.,${:~~3-Q

9/J: P 3-(I' 3-(riont-Q))

with .,;ff and f1J defined in

Def"mition 5.5.

a. .,H[<D Is>]= flJ[s]'YD{e}.

b. 'YD = 'Y {~;Ix d 7= 1 , where, for D = <x i $= g; >; , we put

with 4>j :(riont-Q)n-(riont-Q) is given by 4>/~ 1 ') ••• an') = @[gj]'Y{~;'lx;};, for

j=1, ... ,n.

- 18 -

c. ~[a]-yX =a ·X, ~[x]-yX = -y(x)X,

~[s1US2]"YX = (~[s1]"YX)u(~[s2]"YX).

d. ~[new(s)]-yX ={~[s]-y{t:}) llX.

As usual, our main task is to relate f!J and .,#. We shall prove

Theorem 5.6. For all t E ~ 3, f!l[t] = ult[t].

The proof uses an auxiliary function B D: g>,.,.~Q defined by

• &v[r1, ••• ,rn] = Bv[r1] 11. •• llBv[rn],

• ~v[E] = {t:},&'v[s;r] = ~[s]"Yv(Bv[r]).

We shall show that

Claim.

Bv[e] {
{E}, if e =E ,E , ... ,E

u {a ·Bv[e'] I e! De'}, otherwise.

Once this claim has been established, we are done: By the usual argument, it implies that
<f. D [e] = f!J D [e]; hence, in particular,

O[<D Is>]= f!lv[s;E] = Bv[s;E] = ~[s]"Yv{d = . .H[<D Is>].

The claim is proved by showing that B D satisfies (*): i'(B D) = tf D, where i' is defined, for
each$ D E a'a-t~Q, by

. {{E}, if e=E , ... ,E
'11(:¥ vHe) = a

U {a·:¥ v[e'] I e~ D e'}, otherwise.

We prove (*) by induction on the complexity of e = r 1,. • .,r m, which we define as the entity
<k ,c (e) >, where k ~ 0 is the number of unguarded occurrences of some x j (1 ~j ~ n) in
some ri (l~i~m). Moreover, c(e) is defined as c(r 1)+ ... +c(rm), where c(E)=O,
c(s; r) =c(s) +c (r), and c(a) =c (x) = 1, c(s 1; sz) =c(s 1u sz) = 1+c(s1) +c(s2),

c(new(s))=l+c(s). (We recall here thatx does occur unguarded in, e.g., new(a);x;E.) We
order the entities <k ,c > by putting <k ,c > < <k' ,c' > whenever k <k' or k =k' and c <c' .

Stage 1. We first consider the case that complexity(e) = <0, ... >. If e=r,e' we show that
<I>(tf D)(r ,e ') = B D [r, e '] by an argument similar to that in section 3, stage 1 of the proof of

- 19 -

theorem 3.8. Here we use, in addition, that, if

then complexity(e 1) < complexity(e i). If e = r, we distinguish various subcases. If r = E, the

claim is obvious. If r = s; r' , we argue by case analysis on the structure of s. We discuss two

typical subcases:

a
u {a ·8v[e] I (si;si);r -De}= (def. T3)

a
u {a·8v[e] I s1;(s2;r)-+D e} =

(since c(s 1;(s2;r))<c((s 1;si);r), we may apply the ind. hyp.)

8v[s 1;(s2;r)] = (def. Bv, fl!)

a"v[(s1;s2);r].

~ s =new(s').

<I>(a" D)(new (s); r) =

a
u {a·$ D [e] I (new(s);r - D e} = (def. T3)

a
u {a . $ D [e] I r 's; E - D e} =

(since c(r ,s;E)<c(new(s);r), we may apply the ind. hyp.)

Bv[r ,s;E] = (def. 8v)

8v[r] 118v[s;E] = (def.Bv, @)

(@[s]'Yv{e})llBv[r] =

fl![new(s)]'Yv(Bv[r]) =

$ D [new (s); r] .

Stage k + 1. Assume that (*) holds for any e with at most k unguarded occurrences of some x i .

Now consider a e with k + 1 unguarded occurrences. All cases are as before, but for the case

e=r,r=s;r' ,s=x;, for somexi E Pr. Then

a
LJ {a·8v[e] lg;;r' -+De} (withX;*=gi inD) =

- 20 -

(since g; is guarded, we may apply stage k)

<f. D [g i ; r'] =

tff D [x i; r'] , where the last equality holds by the definition of tJiJ • D

We conclude this section with two

Remarks.

1. It has been shown by IJ.J. Aalbersberg and P. America that the expressive power of II and
of new (...) are incomparable: There exists t 1 E .'ffet~ 1 such that for no t 3 E ~~ 3,

&[t 1] = &[t3], and vice versa.

2. In [AB], process creation is also considered in a nonuniform setting, in the sense of, e.g.,
the language of the next section.

6. Communication with Value Passing

We conclude our list of four specimen languages analyzed with metric tools with a discussion of
a nonuniform language !£ 4 which is best seen as an extension of!£ 2 from section 4. The atomic
actions of !£ 4 are no longer uninterpreted symbols a from some alphabet A , but, instead,
assignments v :=e, for v an individual variable and e an expression, and communication
actions c ?v or c !e . Also, booleans b are introduced appearing as tests in conditional state­
ments. Accordingly, the semantic models now incorporate states, i.e. mappings from individual
variables v to elements a in some set V of values.

We first collect some syntactic preparations. We introduce the set (v E)·~'™"' of indivi­
dual variables and (c E) C of channels. Channel names c appear in the communication actions
c ?v and c !e . Synchronization of two such actions is defined similarly to that of c , c in section
4. In addition, ho,vever, at the moment of successful synchronization the assignment v: =e takes
place. Assuming that c ?v occurs in some component s 1, and c !e in a component s 2 of the
parallel statement s 1 lls2, the current value of e is transmitted by the sender s2 over the channel
c to the receiver s 1, where it is (instantaneously) assigned to the variable v. Furthermore, we
introduce the syntactic classes (e E)fffati of expressions and (b E).q/ool of booleans. For sim­
plicity, we assume some elementary syntax for €."~- and /Boot, and leave this unspecified here.
We only postulate that no complications such as side-effects or nontermination arise in the
evaluation of some e or b .

We now give

Definition 6. 1. Let Pr= {x 1, ••• ,x n } be as before.

a (sEI£4).

- 21 -

s ::=v:=e lc?v lc!e Jx J!fbthens 1 elses2 fl. Js 1;s2 Js 1lls2, withx E 21:

b (g E Pl). g ::= v:=e J c?v J c!e J g;s J !I b then g 1 else g 2 fl. J g 111g2

c. D E 'll!ed 4 , t E ~ 4 are formed from s E fJ! 4 and g E £l! l as usual.

Remark. For simplicity, fJ! 4 has no form of nondeterminism.

Some semantic preparations are contained in

Definition 6.2.

a. (a E) V is the set of values, {tt ,ff) is the set of truth-values.

b. (u E)E = dm.t..-v is the set of states.

c. (11 E)H = EuA, where

(o E)A= { c ?v J c E C, v E dndi.} u { c !a J c E C, a E V}.

d. For e E lttrfi, [e] (a) denotes its value in state a; for b E /!/Joo/, [b] (a) denotes its

truth-value in state a.

Remarks.

1. The reader may always take 71. for V to give some realistic flavour to our considerations.

2. The set H serves technical purposes in the definitions below. For given input a, computa­

tions yield elements 1/ E H as output. These may be distinguished into 'normal' ri E E

and 'abnormal' ri E A, where the latter results from one-sided (and therefore failing)

attempts at synchronization c ?v or c !e .

We proceed with the definition of the transition system T4 . This time, transitions are five­

tuples in P 4 xEX9/Jed4 XP4 xH or four-tuples P4xEx9/J~,t4 xH, written as

<s,u> - 0 <s' ,11>,

<s ,a> - D ri,

respectively. T4 is defined, again applying a self-explanatory style of abbreviating rules, in

Definition 6.3.

<v:=e ,a> - 0 a{a!v}, where a=[e](a) (Ass)

<c?v ,a> - 0 c?v
< 1 >- 1 ,wherea=[e](u) c .e , G D C .a

(Ind Com)

(Cond)

- 22 -

where s; =s 1 (sz) in case [b] (u) =tt (ff)

<s,u> -+D <s' ;q> I 11

- -+<'->I - > <s ;s ,u> D s ;s ,1/ <s ,71

<slls,u> -+v <s'lls,11> I <s,11>
<slls,u> -+v <slls',11> I <s,11>

<s 1,u>-+v <s',c?v>, <sz,u>-+v <s",c!a>
<s 111s2,u> -+D <s' lls",u{alv}>

and the three obvious variations in case s' , s" or both are missing

<g ,u>-+ D <s' ,71 > I 11
, I , with x *" g in D <x ,u>-+ D <s ,71> 1/

(SeqComp)

(ParComp)

(Synch)

(Ree)

Before we define @ [t] and @ D [s] we first introduce the process domain P as solution of

P = {po} U (E-+&'closed(H XP)), (6.1)

with the discrete metric on E and H .

Remark. We leave for another occasion discussion of the equation

P' = {e} U (E-+i1'c10 sed(H ·P')) (6.2)

determining P' as possible 'linear time' alternative for P. This discussion will in particular
have to clarify the role of '· ' versus 'x' in a nonuniform context.

The operational semantics are given in

Definition 6.4 (operational semantics for ~ 4, IR 4).

a. @:~ 4-+P is given by @[<D Is>] = @v[s].

@v[s] = >-.u.({ <u' .@v[s'] >I <s,u> -+D <s' ,a'> }u { <u',p0 > I <s,u> -+Du'});

where the transitions are with respect to T4•

Remark. Just as in definition 4.3, 67 v does not take into account transitions stemming from
failing c~mmunications, signalled here by the format <s ,u>-+ D <s' ,o> I o with o E A.

- 23 -

For P as in (6.1), we can define the usual operators u , 0 , II. We restrict ourselves to the

definition of II, here involving the auxiliary operators 11.. and I.

Definition 6.5. Let P be as in (6.1), and let (X E)11' abbreviate i1'c1osed(H XP). We define

the operator II as fixed point of 4> 11 : (P xP-+P)-+(P xP-+P), where, for <P E P xP-+P and <P

ndi, 4> 11 (<P) =df. ;/> 11 is given by

{

p,ifq=p 0

4'11(p)(q) = q, if p =po

AO". (4'u_(p (u))(q) U 4'u_(q (u)) (p) U 4' 1.0 (p (u))(q (u)))

where 4'u_: /1'xP-+/1' is defined by

4'u_(X)(q) = {<'q,<P(p')(q)> I <11,p' >EX},

and 4' I .a: 11'X 11'-+ 11' is defined by

4' 1.0 (X)(Y) = { <u{a/v },<P(p')(q') > I <c ?v ,p' > E X, <c !a,q' > E Y or vice versa}.

We are now ready for the definition of ,,u [t] and 9/J [t] . Let ('Y E) r 4 = P£-+ P, let

.,U:~ 4-+P and 9/J :.P4 -+(r 4 -+P). We give

Definition 6.6 (denotational semantics for .P 4, ~ 4).

a. .,U[<D Is>]= 9/J[s]'Yv·

b. 'YD is as usual.

c. 9/J[v:=e]"f=Au. {<u{a/v},p0>}, with a=[e](u), @[c?v]"f=Au. {<c?v,p 0>},

9/J [c !e] 'Y =Au. { <c !a,p0>}, with a=[e] (u),

!1J [lf b then s 1 else s 2 .t!] = Au. if [b] (u) = tt then !1J [s 1] "(O" else !1J [s2] "(O" ft, and

!lJ[x]"f, 9/J[s 1op s2]'Y for op E {;,u ,II}, as usual.

One last step is necessary before we can formulate our final result. We define the abstraction

mapping abs : P-+ P ", where P " satisfies

(6.3)

by putting abs= fixed point (if abs), with '1' abs : (P-+ P ")-+(P-+ P ") defined by: For

if; E P-+P ", '1' abs(t/I) =df· ;j; abs is given by

- 24 -

and, for p '4=p 0 ,

~abs(p) = A<J. ~(p(u))

and

~(X) = {<u,1/;(p')> I <u,p' >EX}.

Note that the last clause deletes pairs <o,p' > from X.

We finally have:

Theorem6.7. For each t E ~4, @[t] = (abs 0 .Af)[t].

Proof. By the usual contractivity argument. D

References

[AB] P. America, J.W. de Bakker, Designing equivalent semantic models for process
creation, Report CS-R8732, Centre for Mathematics and Computer Science, Amster­
dam, 1987. Also in Proc. Advanced School on Mathematical Models for the Seman­
tics of Parallelism (M. Venturini Zilli, ed.), LNCS 280, Springer, 1987.

[ABKRI] P. America, J.W. de Bakker, J.N. Kok, J.J.M.M. Rutten, Operational semantics of
a parallel object-oriented language, 13th ACM Symposium on Principles of Pro­
gramming Languages, St. Petersburg, Florida, January 13-15, 1986, pp. 194-208.

[ABKR2] P. America, J.W. de Bakker, J.N. Kok, J.J.M.M. Rutten, Denotational semantics of
a parallel object-oriented language, Report CS-R8626, Centre for Mathematics and
Computer Science, Amsterdam, 1986. To appear in Information and Computation.

[AR] P. America, J.J.M.M. Rutten: Solving reflexive domain equations in a category of
complete metric spaces, Report CS-R8709, Centre for Mathematics and Computer
Science, Amsterdam, the Netherlands, 1987. To appear in Proc. of the Third
Workshop on Mathematical Foundations of Programming Language Semantics.

[AP]
,,

K. Apt & G. Plotkin, Countable Nondeterminism and Random Assignment, JACM
33(4) (1986) 724-767.

- 25 -

[BBKM] J.W. de Bakker, J.A. Bergstra, J.W. Klop, J.-J.Ch. Meyer, Linear time and branch­

ing time semantics for recursion with merge, TCS 34 (1984) 135-156.

[BKMOZ] J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, J.I. Zucker, Contrasting

themes in the semantics of imperative concurrency, in Current Trends in Con­

currency: Overviews and Tutorials (J.W. de Bakker, W.P. de Roever, G. Rozen­

berg, eds.), LNCS 224, Springer (1986) 51-121.

[BM]

[BMO]

J.W. de Bakker, J.-J.Ch. Meyer, Order and metric in the stream semantics of ele­

mental concurrency, Acta Informatica 24 (1987) 491-511.

J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, Infinite streams and finite observa­

tions in the semantics of uniform concurrency, TCS 49 (1987) 87-112.

[BMOZ] J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, J.I. Zucker, Transition systems,

metric spaces and ready sets in the semantics of uniform concurrency, Report CS­

R8601, Centre for Mathematics and Computer Science, Amsterdam, 1986. To

appear in Journal of Comp. Syst. Sci.

[BZl]

[BZ2]

J.W. de Bakker, J.I. Zucker, Processes and the denotational semantics of con­

currency, Inform. and Control 54 (1982) 70-120.

J.W. de Bakker, J.I. Zucker, Processes and a fair semantics for the ADA rendez­

vous, in: Proc. lOth ICALP (J. Diaz ed.), LNCS 154, Springer (1983) 52-66.

[BK] J .A. Bergstra, J. W. Kl op, A convergence theorem in process algebra, Report CS­

R8733, Centre for Mathematics and Computer Science, Amsterdam, 1987.

[Du] J. Dugundji, Topology, Allen and Bacon, Rockleigh, N.J. 1966.

[En] R. Engelking, General topology, Polish Scientific Publishers 1977.

[HP] M. Hennessy, G.D. Plotkin, Full abstraction for a simple parallel programming

language, in: Proceedings 8th MFCS (J. Becvar ed.), LNCS 74 Springer (1979)

108-120.

[Ho] C.A.R. Hoare, Communicating sequential processes, Prentice-Hall Int., Englewood

- 26 -

Cliffs, New Jersey, 1985.

[KR] J.N. Kok, J.J.M.M. Rutten, Contractions in comparing concurrency semantics,
Report CS-R8755, Centre for Mathematics and Computer Science, Amsterdam,
1987.

[M] J.-J.Ch. Meyer, Merging regular processes by means of fixed point theory, TCS 45
(1986) 193-260.

[MO] J.-J.Ch. Meyer, E.-R. Olderog, Hiding in stream semantics of uniform concurrency,
Report IR-125, Free University, Amsterdam, 1987.

[MV] J.-J.Ch. Meyer, E.P. de Vink, Applications of compactness in the Smyth power­
domain of streams, in: Proc. TAPSOFT '87 (H. Ehrig, R. Kowalski, G. Levi, U.
Montanari, eds.), LNCS 249, Springer (1987) 241-255.

[Mi] R. Milner, A calculus for communicating systems, LNCS 92, Springer, 1980,

[Ni] M. Nivat, Infinite words, infinite trees, infinite computations, in: Foundations of
Computer Science IIl.2 (J.W. de Bakker, J. van Leeuwen, eds.), Mathematical Cen­
tre Tracts 109, Amsterdam (1979) 3-52.

[Pll] G.D. Plotkin, A powerdomain construction, SIAM Journal of Computing, Vol.5, No
3 (1976) 452-487.

[Pl2] G.D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19,
Comp.Sci.Dept., Aarhus Univ., 1981.

[Pl3] G.D. Plotkin, An operational semantics for CSP, in: D. Bj0rner (ed.): Formal
description of programming concepts II, North-Holland (1983) 199-223.

