View metadata, citation and similar papers at gore.ac.uk brought to you by fCORE

provided by CWI's Institutional Repository

Comparative Semantics for Linear Arrays of Communicating
Processes

J.W. de Bakker, F. van Breugel, A. de Bruin
Computer Science/Department of Software Technology

CS-R9336 1993

https://core.ac.uk/display/301641704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparative Semantics for Linear Arrays of Communicating Processes
a study of the UNIX* fork and pipe commands

J.W. de Bakker"2, F. van E’>reuge|1’2 and A. de Bruin®

Lewr
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
2 Vrije Universiteit
P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
3 Erasmus Universiteit
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Abstract

Operational (O) and denotational (D) semantic models are designed for a language incorporating a version of
the UNIX fork and pipe commands. Taking a simple while language as starting point, a number of programming
constructs are added which achieve that a program can generate a dynamically evolving linear array of processes
connected by channels. Over these channels sequences of values (‘streams’) are transmitted. Both O and D are
defined as (unique) fixed point of a contractive higher order operator. This allows a smooth proof that O and
D are equivalent. Additional features are the use of hiatons, and of the closely related syntactic resumptions
and semantic continuations.

AMS Subject Classification (1991): 68Q55

CR Subject Classification (1991): D.3.1, F.3.2

Keywords € Phrases: operational semantics, denotational semantics, complete metric space, fork statement,
hiaton, resumption, continuation

Note: The work of F. van Breugel was partially supported by the Netherlands Nationale Faciliteit Infor-
matlica programme, project Research and Education in Concurrent Systems (REX). This paper will appear in
Proceedings of the Eighteenth International Symposium on Mathematical Foundations of Computer Science,

Gdansk, August 30 - September 3, 1993.

INTRODUCTION

We present a comparative semantic study of a simple imperative language £ which features the
construction of dynamically evolving linear arrays of communicating processes. Our investigation was
in particular motivated by the UNIX fork and pipe commands which return in somewhat adapted
form in L.

Both operational (O) - based on an SOS style transition system ([Plo81]) - and denotational (D)
semantics for £ will be presented, and their equivalence will be established. Simple topological tech-
niques will suffice for the mathematical underpinning of both models. In fact, Banach’s fixed point
theorem ([Ban22]) is all we need. ([BR92] gives an overview of more advanced uses of topological
modelling.)

Forks and pipes occur in several papers on programming language design and application (forks,
e.g., in [HSS91], pipes in [KK92]). Semantic studies focusing on these topics are scarce (e.g. [AWS85,
Ben82, Bru86, MA89, RS83, RS92]), and none of them develops both operational and denotational
models. Accordingly, we see the comparative result as the main contribution of our paper.

*UNIX is a trademark of Bell Laboratories.

2 Introduction

In the remainder of this introduction we informally introduce £, and present three simple examples
of its use culminating in a version of the sieve of Eratosthenes. Sections 1 and 2 present the operational
and denotational semantics, respectively. In the design of O, arrays of processes are modelled using
the concept of (nested) resumptions. For D, continuations are an essential tool. In Section 3, we prove
the equivalence of O and D using the unique fixed point proof principle from [KR90]. Let us mention
one subtlety in the semantic models: in order to apply Banach’s theorem, we require contractiveness
at various instances. At appropriate points a version of Park’s hiaton ([Par83]) is used to enforce
contractiveness if this would not arise naturally.

We now present the syntax of £. It is a simple imperative language with assignment, while state-
ments and the like, to which three further constructs are added: write(e), read (v), and fork (v).
The syntax for £ follows

s :=v:=¢e | skip | write(e) | read (v) | fork (v) | s; s |if b then s else s fi | while b do s od.

In the sequel, a program in execution will be called a process. Each process has exactly one input
channel and one output channel connected to it (see Figure 1). Execution of the write statement
write (e) has the effect that the value of the expression e is written on the output channel, the effect
of the read statement read (v) is that a new value is read from the input channel which is then
assigned to the variable v. If there are no more values on the input channel then the process blocks
(terminates).

- process
input channel output channel

Figure 1

A process can be modelled by a function which takes an input stream as an argument and yields
an output stream as a result. The input stream is the sequence of all values assumed to be preloaded
on the input channel, and the output stream is the sequence of all values to be written by the process
on the output channel. Both streams can very well be infinite, and this means that nonterminating
processes are meaningful in this setting. We give as first example, a ‘2-filter’ described by the program

while true
do read (v);

if vmod 2 # 0 then write (v) else skip fi
od.

This program filters all even numbers, passing only the odd numbers from its input channel to its
output channel.

The other new concept in the language is the fork statement, described by a statement of the form
fork (v). This statement can be regarded as a combination of the UNIX fork and the UNIX pipe.
When a process executes the statement fork (v), the effect is that an almost identical copy of the
process is constructed. We call the original process the parent and the new process the child. After
the fork statement has been evaluated both processes continue execution with the statement following
the fork statement. There is no sharing of variables, each process has its own set of variables all (but
for the variable v, see below) having the values they had in the parent process when the fork statement
was executed.

Introduction 3

in out

parent Y . . child
intermediate channel) ce

— .. .;v:=1;

in ’ L out

Figure 2

There are two differences between the two processes. The first one has to do with the fact that
executing fork (v) has as a side effect that a value is assigned to v. In the parent process the assignment
v:=1 is performed, in the child process the value 0 is assigned to v. The other difference has to do
with the input and output channels of the original process. On execution of the fork statement a new
intermediate channel is constructed which behaves like a UNIX pipe. The parent process remains
connected to the original input channel, but from now on writes on the new intermediate channel.
The child will write on the original output channel, but reads from the intermediate channel. The
effect of a fork statement is depicted in Figure 2. The second example is the program

read (v);
write (v);
fork (w);
ifw=1
then while true
do read (v);
if v mod 2 # 0 then write (v) else skip fi
od
else while true
do read (v);
if v mod 3 # 0 then write (v) else skip fi
od
fi.

The original process passes one value from the input to the output unaltered, and then splits into two
filters: the parent filters out all even numbers, passing only the odd input numbers to the child. The
child filters out all the numbers which are a multiple of 3. The effect is a filter that passes its first
input number unaltered, and then passes only those inputs values that are not multiples of 2 or 3.

The final example is a version of the sieve of Eratosthenes:

read (v);
while true
do read (v);
write (v);
fork (w);
ifw=1
then while true
do read (z);
if 2 modv # 0 then write (z) else skip fi
od
else skip
fi
od

4 Introduction

If on the input channel for the original process the stream of the positive natural numbers is inserted,
then execution of this program will result in an expanding array of processes which in cooperation yield
an output stream consisting of all prime numbers. The original process can be called an ‘expander’
(e in Figure 3), it reads a number n and expands into a filter process (the parent) which blocks all
multiples of n (the parent process is denoted by n in Figure 3), and a new expander process (the
child) which behaves like the original process. How this array evolves is shown in Figure 3.

P
87654321 e
=5
|
. Y o
876543 2] e 2
1 o ‘
87654 2] [e] 2
|
|
87654 2] 3] e 32
876 2] 3] E 32
|
|
Figure 3

1. OPERATIONAL SEMANTICS

Before we come to the operational semantics, we first repeat the definition of the syntax for £. Let
(v €) Var be the syntactic class of variables.

DEFINITION 1.1 The language (s €) L is defined by
s :=wv:=¢ | skip | write (e) | read (v) | fork (v) | s; s | if b then s else s fi | while b do s od.

Here e and b range over the syntactic classes of expressions and boolean expressions, respectively.
We assume a simple syntax for these which we do not bother to specify. Programs in £ operate on
streams of input values, delivering streams of output values. Let us use (a €) Val to denote the set
of these (input and output) values. In addition, we shall have occasion to use the ‘silent’ value 7. We
write (8 €) Val, = Val U {r}. The role of the 7-value - sometimes also called hiaton - will be, in
the transition system to be introduced in a moment, to signal a ‘silent’ transition. Such a transition
does not correspond to delivering a ‘normal’ value (from Val); it is employed in a situation where the
metric framework requires a step to achieve contractiveness.

The operational semantics for £ will be based on a transition system in the familiar SOS style. In

this system we encounter

e The set (o €) State = Var — Val of states. The notation o{a/v} is used for a state which is
like o, but for its value in v which equals a.

1. Operational Semantics 5

o Theset (s €) Val;", consisting of all finite and infinite sequences (the ‘streams’ mentioned earlier)
of elements from Val,.

e The special symbol E standing for termination.

e Auxiliary syntactic categories of so-called resumptions and nested resumptions. These are intro-
duced in

DEFINITION 1.2 The class of resumptions (r €) Res is defined by
ru=E|s:r

The class of nested resumptions (p €) NRes is defined by
pu=cl<r o p>.

Resumptions are sequences of statements ending in E. Nested resumptions have a structure of the
form

p=<ry,01,<T2, 02, ...<Tp, 0nh,¢C>...>>.

Nested resumptions correspond to process arrays as described in the introduction in the following
way:

e For n =0, we have that p =¢. In this case p consists of no more than the input stream g.

e If n =1, then p =<1y, 01, ¢ >. The process p executes the (sequence of) statements specified
by 71, for state o1 and input stream ¢.

e For n = 2, we obtain p =< 71, 01, < r2, 02, ¢ >>. In this case, p consists of a parent process
pp =< 13, 02, ¢ > - interpreted as just described - the output of which acts as input for the
child process (p =) p. =< 11, 071, Pp >

e For n > 2, we obtain a process array of length n as described above.

In the transition system 7 to be presented in the next definition, we use V (e)(o) (yielding an
element in Val) and B (b)(o) to denote the values of e and b in state o.

DEFINITION 1.3 The transition system 7 = (NRes, Val,,—) has NRes as the set of its configurations
and Val, as its set of labels. The transition relation — is the smallest subset of NRes x Val, x NRes
satisfying the rules given below. We use the notation

p—pP
as short hand for (p, 3, p') € —. A rule of the form
B B
if p1 — p then po — p

will be abbreviated to ps —¢ p1; the 0-subscript indicates that we have here a zero-step transition.

Introduction
< (v = e) ry o, p>—o< T, J{a/v}, p >, where a = V(e)(a)
<skip:r, o, p>—o< 71, 0,p>
< write(e):r, o, p >Sc r, o, p >, where a =V (e)(o)

if p i p' then <read (v):r, o, p >l r, o{a/v}, p' >

(1)

(2)

(3)

(4)

(5) ifp SR p' then <read (v):r, o, p >< read (w):r, o, p' >

(6) < fork(v):r, o, p>—o<r, oc{0/v}, <r, o{l/v}, p>>

(7) < (s1;82):m, 0,p>—0<s1:(sa:7),0,p>

(8) if B(b)(o) then < if b then s; else sg fi:r, 0, p >—¢< s1:7, 0, p>
(9) it = B(b)(o) then <if b then s; else sy fi:r, 0, p>—¢< s9:7,0,p>
(

10) < whilebdo sod:r, o, p >_.<if b then s ; while b do s od else skip fi: r, o, p >

(11) ﬂ<i<

We add some explanations:

8
A transition p — p' expresses that (the process corresponding to) p performs a one-step transi-

tion to process p', while producing a value § (either a normal or a silent value) which is appended
to the current output stream.

Note that there is no transition defined for a configuration < E, o, p >. As a consequence, neither
is there a transition possible for, e.g., < (v:=€):E, 0, p >, <read (v):E, g, <E, g, p >>, etc.
We emphasize that transitions become observable only by delivering output values (including
an occasional silent value); note that this is quite different from more customary models where
state changes - from o to some ¢’ - are observable.

The rules for v := e, skip, s; ; s3, and if b then s; else sy fi should be clear. The while
statement always induces a silent step. (A zero-step transition would not work in this case, this
being incompatible with a subsequent crucial property of zero-step transitions, cf. Lemma 1.7.)

The effect of write (e):r is to append a (= V (e)(0)) to the output stream, and continue with 7.

For a read (v) statement - with respect to current 7, o, and p - we distinguish two cases. In
the ‘normal’ situation, an input « is available, produced (as output) by p when it turns itself
into p'. We then assign « to v, and continue with 7, the updated state o{a/v}, and the new
parent process p'. Otherwise, i.e. when p produces a silent step 7, we reject this as possible
value for v - recall that the codomain of any state equals Val rather than Val, -, maintain the
requirement for an input read (v), and continue with », o, and parent process p'. (As for the
while statement also in this case a zero-step transition would not work.)

The fork statement fork (v) - with respect to current r, o, and p - creates two processes, the
parent process

pp =<, 0_{1/1}}7 P>
and the child process

pe =<1, 0{0/v}, p, > .

1. Operational Semantics 7

We observe that

* The forking process performs a zero-step transition to p..
* Both p, and p. execute the resumption r.

* In p,, the fork variable is set to 1, in p, it is set to 0. This offers the possibility to ‘program’
in 7 so as to have different executions in p, and p,, respectively (cf. the examples in the
introduction).

* Since p, occurs as part of p., the net effect of this is that the output of p, acts as input for
Pe, cf. also the way the read and write rules are defined.

e The final rule simply describes how an input stream (-¢ performs a one step transition delivering
the output 3, and turns itself into <.

e The transition system 7 specifies deterministic behaviour (see Lemma 1.8) and synchronous
communication. Concerning the former phenomenon, adding the metarule

if p—gp then <r o p>—0<r, o p >

would allow some form of parallelism in the execution of processes. As a consequence of the
latter phenomenon, a parent process can only write when its child is willing to read. As we
will see, a communication between a parent and its child will not be visible in the operational
semantics (apart from a silent transition). Asynchronous communication could be handled by
adding an output sequence to the nested resumptions which then take the form < ¢, r, o, p >.
A study of these variations is outside the scope of the present paper.

We now describe how to obtain the operational semantics O : £ — Proc, where
Proc = State — Val® — Val?”. We see that O[s] (o) yields a function transforming streams to
streams, in accordance with the intended model for £. We shall employ an intermediate mapping
O : NRes — ValZ"; O is the function which, for argument p, collects the sequence of labels produced
successively by the transitions as specified by 7, starting from p. Thus O (p) = < states that the
process p yields output stream ¢. (Recall that the input to p is included in its own description.) Let
us use the terminology p blocks in case p cannot make any transitions, that is

i
—3B8,0 :p— 4

As defining properties for O we want the following to be satisfied:
€ if p blocks
O(p) = . B
B-O(p) ifp—p

Note that p' is not necessarily of smaller syntactic complexity than p, so this ‘definition’ cannot be
shown to be well-formed simply by structural induction on p. Instead, we use a familiar technique for
dealing with recursive definitions, viz. through the use of fixed points of some higher-order operator.
Let @ be an operator which maps meanings ¢ to meanings ¢' in the following way:

DEFINITION 1.4 Let (¢ €) Semp = NRes — Val>®, and let @ : Semp — Seme be defined as follows:

€ if p blocks

PN = { B-o(p') it p 2 pf

8 Introduction

Well-definedness of this definition requires that 7 is deterministic, i.e. that each p can make at most
one transition. Lemma 1.8 below states this result.

By the definition of @, it is immediate that it is contractivelin ¢. Since Sem is a complete metric
space?, we have, by Banach’s theorem®, that @ has a unique fixed point, and we have justified

DEFINITION 1.5 The operational semantics O : Seme is defined by
O = fiz (P).
In addition to its serving as a means to define O, ¢ will play a crucial role (in Section 3) in the

proof that (x) O = D (the denotational semantics to be introduced in Section 2). In fact, () follows
as an immediate corollary of an argument exploiting the unique fixed point property of @.

The next step in the technical development is the introduction of the complexity measure
c¢: NRes — IN in

DEFINITION 1.6 The complexity measure ¢ : NRes — IN is defined by

cs) =1 c(<r o, p>)=c(r)+clp)

C(E)zl c(s:r):c(s)*c(r)

where
c(vi=e) =2 ¢ (fork (v)) =
c (skip) =2 c(s1; 82) =c(s1)*c(s2)+1
c(write (e)) = c(if b then s; else s3 fi) = ¢(s1) + c(s2)
c(read (v)) =1 c(while b do s od) =2

The measure c is used in the proof of the following two lemmas.

LEMMA 1.7 For all p and p', if p = p' then c(p) > c(p').

et (X,dx) and (X’,dx/) be metric spaces. A function f: X — X' is called contractive if there exists an &, with
0 < § < 1, such that, for all z and 2/,

dx (f (), f (")) < & dx (z,2").

2The set Val> is endowed with the metric

n_J 0 if ¢ =¢
d(s,¢') = { 27" otherwise

where n is the longest common prefix of the sequences ¢ and ¢’. By means of this metric we can endow Sem with the
metric

d(¢,¢") =sup{d (¢ (p), ¢’ (p)) | p € NRes}.

These metrics are ultrametrics, i.e., for all z, 2’, and 2",

d(z,z") < max{d(z,z'),d(z',2")}.

SLet (X,dx) be a complete metric space. If f : X — X is contractive then f has a unique fixed point fiz (f).

2. Denotational Semantics 9

PROOF Only a few cases of the proof of this lemma are elaborated on.

1. Let p=<(v:=¢€):r, o, p> Then
c(<(v:=e):r,0,p>)
— 2ee()+e(p)
c(r)+c(p)
= c(<r, ofa/v}, p>).
2. Let p =< fork (v):r, o, p >. Then

Vv

c(< fork (v):r, o, p>)
= 3xc(r)+c(p)
25 c(r) + c(p)
c(<r, o{0/v}, <r, o{l/v}, p>>).

\%

LEMMA 1.8 The transition system T is deterministic.

B
PROOF We can show that, for all p, [{(8,p') | p — p' }| £ 1 by induction on the complexity of p. O
We are now ready for the key definition of this section.

DEFINITION 1.9 The operational semantics O : £ — Proc is defined by
Ofs]=Xo.Xs.O(< $:E, 0,6 >).

The final program of the introduction with an arbitrary initial state and the input stream 12345678
will produce the output stream 7227437857777 and terminate as the reader may verify.

2. DENOTATIONAL SEMANTICS

The denotational semantics for £ uses the set of continuations (§ €)Cont = State — Val>® —1 Val2®.
Note that, but for the specialization to the nonexpansive* function space —', Cont equals Proc as
introduced earlier. Continuations correspond to resumptions in the sense that, as we shall see in
Definition 3.2, meanings of Res reside in Cont.

We shall use first (¢) to denote the first element of the nonempty sequence ¢, and rest (¢) to denote
the result of omitting the first element from the nonempty sequence .

The denotational semantics D for L is presented in

DEFINITION 2.1 Let (¢ €) Semp = £ — Cont —* Cont. Let ¥ : Semp — Semp be defined by

4Let (X,dx) and (X’,dxr) be metric spaces. A function f: X — X’ is called nonexpansive if, for all z and z/,

dx: (f (), f (")) < dx (2,2).

10

Introduction

) =0 (c{a/v})(c) where a =V (e)(0)

where oo =V (e)(o

S
—~
<
S
£l

-

-

-

(0]
N

89
e
S—r
—_

S
S
N

Q
S—
—
o)
S’

\

Q

Y
—

S
p—
—
2
S

C

N e

(a
(ff{ﬁrst()/v }&)(7’63'«‘ (<) ((b

S
—~
=
~—
—~

=

[¢]

o

=
—

<
~— ¢
~—

—~

B~y
~—
—~

Q
~—
—

)
~—

|
—_—~—

¥ (¢)(fork (v))(6)()(<) = (¢ 0{0 v}))(9
¥ (9)(s1 5 52)(0)(@)(s) =

()

() v 2

W (4)(if b then s; else so 1)(8)(0)(c) = {i%gsl)(@)(«r)gg (d)
T if

s2)(0)(o) C) (e)

¥ (¢)(while b do s od)(0)(c)(s)

where

a) if¢=¢

b) if ¢ # ¢ and first (<) ;é
c) if¢#eand first(s) =
d) it B(b)(o)

e) if =B(b)(o)

The denotational semantics D : Semp is defined by

D = fix (¥).

Some remarks:

e Much of the structure of the above clauses may be understood by consulting 7. For example,
the clause for the fork statement amounts to

D (fork (v))(6)(o)(s) = (6 (7{0/v}))(6 (o{1/v})(<)).

Now using the correspondence between the semantic continuation 8 and the syntactic resump-
tion 7, we see that this is an immediate counterpart of the transition

< fork (v):7, 0, ¢ >—o<r, c{0/v}, <r, o{l/v}, ¢ >>.

e Similar to what we did for O, we have defined D here as (unique) fixed point of a higher-order
mapping. Such a ‘global’ fixed point approach is attractive, were it only for symmetry reasons.
However, a more traditional (‘local’) approach, where the taking of fixed points is restricted to
the clauses for the read and while statement, would also serve our purposes.

Definition 2.1 is justified in

LEMMA 2.2 For all, s, 8, and o,

the mapping ¥ (¢)(s)(8)(c) is nonexpansive (in),
the mapping ¥ (¢)(s) is nonezpansive (in 8), and
the mapping ¥ is contractive (in).

PrROOF We only consider the second property. It can be shown that, for all ¢, s, 61, 62, o, and ¢,

3. Equivalence Theorem 11

d (¥ ()(s)(61)(0)(s), ¥ ()(s)(62)(0)(s)) < d(b1,062)
by structural induction on s. Only a few cases are elaborated on.

1. Let s = read (v). We distinguish three cases.
(a) If ¢ = ¢, then
d (¥ (¢)(read (v))(61)(0)(s), ¥ (¢)(read (v))(62)(a)(<))
= d(s¢)
< d(61,6s).

(b) If ¢ # ¢ and first (¢) # 7, then

d(¥ (¢)(read (v))(01)(a)(<), ¥ (¢)(read (v))(02)(c)(<))
d(T 01 (o{first (c)/v})(rest (<)), 7 - 02 (o {first (c)/v})(rest ()))
d (61 (o{first(c)/v})(rest (<)), 02 (o{first (c)/v})(rest (<))

< % (01702)
(c) If ¢ # ¢ and first (¢) = 7, then
d(¥ (¢)(read (v))(61)(0)(s), ¥ (¥)(read (v))(f2)(c)(<))
= d(7-¢(read (v))(0:1)(c)(rest (5)), - ¢ (read (v))(62)(o)(rest (<)))
= 5 d(¢(read (v))(61)(0)(rest (c)), % (read (v))(b2)(o)(rest ()))
< 5 -d(¥(read (v))(61), ¥ (read (v))(62))
< % -d(61,65). [(read (v)) is nonexpansive]

2. Let s = fork
d(¥ ()

—~

v). Then

fork (v))(01)(0)(<), ¥ (¢)(fork (v)
= d((61(c{0/v}))(01 (c{1/v})(<)), (62
< max {d((61 (o{0/v}))(6r (o{1/v})(s
d((81 ({0/v}))(B2 (o{1/v})(

—~

(62)(0)(s))

a{0/v}))(6: (o{1/v})(<)))
(01 (0{0/v}))(02 (0{1/v})
(02 (0{0/v}))(02 (0{1/v})

),
)}

[ultrametricity]
mas {d (01 (o1 /0})(6), 02 (o{1/})(6)), d (01 (o0/0}), 62 (o{0/ 1)}

[61 (0{0/v}) is nonexpansive]

(
(

S

IN

IA

d(61,05).
]

We conclude this section with
DEFINITION 2.3 The denotational semantics D : £ — Cont is defined by
D [[5] =D (s)()\a DY E).
3. EQUIVALENCE THEOREM
THEOREM 3.1 Foralls € L, O[s] =D|s].

On the way to the proof of this theorem, we first introduce two intermediate semantics.

DEFINITION 3.2 The mapping H : Res — Cont is defined by

12 Introduction

H(E) =Xo.X.ce
H(s:r)=D(s)(H(r))

The mapping 7 : NRes — Val*® is defined by

Z(s) =g
I(<r op>)=H(r)(o)Z(p))

The following properties of 7 are furthermore of importance.

LEMMA 3.3 For all p, p', and 3,
if p—op' thenZ(p)=1(p'), and
ifp L0 then I(p) = B-Z (o).
PrROOF We only consider a few cases of the proof of the first property.

1. Let p=<(v:=e€):r, 0, p> Then
I(<(vi=e):r,0,p>)
= H((v:=e):r)(0)(Z(p))
= D(v:=e)(H(r))(o)(Z (p))
= H(r)(o{a/v}INT (p))
I(<r, afa/v}, p>).
2. Let p =< fork (v):r, o, p >. Then
I (< fork(v):r, o, p>)
— A (fork ()))(Z (7))
— D (fork ())(H (N)(0)(Z (7)
(RO () 1o))(E ()
= (H()(e{0/o))Z (<7, o{l/v}, 5 >))
= I(<r o{0/v}, <7, of{l/v}, p>>).
O

The main step in the proof of Theorem 3.1 now follows. Recall that @ is the higher-order operator
used in the definition of O.

LEMMA 3.4 &(Z)=1T.

PrROOF We can show that, for all p,

by induction on the complexity of p (cf. Definition 1.6). Only a few cases are elaborated on.

1. Let p=<(v:=¢€):7, 0, p' > Then
S (I)< (vi=e):ir, 0, p >)

= O(I)(<r ofa/v}, o >) [<(vi=e)ir, o, p' >—=o< 7, o{afv}, p' >]
= ZI(<r a{a/v}, p >) [Lemma 1.7, induction]
= I(<(vi=e):r,a,p >). [Lemma 3.3]

2. Let p=<read(v):r, g, p) >. We distinguish three cases.

References 13

(a) Assume p' A p". Then

P (I)(<read(v):r, o, p' >)
= T- I(< T, J{a/v}, p” >) [< read (v) v, o, p >L>< T, cr{oz/v}, p" >]
= ZI(<read(v):r o, p' >). [Lemma 3.3]

(b) Assume p' R p". Then

P (I)(<read(v):r, o, p' >)
= 7-I(<read(v):r,o,p" >) [<read(v):r, o, p >_< read (v):r, o, p" >]
= ZI(<read(v):r, o, p' >). [Lemma 3.3]

(c) Assume p’ blocks. Then < read (v):r, o, p' > blocks and hence

& (I)<read(v):r, o, p >)=c.
Since p' blocks, @ (Z)(p') = . By induction, Z (p') = . Consequently,
I(<read(v):r o,p >)=¢.

We have arrived at the proof of Theorem 3.1:

PrOOF

Because both O and 7 are fixed point of @ (Definition 1.5 and Lemma 3.4) and @ has a

unique fixed point, O and 7 are equal. Consequently,

O[s](o)(c)

O(<s:E,0,6>)
= Z(<s:E, 0,6>)
= H(s BT ()
— D) (E))(0)(s)
= D(s)(Ao.Xs.e)(o)(s)
— D()s).

REFERENCES

[AWS85]

[Ban22]

[Ben82)

[BR92]

[Bru86]

S.K. Abdali and D.S. Wise. Standard, Storeless Semantics for ALGOL-style Block Structure
and Call-by-Name. In A. Melton, editor, Proceedings of the 1st International Conference
on Mathematical Foundations of Programming Semantics, volume 239 of Lecture Notes in
Computer Science, pages 1-19, Manhattan, April 1985. Springer-Verlag.

S. Banach. Sur les Opérations dans les Ensembles Abstraits et leurs Applications aux Equa-
tions Intégrales. Fundamenta Mathematicae, 3:133-181, 1922.

D.B. Benson. Machine-Level Semantics for Nondeterministic, Parallel Programs. In
M. Dezani-Ciancaglini and U. Montanari, editors, Proceedings of the 5th International Sym-
posium on Programming, volume 137 of Lecture Notes in Computer Science, pages 15-25,
Turin, April 1982. Springer-Verlag.

J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Concurrency Semantics, selected
papers of the Amsterdam Concurrency Group. World Scientific, Singapore, 1992.

A. de Bruin. FEzperiments with Continuation Semantics: jumps, backtracking, dynamic net-
works. PhD thesis, Vrije Universiteit, Amsterdam, May 1986.

14

References

[HSS91] T. Hagerup, A. Schmitt, and H. Seidl. FORK: A High-Level Language for PRAMs. In E.H.L.

[KK92]
[KR90]
[MAS9]

[Par83]

[Plo81]
[RS83]

[RS92]

Aarts, J. van Leeuwen, and M. Rem, editors, Proceedings of the 3rd International PARLE
Conference, volume 505 of Lecture Notes in Computer Science, pages 304-320, Eindhoven,
June 1991. Springer-Verlag.

E. Klein and K. Koskimies. How to Pipeline Parsing with Parallel Semantic Analysis. Struc-
tured Programming, 13(3):99-107, 1992.

J.N. Kok and J.JJM.M. Rutten. Contractions in Comparing Concurrency Semantics. Theo-
retical Computer Science, 76(2/3):179-222, 1990.

C. McDonald and L. Allison. Denotational Semantics of a Command Interpreter and their

Implementation in Standard ML. The Computer Journal, 32(5):422-431, October 1989.

D. Park. The “Fairness” Problem and Nondeterministic Computing Networks. In J.W. de
Bakker and J. van Leeuwen, editors, Foundations of Computer Science IV, Distributed Sys-
tems, part 2: Semantics and Logic, volume 159 of Mathematical Centre Tracts, pages 133-161.
Mathematical Centre, Amsterdam, 1983.

G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19,
Aarhus University, Aarhus, September 1981.

J.-C. Raoult and R. Sethi. Properties of a Notation for Combining Functions. Journal of the

ACM, 30(3):595-611, July 1983.

G. Runger and K. Sieber. A Trace-Based Denotational Semantics for the PRAM-Language
FORK. Report 1/1992, Universitit des Saarlandes, Saarbriicken, 1992.

