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1
Berry-Esseen bounds of order n * are established for linear combinations of order statistics with
unbounded weight functions. The weight functions are allowed to tend to infinity in neighbourhoods of
zero and one at a logarithmic rate. A finite number of discontinuity ‘points in the weight function is also
permitted, provided a local smoothness condition is imposed on the inverse of the underlying distribution of
the observations. The present report supplements HeLmers and HuskovA (1984), where (part of) Theorem
1, which deals with the case of a continuous unbounded weight function, was presented, together with an
outline of its proof; Theorem 2 is a new result covering the case of a discontinuous unbounded weight
function. The relation with recent work of van ZweT (1984) and FriepricH (1985) is briefly pointed out.

« AMS 1980 Subject Classifications: 60F05, 62E20
Keywords & Phrases: Berry-Esseen bounds, L-statistics, linear combinations of order statistics, unbounded
discontinuous weight functions.
Note: This paper is an extended version of R. Helmers and M. HuSkova: A Berry-Esseen bound for L-
statistics with unbounded weight functions, Proceedings of the Third Prague Symposium on Asymptotic
Statistics (1984), 93-101, (ed. P. Mand!, M. Huskova).

1. INTRODUCTION AND RESULTS

Let X, X», ..., X,, be independent random variables (r.v.) with common distribution function (df) F
and let X, < ‘- <X,,, be the corresponding order statistics. Let J be a fixed real-valued weight
function on (0,1). We consider L-statistics (or linear combinations of order statistics)

Tn = n—l zcin)(i:n (11)
i=1

where the weights ¢;, are of either one of the following forms:

J(s)ds, i=1, .., n (1.2)

Cn = R
i

P~

X

or

Cw =J i=1, .. n (1.3)

Let
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F(x) = P(T,<x) for —oo<x<o0 ' (1.4

where

T, = (T,—E(T))/ o(T,). (1.5)

In the past decade there has been considerable interest into the asymptotic distribution theory for
L-statistics. It is well-known that T}, is asymptotically normally distributed under quite general condi-
tions. A survey of such results was given by SERFLING (1980). We also refer to a recent paper of
Mason (1981), which contains the best result so far obtained in this area.

More recently attention has been paid to the problem of establishing Berry-Esseen bounds for L-
statistics. We mention the work of BIERVE (1977), HeLMERs (1977, 1981, 1982), SERFLING (1980) and
VAN ZWwET (1984). These authors obtained Berry-Esseen bounds for L-statistics for the case of
bounded weights. The purpose of this paper is to derive Berry-Esseen bounds for L-statistics with
unbounded weight functions. Let ® denote the standard normal df and define F 1 by

F7(s) = inf(x: F(x)=s} for 0<s<l.

NI-

In our results- stated in the form of two theorems- we establish Berry-Esseen bounds of order n
for statistics of the form (1.1). Our first result reads as follows

THEOREM 1. Suppose these exist numbers 80, €>0 and K>0 such that
(1) the function J satisfies a Lipschitz condition of order 1 on [e,1—¢], whereas on neighbourhoods (0,€)
and (1—¢,1) of zero and one J is twice differentiable with second derivative J", satisfying

V7)) < Kls(1—5)]> (1.6)
(1) the inverse F~! satisfies

[F~1(s)| <K[S(1~s)]—%+8 for 0<s<I 1.7

P15y~ F-1(s)] < Klsi—sal - [a(1=s1) + +Ga=s) + ] (18)
for 0<sy, s,<e and 1—e<sy, 5,<1. Then a*(J, F)>0 where

U F) = | [IECONE@)EFin(xp)—Fe)F()dxdy (19)
implies that T

sup| ()~ ()| = 00 ?) as noo (1.10)

whenever either (1.2) or (1.3) is satisfied.

Theorem 1 allows weight functions J tending to infinity in the neighbourhood of 0 and 1 at a loga-
rithmic rate. An example is provided by the weight function ®~!, the normal quantile function. Then
T, is an asymptotically efficient L-estimator of normal scale.

We should perhaps also note that it is easily checked that in fact (1.8) implies (1.7). However, the
stronger assumption (1.8) is only needed in the treatment of certain terms appearing in the proof of
the Lemma’s 2.2 and 2.4, whereas assumption (1.7) seems to be a crucial requirement to make whole
proof of Theorem 1 work. For these reasons we preferred to state Theorem 1 in its present form.
Note that assumption (1.7) is satisfied if E|X;|"<<oo, for some r>4.

Our second theorem is a modification of Theorem 1 in which we allow points of discontinuity in
the weight function J. The price for this is a local smoothness condition on F -1

THEOREM 2. Suppose that there exist numbers 8>0, €>0, K>0, n>>0 and a positive integer  such that

&
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(iii) the function J possesses a finite number of jumps at s, ..., s, €(0,1) and otherwise satisfies assump-
tion (I)
(iv) the inverse F~! satisfies assumption (II) and, in addition,

[F~ Y w)—F ()| < K|u—v| (1.11)
for all uyy e(s;—n,s;+n) fori =1,2, ..., k. Then o>(J,F)>0, with 6*(J,F) as in (1.9), implies that

1

sup|Fr(x)—®(x)| = O(n ), as n—oo (1.12)
whenever either (1.2) on (1.3) is satisfied.

QOur method of proof resembles those of vAN ZwWET (1977) and DoEs (1982) as these authors also
combine smoothing techniques with appropriate conditioning arguments. We note that Theorem 1
for the case that the weights are of the form (1.2) also occurs in HELMERS and HUSKOVA (1984),
together with an outline of its proof. The omitted details are to be found in section 2 of the present
report.

After Theorem 1 was obtained the Ph.D. thesis of K.O. FRIEDRICH (Freiburg) appeared. In his
thesis FRIEDRICH obtained a slightly better result, then the one given in Theorem 1. On the other
hand, Theorem 2 cannot be deduced from Friedrich’s result, as he does not allow discontinuity points
in the score function generating the weights. v

We conclude this section by remarking that a different possible way of arriving at our results would
have been the verification of the assumptions of Theorem 1.1 of VAN ZWET (1984) for our case; more
specifically, any set of assumptions implying the two requirements mentioned on page 438 of VAN

ZwET (1984) would entail a Berry-Esseen bound of order n " for L-statistics. In fact, FRIEDRICH’S
(1985) approach resembles this latter method, as he verifies the assumptions of his Berry-Esseen
theorem for arbitrary statistics, which is an extension of VAN ZWET’s (1984) Theorem 1.1.

2. PROOF OF THEOREM 1
We begin by collecting a few preliminary results which we shall need in our proofs. Also we intro-
duce some more notation which will be used throughout this paper.

Define a function r on (0,1) by

r@w) = [u(l—uw)]™! for O<u<l. 2.1

Application of Lemma A2.3 of ALBERS, BICKEL and vAN ZWET (1976) easily yields for any integers
lsm<n

n_ %
) ) @2)

for any a>0. In addition one can directly generalize (2.2) to the following bound:

m.. __ -5
EIUm:n_‘T' = O(n 2(’(

EUpn =2V = 00 2022 2 () @3

for any a>0, BeR, and any —f<m=<n.
The quantity ¢*(J, F) (cf. (1.9)) given by

FUF) = [ [JFEIF@)) F(min(x,p))— Fx)F(y))dxdy 24

—0C0 o0

€
is the asymptotic variance of n * T,,; it follows directly from Theorem 1 of MasoN (1981) that
lim no*(T,) = o*(J,F) .5)
n—oo
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with T, as in (1.1), under the present set of assumptions, in the case that (1.3) is satisfied. The same
result for the case that (1.2) holds then follows directly from the relation (2.80) given in the final part
of this section.

Let, for n=1, (Uy.,, ..., U,.,) denote the order statistics corresponding to a sample of size n from
the uniform distribution on (0,1). For any integer 1s<m<[7en)], let V=V 1p—-1, -, Vu—1m-1)
Z=(Zn—2m» > Zn—2mm—2m) ad W=(Wy.,_1, .., Wp_1.m—1) be vectors of order statistics
corresponding to samples of sizes m —1, n —2m, and m —1 from the uniform distribution on (0,1)
and let V, Z, and W, U,., and U,_, +.., be independent. Then the joint distribution of
(Ut.ns -o» Uy,.y) is the same as that of

Um:nVltm—l, weey Um:an—l:m——la Um:m(Un—m+l:n_Um:n)Zl:n-2m+ (26)
Um:n, eey (Un——m +1:n_Um:n)Zn —2m:n——2m+Um:m Un—m—i—l:m

(I_Un —m+l:n)W1:m—l +Un —~m+1ins = (I_Un——m +1:n)Wm—-1:m—l +Un—m+l:n-

Since the joint distribution of X;.,, i =1,...,n is the same as that of F “Y(U;.,), i =1,...,n it follows
directly from (2.1) that the distribution of T, (cf. (1.1)) can be identified with that of

Tln(Um:n)+cmnF_l(Um:n)+TZn(Um:m (]n—m+1:n)+cn—-m'!—lnF_l((jn—m+1:n)+ (27)
T3n(Un —m+1:n)

where
m—1 - R ‘
Tln(Um:n) = 2 CinF (Vi:m—l Um:n) (28)
i=1
n—2m -
TZn(Um:na Un -—m+1:n) = 2 C,-,,F (Zi:n‘2m(Un —m+1:n_Um:n)+Um:n) (29)
i=1
and
m—1
T3n(Un —-m+1:n) = 2 cinF—l(vVi:m—l(l”_Un—-m+l:n)+Un-m+l:n)- (210)

i=1
Clearly, the r.v.’s T1,(Un:n)s T2n(Umins Un—m +1:n) a0d T3,(U, _ s +1:0) are conditionally independent,

conditionally given U,,.,=u and U, _, +1., =v for any 0<<u<<v<1. This fact will be crucial in what

follows.
n—m

Define, for %<s< , the function ¢, by

n—m n—m n—m

W) = [ JOMy — ——— [ JoHdy " @.11)

and note that

de

Let T, _5, denote the empirical df based on Z,, ..., Z,_op; ie. [, 2u(s)=(n —2m)~ I n T am
Io5(Z;) for 0<s<1, where Z\, ..., Z, -, are independent uniform (0,1) r.v.’s corresponding to the
order statistics Z ., —am, s Zn—2m:m—2m- Here and elsewhere I,(-) denotes the indicator of a set 4.
For any r.v. X, with 0<6(X)< o0, we write X for X —EX and X" for (X —EX)/o(X).

We shall now first prove (1.10) for the case that the weights are of the form (1.2). Similarly as in HEL-

MERS (1981, 1982) we begin by writing

&




n—2m

—'f— + T —2m(8)|dF " (Upn.n) (2.12)

1
T2n(Um:m Un—m+l:n) = /‘Pn
0

n—m
n—2m n
+n—2m)"" B F ' (UpintUn-mt1:n=Una)Z) [ T)dy.
i=1 m
To proceed we note that, as J is Lipschitz of order 1 on [¢,1—¢] (cf. assumption (I)), we can approxi-
mate T', from above and below for sufficiently large n by r.v.’s T,,, and T, defined by

1
TZni(Um:m Un—m+1:n) = f{‘l’n [%1' +_'_1_n_2"_1_s + (2.13)
0

n—2m
n

-1 n—2m
n

2
T —2m(8) =8P I 1 1-g(s) +

(T —2m(S) =5, % + i’—fr—lz—’i’-s] +2717,

n—2m
n

2
wlm |, n—2m
T —2m(S) =5V [—n_ + e Tggua—en@s)+

"

61 n—2m 3I‘ 3
B2 (Tam() =57

m , n—2m
Z 4 228 s +(1-NT, _z,n(s))] :

: I(O,-—;—)U(l——;—.l)(s)}dF_l(Um n +(Un —m+1lin" Um:n)s)+
n—m

n—2m n
(n —-2m)_' 2 F_I(Um:n+(Un—m+1:n—Um:n)Zi) f J(y)dy
i=1 m

n

where L is the Lipschitz constant and A a random point in [0, 1]; i.e.

T2n—(Um:m Un—m+1:n) = TZn(Um:m Un—m+1:n) = T2n+(Um:m Un “m +1:n)- (2-14)
Define (cf. (2.7))
Thx = T+ ToneWUnins Up—m+1:a) = T2a(Unmins Up—m+1:0)- (2.15)

In the following lemma we relate 7, with T, and T,_ (cf. HeLMERs (1981); (1982) for a similar
approach).
LemMA 2.1. If the assumptions of Theorem 1 are satisfied, then

P(T,<x) < P(T, - <xX,4) (2.16)
and

P(T,<x) = P(Tp+ <x,_) 2.17)

for appropriate sequences x, 1, n=1,2,... and x,, _, n =1,2,... satisfying
1

Xpe = x(1+0(n °';"))+0(n_ 2) (2.18)

uniformly. in x.

ProoF. The relation (2.7) and (2.15) together imply
' ‘ oT,-)  ET,-—T,)

P(T,<x) < P(T,_ <x) (2.19)

o(T,) o(T,)
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and, similarly,

o(T,+) + E(T,+—T,)
o(T,) o(T,)

for —oo<x<<oo. It is immediate from (2.9) and (2.15) and assumption (I) that

P(T,<x) = P(T,+

<x) (2.20)

Ty —To| = |Tnee — T2a| = O f @ —an )= 5P AF Uon + Uy 1= U} @21)
and a simple calculation shows that
E|T,+—T,| = O0(n™") ' | 222
and
A(Tye—T,) < ETyu—T,F = 0™, 2.23)
Application of (2.23) and the elementary inequality
o(Tp =) —o(T,)| = o(Tpx—T)

directly yields
"i(TTi)) =140 ™), ——————E(];(“—;,—) ) 0™ e
Together all these results implies the desired statements. [
In view of Lemma 2.1 it obviously suffices to show
sup |P(Th. <0)—0(0)| = O 7) 225)
in stead of (1.10). To prove (2.25) we show that for some sufficiently small y>0
J [ epe()—e ™ |dt = O(n ) (2.26)
lt|<n

_1
[ 1t e @lde = 0@ *) Q.27
n<|t|<yn ?
where p, .. denotes the characteristic function (ch.f.) of T,... An application of Esseen’s smoothing
lemma (see, e.g., FELLER (1971), p. 538) will then complete the proof of (2.25).
We first prove (2.26). To start with we note that (2.7)-(2.10) and the remark following (2.10)
directly yields

pn=(t) = ElOT, 0,00 9T, .ty U )DL, (0, ) (2.28)
+ exp(it6, 2 (ETy | Un:ns Un—m+1:0) = ET2))]

where 02.. =0*(T, +), and, for any r.v. X with E | X |<oco,
¢x(t) = E(exp(ito, (X —EX | Up:ns Un—m+1:000)|Unmins Un—m +1:n)- (2.29)

Note that the expression within square brackets in (2.28) is precisely equal to the conditional ch.f. of
T, ., where the conditioning is on U,,.,, and U, —,, +1.,- The expectation operator E in (2.28) refers
to the expected value taken w.r.t. (Um s Up—m+1:n)

We continue with the analysis of p,.(s). In the next lemma we derive asymptotlc approxnnatlons
for the first and third factor within square brackets in (2.28); i.e. for qbrh(u)(t) and ¢T3"(v)(t) for

I3
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0<u<e and 1—e<v<<l. The choice of m will be specified later, but is any case m =m(n)—oo as
n—>00.

LEMMA 2.2. If the assumptions of Theorem I are satisfied, then for any real t and 0<u<e
3

L _3
|¢;-h(,,,(t)—1+%zzu;;az(7’l,,(u)),| = O(n *(logn)’|t|u 4+38m2) (2.30)
and

_1
P(T1n(w) = O(n~*(lognPu > m) @31)
as m, n—oo. The relation (2.30) and (2.31) remain valid if we replace T1,(u) by T3,(v) and u by 1—v.

ProoF. It suffices to deal with .
E |T1,(u)—ET,(u)]. (2.32)
By Jensen’s inequality we obtain

L

m—1 1
E|T1,(u)— ET1,(w) > < (ZII [ J()ds | (E |F ™' (Vjm 1) —EF ' (V. —1))) * ). (2.33)
=t

n

In view of assumption (1.8) there exist constants B, and Bj such that for 0<u<e

E(F ™' Vjum 1)~ EF ' (Vyim ) < @34)
BuE(Vym—1 — LY 0 (W) 477570 (Lw)) < Bl m 2Ly

for 5<\j<m. For j<S$5 we easily obtain the following bound:

EF ' (Vim-10)=EF ' (Vjm-1))* < (235)
1
- - m! j— m—ij— L - —
B,u 1+46fy 1448 (,_l)'(m_—l_.])' y_] l(l_y) j l‘b’ <Bu l+48ml 45
H ! !

for some constants B, and B;. Together these three inequalities yield

3 _3 —24+3, -3
E|T\,(u)—ET,@) = O(n>log*nu (m + (2.36)
235 m_1 +8

m (21_%”)3) = O(ogn)’u * m*n73).
j=5

™
N‘u

The assertion (2.30) now follows from (2.36), (2.5), and an appropriate three term Taylor expansion
for qb}h(u)(t). The second statement of the lemma (2.31) follows directly from (2.30) and a simple
moment inequality. [

We also need an asymptotic approximation for ¢r, _,,) for 0<u<e, 1—e<v<1. Note that the r.v.

Sp(u,v) appearing is the following lemma corresponds to the leading term in the stochastic expansion
(2.13), conditional on U,,.,=u and U, - ,p +1.n=V.

L
LemMmA 2.3. If the assumptions of Thecrem 1 are satisfied, then for any |t|<yn’® and 0<u<e,
I—e<v<l1
_2
2

b7, - uny(®)—exp(— 51207 20X Suw )| = O ((F )2 +(F " v))n

-(-'nﬁ)" + 237




It PYexp(— 3 120, 202(S, () +

.
z

n U E T )P +HF T ))+n m_%|t|( [F~'w) |+ F 1)

where

1
[T |2 B (€, ) =)t —uk) (238)

0

Sa(uy) = — [%

PROOF. The proof of this lemma is a highly technical matter. In view of (2.13) and (2.29) we may
write

4); ( )(t) — Eeito,,_;i'z,,:(u,v) — Eeito,,—;{S,(u,v)+é,,(u,v)+1§,,(u,v)} (2 39)
2w U,V . .
where (cf. (2.38))
1
Sy(uy) = — [”—_;2—”—’-] [ —”’1’—+ﬁ—nz—ms] (T —3(5) —$)AF " (u + (v —1)s) (2.40)
0
and
....2 2 i
O,(uy) = +27'L -"——;—ﬂ} f(I‘,,_M(s)*s)ZI[%,,_%]dF_l(u+(v —ws)+  (24))
] .
—om "} —2
=27 [u} [@—am(s)—s)T 7 |22 + 2 mS]I(o,i)u(l—i,l)(s)dF_l(u+(V—u)s)
n 0 n 2 2
and
R,(uy) = —67! [i’—;—’!’-] . (2.42)

l —
[T ans) =PI+ B2 (1 =N 2D 0 Sy 6™ 0 —u)s)
0

for 0<u<e and 1 —e<v<l.
A simple Taylor expansion argument yields
retun(® = Be" 5“1 1itorL 0, v} + 243)
+0(20;20%(Q,(u )+ |tloy L E |Ry(u:v) )

for any real «. Since S,(u,v) is a sum of ii.d. r.v.’s with zero means and Q,(u,v) is a von-Mises func-
tional of degree 2 one easily obtains:

* - t

(@) = pi ¥ | ————— | 4 2.44
PT, (4 )( ) Y [(n Z2m)o, + ] ( )
g —2m— 4 ito, Lh(Z,Yn —2m)"" ~
ito; L (n —2m)p} =2 l[(n—2m)o,,i "=t gz +

Eiw:;o: ~2m)”" {h,(z,)+ho(z22)}

1 _ oy Nt —2m—=2 |t
itop, . (n —2m)(n —2m —1)p} [(n—Zm)o,,i

8(Z1,Z2)+ 0(t? 0,2 %(Q,(w,v)) + ton L E|R,(u,v) ).
Here p,, denotes the ch.f. of h,(Z,), i.e. of

&




n

_2 1
h(Z)) = — [” - ]fJ
: 0

= +li'nl’!‘-s] X0,5/(Z1)—35)dF ~} (u+( —u)s) (2.45)
whereas the function g,, appearing in (2.44), is given by
1
gn(Zi,Zp) = £Ln7? [(x0,5) (Z)) = $)Xio)(Z) — Mo 1-a()AF " (u+ (v —uw)s)+  (2.46)
0

n—2m

2 1
1
(n —2m)? Of d [!g— + S} X,(Z)—5)

K05 Z) =) 0.9u-e1y$)AF ~u+@ —u)s), for 1<i,j<2.

n—2m
n

—2-1

L
To proceed we remark that Lemma 1 of PETROV (1975), page- 109, directly yields for any |t|<yn

| 2 [7;1727177)7: ] —exp(—%tza;;az(s,,(u,v))) = .47

= O(n_—;—]t|3exp(—-jlt‘tzo,,_éoz(s,,(u,v))).

Here we have used the fact that E|h,(Z,)|® is bounded, and Eh*(Z,) is bounded away from zero,
uniformly for 0<<u,v<<1; by the assumptions of Theorem 1. Secondly we note that

n—om-1 | ___ bt
(n —2m)o, +

litoyL(n —2m)p? R XA E (2.48)

0|t20; 2 Elh(Z 1)gn(Z1,Z1) lexp(— 5 1207 204 (Su(u,)))

and, similarly, also that

|itont(n —2m)(n —2m —1)pp ~2m 2

b |t EDAE) (9 49)
(n — 2"1)on *

&(Z1,Z))| = O(Itl30n_§Elhn(Zl)hn(Zz)gn(Zl,Zz)leXp(—%tzoia_z—oz(sn(uﬂ)))(ltlsn_T+1)

A simple computation using the assumptions of Theorem 1 and Holder’s inequality yields

r [L"- +h—2m y] : (2.50)

n n

n—2m
—_—

11
Elh(Z1)gn(Z1,Z1)| = O ™2 [ [r® p
00

24
n

*Elx0,5(Z 1)~ lx(o,y)(Zx)—ylzdF"(ﬁ +( —q)s)dF"'(u +(v —u)y)=
O(n ‘2(—'3—)'*((F“ L)) + (F~'())?), for some 80

and uniformly in 0<<u,v<C1, and, quite similarly,

111
Eh(Zhn(Z2)gn(Z1,Z2)| = O ™2 [ [ [ p
000

1:— yAz2m s] @2.51)

_r_rz_+n—2m
n n

_;_11+n—*2m
n n

r&

w|E|x©,5(Z1)— 5|

Xon(Z2) )| [X0w)(Z1)—w| Xom)(Z2)—w|-
dF ~Wu +@ —u)s)dF ~Y(u +@ —up)dF ' +@ —uw)) = O(n~2),
uniformly in 0<<u,vy<<1. We can also easily deduce from (2.5) and (2.23) that

&
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1

ok = 0" )
which together with the relations (2.44), (2.47)-(2.51) yields the first order bound on the r.hs. of
2.37.
It remains to consider the terms involving 6*(Q,(u,v)) on E |R,(#,v)| on the r.h.s. of (2.43), to estab-
lish the corresponding order bounds for these quantities. Because of (2.41) we directly see that

1-¢€
F(Qn(wv)) = O@{ [ Tn—2m(s)—5)dF ™ (u +(v —u)s)} + (2.52)

€ 1
([ + [ HTu2m(&)=5PT aF ™!+ —u)s)))
0 I—e

_r_n_+n—2ms
n

It is easily checked that

I—e
([ Tu—2m(s) =5V dF ™'+ —u)s)) = (2.53)

€

l_
0 ™*( [ s(1—s)dF ~'(u+@ —u)s))) = O(n~?)
uniformly for 0<<u,v <1, whereas

o%( j(r —om($)—)*T’ dF " Y(u 4+ —u)s)) =
0

_r_n_+n—2ms
n

o( [ n~ls(1—s)r % +”—_nﬂs dF ™Y u + —w)s)2 =0n "2(F @) +(F ' ))).
0

Together these last three results yields that
H(Qu(w¥)) = O(n X(F ™' @) +(F' ),
the desired result. To complete our proof of Lemma 2.3 we have to show that
R
ER,uv)| = O~ 'm *(|F~'@)|+|F ') (2:54)

To establish (2.54) we combine the following inequalities; for some constant B>0

T, —om(s)—s]> < B[(n -—2m)—:—(s(l —s))% +(n —Zm)%(s(l —s))%](n —2m)~3 (2.55)

E

7 % +%'Z'—(As +(1 =N, _om(s))| < B{r? [-—"';'- +£_:’12L"_S + (2.56)
2|lm | n—2m

e + Ly —om(s)|}

together with a probability bound of Lar (1975), page 827: for every a€(0,1) and a>0 there exists
A>0 such that
l—a

P( L _a)r,, —om(s)/s<a) = O(exp(—An 2% )). 2.57)
sen ,1—n
After some computations, using (2.55)-(2.57) we find that

ﬁ+n—2ms
n

+ (2.58)
n

1
E|R,(u,v)| = O(E f[I‘,,_zm(s)-—sP{rz
0
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” [";’,'- FEEEE | 6 ) =

—-a

n 1 -2
OE( [ + [ )I|Ts-zmls)—s {%
0 1-n""

dF " Y(u + (@ —u)s)+

- :
m  n—2 m , n—2
E( ,,‘—/« Ty —2m(s)—s? {r? " +—n—ms +r? ——+-—n—mI‘

n ~2m(8) } )

AI{Ty - om(s)/ s>a} +I{T, _ym(s)/s<a} YdF "'(u + @ —u)s))=
O(n~m 7 ( [F= @)+ |F~ @) |
which proves (2.54). This completes the proof of the lemma. [
To deal with the fourth factor within square brackets in (2.28) it w111 be convenient to have
LemmMa 2.4. If the assumptions of Theorem 1 are satisfied, then
E|E(T, +|Un:n> Un-m+1) = ETux - L00Unmin) - y(Un = m +1:0)= (2.59)

m

3 %+38
o(n * [—’-{-] (logn)®).

PROOF. In view of (2.7) - (2.10) and (2.15), and the assumptions (I) and (II) it suffices clearly to esti-
mate the following four quantities:

L
m—1 n
Mnl = EI 2 f J(Y)dyl(E(le(Uj:n)|Um:n)—EF_l(l]j:n) |3I(0,¢)(Um:n) (260)
j=s -1
1—e¢
M,; = El f (s(1—s))n "zm)_ldF_l(Um:n+(Un—m+1:n_Um:n)s)- (2.61)
EF—l(Um:n+(Un —m+l:n_Um:n)s) |3I(0,¢)(Um:n)I(l—c,])(Un-—m+l:n)
M,; = E| Ojs(l—s)(n —2m)~lJ’ {-’;i +—”—_nzl"—s, - (2.62)

: dF_l(Um:n+(Un——m+l:n—Um:n)s)_EF‘l(Um:n+(Un—m+l:n—Um:n)S)PI(O,c)(Um:n)

and
1
Mn4 = E|f(F—](Um:n+(Un—m+l:n—Um:n)s)_ (2-63)
0

EF_I(Um n +(Un —m+1ln ™ Um :,,)S))dS‘ |3I(O,<)(Um :n)I(l -¢,l)(Un -m +l:n)~
. To begin with the treatment of M, we note that

|EE ™ U) Unin)=F ™" | L Upin | 0,0(Unin) < (2.64)

S5
4

i 25 ]
I(Ele:m——l_';%ll]mmr4 (Um:n)(r (Vj:m—l)+

-1 2.5
Yy=0m *r*
m

5 .
ST L

. %—8
—,f,-] Unint * " (Unn)
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uniformly for S5<j<m —1.
Quite similarly, we obtain also that

. . i 5 . 3
-1, |t | = ol L, Ly m :
|EF (m Un:n)—F n+1 | O[mr (m)r [n-i-l (2.65)
and
. 1 3 .
“1\_J _\_pr-1.q7 — =7 @98 J
‘F n-+1 EF (U]:")l o “r {n-i—l )
uniformly for 5<j<<m —1. Combining these results, with the fact that uniformly for 1<;<m
Yy ] g y ]
EF "' Uyd(Up>7) = 0™ | 2.66)
we arrive at
3 m %+38
M, =0@n * [-;,—] (logn)?). (2.67)

We note that (2.66) is easily inferred from Lemma A.2.1 of ALBERS, BICKEL and VAN ZWET (1976),
together with an application of assumption (II) and Holder’s inequality.
We next turn to M, ;. An elementary calculation shows that

_ | T | -
M,; = 0('(’1—__'2_"_1;5-E |(')/.|F 1(Um:n F(Up-m+1:0— Un:n)$)— (2.68)
F! %1‘ +L’l—n_2n‘ls] 'r L:— + n—2m § dslsl(o,c)(Um:n)I(l—e,l)(Un —m+1:n)

Since, for 0<<s<<¢, r(s)<<Cs ! for some constant C>0 and by applying assumption (II) we arrive at

_ 1 m n—m, r 79
My, = 0((n _2m)3E|(lUm:n—7|+IUn—m+1:n——n—|)0f(r

5

S5
r' (Um:n+(Un—m+1:n~Um:n)s)r

ﬂ+n—2m
n

5

+ (2.69)

_r_rl+n—2m
n

S] ds I 0,0 Unm:n) (1-e1y(Up —m +1:0)) =

-2+
- 4
OCE [(|Upin = | +] Up—m 410~ IX [—’,’}} +

n
-2+35 _3
m 2
n °)

n

L5 -1
7 m
Um ::1 [—n_] )|3I(O,e)(Um :n)I(l—e,l)(Un —m+1:n)) = 0(

The term M, ; can be treated in a completely similar way. Finally we consider M, 4. A simple compu-
tation now yields

_n—m+1

= _.m
Mn4 O(E(lUm:n n+1 l+|Un-—m+l:n n+1

|)SI(0,e)(Um :n)I(l —e¢1) (270)
1 55
2
(Un—m—H:n)(f(r (Um:n+(Un——m+1:n_Um:n)S)+
0
m —2—+38 _3
Wl o

Together all these results directly imply (2.59) and the lemma is proved. [J

5
Lo m

n

+£——_;;2ﬂs] ds))=0(

&
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We are now in a position to complete the proof of (2.26). Take m= [n . Application of an
exponential bound for uniform order statistics (see, e.g., Lemma A2.1 of ALBERS, BICKEL and VAN
ZwET (1976)) yields

[ 187 e = @)~ Ee"T*IM(Um M (1-yUn —m + 1) |dt = O(n

[tj<n”
Using (2.28), (2.54) and the Lemma’s 2.2, 2.3 and 2.4 we find after some elementary computations for
all |¢|<n” and for some sufficiently small y>0

L
2

) @.71)

12

itT, . 1
|Ee™™ LooUnnla-c(Un-mn) e s @12)
lE[(l ——t O, 262(Tln(Um n)lUm n))(l'———tzo;-'z-(Tiin(Un —m +l:n) |Un -—m-H:n))
(CXP(_TtZ ZUZ(S (U ns ~—m+ln)))'Um s n-—m+1:n)

(1 +it(E(T:i |Um ns Un —m +l:n)_—ft2(E(T:i lUm s Un —m +l:n))2)1(0,c)(

N 2 1 1

_..L,Z L ~L1s
U 1=ty Up—ms1m)l—e > |+0@ 2 (@2+tPle * +0( * ).

Combining now (2.54), (2.51), (2.72) we arrive at (2.26) after some calculations involving condi-
tional moments. We note that we have used here the well-known fact that

it = E{0(T1x(Un:n) [Unin) + (T2 (Unmins Un—m+1:0)|Umims Unmmsi)+ - 273)
(T30 (Un —m +1:0) |Un —m +1:0)} T EE Ty 2| Upnins Uy~ +1:0)— ET, )%
Also we employ the easily verified inequality
[0(T 20 £ (Unn:ns Up—m +1:0) | Unm:ns Un—m+1:0)— @274
0(S2(Unm:ns Un—m+1:0) | Un:ns Un—m+1:0) P < P (T2nWUmins Un—m+1:0)—
SaUm:n> Un—m+1:0) | Unm:ns Un—m+1:n) 205(Qu(Umins Up—m+1:0) |Un —m +1:0) +
26°(Ra(Un:ns Uy —m+1:n) Umins Un—m +1:n)

with @, and R, as in (2.41) and (2.4.2). The first term on the r.h.s. of (2.74) is estimated in (2.52) and
(2.53). A similar bound for the second term on the r.hs. of (2.74), ie., for o*(R,(4,v)), is easily
obtained by an argument like (2.58). Here we write

o*(R, (u v)) < ER%(u,v) = 2.75)

O(E( f]I‘,,_z,,,(s)—sP]J” 2+ 2 2’” 2 As +(A=NT, g (s)| [dF N+ —u)s))?) =
’ 0

-2

n"* 1
OE( [+ [ )Ta-zm®)—sP [% dF~'(u +(@ —u)s))* +
0 1—n""

1—n

EC [ [Taosm(s)—sPr? [ﬂ+ﬁ—“—2—’—’-‘-de“<u+<v—u)s»2>=
e n n

-2 -1

((F'@P+FE @) +n 2 | = | FETI@P+ETIE)) =

O(n32 z
n

O *m ™ ((F~ ') +(F ')
provided we take ac(0,1) (cf. (2.57)) sufficiently large.
Next we prove (2.27). Take m= [l'en] Using (2.28) once more we find for all |t|<-yn

&
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lpzi(t)i < E$7,.(U.... Upni)®} | (2.76)

Clearly T, (u,v) (cf. (2.13)) is the sum of a non-degenerate U-statistic of degree 2-which is precisely
equal to S,(u,v)+Q,(u,v), with a kernel, which is bounded by C(|F~ W+ |F ') for some con-
stant C >0, and a remainder term - which is the third order term in (2.13) - satisfying

ER,(uv)| = O(n *(|F~ )|+ |[F~'0)). v X i)

This latter order bound is immediate from (2.58), this time with the choice m =[%en].

We now follow the argument given on page 505 of HELMERS and VAN ZWET (1982), (cf their rela-
tion (3.10)), together with the elementary estimate

w’;},:(u,v)l - IEe”o"‘Th*(u V) | < lE tto,,+(S (u,v)+Q,(u, v»"HtIo 1E IR (u V)l (278)
to find that for some sufficiently small y>0
[ 7 ene®lde < [ [T'Elbr, . @ d < (2.79)
n~'<|t|<'ynT n’<‘l|<ynT

j’ ‘tl-l(E lellﬂ.*(s.(“m AT b o ¢ X ¢ U-m+:..))+
n <|t|<7n
a2
’ 0n+Ean(Um ns n —m-+1: ,,)I—O(n 2 E”F 1((]m n)|3+lF ](U -m+L n)l +
|F 1((Jm:n)lp"— IF 1(l]n---m+1:n)|P+i‘F 1(Um:n)]_*—lF 1(Un -—m+1:n)”
for some constant >i. Since E|F~Y(U,..)|, for r=1,p and 3, are O(1), with m=[-l—en], we have
P73 P 4
proved (2.27). This completes the proof of Theorem 1 for the case that the weights are of the form
(1.2).

It remains to establish (1.10) for the case that the weights of the form (1.3), i.e., the weights are given
_ i
by Cin =J ( n+

1) for i =1,2,..,n, n=1. The basic new result we shall need is the following order

bound:
7! S (n j I =T | —— %) = 0~ 2 (logny?). (2.80)
=t i-1
To prove this is suffices to estimate
On = 02(2( fJ(S)df——J )F~'(U,.0)) (2.81)
=2 p—
[n(1 =€) -:_
Q2 = (X ( fJ(S)dY—‘-J )F~'(Uy0)) (2.82)
v=[ne] y—1

n
and
V

Q3 = 0%( 2 (fJ(s)ds-——J

v=n —[ne] -1

YF~Y(U,.0)) (2.83)

&

n
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where €0 as in Theorem 1
It follows directly from assumption (II) that

] 3
WU ) < ~“17. y—F-1 v 2 . -1,2" v
PEUpa) < EE Upn)=F =2 |F = 0717 |2y 2:84)
Moreover, with the aid of assumption (I), we obtain
p 1 2 ‘ 3,2
]v!l (S)dS‘—'—J +1 | = O(m~*r —1 +n n+1 ) v (2.85)

n

for ¥<ne or v=n(1—¢), whereas the r.h.s. of (2.85) becomes O(n2) for ne<v<n(1—¢). These last
two bounds directly imply that

Q) = 0 T ), @HQus) = O T D)

It follows directly from the argument given on page 35 of HELMERs (1982) that 62(Q,,)=O0(n 3), as
n—>co0. Together these order bounds for ¢*(Q,;) for i =1,2,3, imply (2.80) and the proof of Theorem
1 is complete. O

3. PROOF OF THEOREM 2.

The proof of Theorem 2 is a slight modification of the proof of Theorem 1. Without loss of ‘generality
we shall assume that there exists only one discontinuity, i.e., the function J possesses exactly one
jump at the point s, in the interval (0,1). Also we shall only give the proof of Theorem 2 for the case
that the weights are of the form (1.2): i.e,,

i

n
Cp =N f J(s)ds
izt

n
for i=1,2,..,n, n=1. The other case, when the weights are generated by (1.3),can be treated quite.
similarly to the argument given at the end of Section 2.

We give the modifications which are needed to carry the proof of Theorem 1 over to our present

more general situation. Our new proof will require an additional conditioning argument. To begin
with we consider the basic decomposition (2.7) and rewrite T5,(Upn.n» Uy —m +1:n) as follows:

m,
TZn(Um:m Un—-m+l:n) = Sln(Um:m Uml:n)'l' f J(s)dfF—l(Um.:n)'i' (3-1)
my—n
n
e
n
SZn(Um,:m Umz:n)+ fJ(s)dgF“I(Umz_,:n)'*_S3n(Um,:m Un—m+l:n)
Myy
n

where
L X
my = [nsy—cn’logn]l, my = [ns;+cn’logn] (3.2)

for ¢>0, and with

i

m,—m-1

Sln(Um ns m. n) 2 fJ(S)dS‘F l(U'm n+(Um m m:n)Z'i:m,-—m—-l) (3'3)

i=l -1

& n
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my—m,—1

"
S2n(Um,:m Um,:n) = 2 f J(s)dgF~l(Um,:n+(Um,:n—Um,:n)Z”i:mz—m,—l) (3-4)
1

i=1 j—

n

and

3 |~

n—m-—m,

S3n(Um,:m Up—m+1:) = 2 fJ(s)dgF-l(Umzm+(Un—-m+l:n_Umz:n)' 3.35)
i—1

i=1

X

: Zmi:n —m -—m;)'

The random vectors Vz(Vl:m—l’ L] Vm-—l,m—l)9 Z.,:(Zl:m,—m—h ... ’Zm,——m-—l:m,—m—l)a

"=(Zl:m,—m,—l,...,aZmz—m.—l:mz——m,—l)s Z"’:(Zlm —memy, ..., Zy-m —m,:n—m—m,) and
W=(W .n-1, -» Wm—1.m—1) are the vectors of order statistics corresponding to the samples of sizes
m—1, mi—m—1, my—m;—1, n—m—m, and m —1 from the uniform distribution on (0,1); the
vectors ¥ and W are defined in the paragraph after (2.5) in Section 2. We let the vectors V, Z’, Z”,
2", W and (Uu:ns Unins Unyns Us—m+1:0) be independent. The r.v’s Sy,(Un:ns Un,.n) and
S32(Um,n> Un—m+1:1) can now be treated similarly as T'2,(Up:n» Uy —m+1:0) in Section 2, whereas the
£.V. $24(Up,:ns Um,:n) can be analysed in a way similar to that of T',(Uy,:s) and T'3,(Uy —m +1:0). The
analysis of the r.v’s S1,(Upnws Un,:n) and S3,(Up,:ns Uy —pm +1:0) Tesembles closely the one given for
T2:(Un:n> Un—m+1:n) In Section 2 (cf. Lemma 2.3). We only have to replace the function v, (cf.
(2.11)) by functions

dd] m e

’ n —=—u
) = [I0y=— = [ I 36)
e
and
- RS
Yan() = f YO ——— m/ J(y)dy G.7)
n n
respectively.

The 1.v. $3,(Upn,:n» Um,:n) causes the only new difficulty in the proof, as compared with the proof of
Theorem 1. In view of assumption (IV) and (2.2) we easily check that

EF ' u+® —w)Z" —pm—1)—F +(V—u)——m2im1 = (3.8)
. _k
— SR S, 2
O(((m- ml)r((mz-'ml) ) )

whenever u,v&(s| —1,51 +1), k>0, for some n>0. It follows directly from (3.8) that

m,—m;—1
E|S2uv)—ES@v)? = O((n™" 3 EF '+ —w)Z"im-m—1)" 39
i=1
-1 _ i 2 — -
F lu+@—u) Ea— ) = O(n *logln)

-3 32
2 3

E|S2,(uv)—ESp, )| = O(n *n ‘log’n) (3.10)
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whenever u,v €(s, —n, 51 +v) which further implies

2 R
|95~ 1+ 072X (S @) | = O(ltPn” *login) @3.11)

for u,ve(s; —n,s1 +n).

Finally, to obtain the assertion corresponding to that of Lemma 2.4 it remains to show that

i
my,—m;—1 n

El 2 f‘I(y)dy |EF-1(Um,:n+(Um,:n'—Um‘:n)Z"i:mz—m,—l)lUm,:m Um,:n)_ (3-12)
i=1 -1

L
EF Y Upyn+WUnyn—Un :n)Z"im—m,-1) |© = O ™20 * log’n).

Proceeding quite similarly as above we obtain

1

my—m,—1 n

E| 21 [ J0) \EF ™ (Up,:n+ (Unyin = Umyin)Z" iy = my =1 Us Umnyin) = (313
=1

EF—I(Um.:n +(Um2:n - Um,:n)Z”i my—m, —l) '3I(s, ~%,5, +n)(Um2:n)I(s. —,5; +1,)(Um.:n) =

on3(m, ——ml)%) = O(n _2_"1'-log3n).

The remaining part follows easily from the fact that

and

P(Upne(si—es;+€) = 0(n™9), i=1,2 (3.14)
my—1 7‘1-

E| 3 [J0dF ' (Un)f = o) (.15)
i=m+li—1

n

for €0 and ¢>0 arbitrary. This completes the proof of. Theorem 2.
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