
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Comparative Semantics for Linear Arrays of Communicating
Processes

J.W. de Bakker, F. van Breugel, A. de Bruin

Computer Science/Department of Software Technology

CS-R9336 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301641704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�

Comparative Semantics for Linear Arrays of Communicating Processes
a study of the UNIX� fork and pipe commands

J�W� de Bakker���� F� van Breugel��� and A� de Bruin�

�CWI

P�O� Box ����� ���� AB Amsterdam� The Netherlands
�Vrije Universiteit

P�O� Box ��	�� ���� MC Amsterdam� The Netherlands
�
Erasmus Universiteit

P�O� Box ��
��
��� DR Rotterdam� The Netherlands

Abstract

Operational �O� and denotational �D� semantic models are designed for a language incorporating a version of

the UNIX fork and pipe commands� Taking a simple while language as starting point� a number of programming

constructs are added which achieve that a program can generate a dynamically evolving linear array of processes

connected by channels� Over these channels sequences of values ��streams�� are transmitted� BothO andD are

de�ned as �unique� �xed point of a contractive higher order operator� This allows a smooth proof that O and

D are equivalent� Additional features are the use of hiatons� and of the closely related syntactic resumptions

and semantic continuations�

AMS Subject Classi�cation ������� 	
Q��

CR Subject Classi�cation ������� D���
� F����

Keywords � Phrases� operational semantics� denotational semantics� complete metric space� fork statement�

hiaton� resumption� continuation

Note� The work of F� van Breugel was partially supported by the Netherlands Nationale Faciliteit Infor	
matica programme� project Research and Education in Concurrent Systems �REX�� This paper will appear in

Proceedings of the Eighteenth International Symposium on Mathematical Foundations of Computer Science�

Gdansk� August �� � September ��
����

Introduction

We present a comparative semantic study of a simple imperative language L which features the
construction of dynamically evolving linear arrays of communicating processes� Our investigation was
in particular motivated by the UNIX fork and pipe commands which return in somewhat adapted
form in L�

Both operational �O� � based on an SOS style transition system ��Plo��	� � and denotational �D�
semantics for L will be presented
 and their equivalence will be established� Simple topological tech�
niques will su�ce for the mathematical underpinning of both models� In fact
 Banach�s
xed point
theorem ��Ban��	� is all we need� ��BR��	 gives an overview of more advanced uses of topological
modelling��

Forks and pipes occur in several papers on programming language design and application �forks

e�g�
 in �HSS��	
 pipes in �KK��	�� Semantic studies focusing on these topics are scarce �e�g� �AW��

Ben��
 Bru��
 MA��
 RS��
 RS��	�
 and none of them develops both operational and denotational
models� Accordingly
 we see the comparative result as the main contribution of our paper�

�UNIX is a trademark of Bell Laboratories�

� Introduction

In the remainder of this introduction we informally introduce L
 and present three simple examples
of its use culminating in a version of the sieve of Eratosthenes� Sections � and � present the operational
and denotational semantics
 respectively� In the design of O
 arrays of processes are modelled using
the concept of �nested� resumptions� For D
 continuations are an essential tool� In Section �
 we prove
the equivalence of O and D using the unique
xed point proof principle from �KR��	� Let us mention
one subtlety in the semantic models� in order to apply Banach�s theorem
 we require contractiveness
at various instances� At appropriate points a version of Park�s hiaton ��Par��	� is used to enforce
contractiveness if this would not arise naturally�

We now present the syntax of L� It is a simple imperative language with assignment
 while state�
ments and the like
 to which three further constructs are added� write �e�
 read �v�
 and fork �v��
The syntax for L follows

s ��� v �� e j skip j write �e� j read �v� j fork �v� j s � s j if b then s else s � j while b do s od�

In the sequel
 a program in execution will be called a process� Each process has exactly one input
channel and one output channel connected to it �see Figure ��� Execution of the write statement
write �e� has the e�ect that the value of the expression e is written on the output channel
 the e�ect
of the read statement read �v� is that a new value is read from the input channel which is then
assigned to the variable v� If there are no more values on the input channel then the process blocks
�terminates��

process
input channel

�������������������

� �

� �

output channel
�������������������

Figure �

A process can be modelled by a function which takes an input stream as an argument and yields
an output stream as a result� The input stream is the sequence of all values assumed to be preloaded
on the input channel
 and the output stream is the sequence of all values to be written by the process
on the output channel� Both streams can very well be in
nite
 and this means that nonterminating
processes are meaningful in this setting� We give as
rst example
 a ���
lter� described by the program

while true
do read �v��

if vmod� �� � then write �v� else skip �

od�

This program
lters all even numbers
 passing only the odd numbers from its input channel to its
output channel�

The other new concept in the language is the fork statement
 described by a statement of the form
fork �v�� This statement can be regarded as a combination of the UNIX fork and the UNIX pipe�
When a process executes the statement fork �v�
 the e�ect is that an almost identical copy of the
process is constructed� We call the original process the parent and the new process the child� After
the fork statement has been evaluated both processes continue execution with the statement following
the fork statement� There is no sharing of variables
 each process has its own set of variables all �but
for the variable v
 see below� having the values they had in the parent process when the fork statement
was executed�

Introduction �

� � � � fork �v� � � � �

� � � � v �� � � � � �
parent

� � � � v �� � � � � �
child

in
�������������������������������

� �

� �

out
������������������������������

��

�

�

�

�

in
�������

� �

� �

intermediate channel
�������������������������� ��

� �

� �

out
�������

Figure �

There are two di�erences between the two processes� The
rst one has to do with the fact that
executing fork �v� has as a side e�ect that a value is assigned to v� In the parent process the assignment
v �� � is performed
 in the child process the value � is assigned to v� The other di�erence has to do
with the input and output channels of the original process� On execution of the fork statement a new
intermediate channel is constructed which behaves like a UNIX pipe� The parent process remains
connected to the original input channel
 but from now on writes on the new intermediate channel�
The child will write on the original output channel
 but reads from the intermediate channel� The
e�ect of a fork statement is depicted in Figure �� The second example is the program

read �v��
write �v��
fork �w��
if w � �
then while true

do read �v��
if vmod� �� � then write �v� else skip �

od

else while true
do read �v��

if vmod� �� � then write �v� else skip �

od

��

The original process passes one value from the input to the output unaltered
 and then splits into two

lters� the parent
lters out all even numbers
 passing only the odd input numbers to the child� The
child
lters out all the numbers which are a multiple of �� The e�ect is a
lter that passes its
rst
input number unaltered
 and then passes only those inputs values that are not multiples of � or ��

The
nal example is a version of the sieve of Eratosthenes�

read �v��
while true
do read �v��

write �v��
fork �w��
if w � �
then while true

do read �x��
if xmod v �� � then write �x� else skip �

od

else skip

�

od

� Introduction

If on the input channel for the original process the stream of the positive natural numbers is inserted

then execution of this program will result in an expanding array of processes which in cooperation yield
an output stream consisting of all prime numbers� The original process can be called an �expander�
�e in Figure ��
 it reads a number n and expands into a
lter process �the parent� which blocks all
multiples of n �the parent process is denoted by n in Figure ��
 and a new expander process �the
child� which behaves like the original process� How this array evolves is shown in Figure ��

� � ��������� e

� � ������� � e �

� � ������ � e �

� � ������ � � e ��

� � ���� � � e ��

� � ���� � � � e ���

��������������������������
� �

� �

���

��

�

�

�

�������������
� �

� �

��������������������������
� �

� �

�����������������������������

�������������
� �

� �

��������������������������
� �

� �

�����������������������������

��

�

�

�

�

�������������
� �

� �

����������� ��
� �

� �

���������������������
� �

� �

������������������� ��

�������������
� �

� �

����������� ��
� �

� �

���������������������
� �

� �

������������������� ��

��

�

�

�

�

�������������
� �

� �

����������� ��
� �

� �

�������������
� �

� �

���������������
� �

� �

�������������

Figure �

�� Operational Semantics

Before we come to the operational semantics
 we
rst repeat the de
nition of the syntax for L� Let
�v ��Var be the syntactic class of variables�

Definition ��� The language �s ��L is de
ned by

s ��� v �� e j skip j write �e� j read �v� j fork �v� j s � s j if b then s else s � j while b do s od�

Here e and b range over the syntactic classes of expressions and boolean expressions
 respectively�
We assume a simple syntax for these which we do not bother to specify� Programs in L operate on
streams of input values
 delivering streams of output values� Let us use �� ��Val to denote the set
of these �input and output� values� In addition
 we shall have occasion to use the �silent� value � � We
write �� ��Val� � Val � f�g� The role of the � �value � sometimes also called hiaton � will be
 in
the transition system to be introduced in a moment
 to signal a �silent� transition� Such a transition
does not correspond to delivering a �normal� value �from Val�� it is employed in a situation where the
metric framework requires a step to achieve contractiveness�

The operational semantics for L will be based on a transition system in the familiar SOS style� In
this system we encounter

� The set �� �� State � Var � Val of states� The notation �f��vg is used for a state which is
like �
 but for its value in v which equals ��

�� Operational Semantics �

� The set �� ��Val��
 consisting of all
nite and in
nite sequences �the �streams� mentioned earlier�
of elements from Val� �

� The special symbol e standing for termination�

� Auxiliary syntactic categories of so�called resumptions and nested resumptions� These are intro�
duced in

Definition ��� The class of resumptions �r ��Res is de
ned by

r ��� e j s � r�

The class of nested resumptions �	 ��NRes is de
ned by

	 ��� � j
 r� �� 	 � �

Resumptions are sequences of statements ending in e� Nested resumptions have a structure of the
form

	 �
 r�� ���
 r�� ��� � � �
 rn� �n� � � � � � �� �

Nested resumptions correspond to process arrays as described in the introduction in the following
way�

� For n � �
 we have that 	 � �� In this case 	 consists of no more than the input stream ��

� If n � �
 then 	 �
 r�� ��� � �� The process 	 executes the �sequence of� statements speci
ed
by r�
 for state �� and input stream ��

� For n � �
 we obtain 	 �
 r�� ���
 r�� ��� � ��� In this case
 	 consists of a parent process
	p �
 r�� ��� � � � interpreted as just described � the output of which acts as input for the
child process �	 �� 	c �
 r�� ��� 	p ��

� For n � �
 we obtain a process array of length n as described above�

In the transition system T to be presented in the next de
nition
 we use V �e���� �yielding an
element in Val� and B �b���� to denote the values of e and b in state ��

Definition ��� The transition system T � �NRes �Val� ��� has NRes as the set of its con
gurations
and Val� as its set of labels� The transition relation � is the smallest subset of NRes �Val� �NRes
satisfying the rules given below� We use the notation

	
�

	� 	�

as short hand for �	� �� 	�� � �� A rule of the form

if 	�
�

	� 	 then 	�
�

	� 	

will be abbreviated to 	� �� 	�� the ��subscript indicates that we have here a zero�step transition�

� Introduction

���
 �v �� e� � r� �� 	 ���
 r� �f��vg� 	 ��where � � V �e����

���
 skip � r� �� 	 ���
 r� �� 	 �

���
 write �e� � r� �� 	 �
�
	�
 r� �� 	 ��where � � V �e����

��� if 	
�
	� 	� then
 read �v� � r� �� 	 �

�
	�
 r� �f��vg� 	� �

��� if 	
�
	� 	� then
 read �v� � r� �� 	 �

�
	�
 read �v� � r� �� 	� �

���
 fork �v� � r� �� 	 ���
 r� �f��vg�
 r� �f��vg� 	 ��

���
 �s� � s�� � r� �� 	 ���
 s� � �s� � r�� �� 	 �

��� if B �b���� then
 if b then s� else s� � � r� �� 	 ���
 s� � r� �� 	 �

��� if
B �b���� then
 if b then s� else s� � � r� �� 	 ���
 s� � r� �� 	 �

����
 while b do s od � r� �� 	 �
�
	�
 if b then s �while b do s od else skip � � r� �� 	 �

���� � � �
�

	� �

We add some explanations�

� A transition 	
�

	� 	� expresses that �the process corresponding to� 	 performs a one�step transi�
tion to process 	�
 while producing a value � �either a normal or a silent value� which is appended
to the current output stream�

� Note that there is no transition de
ned for a con
guration
 e� �� 	 �� As a consequence
 neither
is there a transition possible for
 e�g�

 �v �� e� � e� �� 	 �

 read �v� � e� ��
 e� �� 	 ��
 etc�
We emphasize that transitions become observable only by delivering output values �including
an occasional silent value�� note that this is quite di�erent from more customary models where
state changes � from � to some �� � are observable�

� The rules for v �� e
 skip
 s� � s�
 and if b then s� else s� � should be clear� The while
statement always induces a silent step� �A zero�step transition would not work in this case
 this
being incompatible with a subsequent crucial property of zero�step transitions
 cf� Lemma �����

� The e�ect of write �e� �r is to append � �� V �e����� to the output stream
 and continue with r�

� For a read �v� statement � with respect to current r
 �
 and 	 � we distinguish two cases� In
the �normal� situation
 an input � is available
 produced �as output� by 	 when it turns itself
into 	�� We then assign � to v
 and continue with r
 the updated state �f��vg
 and the new
parent process 	�� Otherwise
 i�e� when 	 produces a silent step �
 we reject this as possible
value for v � recall that the codomain of any state equals Val rather than Val� �
 maintain the
requirement for an input read �v�
 and continue with r
 �
 and parent process 	�� �As for the
while statement also in this case a zero�step transition would not work��

� The fork statement fork �v� � with respect to current r
 �
 and 	 � creates two processes
 the
parent process

	p �
 r� �f��vg� 	 �

and the child process

	c �
 r� �f��vg� 	p � �

�� Operational Semantics 	

We observe that

� The forking process performs a zero�step transition to 	c�

� Both 	p and 	c execute the resumption r�

� In 	p
 the fork variable is set to �
 in 	c it is set to �� This o�ers the possibility to �program�
in r so as to have di�erent executions in 	p and 	c
 respectively �cf� the examples in the
introduction��

� Since 	p occurs as part of 	c
 the net e�ect of this is that the output of 	p acts as input for
	c
 cf� also the way the read and write rules are de
ned�

� The
nal rule simply describes how an input stream � �� performs a one step transition delivering
the output �
 and turns itself into ��

� The transition system T speci
es deterministic behaviour �see Lemma ���� and synchronous
communication� Concerning the former phenomenon
 adding the metarule

if 	�� 	
� then
 r� �� 	 ���
 r� �� 	� �

would allow some form of parallelism in the execution of processes� As a consequence of the
latter phenomenon
 a parent process can only write when its child is willing to read� As we
will see
 a communication between a parent and its child will not be visible in the operational
semantics �apart from a silent transition�� Asynchronous communication could be handled by
adding an output sequence to the nested resumptions which then take the form
 �� r� �� 	 ��
A study of these variations is outside the scope of the present paper�

We now describe how to obtain the operational semantics O � L � Proc
 where
Proc � State � Val�� � Val�� � We see that O��s		 ��� yields a function transforming streams to
streams
 in accordance with the intended model for L� We shall employ an intermediate mapping
O � NRes � Val�� � O is the function which
 for argument 	
 collects the sequence of labels produced
successively by the transitions as speci
ed by T
 starting from 	� Thus O �	� � � states that the
process 	 yields output stream �� �Recall that the input to 	 is included in its own description�� Let
us use the terminology 	 blocks in case 	 cannot make any transitions
 that is

� �� 	� � 	
�

	� 	��

As de
ning properties for O we want the following to be satis
ed�

O �	� �

�

 if 	 blocks

� � O �	�� if 	
�

	� 	�

Note that 	� is not necessarily of smaller syntactic complexity than 	
 so this �de
nition� cannot be
shown to be well�formed simply by structural induction on 	� Instead
 we use a familiar technique for
dealing with recursive de
nitions
 viz� through the use of
xed points of some higher�order operator�
Let � be an operator which maps meanings � to meanings �� in the following way�

Definition ��� Let �� �� SemO � NRes � Val��
 and let � � SemO � SemO be de
ned as follows�

� ����	� �

�

 if 	 blocks

� � � �	�� if 	
�

	� 	�

 Introduction

Well�de
nedness of this de
nition requires that T is deterministic
 i�e� that each 	 can make at most
one transition� Lemma ��� below states this result�

By the de
nition of �
 it is immediate that it is contractive�in �� Since SemO is a complete metric
space�
 we have
 by Banach�s theorem�
 that � has a unique
xed point
 and we have justi
ed

Definition ��� The operational semantics O � SemO is de
ned by

O � �x ����

In addition to its serving as a means to de
ne O
 � will play a crucial role �in Section �� in the
proof that ��� O � D �the denotational semantics to be introduced in Section ��� In fact
 ��� follows
as an immediate corollary of an argument exploiting the unique
xed point property of ��

The next step in the technical development is the introduction of the complexity measure
c � NRes � IN in

Definition ��� The complexity measure c � NRes � IN is de
ned by

c ��� � � c �
 r� �� 	 �� � c �r� � c �	�

where

c �e� � � c �s � r� � c �s� � c �r�

where

c �v �� e� � � c �fork �v�� � �
c �skip� � � c �s� � s�� � c �s�� � c �s�� � �
c �write �e�� � � c �if b then s� else s� �� � c �s�� � c �s��
c �read �v�� � � c �while b do s od� � �

The measure c is used in the proof of the following two lemmas�

Lemma ��	 For all 	 and 	�� if 	�� 	
� then c �	� � c �	���

�Let �X� dX � and �X�� dX� � be metric spaces� A function f � X � X� is called contractive if there exists an �� with
� � � � �� such that� for all x and x��

dX� �f �x�� f �x��� � � � dX �x� x���

�The set Val�� is endowed with the metric

d ��� ��� 	

n
� if � 	 ��

�n otherwise

where n is the longest common pre�x of the sequences � and ��� By means of this metric we can endow SemO with the
metric

d ��� ��� 	 sup fd �� ���� �� ���� j � � NResg�

These metrics are ultrametrics� i�e�� for all x� x�� and x���

d �x� x��� � maxfd �x� x��� d �x�� x���g�

�Let �X� dX� be a complete metric space� If f � X � X is contractive then f has a unique �xed point �x �f��

�� Denotational Semantics �

Proof Only a few cases of the proof of this lemma are elaborated on�

�� Let 	

 �v �� e� � r� �� �	 �� Then

c �
 �v �� e� � r� �� �	 ��

� � � c �r� � c ��	�

� c �r� � c ��	�

� c �
 r� �f��vg� �	 ���

�� Let 	

 fork �v� � r� �� �	 �� Then

c �
 fork �v� � r� �� �	 ��

� � � c �r� � c ��	�

� � � c �r� � c ��	�

� c �
 r� �f��vg�
 r� �f��vg� �	 ����

ut

Lemma ��
 The transition system T is deterministic�

Proof We can show that
 for all 	
 jf ��� 	�� j 	
�

	� 	� gj � � by induction on the complexity of 	� ut

We are now ready for the key de
nition of this section�

Definition ��� The operational semantics O � L � Proc is de
ned by

O ��s		 � �� � �� �O �
 s � e� �� � ���

The
nal program of the introduction with an arbitrary initial state and the input stream ��������
will produce the output stream ��������������� and terminate as the reader may verify�

�� Denotational Semantics

The denotational semantics for L uses the set of continuations �� ��Cont � State � Val�� �� Val�� �
Note that
 but for the specialization to the nonexpansive� function space ��
 Cont equals Proc as
introduced earlier� Continuations correspond to resumptions in the sense that
 as we shall see in
De
nition ���
 meanings of Res reside in Cont�

We shall use �rst ��� to denote the
rst element of the nonempty sequence �
 and rest ��� to denote
the result of omitting the
rst element from the nonempty sequence ��

The denotational semantics D for L is presented in

Definition ��� Let �� �� SemD � L � Cont �� Cont � Let � � SemD � SemD be de
ned by

�Let �X� dX� and �X�� dX� � be metric spaces� A function f � X � X� is called nonexpansive if� for all x and x��

dX� �f �x�� f �x��� � dX �x� x���

�� Introduction

� ����v �� e���������� � � ��f��vg���� where � � V �e����

� ����skip���������� � � ������

� ����write �e����������� � � � � ������ where � � V �e����

� ����read �v����������� �

��
�

 �a�
� � � ��f�rst ����vg��rest ���� �b�
� � � �read �v���������rest ���� �c�

� ����fork �v����������� � �� ��f��vg���� ��f��vg�����

� ����s� � s����������� � � ����s���� ����s������������

� ����if b then s� else s� ����������� �

�
� ����s����������� �d�
� ����s����������� �e�

� ����while b do s od���������� � � � � �if b then s �while b do s od else skip �����������

where

�a� if � �

�b� if � ��
 and �rst ��� �� �
�c� if � ��
 and �rst ��� � �
�d� if B �b����
�e� if
B �b����

The denotational semantics D � SemD is de
ned by

D � �x ����

Some remarks�

� Much of the structure of the above clauses may be understood by consulting T � For example

the clause for the fork statement amounts to

D �fork �v����������� � �� ��f��vg���� ��f��vg������

Now using the correspondence between the semantic continuation � and the syntactic resump�
tion r
 we see that this is an immediate counterpart of the transition

 fork �v� � r� �� � ���
 r� �f��vg�
 r� �f��vg� � �� �

� Similar to what we did for O
 we have de
ned D here as �unique�
xed point of a higher�order
mapping� Such a �global�
xed point approach is attractive
 were it only for symmetry reasons�
However
 a more traditional ��local�� approach
 where the taking of
xed points is restricted to
the clauses for the read and while statement
 would also serve our purposes�

De
nition ��� is justi
ed in

Lemma ��� For all �� s� �� and ��

the mapping � ����s������� is nonexpansive �in ���
the mapping � ����s� is nonexpansive �in ��� and
the mapping � is contractive �in ���

Proof We only consider the second property� It can be shown that
 for all �
 s
 ��
 ��
 �
 and �

� Equivalence Theorem ��

d �� ����s������������ � ����s������������ � d ���� ���

by structural induction on s� Only a few cases are elaborated on�

�� Let s
 read �v�� We distinguish three cases�

�a� If � �

 then

d �� ����read �v������������� � ����read �v�������������

� d �
�
�

� d ���� ����

�b� If � ��
 and �rst ��� �� �
 then

d �� ����read �v������������� � ����read �v�������������

� d �� � �� ��f�rst ����vg��rest ����� � � �� ��f�rst ����vg��rest �����

� �
�
� d ��� ��f�rst ����vg��rest ����� �� ��f�rst ����vg��rest �����

� �
�
� d ���� ����

�c� If � ��
 and �rst ��� � �
 then

d �� ����read �v������������� � ����read �v�������������

� d �� � � �read �v����������rest ����� � � � �read �v����������rest �����

� �
�
� d �� �read �v����������rest ����� � �read �v����������rest �����

� �
�
� d �� �read �v������� � �read �v�������

� �
�
� d ���� ���� �� �read �v�� is nonexpansive	

�� Let s
 fork �v�� Then

d �� ����fork �v������������� � ����fork �v�������������

� d ���� ��f��vg����� ��f��vg������ ��� ��f��vg����� ��f��vg������

� maxfd ���� ��f��vg����� ��f��vg������ ��� ��f��vg����� ��f��vg�������

d ���� ��f��vg����� ��f��vg������ ��� ��f��vg����� ��f��vg������g

�ultrametricity	

� maxfd ��� ��f��vg����� �� ��f��vg������ d ��� ��f��vg�� �� ��f��vg��g

��� ��f��vg� is nonexpansive	

� d ���� ����

ut

We conclude this section with

Definition ��� The denotational semantics D � L � Cont is de
ned by

D ��s		 � D �s���� � �� �
��

�� Equivalence Theorem

Theorem ��� For all s � L� O ��s		 � D ��s		�

On the way to the proof of this theorem
 we
rst introduce two intermediate semantics�

Definition ��� The mapping H � Res � Cont is de
ned by

�� Introduction

H �e� � �� � �� �

H �s � r� � D �s��H �r��

The mapping I � NRes � Val�� is de
ned by

I ��� � �
I �
 r� �� 	 �� � H �r�����I �	��

The following properties of I are furthermore of importance�

Lemma ��� For all 	� 	�� and ��

if 	�� 	
� then I �	� � I �	��� and

if 	
�

	� 	� then I �	� � � � I �	���

Proof We only consider a few cases of the proof of the
rst property�

�� Let 	

 �v �� e� � r� �� �	 �� Then

I �
 �v �� e� � r� �� �	 ��

� H ��v �� e� � r�����I ��	��

� D �v �� e��H �r������I ��	��

� H �r���f��vg��I ��	��

� I �
 r� �f��vg� �	 ���

�� Let 	

 fork �v� � r� �� �	 �� Then

I �
 fork �v� � r� �� �	 ��

� H �fork �v� � r�����I ��	��

� D �fork �v���H �r������I ��	��

� �H �r���f��vg���H �r���f��vg��I ��	���

� �H �r���f��vg���I �
 r� �f��vg� �	 ���

� I �
 r� �f��vg�
 r� �f��vg� �	 ����

ut

The main step in the proof of Theorem ��� now follows� Recall that � is the higher�order operator
used in the de
nition of O�

Lemma ��� � �I� � I�

Proof We can show that
 for all 	

� �I��	� � I �	�

by induction on the complexity of 	 �cf� De
nition ����� Only a few cases are elaborated on�

�� Let 	

 �v �� e� � r� �� 	� �� Then

� �I��
 �v �� e� � r� �� 	� ��

� � �I��
 r� �f��vg� 	� �� �
 �v �� e� � r� �� 	� ���
 r� �f��vg� 	� �	

� I �
 r� �f��vg� 	� �� �Lemma ���
 induction	

� I �
 �v �� e� � r� �� 	� ��� �Lemma ���	

�� Let 	

 read �v� � r� �� 	� �� We distinguish three cases�

References ��

�a� Assume 	�
�
	� 	��� Then

� �I��
 read �v� � r� �� 	� ��

� � � I �
 r� �f��vg� 	�� �� �
 read �v� � r� �� 	� �
�
	�
 r� �f��vg� 	�� �	

� I �
 read �v� � r� �� 	� ��� �Lemma ���	

�b� Assume 	�
�
	� 	��� Then

� �I��
 read �v� � r� �� 	� ��

� � � I �
 read �v� � r� �� 	�� �� �
 read �v� � r� �� 	� �
�
	�
 read �v� � r� �� 	�� �	

� I �
 read �v� � r� �� 	� ��� �Lemma ���	

�c� Assume 	� blocks� Then
 read �v� � r� �� 	� � blocks and hence

� �I��
 read �v� � r� �� 	� �� �
�

Since 	� blocks
 � �I��	�� �
� By induction
 I �	�� �
� Consequently

I �
 read �v� � r� �� 	� �� �
�

ut

We have arrived at the proof of Theorem ����

Proof Because both O and I are
xed point of � �De
nition ��� and Lemma ���� and � has a
unique
xed point
 O and I are equal� Consequently

O ��s		������

� O �
 s � e� �� � ��

� I �
 s � e� �� � ��

� H �s � e�����I ����

� D �s��H �e��������

� D �s���� � �� �
�������

� D ��s		�������

ut

References

�AW��	 S�K� Abdali and D�S� Wise� Standard
 Storeless Semantics for ALGOL�style Block Structure
and Call�by�Name� In A� Melton
 editor
 Proceedings of the �st International Conference
on Mathematical Foundations of Programming Semantics
 volume ��� of Lecture Notes in
Computer Science
 pages ����
 Manhattan
 April ����� Springer�Verlag�

�Ban��	 S� Banach� Sur les Op�erations dans les Ensembles Abstraits et leurs Applications aux Equa�
tions Int�egrales� Fundamenta Mathematicae
 ���������
 �����

�Ben��	 D�B� Benson� Machine�Level Semantics for Nondeterministic
 Parallel Programs� In
M� Dezani�Ciancaglini and U� Montanari
 editors
 Proceedings of the 	th International Sym�
posium on Programming
 volume ��� of Lecture Notes in Computer Science
 pages �����

Turin
 April ����� Springer�Verlag�

�BR��	 J�W� de Bakker and J�J�M�M� Rutten
 editors� Ten Years of Concurrency Semantics� selected
papers of the Amsterdam Concurrency Group� World Scienti
c
 Singapore
 �����

�Bru��	 A� de Bruin� Experiments with Continuation Semantics
 jumps� backtracking� dynamic net�
works� PhD thesis
 Vrije Universiteit
 Amsterdam
 May �����

�� References

�HSS��	 T� Hagerup
 A� Schmitt
 and H� Seidl� FORK� A High�Level Language for PRAMs� In E�H�L�
Aarts
 J� van Leeuwen
 and M� Rem
 editors
 Proceedings of the �rd International PARLE
Conference
 volume ��� of Lecture Notes in Computer Science
 pages �������
 Eindhoven

June ����� Springer�Verlag�

�KK��	 E� Klein and K� Koskimies� How to Pipeline Parsing with Parallel Semantic Analysis� Struc�
tured Programming
 ������������
 �����

�KR��	 J�N� Kok and J�J�M�M� Rutten� Contractions in Comparing Concurrency Semantics� Theo�
retical Computer Science
 ���������������
 �����

�MA��	 C� McDonald and L� Allison� Denotational Semantics of a Command Interpreter and their
Implementation in Standard ML� The Computer Journal
 �������������
 October �����

�Par��	 D� Park� The Fairness! Problem and Nondeterministic Computing Networks� In J�W� de
Bakker and J� van Leeuwen
 editors
 Foundations of Computer Science IV� Distributed Sys�
tems� part �� Semantics and Logic
 volume ��� ofMathematical Centre Tracts
 pages ��������
Mathematical Centre
 Amsterdam
 �����

�Plo��	 G�D� Plotkin� A Structural Approach to Operational Semantics� Report DAIMI FN���

Aarhus University
 Aarhus
 September �����

�RS��	 J��C� Raoult and R� Sethi� Properties of a Notation for Combining Functions� Journal of the
ACM
 �������������
 July �����

�RS��	 G� R"unger and K� Sieber� A Trace�Based Denotational Semantics for the PRAM�Language
FORK� Report ������
 Universit"at des Saarlandes
 Saarbr"ucken
 �����

