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Operational and denotational semantics describing the matching process 

in SNOBOL4*) 

by 

A. de Bruin 

ABSTRACT 

The pattern matching process in SNOBOL4 is investigated. We consider 

a subset of the language which is simple in this respect that patterns are 

not allowed as values of variables. This leads to matching processes that 

always terminate. After an informal description of the matching algorithm we 

present an operational semantics in the SECD-machine style. This semantics 

uses a stack to implement the backtracking which can occur during matching. 

After that a denotational semantics is introduced which uses continuations 

to describe the backtracking. F.quivalence of the two semantics is then proved. 

The operational and denotational semantics are as similar as possible while 

retaining the typical operational respectively denotational ideas. This leads 

to a straightforward equivalence proof. That this similarity pays off is 

shown by another, somewhat disparate operational semantics for which equiv­

alence with the denotational semantics is much harder to prove. 

KEY WORDS & PHRASES: Denotational semantics, operational semantics, 

continuation, backtracking, pattern matching, 

SNOBOL4, SECD machines 

*) This report will be submitted for publication elsewhere. 
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1. INFORMAL DESCRIPTION OF THE SNOBOL4 FRAGMENT 

This chapter serves as an introduction for those who are not acquainted 

with SNOBOL4, or only superficially so. We will discuss here only that part 

of the language which will be dealt with in the rest of the paper. Details 

and differences with full SNOBOL4 will be discussed in later chapters. The 

reader who is familiar with the language can therefore skip this chapter. 

Pattern matching is in essence investigating whether a string of symbols 

(the subject string) is of a certain form as specified by a pattern. Another 

entity which has a role in this process is the cursor, a variable with in­

teger values between zero and the length of the subject string, which serv­

es as a pointer into this string. Cursor= 0 means that the pointer is locat­

ed at the beginning of the string, the cursor being equal to the length of 

the subject string corresponds to the pointer being placed at the right-hand 

end of the string. In general, cursor= n denotes that the pointer is posi­

tioned between then-th and the (n+l)-th symbol in the subject string. 

Matching a string h against a pattern p starting with cursor position 

n may have two outcomes. The match may fail, which means that the substring 

of h starting directly after then-th symbol does not have the form pre­

scribed by p. The alternative is that the match succeeds in which case the 

process will yield a new cursor value, for instance n'. This will happen 

if the substring of h between cursor position n and n 1 has the property 

specified by p. 

We will now present several forms which patterns can take, and explain 

their meaning. The first possibility is that a pattern is a string, for 

instance h'. Matching the subject h against the pattern h' succeeds if 

h = h 1 h 1 h 2 and if the cursor is located just-before h'. After the match 

the cursor will then be placed just before the substring h 2 in the subject. 

In all other cases the match will fail. For example, if the subject string 

is 'arie' and the pattern is 'ri', then the match fails if the precursor 

position (the value of the cursor before the match) equals O, and the match 

will succeed if the precursor position is 1. In the latter case the corre­

sponding postcursor value will be 3. 

The pattern nil matches every string without altering the cursor posi­

tion. Matching against this pattern is the same as matching against the 



2 

pattern formed by the empty string. The pattern fail is a pattern which 

fails invariably whatever the subject and the cursor position might be. 

There are two dyadic operators on patterns, namely v and&. The 

pattern p1 vp2 matches every string that matches p 1 or p 2 , and p1 &p2 is a 

pattern that matches every string matched by p 1 followed by any string that 

is matched by p 2 • We have to be more precise here, that is we must describe 

in more detail how the scanner (the matching algorithm) works. 

The patterns defined up till now consist of elementary subpatterns 

(strings h, nil and fail) connected by &- and v-operators. In a pattern of 

the form p 1&p2 , p 2 is called the subsequent of p1 , and in p 1 vp2 , p 2 is 

called the alternative of p 1 . The scanner acts in the following way: if it 

has to match against a (sub-)pattern of the form p1vp2 , then the scanner 

behaves first as if it has encountered only the pattern p 1 . But the alter­

native p 2 , together with the current cursor position, will be remembered in 

case the match will fail later on. 

If the matching process fails at a certain instant then something takes 

place which is called backtracking. The scanner returns to the last "choice 

point" in the pattern which is the last encountered subpattern of the form 

p 1vp2 , where p 2 has not yet been tried. It restores the situation (cursor 

position) to how it was just before choosing p 1 as first alternative. It now 

chooses p 2 and the matching process proceeds as if p 2 had been substituted 

for p 1 vp2 in the pattern. 

If the scanner hits upon a pattern of the form p1 &p2 then it first 

tries to match against p1 . If this fails then the backtracking process as 

described above will take place. If it succeeds then the scanner tries to 

match the subject against p 2 starting with a new cursor value which is the 

result of the match against p1 . If the scanner fails and all alternatives 

are exhausted which means that no more backtracking is possible, then the 

whole match fails. The overall match succeeds if we come to the right-hand 

side of the pattern. 

EXAMPLE. We try to match the string 'arie' against the pattern 

('a' & ('ri' v 'r')) & 'i'. 

1. Cursor position= 0. Match against 'a' succeeds. The new cursor position 



is 1 and we try to match against the subsequent ( 'ri' v 'r') & 'i'. 

2. This pattern has the form p1 &p2 , so we first try to match against the 

first component 'ri' v 'r'. 

3. This pattern has the form p 1 vpr We now act as if we have encountered 

the pattern 'ri' alone. We remember however the situation as it is now 

in order to be able to backtrack to it later on. 

4. Match against 'ri' succeeds, and the cursor value is now 3. We next try 

to match against the subsequent, the second component from step 2. 

5. This is the pattern 'i'. Match against 'i' fails and thus we have to 

backtrack. 

6. The situation of step 3 is restored by setting the cursor position to 1 

again and we try the alternative 'r' instead of 'ri'. 

7. Match against 'r' succeeds. The new cursor position is 2. We try the 

subsequent, the second component of ( 'ri' v 'r') & 'i'. 

8. Match against this pattern 'i' succeeds, the new cursor position is 3. 

9. There are no subsequents left and the whole match has thus succeeded. 

3 

Now that we know how the scanner works, we can describe the effect of 

the pattern abort. If the scanner encounters this pattern the whole matching 

process terminates. Notice the difference with fail which would force the 

scanner to backtrack. 

We next discuss the way variables can be handled in the matching 

process. The variables will have strings as values. A variable v can be 

a pattern by itself. Such a pattern has the same meaning as the pattern h, 

where his the value of vat the time the pattern expression is evaluated, 

which in general will be just before the match starts. There is an excep­

tion to this which will be discussed later on. 

There are two ways to change values of variables during the match, 

namely by immediate and conditional assignment. Immediate assignment is 

indicated by patterns of the form p$v. The meaning of such a pattern is 

the followinq. If the scanner manages to match p against a substring of 

the subject, then this substring will be assigned to the variable v. This 

assignment is performed immediately, and always, even if the match will 

fail later on. Therefore a subpattern p$v can cause the variable v to be 

changed more than once in one match. For instance, during the match of the 
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the string 'arie' against the pattern ( ('a' v 'ar') $ v) & • ie' the variable 

v will change value twice. First the string 'a' will be assigned to it and 

later the string 'ar'. 

Conditional assignment is indicated by patterns of the form p.v, and 

has a similar effect on v as immediate assignment, apart from the fact that 

the assignment will be performed only if the local match against p was part 

of a full match which led to success. Only after the match has terminated 

successfully, the corresponding assignments will be performed. 

EXAMPLES. If 'arie' is matched against ('a'.v v 'ar') & 'ie' then v will not 

get another value; if we match the same string against ('a' v 'ar'.v) & 'ie' 

then after the match v will have the value 'ar'. 

As we remarked above, evaluation of a pattern expression, which is in 

essence replacing variables by their values, will in general take place 

before the match. We now give the exception hinted at earlier, which is the 

unevaluated expression *P· This pattern behaves in the same way asp does 

except for the fact that p will be evaluated at the moment the scanner 

encounters *P during the match (which therefore can happen more than once). 

EXAMPLE. The pattern ('a'$v v 'b'$v) & (*v) matches the strings 'aa' and 

'bb'. This can be contrasted with the pattern ( 1 a 1 $v v 1 b 1 $v) & v which 

matches 'a' followed by h or 'b' followed by h, where his the value of v 

before the match. Notice also that this latter pattern has the same effect 

as ('a'.v v 'b'.v) & vor ('a'.v V 'b'.v) & (*v). 

In the first example ('a'$v v 'b'$v) & (*v) we see a typical example 

of the use of the *-operator. We combined it there with the $-operator and 

were thus able to use the outcome of the match against the first component 

of the pattern while matching against the second component. 

This concludes our informal discussion of the meaning of the patterns. 

The sequel of this paper will be devoted to more formal definitions of the 

process described above. 
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2. SYNTAX 

We will now describe the syntax of the SNOBOL fragment, namely the 

pattern expressions that we allow in our language. We introduce the follm:-­

ing syntactic classes, together with letters that denote typical elements 

of these classes. 

h E S.tfr., the strings. String values will be enclosed in quotation marks, 

for instance 'arie' denotes the string consisting of 

letters a, r, i and e consecutively. We denote the empty string by". If 

h E S.tfr. and n,n' are integers such that O :s; n :s; n' :s; k, where k is the length 

of h, then h[n:n'] denotes the substring of h which begins with the (n+l)-th 

symbol and ends right after the n '-th symbol. If O :s; n :s; n' :s; k does not hold 

then h[n:n'] denotes the empty string. 

v E Vall., the variables. In contrast to full SNOBOL4, we define explicitly 

a class of variables which is distinct from the class 

of strings. 

n E Num, the numerals denoting nonnegative integers. We will use the letter 

n also to denote nonnegative integers themselves. No 

confusion will arise from this as the intended meaning can always be deduced 

from the context. We assume the existence of a derepresentation function 

V: Num ➔ N, mapping numerals to the corresponding nonnegative integers, 

which will be injective and surjective. This means that every integer has 

exactly one numeral representing it and therefore v-l is well defined. This 

heavy machinery might seem somewhat overdone, and in fact we could, for the 

moment, do without it and proceed a little le~s formally. However we main­

tain this function here because in a later stage it is needed anyway, and 

also other V-functions have to be introduced (see chapter 5, definition 5.1). 

p E Pat, the patterns. We give the following BNF-like definition. 

p : := h I 
vi 
nillabortlfail 

p$vl 

p.vl 

literal string 

variable 

constants 

immediate assignment 

conditional assignment 
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n$$vln •. vl auxiliary patterns, not occurring in 

programs; needed in the operational 

semantics to describe the effect of 

immediate and conditional assignment 

unevaluated expression 

alternation; we donot use the I-sign 

because the BNF notation does not allow 

this 

concatenation; we chose the &-symbol 

instead of the space for the sake of 

clarity. 

As we intend to study the matching process only we do not present the 

many other SNOBOL4 features. We also made a selection from the pattern 

structures which are possible in SNOBOL4. We have chosen the subset such 

that the essential aspects of the pattern matching process can be studied 

through it. 

3. OPERATIONAL SEMANTICS 

The semantics given here is inspired by a description of a SNOBOL4 

implementation by GIMPEL [3]. There are some differences however. 

The first one is that we allow only strings as values of variables. 

This has been done in order not to be forced to get into detail concerning 

coercion problems. Furthermore we do not include patterns as values because 

that would complicate the presentation a great deal, as we have to resort 

to recursively defined domains in the denotational semantics. This will be 

the subject of another paper. 

Gimpel describes three phases in the elaboration of patterns. He talks 

about compilation which transforms a pattern expression into a tree repre­

senting it, pattern building which takes this tree, replaces variables by 

their values at that moment and builds a pattern structure (a graph repre­

senting the pattern tree in such a way that the scanner can traverse it 

efficiently), and pattern matching. 

We do not distinguish these phases. Pattern match will be done directly 



from the pattern expression. We do not replace variables by their values 

but we add to the patterns a stores giving the values of the variables at 

pattern building time. In that way the scanner will be able, during the 

match, to find the meaning of a pattern component v by inspecting s. 
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The way the scanner performs the matching process, as described by 

Gimpel, is roughly as follows. Besides the cursor variable the scanner uses 

also the pattern structure which has been constructed by the pattern build­

ing process, and a variable, which we call ptn which has as a value a pointer 

into this structure indicating how far the match has proceeded in this struc­

ture. Furthermore there is a stack to save untried alternatives. The scanner 

now repeats the following loop. 

1. If the pattern component pointed at by ptn has an alternative then save 

this alternative, represented by its ptn value, and the current cursor 

value on the stack. 

2. Try to match the pattern component determined by the value of ptn (which 

is a primitive pattern: a string h, nil, fail, abort) against the subject 

string. If this succeeds goto step 3, else goto step 4. 

3. Find out whether the pattern component designated by ptn has a subsequent. 

If so, set ptn to point at it and go back to step 1; if not, we are 

ready, and the overall match has succeeded. 

4. (Backtrack step). Inspect the stack. If it is empty then we are done, 

there are no alternatives left, and the pattern match has failed. If the 

stack is not empty then pop the stack to find a new ptn value and a new 

cursor value. Assign these values and go back to step 1. 

For those who are acquainted with SNOBOL4: the above algorithm describ­

es the anchored fullscan mode, which will be the only mode to be dealt with 

in this paper. 

Here the matching process will be defined in terms of an abstract 

machine, not unlike LANDIN's SECD machine [4]. We will give a function 

called step which performs the elementary steps of the process, changing 

the machine configuration, which we will now describe informally. 

A machine configuration mis an 8-tuple <p,s' ,h,c,a,q,n,s>, where pis 

a pattern ands' ,s are stores (lists of variable-value pairs). The stores' 

records the values of the variables as they were at pattern building time. 

The pair <p,s'> determines a pattern structure, which corresponds roughly 
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to the pattern component pointed at by the variable ptn in Gimpel's algo­

rithm. Furthermore, his the subject string, and c is the so called sub­

sequent which is in essence a list of pattern components to be matched 

against once the match against p has terminated successfully. To be more 

precise, this is organized as follows: c is either equal to the list 

<READY>, the endmarker of the list, or it has the form <p,s,h,c> where the 

pair <p,s> determines the first pattern-structure component in the list, 

while c constitutes the tail of the list (the subject string his included 

only for convenience). The item q in the 8-tuple is a list of variable-

value pairs rE~cording the conditional assignments encountered so far which 

have to be performed if the total match succeeds. Furthermore n is the 

numeral givin<J the present cursor value ands is the present store. Finally, 

the component a is the alternative which corresponds to the stack in Gimpel's 

description. '.I'his a is either equal to <FAIL> which denotes the bottom of 

the stack, or it is a 7-tuple of the form <p,s,h,c,a,q,n>. Here p, sand c 

correspond to the ptn value on the stack as given by Gimpel (p, sand c 

represent a point in the pattern structure: p ands determine a pattern 

structure component and c determines the subsequents of this component), 

n corresponds to the cursor value on Gimpel's stack, q denotes the queue of 

conditional assignments accumulated up to the moment that particular stack 

frame was constructed (this has no analogon in Gimpel's stack because he 

uses a trick to circumvent this space consuming method), and finally a 

stands for the other frames of the stack. 

The function step takes a machine configuration m= <p,s' ,h,c,a,q,n,s>, 

inspects the form of p and changes m correspondingly into a new configura­

tion. We next present the formal definitions. 

First some notational conventions. We will frequently use Curried 

functions which are functions that can take functions as arguments and 

yield functions as values. This generally leads to expressions with too 

many parentheses to be readable. To avoid this we leave parentheses out as 

much as possible using the convention that function application associates 

to the left. 'I'his means that fabc should be taken as ( (f(a)) (b)) (c) . 

Function domain parentheses will be omitted under the convention that 

the ➔- operator associates to the right. That is, A ➔ B ➔ C should be read 

as A ➔ (B ➔ C). 
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Concatenation of two lists 11 and 1 2 will be written as 11 1 2 . The 

empty list will be denoted by<>. 
' 

We define the following classes. 

s ES, the stores. These are finite, and possibly empty, lists of elements 
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from Vall. x S:tlc. (<v,h>-pairs). Elements from Sare data 

structures which determine the values of the variables. Only the variables 

which have nonempty strings as values are recorded in a stores. In accor­

dance with the convention in SNOBOL4 that all variables are initialized on 

the empty string there will be at any moment during program execution only 

a finite number of variables with nonempty values. We define two operations 

on stores. 

1. updating. The store resulting from s by assigning the string h to vis re-
• A 

presented by the lists <v,h>. 

2. extracting. The value of v in stores is denoted by s4v}. This is defin­

ed as follows. 

b) 

a) <>( v} = " 

(sA<v,h>)4w} - {h 
- s4w} 

if V = W, 

otherwise. 

Notice that more than one pair with first element v can occur in a 

stores. Only the rightmost pair "counts" however. 

q E Q, the queues of accumulated conditional assignments. These too are 

finite and possibly empty lists of <v,h>-pairs. They con­

stitute the queue of conditional assignments which have to be performed if 

the overall match succeeds. To accomplish thi~ we simply concatenate the 

two lists: the stores' resulting from performing the assignments given by 
A 

q in stores is given bys'= sq 

c EC, the subsequents. The class C is inductively defined as follows. An 

element c from C is either the list <READY> contain­

ing one element, or it is a list of the form <p,s,h,c> where p E Pat, 
h E S:tlc., s ES and c is again a subsequent. 
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a EA, the alt:ernatives. The class A is inductively defined by: an element 

a from A is either the one element list <FAIL> or 
A 

a list c <a,q,,n> formed by concatenating a subsequent with a list contain-

ing an alternative, a q E Q and a numeral n. 

r ER, the results, i.e. the possible outcomes of a match. The class R is 

defined by R = (Nu.m U {FAIL,ABORT}) x S. A results r is 

thus a pair <n,s> where n denotes the final cursor position (if the match 

was successful) ands is the resulting store. 

m EM, the machine configurations. A machine configuration is either a 

a final configuration which is an element 
A 

from R, or an 8-tuple a <s> formed by concatenating an alternative with a 

list containing a stores as only element. The predicate final(m) holds iff 

mis a final configuration. 

We now have enough tools to define the step function. 

The function step: M ➔ Mis defined as follows. 

A. If mis a final configuration then step(m) = m. 
A 

B. If m has the form <READY,a,q,n,s> then step(m) = <n,s q>. 

C. In all other cases m has the form <p,s' ,h,c,a,q,n,s>, and the definition 

proceeds by induction on the structue of p. 
A -1 

= {c <a,q,V n'> if h' = h[Vn:n'] 
1. step<h' ,s" ,h,c,a,q,n,s> 

A . 
a <s> otherwise 

2. step<v,s',,h,c,a,q,n,s> = <s'4v),s',h,c,a,q,n,s> 

3. step<nil,s' ,h,c,a,q,n,s> 
A 

c <a,q,n,s> 

4. step<abort,s',h,c,a,q,n,s> = <ABORT,s> 
A 

5. step<fail,,s' ,h,c,a,q,n,s> = a <s> 

6. step<p$v,s' ,h,c,a,q,n,.c:> = <p,s',h,<n$$v,s' ,h,c>,a,q,n,s> 

7. step<p.v,s' ,h,c,a,q,n,s> <p,s',h,<n .. v,s' ,h,c>,a,q,n,s> 

8. step<n'$$v,s' ,h,c,a,q,n,s> 
A A = c <a,q,n,s <v,h[Vn':Vn]>> 

9. step<n' .• 11,s' ,h,c,a,q,n,s> 
A A 

c <a,q <v,h[Vn':Vn']>,n,s> 

10. step<*p,s·' ,h,c,a,q,n,s> = <p,s,h,c,a,q,n,s> 

11. step<p1vp2 ,s' ,h,c,a,q,n,s> <p11 s' ,h,c,<p2 ,s• ,h,c,a,q,n>,q,n,s> 

12. step<p1 &p2 ,s• ,h,c,a,q,n,s> = <p11s',h,<p2 ,s• ,h,c>,a,q,n,s>. 



EXPLANATION. 

Ad B. If during the match we encounter the end of the subsequent list, 

then the match has clearly succeeded (compare step 3 in Gimpel's 

algorithm). The postcursor position then is n, the cursor position on 

encountering READY, and the final store is obtained by performing all 

assignments in q from left to right. 

Ad C. 1. If the pattern component is a literal string h' then we have to 
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find out whether h' matches the subject string with respect to the 

present cursor position. If so, we have to continue with the next pattern 

component and this is given by the subsequent c. Now the stores and the 

queue q have not changed. Also there are no new alternatives found in the 

meantime so the alternative is still given by a. The only entity which has 

changed is the cursor position which must be set to its new value. By adding 
-1 

the list <a,q,V n',s> to c we thus obtain a new machine configuration which 

reflects the effects of the successful match. 

If the match against h' fails then we have to backtrack, and we take 

one frame from the stack a. Finding out that the match fails does not 

affect the store, so we only have to add <s> to get the resulting machine 

configuration. 

2. If the pattern component is a variable v then we have to inspect the 

store as it was at pattern building time to find the value of v. This 

store is given bys'. The resulting machine configuration is then obtained 

by replacing v by the literal string which is the value of v ins'. 

6-8. The pattern p$v is handled as follows: p$v is rewritten asp& (n$$v). 

So first a match against pis attempted. If this succeeds then we have 

to assign to v the substring of the subject which has been matched, and that 

is precisely the effect of matching against n$$v. This match always succeeds 

and has the side effect that the substring from the subject between cucsor 

value n (given by the pattern component n$$v) and the present cursor value 

is assigned to v. So n$$v serves to indicate that an assignment has to be 

done, and it also provides the cursor value at the beginning of the match 

against p. 

7-9. Similar to 6-8, but now the matched substring of the subject is added 

to the queue q. 
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10. The effect of matching against *Pin stores is the same as matching 

against the pattern structure derived from pin stores. So the only 

thing to be done is to replaces' bys. 

11-12. In these cases the pattern is decomposed and the second component is 

retained in the new alternative, resp. the new subsequent. 

Now that we have a step function which gives one step results, we can 

define the function P which takes a machine configuration and yields the 

final result of the matching process, a configuration m for which final(m) 

holds. The function Pis obtained by repeating the function step until a 

final configuration has been reached. We can formalize this in two ways. 

The first one is straightforward: 

m' if there exists a row m1 , ••• ,mk such that m = m1 , 

P(m) mk = m' I mi+l = step(m .) (i=l, .•• ,k-1), 7final (m .) 
= 1. 1. 

(i = 1, ••• ,k-1), final (mk), 

.1 otherwise • 

There is another definition possible which is neater, but uses fixed point 

theory. The function P can be defined recursively by 

P(m) ~ final(m) + m, P(step(m)), 

or more precisely 

P = µ[11.qi•11.m•final(m) + m, qi(step(m))], 

whereµ is the least fixed point operator (see for instance DE BAKKER [1], 

or STOY [7] who calls this operator fix). 

In order for the latter definition to make sense we have to impose 

a cpo structure on the class M of machine configurations. This can be done 

by adding the element .1 to Mand making Ma discrete cpo (m1 I;, m2 iff 

m1 = .1 or m1 = m2). We also extend the definition of step by taking 

step .1 = .1. It can be shown (in the standard way) that the operator 

11.qi•11.m•final(m) + m, qi(step(m)) is continuous, and thus that the least fixed 

point exists. 

That the two definitions are equivalent can be shown in a standard 



way (see for instance [1, paragraph 3.3]). 

Finally we define the operational meaning function O which gives the 

outcome of the process of matching a string h against a pattern p with 

initial stores. 

O[p] h s P<p,s,h,<READY>,<FAIL>,<>,0,s>. 
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Here we used the convention that syntactical objects occurring as an 

argument of a function are enclosed in [•]-type brackets to make the expres­

sion more readable. 

4. DENOTATIONAL SEMANTICS 

We now turn to a discussion of the denotational semantics of our 

SNOBOL4 fra~rment. Before we do so however, we first make a remark on the 

notation we will use. The semantical classes used in the denotational 

semantics wj_ll be different from the ones in the above chapter. For instance 

we defined the class S of stores by S (VM x Sbi)*, but now we will 

take the domain of the stores to be S = VM + Sbi. This can be done because 

we do not work any more with finite representations, we can use infinitary 

mathematical objects such as functions in the denotational semantics. 

We will however use the same symbols to denote corresponding semantical 

classes and their typical elements. So in this chapter we define S with 

typical elements bys ES= VM + Sbi. This usage will not cause confusion 

in this chapter because here we will be occupied only with denotational 

domains and values. If confusion can be possible we will use the so called 

diacritical convention (MILNE & STRACHEY [5]); elements in the denotational 

world will be decorated with an acute accent~, and the operational domains 

and values with a grave accent~. According to this convention we then can 

write§= Vctli + Sbi and S = (Vetli x Sbi)*. Notice that Vetli and Sbi, being 

syntactic domains are not decorated. 

We return to the denotational semantics. The meaning of a pattern p can 

be described by the effects resulting from a match of an arbitrary string h 

against p. 'J7his match, if it succeeds, will affect the cursor value n (which 

is now an element of N, the nonnegative integers), the stores, and it might 
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also add new conditional assignments to the ones already accumulated, as 

given by q (q will now be an element of S +Sand denote the store transfor­

mation which is the result of performing all conditional assignments). 

The meaning of p will also be dependent on the stores' at pattern evalua­

tion time, s' provides the values of the free variables in p, i.e. those 

variables that are not bound by a *-operator. 

Using a meaning function N, the effect of matching the string h against 

pattern p evaluated ins', with initial situation given by conditional 

assignments q, cursor position n and stores, would then be given by the 

expression N[p] s' h q s. The value of this expression could be a triple 

<q' ,n' ,s"> giving the new q-, n- and s-values. This set up does not work 

however, and this can be seen most directly by studying the case that the 

match of h against p fails. For how should the effect of backtracking be 

described in this setting? 

The problem becomes clearer if we take a look at the compositionality 

principle, a main idea behind the denotational style of defining. This 

principle says that the meaning of a compound expression should be composed 

from the meaning of its parts. For instance, the meaning N[ (p 1 v p 2 ) & p 3] 

should be given in terms of N[p1], N[p2] and N[p 3] only. 

Now matching against p 3 can fail and cause backtracking, a jump in 

the pattern to p2 . However in determining the meaning N[p 3] we donot have 

the pattern text p 2 at our disposal anymore, as was the case in the opera­

tional semantics. The standard solution for this kind of problems around 

jumps in programs is to work with continuations. 

The trick is that we give the function N[p] s' h an extra argument a, 

called the alternative which describes the result of backtracking from p. 

The effect of backtracking is: recover the situation to the state it was in 

at the latest choice point and proceed from there on with the new stores. 

This effect is: captured by a function a EA= S + R, where 

R = (Nu {FAIL,ABORT}) x S. The alternative a takes a store as argument and 

delivers the result r of the rest of the matching process. In other words, 

an alternative a is a function that describes the pattern matching process 

starting from the moment that backtracking out of p occurs. 

So we add an extra argument a, and we have that now, if backtracking 

takes place, N[p] s' ha q n s denotes the final result of the whole match. 
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But this must then be the case too should the match succeed. It is therefore 

needed to give N[p] s' h yet another argument, a subsequent c, describing 

how the pattiern matching process proceeds if matching against p has termi­

nated succes:sfully. The subsequent will yield a result r in R, which will 

be dependent on four arguments describing the situation after the local match has 

succeeded: the new store s", the postcursor position n', the conditional 

assignments accumulated q' and a new alternative a' which is determined by 

the alternative we had before matching against p, updated with the possible 

alternatives found while matching against p which have not yet been tried. 

We thus arrive at a functionality c EC= A ➔ Q ➔ N ➔ S ➔ R. 

A subsequent can be viewed as a function determining how the match 

proceeds from a certain point in the pattern text. An alternative can be 

looked upon in the same way, but more information is available at the 

moment an alternative is constructed (i.e. while matching on encountering 

a choice point p 1 V p 2 ), namely the precursor position, the conditional 

assignments ,gathered so far and also the alternatives remaining if the match 

fails in the process after backtracking to the choice point. The difference 

between the two is clearly reflected in the respective functionalities 

A ➔ Q ➔ N ➔ S ➔ R vs. S ➔ R: an alternative is like a subsequent but not 

more dependent on a, q and n. 

Concluding, the result r = N[p] s' h ca q n scan be described as 

follows: N[pll s' denotes the pattern structure resulting from evaluation of 

the expression pin stores'. Suppose his matched against this pattern 

structure, and the initial situation is given by cursor position n, initial 

stores and conditional assignments accumulated so far determined by q. 

Suppose furthermore that the effect of the future of the matching process 

once match against p has been finished is given by a in case backtracking 

out of p occurs, and by c in case the match against p terminates successful­

ly. In that case the final result of the whole matcing process is given by r. 

The above discussion leads to the following definitions of domains and 

functionalities. 
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S E s Vall..+ S:tlr. stores 

n E N nonnegative integers 

q E Q = 

r E R 

s + s 

(NU {FAIL,ABORT}) X S 

accumulated conditional assignments 

results 

a E A = s +R alternatives 

C E C A +Q +N+S+R subsequents 

We define a variant s{h/v} of a stores by 

{
s(w) 

(s{h/v})(w) = 
h 

if V J_ W 

if V - W. 

Notice th.at the classes introduced above are not cpo's. Cpo's are not 

needed here be,cause the semantic definition of N to come is a purely induc­

tive one. No ~~e is made of fixed points, and we also donot use recursively 

defined domains. 

The semantic function N has functionality 

N: Pa..t + s + S:tlr. + C + A + Q + N + s + R 

and is defined by induction on the structure of its first argument as 

follows. 

{
ca q n' s 

1. N[h'] s' h ca q n s = 
if h' = h[n:n'] 

a s otherwise 

2. N[ v] s' h c a q n s = N[ s' ( v)] s ' h c a q n s. 

3. N[nil] s' h c a q n s = c a q n s 

4. N[abort] s' h ca q n s = <ABORT,s> 

5. N[ fail] s' h c a q n s = a s 

6. N[p$v] s' h c a q n s = N[p] s' h c' a q n s 

where c' >..a'•t..q'•11.n'•11.s"•c a' q' n'(s"{h[n:n']/v}) 

7. N[ p• v] s' h c a q n s = N[ p] s' h c' a q n s 

where c' = 11.a 1 •11.q'•11.n'•11.s"•c a' (11.s• (q's){h[n:n']/v})n's" 

8. N[n$$v] s' h c a q n s = Ca q n(s{h[Vn:n]/v}) 

9. N[n •• v] s' h C a q n s = C a(11.s· (q s){h[Vn:n]/v}) n s 

10. N[ *P] s' h C a q n s = N[p] s h ca q n s 

11. N[pl Vp2] s' h C a q n s = N[pl] s' h c{N[p) s, h c a q n} q 

12. N[pl&p) s' h c a q n s = N[pl] s' b{N[p2] s' h c} a q n s. 

n s 
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REMARKS. Ad 1. If h matches h' at cursor position n then the remainder of 

the matching process is given by the subsequent c. The alternative, 

the conditional assignment queue and the store did not change, only the 

cursor has a new value. If h does not match then the remainder of the 

matching process is given by a which has to be applied to the current stores. 

Ad 2. Like 1, but first the value of v ins' has to be determined. Notice 

that, in order to be able to maintain the above definition as one by 

structural induction, we have to choose a measure of complexity of patterns 

which guarantees that the complexity of variable is higher than that of a 

string. This can be accomplished easily though. 

Ad 6. Matching gainst p$v is in principle the same as matching against p. 

Only when the match against p succeeds we have to aditionally assign 

the string matched to. This is taken care of by the new subsequent c' which 

describes the effect of this assignment followed by the effect of the old 

subsequent c. 

Ad 7. Like 6, but now the new subsequent c' causes q to be updated instead 

of s. 

Ad 8,9. Notice that then occurring in the patterns is a numeral. Therefore 

n has to be changed into the corresponding number. Strictly speaking, 

clauses 8 and 9 are not needed in the definition, because patterns n$$v, 

n .. v do not occur in programs, nor in the right-hand sides of the other 

clauses in the definition. These auxiliary patterns have only been intro­

duced for the sake of the operational definition, where the meaning of p$v 

has been defined in terms of the meaning of some n$$v. See also the lemmas 

at the end of this chapter. We maintained these clauses here, because we 

will need them in proving the operational and denotational semantics 

equivalent. 

Ad 11. Matching against p1 vp2 amounts to matching against p1 , but now we 

have a new alternative. On backtracking we have to match against p 2 

in the situation as it is now (apart from the new store). This effect is 

taken care of by the new alternative N[p2] s' h ca q n. Notice that this 

alternative has the right functionality. 

Ad 12. As in 11, but now a new subsequent is formed. 



18 

Finally we define the denotational counterpart of the function O from 

chapter 3. This is the semantic function M with functionality 

M: Pa:t ➔ StJL ➔ s ➔ R. 

M[p] h s = N[p] s h ready fail {As•s} 0 s, 

where the subsequent ready is defined by 

ready a q n s = <n, q s> 

and the alternative fail by 

fails= <FAIL,s>. 

So the complete matching of a string h against a pattern pin stores, 

corresponds to evaluating pins, and matching h against this pattern struc­

ture. If this match succeeds then the accumulated conditional assignments 

have to be performed and this is handled by the subsequent ready which 

yields the postcursor position and the updated store. If the match fails 

then this has to be reported and that is what the alternative fail is for. 

Furthermore, the precursor position is 0, and the initial s·tore is s. Final­

ly, in the beginning there are no conditional assignments accumulated and 

this is denoted by the identity function AS· s. 

We close this chapter by giving a lemma on the relation between 

clauses 6 and 8 (7 and 9) of the definition of N. 

LEMMA 4.1. 

1. N[p$v] s' h C a q n s = N[p& (n$$v)] s' h ca q n s 

2. N[p.v] s' h c a q n s = N[p&(n •• v)] s' h c a q n s 

where n = 
-1 V n. 

PROOF. The proof is straightforward by writing out the expressions. For 

instance in 1 we have: left-hand side= N[p] s' h c'a q n s, where 

c' a' q' n' s" =ca' q' n' (s"{h[n:n']/v}), and right-hand side= 

N[p] s' h{N[~$$v]s' h c} a q n s. So there remains to be proved 

c' = N[n$$v] s' h c, and this follows from the fact that 

N[n$$v] s' h Ca' q' n' s" = c' a' q' n' (s"{h[Vn :n' ]/v}) and that 
- -1 

□ Vn = VV n = n. 
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5. OPERATIONAL AND DENOTATIONAL SEMANTICS ARE EQUIVALENT 

Of course it is not by coincidence that the two semantics presented 

here are that similar. An example of the difficulties that one encounters 

if one chooses a more dissimilar pair of semantics will be given in the 

next chapter. Notice however, that there are essential differences between 

the two semantics. A first one is that the objects that are manipulated in 

the operational semantics are all finite representations (they are in fact 

BNF-definable) while the denotational semantics handles infinitary abstract 

objects. A more fundamental difference is that the denotational semantics 

is fully compositional while the operational semantics is not. Related to 

this is the fact that in the denotational semantics the outcome of the 

matching process is obtained, so to speak immediately, by applying the 

meaning function M to the suitable arguments, while in the operational 

semantics we get the result by letting an abstract machine compute it step 

by step. 

If now we want co compare the two semantics the first thing to do is to 

find a correspondence between the operational domains and the denotational 

ones. The main theorem to be proved here is that the two functions O and M, 
applied to corresponding arguments, will yield corresponding results. 

There is a straightforward correspondence between the domains, which will 

be given by the derepresentationfunctionsVX (one for every pair of domains 

X and X) which map an element from the operational domain X onto the corre­

sponding element in X. So we will define functions VS, VN (this is the func­

tion introduced already in chapter 2, which relates numerals and numbers), 

VQ, VR, VA and Ve. In the sequel we will use the convention that the sub­

scripts will be omitted if this causes no con£usion (this has already been 

done in chapter 2). We remark now already that these functions V will in 

general be neither one to one nor onto. 

The fact to be proved in this chapter can now be stated as 

V(O[p] h s} = M[p] h (Vs). We will first give the definitions and after­

wards provide some comments on these. 
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DEFINITION 5.1. 

Vs: s -+ s is defined by V <> = AV·" s 

VQ: 

VR: 

V . c· 

V· A" 

V u/' <v ,h>) = s 

Q -+ ~ is defined by V <> = M•s 
Q 

R -+ 

c -+ 

A -+ 

VQ(c/'<v,h>) = M• ( (VQqs) {h/v}) 

R is defined by V <n,s> = <V-n, V s> 
R N S 

where V-: Num u {FAIL,ABORT}-+ Nu {FAIL,ABORT} 
N 

{nV_fi 
is defined by 

if n E Num 

if n E {FAIL,ABORT} 

c is defined by V <READY> = ready 
C 

Vc<p,s,h,c> = N[p] (V ss> h (V cc> 

A is defined by V <FAIL> 
A 

= fail 

VA(c 
A 
<a,q,ii>) (Vee) (VAa) cVQq) cV~). = 

REMARKS. We have VS: ( Va.Jr. x S:tJt) * -+ ( Va.Jr. -+ S:tJt) • Now the empty list corre­

sponds to the situation that all variables have the empty string as value, 

so this accounts for the first line in the definition. Furthermore in the 

~A 1 1 ~ stores <v,h> a 1 variables have the same va ue as ins, except for v which 

has the value h, and this is reflected in the second line of the definition. 

The function VN has already been introduced in the second chapter. It 

has not been defined there, and we could not do so because we chose not to 

define the form of the elements in Num. 
The functionality of VQ is (Va.Jr. x S:tJt) * -+ (S -+ S). The queue q in Q 

provides the conditional assignments to be performed from left to right. 

The corresponding function VQq is the store transformation that describes 

the effect of performing these assignments. So we have VQ<> = \s•s, for if 

the queue is empty then the store does not change. The second line of the 

definition can be phrased as follows: performing the assignments in the 

queue qA<v,h> amounts to performing the assignments in q first and after­

wards assigning h to v. 

The function VR is defined straightforwardly. 
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That Ve<READY> should be equal to ready can be seen from the fact that 

they "do the same job": the accumulated conditional assignments are perform­

ed and the final result is delivered. This is formalized in LeIIll!la 5.3. The 

next line in the definition can be commented upon as follows. The subsequent 

<p,s,h,c> describes a match of h against p evaluated ins, followed by 

subsequent c, and the entity N[p] (V8s) h (Vee) describes the same process 

for the corresponding elements in the denotational world. 

Similar remarks as given on Ve apply for the function VA. 

We next state some lemmas giving results on these functions. 

I\ 
PROOF. Remind that the lists q represents the store resulting from perform-

ing the conditional assignments in q on s (see the definition of 

step<READY, ••• > in chapter 3). The proof is by induction on the length of q. 

Basis. V(sA<>) = Vs and (V<>) (Vs) = (As•s) (Vs) = Vs. 

Induction step. V(s/\(q/\<v,h>)) = V((s/\q)/\<v,h>) = 
(V(s/\q)){h/v}. 

on the other hand (V(q/\<v,h>)) (Vs) = [As•((Vqs){h/v})](Vs) = 
[ (Vq) (Vs) ]{h/v}, 

and the result holds by induction. D 

LEMMA 5.3. V(step<READY,a,q,n,s>) = ready(Va) (Vq) (Vn) (Vs). 

PROOF. The left-hand side is equal to V<n,s/\q> = <Vn,V(s/\q)>, and the 

right-hand side equals <Vn,(Vq) (Vs)>. The result now holds by the preceding 

lemma. D 

LEMMA 5.4. V(P<READY,a,q,n,s>) = ready(Va) (Vq) (Vn) (Vs). 

PROOF. Because step<READY,a,q,n,s> is final, we have that P<READY,a,q,n,s> 

is equal to this, and the lemma illllllediately follows from Lemma 5.3. D 

LEMMA 5.5. V<FAIL,s> = fail(Vs). 

PROOF. IIIll!lediate by writing out the expressions. D 
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LEMMA 5.6. s4v} = (Vs) (v). 

PROOF. Induction on the length of s. The basic step is OK because <>(v)=" 

and (V<>) (v) = (Av•") (v) = " 

Induction step. 

(sA<w,h>) 4v} 
if W = V 

otherwise 

V(sA<w,h>) (v) = ( (Vs){h/w}) (v) = {h 
<Vs> <v> 

if W:: V 

otherwise. □ 

Now we want to prove V(O[p]h s) = M[p] h (Vs). By writing out, using 

the definition of O and M, this is equivalent to 

VcP<p,s,h,<READY>,<FAIL>,<>,o,s>> = 

N[p] (Vs) h ready fail ()..s•s) 0 (Vs). 

We distinghuish two cases, namely that the left-hand side of the above 

equality is unequal to i and the case that it is equal to i. We establish 

the desired result for the first case by proving the following more general 

result. 

LEMMA 5~7. For all c,a,q,n ands we have: if P(cA<a,q,n,s>) ~ i then 

VcPccl<a,q,n,s>> > = <Ve> <Va> <Vii> <Vn> <Vs>. 

PROOF. The proof is by induction, essentially on the length of the computa­

tion. Now we have given two definitions of P, and the induction argument 

depends on the definition chosen. If one thinks in terms of the fixed point 

definition then we have to use Scott's induction (fixed point induction), 

that is we have to prove that the lemma holds for )..m•i instead of P (which 

is clearly true), and that the lemma holds for )..m•final(m) + m, ~(step(m)) 

given that the lemma holds for the function~ instead of P. The proof given 

below can be reorganized in these terms. 

If one adopts the other definition using rows of machine configurations, 

then the induction is simply on the length of the row. The basic step is 

again vacuously fulfilled because one easily sees that there are no zero step 
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reductions from c <a,q,n,s> since this configuration is not final. For the 

induction steps we distinguish thirteen cases, dependent on the form of c. 

1. c = <READY>. The lemma holds by LeI!Dila 5.4. 

2. c = <h',s1,h,c1>. There are two cases: 

a. h[Vn:n] = h' for some n. We then have to prove 

V(P(c/<a,q,V- 1n,s>)) = (Vcl) (Va) (Vq) n (Vs) 

and this holds by induction and the fact that V v-l n = n. 

b. Otherwise. Then the property to be proven is equivalent to 

V(P(aA<s>)) = (Va) (Vs). Again there are two cases: 

I. a= <FAIL>. In this case we have to prove 

V(P<FAIL,s>) = fail(Vs) and this is an immediate consequence of 

Lemma 5.5. 

II. a= c 2A<a 1,q1,n1>. Then we have to prove 

V(P<c2,al,ijl,nl,s>) = (Vc2) (Val) (Vql) (Vnl) (Vs) 

and this holds by induction. 

3. c = <v,s1 ,h,c:1>. We have to prove 

V(P<s1~v),s1,h,c1,a,q,n,s>> = 

4. 

5. 

6. 

7. 

N[ v] (Vs l) h (Ve l) (Va) (Vq) (Vn) (Vs) = 

N[ (Vsl) (v)] (Vsl)h(Vcl) (Va) (Vq) (Vn) (Vs) = (#) 

We have by Lemma 5.6 and the definition of Ve that 

(#) = (V<s14vD,s1,h,cl>) (Va) (Vq) (Vii) (Vs), 

and now we can apply the induction hypothesis. 

c = <nil,s 1,h,c1>. Like 2a. 

c = <abort,s 1 ,h,c:1>. Immediate. 

c = <fail,s 1 ,h,c1>. Like 2b. 

c = <p$v,s 1 ,h,c:1>. We have to prove 

V(P<p,s 1,h,<ii$$v,s1,h,c1>,a,q,n~s>) = 

N[p$v] (Vsl)h(Vcl) (Va) (Vq) (Vn> (Vs). 

We have 

V(P<p,s 1,h,<n$$v,s1 ,h,c:1>,a,q,n,s>) = (ind.hyp.) 

(V<p,sl,h,<n$$v,sl,h,cl») (Va) (Vq) (Vn) (Vs) = (def. Ve> 

(N[p] (Vsl)h{N[n$$v] (Vsl)h(Vcl) }) (Va) (Vq) (Vn) (Vs) = (def. N) 

N[p&(n$$v)] (Vsl)h(Vcl) (Va) (Vq) (Vn) (Vs) = 

23 
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-1 The last equality holds by Lemma 4.1 and the fact that V Vn = n. 

9. c = <n1$$v,s1 ,h,c1>. We have to prove 

v cPcc:1 A<a ,q,n,.?t <v,h[Vn1 :Vn]»)) = 
(Vcl) (Va) (Vq) (Vnl((Vsl{h[Vnl:Vn]/v}) 
and this holds by induction and the definition of V5 • 

10. c = <n1 •• v,s 1,h,c1>. We have to prove 

V<P<c 1A<a,qA<v,h[Vn1:VnJ>,n,s>)) = 
(Vcl) (Va) (AS" (Vqs){h[Vnl:Vn]/v}) (Vn) (Vs) 
and this holds by induction and the definition of VQ. 

11. c = <*p,s 1,h,c1>. We ha.ve to prove 

V<P<p,s,h,c1,a,q,n,s>) = N[pB <Vs>h<Vc1> <Va> <Vii> <Vn> <Vs>, 
which holds by induction and the definition of Ve. 

12. c = <p1vp2,s1,h,c1>. We have 

V<P<cA<a,q,n,s>>> = 
V(P<p1,s1,h,c1,<p2,s1,h,c1,a,q,n>,q,n,s>> = (ind. hyp.) 

(V<pl,sl,h,cl>) (V<p2,s1,h,cl,a,q,n>) (Vq) (Vn) (Vs) = (def. VC,VA) 
N[plB (Vsl)h(Vcl){N[p2B (Vsl)h(Vcl) (Va) (Vq) (Vn)}(Vq) (Vn) (Vs) = 

N[p1vp2B (Vs 1)h(Vc1> (Va> (Vq> (Vn> (Vs> =(def.Ve> 

CV<p1 vp2,s 1 ,h,c1>> <Va> <Vii> cVn> <Vs>. 

13. c = <p1&p2,s1,h,c1>. We have 

V<P<cA<a,q,n,s>)l = 

V(P<p1,S11h,<p2,s1,h,c1>,a,q,n,s>) = (ind. hyp.) 

(V<p1 ,s1,h, <p2,s1,h,c1») (Va) (Vq) (Vn) (Vs).= (2x def. Ve> 

N[p1B (Vsl) h{N[p2B (Vsl)h(Vcl)}(Va) (Vq) (Vn) (Vs) = (def. N) 
N[p1&P2B (Vsl)h(Vcl) (Va) (Vq) (Vn) (Vs) = (def. Ve> 
(V<p1&P2,s1,h,c1>) (Va) (Vq) (Vn) (Vs). □ 

COROLLARY 5.8. For all p, hands, we have 

O[pB h s ~ ~ ,.. VcO[pB h s> = M[pB h <Vs>. 

PROOF. Immediate from Lemma 5.7. D 
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The other case to be taken care of is the case that O[p) h s = .L. 

We will show in the sequel that this case cannot occur, that is that evalua­

tion of any machine configuration always terminates. It is sufficient to 

show that there exists a complexity measure Con machine configurations 

such that the function step decreases this measure for all configurations 

which are not final. 

LEMMA 5.9. If there exists a function C: M ➔ N such that for all m which 

are not final we have C(m) > C(step m); then for all p, hands we have 

that O[p) h s ~ .L. 

PROOF. We give two proofs depending on which definition of Pis chosen. 

1 (The fixed point definition). It is a well known result that P = U </>., 
i 1 

where ~0 = Am•.L and</>. 1 = Am•final(m) ➔ m, </>. (step m). The following 
o/ 1+. 1 

property will now be proved by induction on i: 

(m~.L A <I>. (m) = .L) => C[mD ~ i. 
1 

Basis. Trivial. 

Induction step. Suppose <l>i+l (m) = .L. This implies that mis not final, 

so we have</>. 1 (m) = <j>. (step m). The induction hypothesis gives that 
1+ 1 

C[step mD ~ i and the property of C yields that C[mD > C[step mD ~ i and 

therefore C[mD ~ i+l. 

Having proved ( *) we now remark that (U <I> • ) (m) = .L => Vi: <I>. (m) = .L => 
i 1 1 

Vi: C[mD ~ i which is clearly impossible. 

2 (The row definition). If P(m) = .L then there exists an infinite row 

m = m1, m2 = step(m1), ••. with all mi not final. That is, there e~ists 

an infinite row m1,m2, ••• for which C[miD ~ C[mi+lD, and this is not pos­

sible because for all m. we have C[m.D ~ 0. D 
1 1 

The rest of this chapter will be devoted to a definition of a function 

C with the desired property. We use the following observations. 

1. A machine configuration m = <p,s' ,h,c,a,q,n,s> consists in essence of 

a. A row of pattern components, namely p and the components in the list c. 

b. An alternative a, which is in essence a list, the elements of which 

are again rows of pattern components. 
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Combining a. and b., we can view a machine configuration as a list 

<r1, ••• ,rn> of rows of pattern components (ri = <pi 1, ••• ,pik>, for 

some k). 

2. Operations, as given by the function step, that change the above list 

are the following: 

a. Operations which change the list into one which is smaller by one 

element. These are the operations that correspond to a failure in the 

pattern match. A failure causes backtracking, which amounts to popping 

a new element from the stack a. From this we can conclude that C must 

be a function that is strictly increasing in the length of the list. 

b. Operations which take one element from the first row of the list. 

These correspond to cases in which the match succeeds immediately, 

for instance nil, n$$v, n .. v, h' (if the match succeeds). The effect 

is that the first ele'ment is taken from the subsequent c. 

We conclude that C must be a strictly increasing function of the 

length of the first row in the list. 

c. Op~rations, corresponding to patterns p$v, p.v and p 1&p2 , that add an 

element to the first row of the list. For these operations the fol-

lowing must hold: C(<<p1&p2 , ••• >, ••• >) > C(<<p1,P2 ,.· •• >, ••• >). 

d. Operations, corresponding to p 1vp2 which enlarge the list by one 
A 

element. The following must hold: C(<<p1vp2> rest>, ••• >) > 
A A 

C(<<p1> rest,<p2> rest, ••• >). 

If we now define C(list of rows) = C(<r1 , ••• ,rn>) = C(r1)+ ••• +C(rn) then 

the property required in a. is satisfied, provided C(r.) > O. If we take 
l. 

C(r) = C(<p1, ••• ,pk>) = C(p1)x ••• xC(pp), then also the property from b. 

holds, provided C(p) > 1. Finally, we can meet the restrictions posed inc. 

and d. by taking C (pl &p2 ) = C (p1) xC (p2 ) + 1, and C (p1 vp2) = C (p1) +C (p2 ) + 1, 

respectively. 

The above considerations are formalized in the next definition. 

DEFINITION 5.10 (C). 

1. (C(p)). C(h) = C(nil) = C(abort) = C(fail) = C(n$$v) = C(n •• v) = 2 

C(v) = 3 

C(p$v) = C(p.v) = 3xC(p) 

C C * p > = C (p > + 1 



C(p1Vp2) = C(p1)+C(p2) + 1 

C (pl &p2) = C (pl) xC <P2> + 1. 

2. (C(c)). C(<READY>) = 2 

C(<p,s1,h,c>) = C(p)xC(c). 

3. (C(a}). C(<FAIL>) = 1 
A 

C(c <a,q,n>) = C(c)+C(a). 

4. (C (m)). C (m} = 1 if final (m) holds 
A 

C(c <a,q,n,s>) = C(c)+C(a). 

From this definition the following can be established. 

LEMMA 5.11. 

1. Vp: C(p) ~ 2 

2. Ve: C(c) ~ 2 

3. Va: C(a) ~ 1 and C(a) = 1 ~ a= <FAIL> 

4. C(<p,s 1,h,c,a,q,n,s>) = C(p)xC(c)+C(a) 

5. Vm: C(m) ~ 1 and C(m) = 1 ~ final(m). 

PROOF. Easy. 0 

This lemma can be used to prove the result that we were up to: 

LEMMA 5.12. 7 final(m) ~ C(step m) < C(m). 
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PROOF. By cases and easy. The proof has been done informally in the remarks 

preceding Definition 5.10. 0 

6. ANOTHER OPERATIONAL SEMANTICS 

This chapter shows what the consequences can be for the equivalence 

proof as given in Chapter 5, if another operational semantics is taken. In 

this chapter we will give an operational semantics in the style of COOK 

[2], which has also been used in DE BAKKER [1]. We will use definitions from 

Chapter 3, but occasionally we will feel free to overwrite the definitions 

from that chapter, for instance the functions O and C will be defined anew 

here. 
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In the new approach we chose to separate again the two phases that can 

be distinguished in the overall matching process, namely the pattern build­

ing phase and the matching phase. For this means we first introduce a new 

syntactic class, the pattern structures, which are the results of pattern 

building, that is which are patterns without free variables. 

o E Pa.t6:tltuct, the pattern structures. 

This class can be defined by o::= hlnillabortlfaillo$vlo.vln$$vln .. vl*PI 

o 1vo2 1o1&o2 • 

Notice the clause *Pin this definition. Free variables in p will be bound 

by the *-operator. 

We have the following lemma on the denotational meaning of pattern 

structures which should not be a surprise by now: 

PROOF. Easy, by checking the definition of N. □ 

This lemma justifies the following definition of the meaning function 

L: Pa.t6:tltuct ➔ S:tlt ➔ C ➔ c, namely L[o] = N[o]s for some s Es. 

We now introduce the pattern evaluation function E which transforms a 

pattern expression p, relative to a stores, into a corresponding pattern 

structure. This function E: Pat ➔ S ➔ Pa.t6:tJLuct is defined by cases as: 

E[p]s = p for p = h, nil, abort, fail, n$$v, n .. v and *P' 

E[ v]s = s4v) 

E[p$v] s = (E[p]s) $v 

E[p. v]s = (E[p] s). v 

E[pl &p2]s = (E[p1)s) & (E[p2) s) 

E[pl Vp2] s = (E[p1]s) v (E[p2)s). 

We have the following lemma, which will be needed in the equivalence proof. 

LEMMA 6.2. Vp E Pat Vs ES: N[p] (Vs) = L[E[p]s]. 

PROOF. By cases (induction on the structure of p). The interesting cases are 

those where p ,/. Pa.t6:tltuct. We give two examples: p = v, p = P 1 &p2 • 



1. N[v] (Vs) = N[ (Vs)4v)] (Vs) = (by Lemma 5.6) N[s(vD] (Vs) = 

L[s(vD] because s4vD is an element of S;tJr,, and therefore of Pa:tobr,,uc.;t. 

Now, for the same reason, we have by the definition of E that 

E[s4v~] = s(tr), and we are ready. 

2. N[pl&p2] (Vs) h c = N[pl] (Vs) h {N[p2] (Vs) h c} = :ind.) 

= L[E[pl]s] h {L[E[p2]s] h c} = (def. L) 

= N[E[pl]s] .§1 h {N[E[p2]s] .§1 h c} = (def. N) 

= N[ (E[p1] s) & (E[p2]s)] s 1 h c = (def. L and E) 

L[E[p1&p2]s] h c. □ 
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We will next give the new operational semantics. The operational mean­

ing function O (which has again functionality 0: Pa;t + S;tJr,, + S + R) is 

defined in terms of an auxiliary function P. The function P takes (among 

others) a pattern structure and delivers a finite row of intermediate 

results which are triples. Each triple consists of a cursor position 

(a numeral), a store and a queue of conditional assignments accumulated. 

Such a row of intermediate results can be seen as the trace left by the 

pattern matching process. We thus need ~1e following definition: 

i EI= (Num u {FAIL,ABORT}) x S x L, tl,e class of intermediate results. 

We furthermore define the tail function K which takes the last element of 

We now define the function P: PatJ.i;tJr,,uc.;t + Sbr,, +I+ I+ inductively 

as follows: 

{
<V-l n',s,q> if h' = h[Vn:n'] 

1. P[h'] h <n,s,q> = 
<FAIL,s,q> otherwise 

2. P[nil] h <n,s ,q> = <n,s ,q> 

3. P[fail] h <n,s,q> = <FAIL,s,q> 

4. P[abortB h <n,s,q> = <ABORT,s,q> 
A 

5. P[o$v] h <n,s,q> = <n,s,q> P[o&(n$$v)] h <n,s,q> 

6 • P[ o. v] h <n, s , q> 
A = <n,s,q> Pl[o&(n •• v)B h <n,s,q> 

A 
7. P[n'$$v] h <n,s,q> = <n,s <v,h[Vn• :Vn]>,q> 

A 
8. Pl[n' .• v] h <n,s,q> = <n,s,q <v,h[Vn' :Vn]>> 
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9. P[o1vo2] h <n,s,q> = 
A A A 

n'.tFAIL ➔ <n,s,q> P[o1] h <n,s,q> ,<n,s,q> P[o1] h <n,s,q> P[o2] h <n,s' ,q>, 

where <n' ,s' ,q> = K (P[ o 1] h <n,s ,q>) 
A 

10. P[*p] h <n,s,q> = <n,s,q> P[E[p]s] h <n,s,q> 

11. P[o&o2] h <n,s,q> = (where o = h 1 , nil, abort, fail, n"$$v or n" •• v) 
A -n' = FAIL,ABORT ➔ <n,s,q> P[o] h <n,s,q>, 
A - A 

<n,s,q> P[o] h <n,s,q> P[o2] h <n' ,s' ,q'>, 

where <n',s',q'> = K(P[o] h <n,s,q>} 
A 

h <n,s,q> = <n,s,q> P[o1 & (o2&o3))] h <n,s,q> 
A 

h <n,s,q> = <n,s,q> P[(o1&o3) v (o2&o3)] h <n,s,q> 
A 

h <n,s,q> = <n,s,q> P[o1 & ((n$$v) &o2)] h <n,s,q> 
A 

h <n , s , q> = <n , s , q> Pl[ o 1 & ( ( n •• v) & o 2) ] h <n , s , q> 

12. P[ (o1 &o2) & o 3] 

13. P[ (o1 vo2) & o 3] 

14. P[ (o 1$v) & o2] 

15. P[ Co1 .v) & o 2] 

16. P[(*p)&o2] h 
A 

<n,s,q> = <n,s,q> Pl[ (E[p]s) & o2] h <n,s,q>. 

Remarks. 

The essential difference with the definition of step in Chapter 3 is 

that here we do not use explicit stacks (c and a). The alternatives remain­

ing are remembered implicitly as can be seen from clause 9: matching against 

o 1 v o2 amounts to matching against o 1 if this match succeeds or is aborted. 

Otherwise it is the same as matching against o 1 and afterwards against o 2 

starting with the correct intermediate result <n,s',q>. 

The subsequents to be applied later are in principle retained in the 

pattern component itself. Clauses 11 through 16 all deal with patterns of 

the form o & o'. Clause 11 (o = o) gives the case where o does not have 

implicit alternatives which means that no backtracking too is possible. In 

that case matching against o is tried, and we go on if this match succeeds. 

In all 0th.er cases ( 12 - 16) we have to find out which elementary pattern 

component has to be matched against first. We solved this by first decom­

posing the first operand of o & o' until an elementary pattern is reached. 

For instance the pattern structure ( ( (h1 vh2) $v) & fail) & o' will be rewritten 

as follows (where we assume that matching starts with cursor position given 

by the numeral n) : 

(((h1vh2)$v) &fail) &o' ➔ 

( (h 1 Vh2 ) $v) & (fail & o') ➔ 

(clause 12) 

(clause 14) 

(h1 vh2) & ( (n$$v) & (fail & o 1 )) ➔ (clause 13) 

(h1 & ( (n$$v) & (fail & o'))) v (h2 & ( (n$$v) & (fail & 0 1 )). 
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Now we use clause 9, and first investigate the first operand of this dis­

junction which is (h1 & ( (n$$v) & (fail & o'))). On this pattern structure we 

then apply clause 11, clause 1, etc. 

Notice also clause 10 and 16 of the definition. If, while matching, 

the scanner encounters an *-operator, first the corresponding patt~rn com­

ponent is evaluated using E, before proceeding. 

The claim on the functionality of P, in particular that P yields 
+ values in I , and also the statement that the above definition is an induc-

tive one, has to be justified. We do this by presenting a complexity measure 

Con pattern structures such that all structures occurring in the right-hand 

sides of the clauses of the definition of P have smaller C-values than the 

o's in the corresponding left-hand sides. The following function C, defined 

on Pa:t by structural induction, does the job: 

C[ h] = C[ v] = C[nil] = C[ abort] = C[ fail] 

C[p$v] = C[p. v] = 2C~ p] + 2 

C[n$$v] = C[n .. v] = 1 

C[*p] = C[p] + 1 

C[p1&p2] 2C[p1] + C[p2] 

C[p1vp} max{C[p1],C[p2]}+1. 

We are now ready to define the function O with functionality 

0: Pa:t ➔ S.tJi ➔ S ➔ Ras follows: 

O[p] h s = (n' = ABORT,FAIL) 
A 

➔ <n',s'>,<n',s' q'>, 

where <n' ,s' ,q'> = K(P[E[p]s] h <O,s,<>>. 

In order to be able to prove an equivalence result similar to the one 

in Chapter 5, we need some auxiliary facts: 

LEMMA 6.3. 

1. N[ (pl &p2) & P3] N[pl & (p2&P3)] 

2. N[ (pl Vp2) & P} = N[ (pl &p3) V (p2&p3)] 

N[ (p1 $v) & p 2] 
-1 

& p2)] 3. s 1 h C a q n s = N[p 1 & ( (V n$$v) s1 h C a q n s 

N[ (pl . v )I & p 2] s l h 
-1 

& p2)] 4. C a q n s = N[p1 & ((V n •. v) s1 h c a q n s 

5. N[<*P1> &p2] s1 h ca q n(Vs) = N[ (E[pl]s) &p2] s 1 h ca q n (Vs> . 
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PROOF. 

1 and 2. By writing out the respective clauses in the definition of N. 
3 and 4. By Lemma 4.1, by result 1 of this lemma, and by the fact that 

N[p1] = N[p2] implies N[p1&p3] = N[p2&p3]. 

5. N[(*p1 ) &p2] s 1 h ca q n (Vs)= (def. N) 

N[ *P1] s 1 h {N[p2] s 1 h c} a q n (Vs) = (def. N) 

N[p1] (Vs) h {N[p2] s 1 h c} a q n (Vs) = (Lemma 6.2, 6.1) 

N[E[p1]s] s 1 h {N[p2] s 1 h c} a q n (Vs) = (def. N) 

N[ (E[pl]s) & P2] s1 h c a q n (Vs). □ 

Now if we want to prove O and M equivalent it appears that we have to 

formulate a rather complicated induction hypothesis relating N and P. This 

is due to the fact that in the operational definition of this chapter no 

counterparts of the entities c and a from the denotational definition exist. 

We have to capture the effects that subsequents and alternatives may have by 

formulating the following induction hypothesis. The main trick is that we 

capture the effect of the alternative a in the denotational definition by 

quantifying over all alternatives. 

LEMMA 6.4. For all o, h, n, sand q we have 

P[o] h <n,s,q> ~ Aa•L[o] h ready a (Vq) (Vn) (Vs) 

where list~~ iff 

[

either K (list) 

or K (list) 

or K (list) 

= <FAIL,s1,q1> and~= Aa•a(Vs1) l 
= <ABORT,s 1 ,q1> and~= Aa•<ABORT,(Vs1 )> 

= <n 1 ,s1 ,q1> and~= Aa•<Vn 1, (Vq1) (Vs 1)> • 

PROOF. By induction on the C-complexity of o. We have to distinguish all 

cases as occurring in the definition of P which is tedious. So we give a few 

typical examples. We define lhs = K(P[o] h <n,s,q>> and rhs = 

Aa• L[ o] h ready a (Vq) <Vn> (Vs> • 

2. (nil) lhs = <ii,s,q> and rhs = Aa•<Vn, (Vq) (Vs)> 

3. (fail) lhs = <FAIL,s,q> and rhs = Aa•a(Vs) 



8 ( I ) h lb ' ' ,A b[V ' V' J d • n •• v We ave s = <n,s,q <v, n: n >> an 

rbs = Aa•L[n' •. v] b ready a (Vq) (Vn) (Vs) = 
Aa•ready a (As•((Vq)s){b[Vn' :Vn]/v}) (Vn) (Vs) = 

<Vn,((Vq) (Vs)){b[Vn' :Vn]/v}>. 
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So we have to prove that this is equal to (V(qA<v,b[Vn' :Vn]>)) (Vs) and 

this is true by the definition of V • 
Q 

9. (o1 Vo2). Let <n2 ,s2 ,q2> = K (P[o1] b <n,s,q>). 

A. n 2 = ABORT. 

Then lbs= <ABORT,s2,q2> and by induction we have for all a': 

L[ol] b readya' (Vq)(Vn)(Vs) = <ABORT,Vs2>. 

This holds in particular for a' = L[ o 2] b ready a ( Vq) (Vn) and we 

thus get for all a: L[o1vo2] b ready a (Vq) (Vn) (Vs) = <ABORT,Vs 2>. 

B. n2 E Num. 
The argument is similar to that in case A. 

C. n2 = FAIL. 

We have lbs= K(P[o2] b <n,s 2 ,q>). 

By induction we have for all a' that 

L[o1] b ready a' (Vq) (Vn) (Vs) = a' (Vs2). This holds in particular for 

a' = L[o2] b ready a (Vq) (Vn) and we get 

rbs = Aa•L[o1vo2] b ready a (Vq) (Vn) (Vs) = 

Aa•L[o1] h ready {L[o2] b ready a (Vq) (Vn)}(Vq) (Vn) (Vs) = 

Aa•L[o2] b ready a (Vq) (Vn) (Vs2). 

Now we can apply the induction hypothesis, for C[o2] < C[o1vo2]. 

12. ((o1&o2) & o 3). Use Lemma 6.3.1, and the induction hypothesis (notice 

that C[o1 & (o2&o3)] < C[ Co 1&o2) & o3]. 

16. ( (*p) & o 2). Use Lemma 6.3.5 and the induction hypothesis. D 

THEOREM 6.5. For all p, bands we have V(O[p] b s) = M[p] b (Vs). 

PROOF. We have M[p] b (Vs) = N[p] (Vs) b ready fail (As•s) 0 (Vs) = 

= L[E[p]s] .h ready fail (As•s) 0 (Vs) by Lemma 6.2. 

Let K(P[E[p]s] b <O,s,<>> = <n 1,s1,q1>. There are three cases. 

1. n 1 =FAIL.By Lemma 6.4.: M[p] b (Vs) = fail (Vs 1) = <FAIL,Vs 1>. 

By the definition of Owe have O[p] b s = <FAIL,s 1>. 

2. If n 1 = ABORT, then by Lemma 6.4 we have that M[p] b (Vs) = <ABORT,Vs 1> 

and by the definition of Owe have O[p] b s = <ABORT,s 1>. 
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3. If n 1 E Num then Lemma 6.4 gives M[p] h (Vs) = <Vn1 ,(Vq1 ) (Vs 1)>, while 

the definition of O yields O[p] h s = <n 1 ,s1Aq1>. Now by Lemma 5.2: 
A V<n 1,s1 q1> = <Vn 1,(Vq1 ) (Vs 1)> and we are ready. □ 

7. CONCLUDING REMARKS AND ACKNOWLEDGEMENTS 

This report presents the first results of a project in which we aim to 

study various semantical aspects of the matching process in SNOBOL4. The 

next step to be taken is to allow patterns as values of variables, instead 

of strings as was the case here. This will lead to a (denotational) store 

S which will be a function from variables to patterns, where patterns are 

modelled by functions which describe (amongst others) store transformations. 

This suggests a reflexive (circular) definition of the domain of stores, 

and an equivalence proof like the one given here will be much harder to 

construct. 

This is why we chose to do some "ground work" first, and this paper 

presents the results of it. We chose the SNOBOL subset such that all essen­

tial aspects of pattern matching are reflected in it, apart from the idea 

that patterns can be values of variables. 

The denotational semantics given here should be compared with the one 

given by TENNENT [9] which is far more complicated due to the fact that a 

much larger subset of SNOBOL4 is involved here. Our semantics can be viewed 

as a simplification of Tennent's, resulting in a semantics that describe 

the matching process clearly with no more tools and complications than 

needed. 

In Chapter 6 we showed that one has to be careful in designing an 

operational semantics, if one wishes to prove- an equivalence result. The 

semantics of Chapter 3 is inspired by the operational semantics in STOY [8]. 

We borrowed his idea to carefully provide for each denotational notion a 

correspondingr operational notion. For instance our operational semantics 

uses a class of subsequents and a class of alternatives which correspond 

to the denotational domains C and A. This made the equivalence proof 

manageable, as can be seen when one compares the proof in Chapter 5 with the 

one in Chapter 6 where an operational semantics was used which was less 

carefully designed. 



Apart from Stoy's, the papers by GIMPEL [3] and PAGAN [6] should be 

mentioned. They provided many useful details about the peculiarities of 

the SNOBOL language. 

Finally, I like to mention Jaco de Bakker, who has read an earlier 

version of this paper and who came up with useful comments, and also 

Ruurd Kuiper with whom I had fruitful discussions on the topics treated 

here. 
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