
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

A. DE BRUIN

IW 151/80

OPERATIONAL AND DENOTATIONAL SEMANTICS DESCRIBING
THE MATCHING PROCESS IN SNOBOL4

Preprint

~
MC

OKTOBER

kruislaan 413 1098 SJ amsterdam

8!8LIOTHEEK M,l,THfM<\T!SCH GEN I HUl\.1
Afvi ::;·; L f~ DA J',.~

Ptu.Ji:te.d at .the. Mathe.mail.c.ai. Ce.n..tlie., 413 Ktc.u.<.,6laan, Am6.tVLdam.

The. Mathe..mctt.i_c.ai. Ce.ntlte. , 6ounde.d .the. 11-.th 06 Fe.btc.uaJr.y 1946, ,v., a. non­
ptr.o6il J . .>u.ti.;t:u;twn aJ.m,i,ng a..t .the. ptr.omotion 06 putr.e. ma..the..ma.tiC-6 a.nd m
a.ppUc.ation/2. I.t ,v., -6pon6otr.e.d by .the. Ne.:the.tr.la.nd6 GovVLnme.n.t .thtr.ough .the.
Ne.:thma.nd6 Otr.ga.n),za.tion 6011. .the. Adva.nc.eme.n.t 06 Putr.e. Re.-6e.a.tr.c.h (Z.W.O.).

1980 Mathematics subject classification: 68B10

ACM-Computing Reviews-category: 5.24

Operational and denotational semantics describing the matching process

in SNOBOL4*)

by

A. de Bruin

ABSTRACT

The pattern matching process in SNOBOL4 is investigated. We consider

a subset of the language which is simple in this respect that patterns are

not allowed as values of variables. This leads to matching processes that

always terminate. After an informal description of the matching algorithm we

present an operational semantics in the SECD-machine style. This semantics

uses a stack to implement the backtracking which can occur during matching.

After that a denotational semantics is introduced which uses continuations

to describe the backtracking. F.quivalence of the two semantics is then proved.

The operational and denotational semantics are as similar as possible while

retaining the typical operational respectively denotational ideas. This leads

to a straightforward equivalence proof. That this similarity pays off is

shown by another, somewhat disparate operational semantics for which equiv­

alence with the denotational semantics is much harder to prove.

KEY WORDS & PHRASES: Denotational semantics, operational semantics,

continuation, backtracking, pattern matching,

SNOBOL4, SECD machines

*) This report will be submitted for publication elsewhere.

1

1. INFORMAL DESCRIPTION OF THE SNOBOL4 FRAGMENT

This chapter serves as an introduction for those who are not acquainted

with SNOBOL4, or only superficially so. We will discuss here only that part

of the language which will be dealt with in the rest of the paper. Details

and differences with full SNOBOL4 will be discussed in later chapters. The

reader who is familiar with the language can therefore skip this chapter.

Pattern matching is in essence investigating whether a string of symbols

(the subject string) is of a certain form as specified by a pattern. Another

entity which has a role in this process is the cursor, a variable with in­

teger values between zero and the length of the subject string, which serv­

es as a pointer into this string. Cursor= 0 means that the pointer is locat­

ed at the beginning of the string, the cursor being equal to the length of

the subject string corresponds to the pointer being placed at the right-hand

end of the string. In general, cursor= n denotes that the pointer is posi­

tioned between then-th and the (n+l)-th symbol in the subject string.

Matching a string h against a pattern p starting with cursor position

n may have two outcomes. The match may fail, which means that the substring

of h starting directly after then-th symbol does not have the form pre­

scribed by p. The alternative is that the match succeeds in which case the

process will yield a new cursor value, for instance n'. This will happen

if the substring of h between cursor position n and n 1 has the property

specified by p.

We will now present several forms which patterns can take, and explain

their meaning. The first possibility is that a pattern is a string, for

instance h'. Matching the subject h against the pattern h' succeeds if

h = h 1 h 1 h 2 and if the cursor is located just-before h'. After the match

the cursor will then be placed just before the substring h 2 in the subject.

In all other cases the match will fail. For example, if the subject string

is 'arie' and the pattern is 'ri', then the match fails if the precursor

position (the value of the cursor before the match) equals O, and the match

will succeed if the precursor position is 1. In the latter case the corre­

sponding postcursor value will be 3.

The pattern nil matches every string without altering the cursor posi­

tion. Matching against this pattern is the same as matching against the

2

pattern formed by the empty string. The pattern fail is a pattern which

fails invariably whatever the subject and the cursor position might be.

There are two dyadic operators on patterns, namely v and&. The

pattern p1 vp2 matches every string that matches p 1 or p 2 , and p1 &p2 is a

pattern that matches every string matched by p 1 followed by any string that

is matched by p 2 • We have to be more precise here, that is we must describe

in more detail how the scanner (the matching algorithm) works.

The patterns defined up till now consist of elementary subpatterns

(strings h, nil and fail) connected by &- and v-operators. In a pattern of

the form p 1&p2 , p 2 is called the subsequent of p1 , and in p 1 vp2 , p 2 is

called the alternative of p 1 . The scanner acts in the following way: if it

has to match against a (sub-)pattern of the form p1vp2 , then the scanner

behaves first as if it has encountered only the pattern p 1 . But the alter­

native p 2 , together with the current cursor position, will be remembered in

case the match will fail later on.

If the matching process fails at a certain instant then something takes

place which is called backtracking. The scanner returns to the last "choice

point" in the pattern which is the last encountered subpattern of the form

p 1vp2 , where p 2 has not yet been tried. It restores the situation (cursor

position) to how it was just before choosing p 1 as first alternative. It now

chooses p 2 and the matching process proceeds as if p 2 had been substituted

for p 1 vp2 in the pattern.

If the scanner hits upon a pattern of the form p1 &p2 then it first

tries to match against p1 . If this fails then the backtracking process as

described above will take place. If it succeeds then the scanner tries to

match the subject against p 2 starting with a new cursor value which is the

result of the match against p1 . If the scanner fails and all alternatives

are exhausted which means that no more backtracking is possible, then the

whole match fails. The overall match succeeds if we come to the right-hand

side of the pattern.

EXAMPLE. We try to match the string 'arie' against the pattern

('a' & ('ri' v 'r')) & 'i'.

1. Cursor position= 0. Match against 'a' succeeds. The new cursor position

is 1 and we try to match against the subsequent ('ri' v 'r') & 'i'.

2. This pattern has the form p1 &p2 , so we first try to match against the

first component 'ri' v 'r'.

3. This pattern has the form p 1 vpr We now act as if we have encountered

the pattern 'ri' alone. We remember however the situation as it is now

in order to be able to backtrack to it later on.

4. Match against 'ri' succeeds, and the cursor value is now 3. We next try

to match against the subsequent, the second component from step 2.

5. This is the pattern 'i'. Match against 'i' fails and thus we have to

backtrack.

6. The situation of step 3 is restored by setting the cursor position to 1

again and we try the alternative 'r' instead of 'ri'.

7. Match against 'r' succeeds. The new cursor position is 2. We try the

subsequent, the second component of ('ri' v 'r') & 'i'.

8. Match against this pattern 'i' succeeds, the new cursor position is 3.

9. There are no subsequents left and the whole match has thus succeeded.

3

Now that we know how the scanner works, we can describe the effect of

the pattern abort. If the scanner encounters this pattern the whole matching

process terminates. Notice the difference with fail which would force the

scanner to backtrack.

We next discuss the way variables can be handled in the matching

process. The variables will have strings as values. A variable v can be

a pattern by itself. Such a pattern has the same meaning as the pattern h,

where his the value of vat the time the pattern expression is evaluated,

which in general will be just before the match starts. There is an excep­

tion to this which will be discussed later on.

There are two ways to change values of variables during the match,

namely by immediate and conditional assignment. Immediate assignment is

indicated by patterns of the form p$v. The meaning of such a pattern is

the followinq. If the scanner manages to match p against a substring of

the subject, then this substring will be assigned to the variable v. This

assignment is performed immediately, and always, even if the match will

fail later on. Therefore a subpattern p$v can cause the variable v to be

changed more than once in one match. For instance, during the match of the

4

the string 'arie' against the pattern (('a' v 'ar') $ v) & • ie' the variable

v will change value twice. First the string 'a' will be assigned to it and

later the string 'ar'.

Conditional assignment is indicated by patterns of the form p.v, and

has a similar effect on v as immediate assignment, apart from the fact that

the assignment will be performed only if the local match against p was part

of a full match which led to success. Only after the match has terminated

successfully, the corresponding assignments will be performed.

EXAMPLES. If 'arie' is matched against ('a'.v v 'ar') & 'ie' then v will not

get another value; if we match the same string against ('a' v 'ar'.v) & 'ie'

then after the match v will have the value 'ar'.

As we remarked above, evaluation of a pattern expression, which is in

essence replacing variables by their values, will in general take place

before the match. We now give the exception hinted at earlier, which is the

unevaluated expression *P· This pattern behaves in the same way asp does

except for the fact that p will be evaluated at the moment the scanner

encounters *P during the match (which therefore can happen more than once).

EXAMPLE. The pattern ('a'$v v 'b'$v) & (*v) matches the strings 'aa' and

'bb'. This can be contrasted with the pattern (1 a 1 $v v 1 b 1 $v) & v which

matches 'a' followed by h or 'b' followed by h, where his the value of v

before the match. Notice also that this latter pattern has the same effect

as ('a'.v v 'b'.v) & vor ('a'.v V 'b'.v) & (*v).

In the first example ('a'$v v 'b'$v) & (*v) we see a typical example

of the use of the *-operator. We combined it there with the $-operator and

were thus able to use the outcome of the match against the first component

of the pattern while matching against the second component.

This concludes our informal discussion of the meaning of the patterns.

The sequel of this paper will be devoted to more formal definitions of the

process described above.

5

2. SYNTAX

We will now describe the syntax of the SNOBOL fragment, namely the

pattern expressions that we allow in our language. We introduce the follm:-­

ing syntactic classes, together with letters that denote typical elements

of these classes.

h E S.tfr., the strings. String values will be enclosed in quotation marks,

for instance 'arie' denotes the string consisting of

letters a, r, i and e consecutively. We denote the empty string by". If

h E S.tfr. and n,n' are integers such that O :s; n :s; n' :s; k, where k is the length

of h, then h[n:n'] denotes the substring of h which begins with the (n+l)-th

symbol and ends right after the n '-th symbol. If O :s; n :s; n' :s; k does not hold

then h[n:n'] denotes the empty string.

v E Vall., the variables. In contrast to full SNOBOL4, we define explicitly

a class of variables which is distinct from the class

of strings.

n E Num, the numerals denoting nonnegative integers. We will use the letter

n also to denote nonnegative integers themselves. No

confusion will arise from this as the intended meaning can always be deduced

from the context. We assume the existence of a derepresentation function

V: Num ➔ N, mapping numerals to the corresponding nonnegative integers,

which will be injective and surjective. This means that every integer has

exactly one numeral representing it and therefore v-l is well defined. This

heavy machinery might seem somewhat overdone, and in fact we could, for the

moment, do without it and proceed a little le~s formally. However we main­

tain this function here because in a later stage it is needed anyway, and

also other V-functions have to be introduced (see chapter 5, definition 5.1).

p E Pat, the patterns. We give the following BNF-like definition.

p : := h I
vi
nillabortlfail

p$vl

p.vl

literal string

variable

constants

immediate assignment

conditional assignment

6

n$$vln •. vl auxiliary patterns, not occurring in

programs; needed in the operational

semantics to describe the effect of

immediate and conditional assignment

unevaluated expression

alternation; we donot use the I-sign

because the BNF notation does not allow

this

concatenation; we chose the &-symbol

instead of the space for the sake of

clarity.

As we intend to study the matching process only we do not present the

many other SNOBOL4 features. We also made a selection from the pattern

structures which are possible in SNOBOL4. We have chosen the subset such

that the essential aspects of the pattern matching process can be studied

through it.

3. OPERATIONAL SEMANTICS

The semantics given here is inspired by a description of a SNOBOL4

implementation by GIMPEL [3]. There are some differences however.

The first one is that we allow only strings as values of variables.

This has been done in order not to be forced to get into detail concerning

coercion problems. Furthermore we do not include patterns as values because

that would complicate the presentation a great deal, as we have to resort

to recursively defined domains in the denotational semantics. This will be

the subject of another paper.

Gimpel describes three phases in the elaboration of patterns. He talks

about compilation which transforms a pattern expression into a tree repre­

senting it, pattern building which takes this tree, replaces variables by

their values at that moment and builds a pattern structure (a graph repre­

senting the pattern tree in such a way that the scanner can traverse it

efficiently), and pattern matching.

We do not distinguish these phases. Pattern match will be done directly

from the pattern expression. We do not replace variables by their values

but we add to the patterns a stores giving the values of the variables at

pattern building time. In that way the scanner will be able, during the

match, to find the meaning of a pattern component v by inspecting s.

7

The way the scanner performs the matching process, as described by

Gimpel, is roughly as follows. Besides the cursor variable the scanner uses

also the pattern structure which has been constructed by the pattern build­

ing process, and a variable, which we call ptn which has as a value a pointer

into this structure indicating how far the match has proceeded in this struc­

ture. Furthermore there is a stack to save untried alternatives. The scanner

now repeats the following loop.

1. If the pattern component pointed at by ptn has an alternative then save

this alternative, represented by its ptn value, and the current cursor

value on the stack.

2. Try to match the pattern component determined by the value of ptn (which

is a primitive pattern: a string h, nil, fail, abort) against the subject

string. If this succeeds goto step 3, else goto step 4.

3. Find out whether the pattern component designated by ptn has a subsequent.

If so, set ptn to point at it and go back to step 1; if not, we are

ready, and the overall match has succeeded.

4. (Backtrack step). Inspect the stack. If it is empty then we are done,

there are no alternatives left, and the pattern match has failed. If the

stack is not empty then pop the stack to find a new ptn value and a new

cursor value. Assign these values and go back to step 1.

For those who are acquainted with SNOBOL4: the above algorithm describ­

es the anchored fullscan mode, which will be the only mode to be dealt with

in this paper.

Here the matching process will be defined in terms of an abstract

machine, not unlike LANDIN's SECD machine [4]. We will give a function

called step which performs the elementary steps of the process, changing

the machine configuration, which we will now describe informally.

A machine configuration mis an 8-tuple <p,s' ,h,c,a,q,n,s>, where pis

a pattern ands' ,s are stores (lists of variable-value pairs). The stores'

records the values of the variables as they were at pattern building time.

The pair <p,s'> determines a pattern structure, which corresponds roughly

8

to the pattern component pointed at by the variable ptn in Gimpel's algo­

rithm. Furthermore, his the subject string, and c is the so called sub­

sequent which is in essence a list of pattern components to be matched

against once the match against p has terminated successfully. To be more

precise, this is organized as follows: c is either equal to the list

<READY>, the endmarker of the list, or it has the form <p,s,h,c> where the

pair <p,s> determines the first pattern-structure component in the list,

while c constitutes the tail of the list (the subject string his included

only for convenience). The item q in the 8-tuple is a list of variable-

value pairs rE~cording the conditional assignments encountered so far which

have to be performed if the total match succeeds. Furthermore n is the

numeral givin<J the present cursor value ands is the present store. Finally,

the component a is the alternative which corresponds to the stack in Gimpel's

description. '.I'his a is either equal to <FAIL> which denotes the bottom of

the stack, or it is a 7-tuple of the form <p,s,h,c,a,q,n>. Here p, sand c

correspond to the ptn value on the stack as given by Gimpel (p, sand c

represent a point in the pattern structure: p ands determine a pattern

structure component and c determines the subsequents of this component),

n corresponds to the cursor value on Gimpel's stack, q denotes the queue of

conditional assignments accumulated up to the moment that particular stack

frame was constructed (this has no analogon in Gimpel's stack because he

uses a trick to circumvent this space consuming method), and finally a

stands for the other frames of the stack.

The function step takes a machine configuration m= <p,s' ,h,c,a,q,n,s>,

inspects the form of p and changes m correspondingly into a new configura­

tion. We next present the formal definitions.

First some notational conventions. We will frequently use Curried

functions which are functions that can take functions as arguments and

yield functions as values. This generally leads to expressions with too

many parentheses to be readable. To avoid this we leave parentheses out as

much as possible using the convention that function application associates

to the left. 'I'his means that fabc should be taken as ((f(a)) (b)) (c) .

Function domain parentheses will be omitted under the convention that

the ➔- operator associates to the right. That is, A ➔ B ➔ C should be read

as A ➔ (B ➔ C).

A
Concatenation of two lists 11 and 1 2 will be written as 11 1 2 . The

empty list will be denoted by<>.
'

We define the following classes.

s ES, the stores. These are finite, and possibly empty, lists of elements

9

from Vall. x S:tlc. (<v,h>-pairs). Elements from Sare data

structures which determine the values of the variables. Only the variables

which have nonempty strings as values are recorded in a stores. In accor­

dance with the convention in SNOBOL4 that all variables are initialized on

the empty string there will be at any moment during program execution only

a finite number of variables with nonempty values. We define two operations

on stores.

1. updating. The store resulting from s by assigning the string h to vis re-
• A

presented by the lists <v,h>.

2. extracting. The value of v in stores is denoted by s4v}. This is defin­

ed as follows.

b)

a) <>(v} = "

(sA<v,h>)4w} - {h
- s4w}

if V = W,

otherwise.

Notice that more than one pair with first element v can occur in a

stores. Only the rightmost pair "counts" however.

q E Q, the queues of accumulated conditional assignments. These too are

finite and possibly empty lists of <v,h>-pairs. They con­

stitute the queue of conditional assignments which have to be performed if

the overall match succeeds. To accomplish thi~ we simply concatenate the

two lists: the stores' resulting from performing the assignments given by
A

q in stores is given bys'= sq

c EC, the subsequents. The class C is inductively defined as follows. An

element c from C is either the list <READY> contain­

ing one element, or it is a list of the form <p,s,h,c> where p E Pat,
h E S:tlc., s ES and c is again a subsequent.

10

a EA, the alt:ernatives. The class A is inductively defined by: an element

a from A is either the one element list <FAIL> or
A

a list c <a,q,,n> formed by concatenating a subsequent with a list contain-

ing an alternative, a q E Q and a numeral n.

r ER, the results, i.e. the possible outcomes of a match. The class R is

defined by R = (Nu.m U {FAIL,ABORT}) x S. A results r is

thus a pair <n,s> where n denotes the final cursor position (if the match

was successful) ands is the resulting store.

m EM, the machine configurations. A machine configuration is either a

a final configuration which is an element
A

from R, or an 8-tuple a <s> formed by concatenating an alternative with a

list containing a stores as only element. The predicate final(m) holds iff

mis a final configuration.

We now have enough tools to define the step function.

The function step: M ➔ Mis defined as follows.

A. If mis a final configuration then step(m) = m.
A

B. If m has the form <READY,a,q,n,s> then step(m) = <n,s q>.

C. In all other cases m has the form <p,s' ,h,c,a,q,n,s>, and the definition

proceeds by induction on the structue of p.
A -1

= {c <a,q,V n'> if h' = h[Vn:n']
1. step<h' ,s" ,h,c,a,q,n,s>

A .
a <s> otherwise

2. step<v,s',,h,c,a,q,n,s> = <s'4v),s',h,c,a,q,n,s>

3. step<nil,s' ,h,c,a,q,n,s>
A

c <a,q,n,s>

4. step<abort,s',h,c,a,q,n,s> = <ABORT,s>
A

5. step<fail,,s' ,h,c,a,q,n,s> = a <s>

6. step<p$v,s' ,h,c,a,q,n,.c:> = <p,s',h,<n$$v,s' ,h,c>,a,q,n,s>

7. step<p.v,s' ,h,c,a,q,n,s> <p,s',h,<n .. v,s' ,h,c>,a,q,n,s>

8. step<n'$$v,s' ,h,c,a,q,n,s>
A A = c <a,q,n,s <v,h[Vn':Vn]>>

9. step<n' .• 11,s' ,h,c,a,q,n,s>
A A

c <a,q <v,h[Vn':Vn']>,n,s>

10. step<*p,s·' ,h,c,a,q,n,s> = <p,s,h,c,a,q,n,s>

11. step<p1vp2 ,s' ,h,c,a,q,n,s> <p11 s' ,h,c,<p2 ,s• ,h,c,a,q,n>,q,n,s>

12. step<p1 &p2 ,s• ,h,c,a,q,n,s> = <p11s',h,<p2 ,s• ,h,c>,a,q,n,s>.

EXPLANATION.

Ad B. If during the match we encounter the end of the subsequent list,

then the match has clearly succeeded (compare step 3 in Gimpel's

algorithm). The postcursor position then is n, the cursor position on

encountering READY, and the final store is obtained by performing all

assignments in q from left to right.

Ad C. 1. If the pattern component is a literal string h' then we have to

11

find out whether h' matches the subject string with respect to the

present cursor position. If so, we have to continue with the next pattern

component and this is given by the subsequent c. Now the stores and the

queue q have not changed. Also there are no new alternatives found in the

meantime so the alternative is still given by a. The only entity which has

changed is the cursor position which must be set to its new value. By adding
-1

the list <a,q,V n',s> to c we thus obtain a new machine configuration which

reflects the effects of the successful match.

If the match against h' fails then we have to backtrack, and we take

one frame from the stack a. Finding out that the match fails does not

affect the store, so we only have to add <s> to get the resulting machine

configuration.

2. If the pattern component is a variable v then we have to inspect the

store as it was at pattern building time to find the value of v. This

store is given bys'. The resulting machine configuration is then obtained

by replacing v by the literal string which is the value of v ins'.

6-8. The pattern p$v is handled as follows: p$v is rewritten asp& (n$$v).

So first a match against pis attempted. If this succeeds then we have

to assign to v the substring of the subject which has been matched, and that

is precisely the effect of matching against n$$v. This match always succeeds

and has the side effect that the substring from the subject between cucsor

value n (given by the pattern component n$$v) and the present cursor value

is assigned to v. So n$$v serves to indicate that an assignment has to be

done, and it also provides the cursor value at the beginning of the match

against p.

7-9. Similar to 6-8, but now the matched substring of the subject is added

to the queue q.

12

10. The effect of matching against *Pin stores is the same as matching

against the pattern structure derived from pin stores. So the only

thing to be done is to replaces' bys.

11-12. In these cases the pattern is decomposed and the second component is

retained in the new alternative, resp. the new subsequent.

Now that we have a step function which gives one step results, we can

define the function P which takes a machine configuration and yields the

final result of the matching process, a configuration m for which final(m)

holds. The function Pis obtained by repeating the function step until a

final configuration has been reached. We can formalize this in two ways.

The first one is straightforward:

m' if there exists a row m1 , ••• ,mk such that m = m1 ,

P(m) mk = m' I mi+l = step(m .) (i=l, .•• ,k-1), 7final (m .)
= 1. 1.

(i = 1, ••• ,k-1), final (mk),

.1 otherwise •

There is another definition possible which is neater, but uses fixed point

theory. The function P can be defined recursively by

P(m) ~ final(m) + m, P(step(m)),

or more precisely

P = µ[11.qi•11.m•final(m) + m, qi(step(m))],

whereµ is the least fixed point operator (see for instance DE BAKKER [1],

or STOY [7] who calls this operator fix).

In order for the latter definition to make sense we have to impose

a cpo structure on the class M of machine configurations. This can be done

by adding the element .1 to Mand making Ma discrete cpo (m1 I;, m2 iff

m1 = .1 or m1 = m2). We also extend the definition of step by taking

step .1 = .1. It can be shown (in the standard way) that the operator

11.qi•11.m•final(m) + m, qi(step(m)) is continuous, and thus that the least fixed

point exists.

That the two definitions are equivalent can be shown in a standard

way (see for instance [1, paragraph 3.3]).

Finally we define the operational meaning function O which gives the

outcome of the process of matching a string h against a pattern p with

initial stores.

O[p] h s P<p,s,h,<READY>,<FAIL>,<>,0,s>.

13

Here we used the convention that syntactical objects occurring as an

argument of a function are enclosed in [•]-type brackets to make the expres­

sion more readable.

4. DENOTATIONAL SEMANTICS

We now turn to a discussion of the denotational semantics of our

SNOBOL4 fra~rment. Before we do so however, we first make a remark on the

notation we will use. The semantical classes used in the denotational

semantics wj_ll be different from the ones in the above chapter. For instance

we defined the class S of stores by S (VM x Sbi)*, but now we will

take the domain of the stores to be S = VM + Sbi. This can be done because

we do not work any more with finite representations, we can use infinitary

mathematical objects such as functions in the denotational semantics.

We will however use the same symbols to denote corresponding semantical

classes and their typical elements. So in this chapter we define S with

typical elements bys ES= VM + Sbi. This usage will not cause confusion

in this chapter because here we will be occupied only with denotational

domains and values. If confusion can be possible we will use the so called

diacritical convention (MILNE & STRACHEY [5]); elements in the denotational

world will be decorated with an acute accent~, and the operational domains

and values with a grave accent~. According to this convention we then can

write§= Vctli + Sbi and S = (Vetli x Sbi)*. Notice that Vetli and Sbi, being

syntactic domains are not decorated.

We return to the denotational semantics. The meaning of a pattern p can

be described by the effects resulting from a match of an arbitrary string h

against p. 'J7his match, if it succeeds, will affect the cursor value n (which

is now an element of N, the nonnegative integers), the stores, and it might

14

also add new conditional assignments to the ones already accumulated, as

given by q (q will now be an element of S +Sand denote the store transfor­

mation which is the result of performing all conditional assignments).

The meaning of p will also be dependent on the stores' at pattern evalua­

tion time, s' provides the values of the free variables in p, i.e. those

variables that are not bound by a *-operator.

Using a meaning function N, the effect of matching the string h against

pattern p evaluated ins', with initial situation given by conditional

assignments q, cursor position n and stores, would then be given by the

expression N[p] s' h q s. The value of this expression could be a triple

<q' ,n' ,s"> giving the new q-, n- and s-values. This set up does not work

however, and this can be seen most directly by studying the case that the

match of h against p fails. For how should the effect of backtracking be

described in this setting?

The problem becomes clearer if we take a look at the compositionality

principle, a main idea behind the denotational style of defining. This

principle says that the meaning of a compound expression should be composed

from the meaning of its parts. For instance, the meaning N[(p 1 v p 2) & p 3]

should be given in terms of N[p1], N[p2] and N[p 3] only.

Now matching against p 3 can fail and cause backtracking, a jump in

the pattern to p2 . However in determining the meaning N[p 3] we donot have

the pattern text p 2 at our disposal anymore, as was the case in the opera­

tional semantics. The standard solution for this kind of problems around

jumps in programs is to work with continuations.

The trick is that we give the function N[p] s' h an extra argument a,

called the alternative which describes the result of backtracking from p.

The effect of backtracking is: recover the situation to the state it was in

at the latest choice point and proceed from there on with the new stores.

This effect is: captured by a function a EA= S + R, where

R = (Nu {FAIL,ABORT}) x S. The alternative a takes a store as argument and

delivers the result r of the rest of the matching process. In other words,

an alternative a is a function that describes the pattern matching process

starting from the moment that backtracking out of p occurs.

So we add an extra argument a, and we have that now, if backtracking

takes place, N[p] s' ha q n s denotes the final result of the whole match.

15

But this must then be the case too should the match succeed. It is therefore

needed to give N[p] s' h yet another argument, a subsequent c, describing

how the pattiern matching process proceeds if matching against p has termi­

nated succes:sfully. The subsequent will yield a result r in R, which will

be dependent on four arguments describing the situation after the local match has

succeeded: the new store s", the postcursor position n', the conditional

assignments accumulated q' and a new alternative a' which is determined by

the alternative we had before matching against p, updated with the possible

alternatives found while matching against p which have not yet been tried.

We thus arrive at a functionality c EC= A ➔ Q ➔ N ➔ S ➔ R.

A subsequent can be viewed as a function determining how the match

proceeds from a certain point in the pattern text. An alternative can be

looked upon in the same way, but more information is available at the

moment an alternative is constructed (i.e. while matching on encountering

a choice point p 1 V p 2), namely the precursor position, the conditional

assignments ,gathered so far and also the alternatives remaining if the match

fails in the process after backtracking to the choice point. The difference

between the two is clearly reflected in the respective functionalities

A ➔ Q ➔ N ➔ S ➔ R vs. S ➔ R: an alternative is like a subsequent but not

more dependent on a, q and n.

Concluding, the result r = N[p] s' h ca q n scan be described as

follows: N[pll s' denotes the pattern structure resulting from evaluation of

the expression pin stores'. Suppose his matched against this pattern

structure, and the initial situation is given by cursor position n, initial

stores and conditional assignments accumulated so far determined by q.

Suppose furthermore that the effect of the future of the matching process

once match against p has been finished is given by a in case backtracking

out of p occurs, and by c in case the match against p terminates successful­

ly. In that case the final result of the whole matcing process is given by r.

The above discussion leads to the following definitions of domains and

functionalities.

16

S E s Vall..+ S:tlr. stores

n E N nonnegative integers

q E Q =

r E R

s + s

(NU {FAIL,ABORT}) X S

accumulated conditional assignments

results

a E A = s +R alternatives

C E C A +Q +N+S+R subsequents

We define a variant s{h/v} of a stores by

{
s(w)

(s{h/v})(w) =
h

if V J_ W

if V - W.

Notice th.at the classes introduced above are not cpo's. Cpo's are not

needed here be,cause the semantic definition of N to come is a purely induc­

tive one. No ~~e is made of fixed points, and we also donot use recursively

defined domains.

The semantic function N has functionality

N: Pa..t + s + S:tlr. + C + A + Q + N + s + R

and is defined by induction on the structure of its first argument as

follows.

{
ca q n' s

1. N[h'] s' h ca q n s =
if h' = h[n:n']

a s otherwise

2. N[v] s' h c a q n s = N[s' (v)] s ' h c a q n s.

3. N[nil] s' h c a q n s = c a q n s

4. N[abort] s' h ca q n s = <ABORT,s>

5. N[fail] s' h c a q n s = a s

6. N[p$v] s' h c a q n s = N[p] s' h c' a q n s

where c' >..a'•t..q'•11.n'•11.s"•c a' q' n'(s"{h[n:n']/v})

7. N[p• v] s' h c a q n s = N[p] s' h c' a q n s

where c' = 11.a 1 •11.q'•11.n'•11.s"•c a' (11.s• (q's){h[n:n']/v})n's"

8. N[n$$v] s' h c a q n s = Ca q n(s{h[Vn:n]/v})

9. N[n •• v] s' h C a q n s = C a(11.s· (q s){h[Vn:n]/v}) n s

10. N[*P] s' h C a q n s = N[p] s h ca q n s

11. N[pl Vp2] s' h C a q n s = N[pl] s' h c{N[p) s, h c a q n} q

12. N[pl&p) s' h c a q n s = N[pl] s' b{N[p2] s' h c} a q n s.

n s

17

REMARKS. Ad 1. If h matches h' at cursor position n then the remainder of

the matching process is given by the subsequent c. The alternative,

the conditional assignment queue and the store did not change, only the

cursor has a new value. If h does not match then the remainder of the

matching process is given by a which has to be applied to the current stores.

Ad 2. Like 1, but first the value of v ins' has to be determined. Notice

that, in order to be able to maintain the above definition as one by

structural induction, we have to choose a measure of complexity of patterns

which guarantees that the complexity of variable is higher than that of a

string. This can be accomplished easily though.

Ad 6. Matching gainst p$v is in principle the same as matching against p.

Only when the match against p succeeds we have to aditionally assign

the string matched to. This is taken care of by the new subsequent c' which

describes the effect of this assignment followed by the effect of the old

subsequent c.

Ad 7. Like 6, but now the new subsequent c' causes q to be updated instead

of s.

Ad 8,9. Notice that then occurring in the patterns is a numeral. Therefore

n has to be changed into the corresponding number. Strictly speaking,

clauses 8 and 9 are not needed in the definition, because patterns n$$v,

n .. v do not occur in programs, nor in the right-hand sides of the other

clauses in the definition. These auxiliary patterns have only been intro­

duced for the sake of the operational definition, where the meaning of p$v

has been defined in terms of the meaning of some n$$v. See also the lemmas

at the end of this chapter. We maintained these clauses here, because we

will need them in proving the operational and denotational semantics

equivalent.

Ad 11. Matching against p1 vp2 amounts to matching against p1 , but now we

have a new alternative. On backtracking we have to match against p 2

in the situation as it is now (apart from the new store). This effect is

taken care of by the new alternative N[p2] s' h ca q n. Notice that this

alternative has the right functionality.

Ad 12. As in 11, but now a new subsequent is formed.

18

Finally we define the denotational counterpart of the function O from

chapter 3. This is the semantic function M with functionality

M: Pa:t ➔ StJL ➔ s ➔ R.

M[p] h s = N[p] s h ready fail {As•s} 0 s,

where the subsequent ready is defined by

ready a q n s = <n, q s>

and the alternative fail by

fails= <FAIL,s>.

So the complete matching of a string h against a pattern pin stores,

corresponds to evaluating pins, and matching h against this pattern struc­

ture. If this match succeeds then the accumulated conditional assignments

have to be performed and this is handled by the subsequent ready which

yields the postcursor position and the updated store. If the match fails

then this has to be reported and that is what the alternative fail is for.

Furthermore, the precursor position is 0, and the initial s·tore is s. Final­

ly, in the beginning there are no conditional assignments accumulated and

this is denoted by the identity function AS· s.

We close this chapter by giving a lemma on the relation between

clauses 6 and 8 (7 and 9) of the definition of N.

LEMMA 4.1.

1. N[p$v] s' h C a q n s = N[p& (n$$v)] s' h ca q n s

2. N[p.v] s' h c a q n s = N[p&(n •• v)] s' h c a q n s

where n =
-1 V n.

PROOF. The proof is straightforward by writing out the expressions. For

instance in 1 we have: left-hand side= N[p] s' h c'a q n s, where

c' a' q' n' s" =ca' q' n' (s"{h[n:n']/v}), and right-hand side=

N[p] s' h{N[~$$v]s' h c} a q n s. So there remains to be proved

c' = N[n$$v] s' h c, and this follows from the fact that

N[n$$v] s' h Ca' q' n' s" = c' a' q' n' (s"{h[Vn :n']/v}) and that
- -1

□ Vn = VV n = n.

19

5. OPERATIONAL AND DENOTATIONAL SEMANTICS ARE EQUIVALENT

Of course it is not by coincidence that the two semantics presented

here are that similar. An example of the difficulties that one encounters

if one chooses a more dissimilar pair of semantics will be given in the

next chapter. Notice however, that there are essential differences between

the two semantics. A first one is that the objects that are manipulated in

the operational semantics are all finite representations (they are in fact

BNF-definable) while the denotational semantics handles infinitary abstract

objects. A more fundamental difference is that the denotational semantics

is fully compositional while the operational semantics is not. Related to

this is the fact that in the denotational semantics the outcome of the

matching process is obtained, so to speak immediately, by applying the

meaning function M to the suitable arguments, while in the operational

semantics we get the result by letting an abstract machine compute it step

by step.

If now we want co compare the two semantics the first thing to do is to

find a correspondence between the operational domains and the denotational

ones. The main theorem to be proved here is that the two functions O and M,
applied to corresponding arguments, will yield corresponding results.

There is a straightforward correspondence between the domains, which will

be given by the derepresentationfunctionsVX (one for every pair of domains

X and X) which map an element from the operational domain X onto the corre­

sponding element in X. So we will define functions VS, VN (this is the func­

tion introduced already in chapter 2, which relates numerals and numbers),

VQ, VR, VA and Ve. In the sequel we will use the convention that the sub­

scripts will be omitted if this causes no con£usion (this has already been

done in chapter 2). We remark now already that these functions V will in

general be neither one to one nor onto.

The fact to be proved in this chapter can now be stated as

V(O[p] h s} = M[p] h (Vs). We will first give the definitions and after­

wards provide some comments on these.

20

DEFINITION 5.1.

Vs: s -+ s is defined by V <> = AV·" s

VQ:

VR:

V . c·

V· A"

V u/' <v ,h>) = s

Q -+ ~ is defined by V <> = M•s
Q

R -+

c -+

A -+

VQ(c/'<v,h>) = M• ((VQqs) {h/v})

R is defined by V <n,s> = <V-n, V s>
R N S

where V-: Num u {FAIL,ABORT}-+ Nu {FAIL,ABORT}
N

{nV_fi
is defined by

if n E Num

if n E {FAIL,ABORT}

c is defined by V <READY> = ready
C

Vc<p,s,h,c> = N[p] (V ss> h (V cc>

A is defined by V <FAIL>
A

= fail

VA(c
A
<a,q,ii>) (Vee) (VAa) cVQq) cV~). =

REMARKS. We have VS: (Va.Jr. x S:tJt) * -+ (Va.Jr. -+ S:tJt) • Now the empty list corre­

sponds to the situation that all variables have the empty string as value,

so this accounts for the first line in the definition. Furthermore in the

~A 1 1 ~ stores <v,h> a 1 variables have the same va ue as ins, except for v which

has the value h, and this is reflected in the second line of the definition.

The function VN has already been introduced in the second chapter. It

has not been defined there, and we could not do so because we chose not to

define the form of the elements in Num.
The functionality of VQ is (Va.Jr. x S:tJt) * -+ (S -+ S). The queue q in Q

provides the conditional assignments to be performed from left to right.

The corresponding function VQq is the store transformation that describes

the effect of performing these assignments. So we have VQ<> = \s•s, for if

the queue is empty then the store does not change. The second line of the

definition can be phrased as follows: performing the assignments in the

queue qA<v,h> amounts to performing the assignments in q first and after­

wards assigning h to v.

The function VR is defined straightforwardly.

21

That Ve<READY> should be equal to ready can be seen from the fact that

they "do the same job": the accumulated conditional assignments are perform­

ed and the final result is delivered. This is formalized in LeIIll!la 5.3. The

next line in the definition can be commented upon as follows. The subsequent

<p,s,h,c> describes a match of h against p evaluated ins, followed by

subsequent c, and the entity N[p] (V8s) h (Vee) describes the same process

for the corresponding elements in the denotational world.

Similar remarks as given on Ve apply for the function VA.

We next state some lemmas giving results on these functions.

I\
PROOF. Remind that the lists q represents the store resulting from perform-

ing the conditional assignments in q on s (see the definition of

step<READY, ••• > in chapter 3). The proof is by induction on the length of q.

Basis. V(sA<>) = Vs and (V<>) (Vs) = (As•s) (Vs) = Vs.

Induction step. V(s/\(q/\<v,h>)) = V((s/\q)/\<v,h>) =
(V(s/\q)){h/v}.

on the other hand (V(q/\<v,h>)) (Vs) = [As•((Vqs){h/v})](Vs) =
[(Vq) (Vs)]{h/v},

and the result holds by induction. D

LEMMA 5.3. V(step<READY,a,q,n,s>) = ready(Va) (Vq) (Vn) (Vs).

PROOF. The left-hand side is equal to V<n,s/\q> = <Vn,V(s/\q)>, and the

right-hand side equals <Vn,(Vq) (Vs)>. The result now holds by the preceding

lemma. D

LEMMA 5.4. V(P<READY,a,q,n,s>) = ready(Va) (Vq) (Vn) (Vs).

PROOF. Because step<READY,a,q,n,s> is final, we have that P<READY,a,q,n,s>

is equal to this, and the lemma illllllediately follows from Lemma 5.3. D

LEMMA 5.5. V<FAIL,s> = fail(Vs).

PROOF. IIIll!lediate by writing out the expressions. D

22

LEMMA 5.6. s4v} = (Vs) (v).

PROOF. Induction on the length of s. The basic step is OK because <>(v)="

and (V<>) (v) = (Av•") (v) = "

Induction step.

(sA<w,h>) 4v}
if W = V

otherwise

V(sA<w,h>) (v) = ((Vs){h/w}) (v) = {h
<Vs> <v>

if W:: V

otherwise. □

Now we want to prove V(O[p]h s) = M[p] h (Vs). By writing out, using

the definition of O and M, this is equivalent to

VcP<p,s,h,<READY>,<FAIL>,<>,o,s>> =

N[p] (Vs) h ready fail ()..s•s) 0 (Vs).

We distinghuish two cases, namely that the left-hand side of the above

equality is unequal to i and the case that it is equal to i. We establish

the desired result for the first case by proving the following more general

result.

LEMMA 5~7. For all c,a,q,n ands we have: if P(cA<a,q,n,s>) ~ i then

VcPccl<a,q,n,s>> > = <Ve> <Va> <Vii> <Vn> <Vs>.

PROOF. The proof is by induction, essentially on the length of the computa­

tion. Now we have given two definitions of P, and the induction argument

depends on the definition chosen. If one thinks in terms of the fixed point

definition then we have to use Scott's induction (fixed point induction),

that is we have to prove that the lemma holds for)..m•i instead of P (which

is clearly true), and that the lemma holds for)..m•final(m) + m, ~(step(m))

given that the lemma holds for the function~ instead of P. The proof given

below can be reorganized in these terms.

If one adopts the other definition using rows of machine configurations,

then the induction is simply on the length of the row. The basic step is

again vacuously fulfilled because one easily sees that there are no zero step

I\
reductions from c <a,q,n,s> since this configuration is not final. For the

induction steps we distinguish thirteen cases, dependent on the form of c.

1. c = <READY>. The lemma holds by LeI!Dila 5.4.

2. c = <h',s1,h,c1>. There are two cases:

a. h[Vn:n] = h' for some n. We then have to prove

V(P(c/<a,q,V- 1n,s>)) = (Vcl) (Va) (Vq) n (Vs)

and this holds by induction and the fact that V v-l n = n.

b. Otherwise. Then the property to be proven is equivalent to

V(P(aA<s>)) = (Va) (Vs). Again there are two cases:

I. a= <FAIL>. In this case we have to prove

V(P<FAIL,s>) = fail(Vs) and this is an immediate consequence of

Lemma 5.5.

II. a= c 2A<a 1,q1,n1>. Then we have to prove

V(P<c2,al,ijl,nl,s>) = (Vc2) (Val) (Vql) (Vnl) (Vs)

and this holds by induction.

3. c = <v,s1 ,h,c:1>. We have to prove

V(P<s1~v),s1,h,c1,a,q,n,s>> =

4.

5.

6.

7.

N[v] (Vs l) h (Ve l) (Va) (Vq) (Vn) (Vs) =

N[(Vsl) (v)] (Vsl)h(Vcl) (Va) (Vq) (Vn) (Vs) = (#)

We have by Lemma 5.6 and the definition of Ve that

(#) = (V<s14vD,s1,h,cl>) (Va) (Vq) (Vii) (Vs),

and now we can apply the induction hypothesis.

c = <nil,s 1,h,c1>. Like 2a.

c = <abort,s 1 ,h,c:1>. Immediate.

c = <fail,s 1 ,h,c1>. Like 2b.

c = <p$v,s 1 ,h,c:1>. We have to prove

V(P<p,s 1,h,<ii$$v,s1,h,c1>,a,q,n~s>) =

N[p$v] (Vsl)h(Vcl) (Va) (Vq) (Vn> (Vs).

We have

V(P<p,s 1,h,<n$$v,s1 ,h,c:1>,a,q,n,s>) = (ind.hyp.)

(V<p,sl,h,<n$$v,sl,h,cl») (Va) (Vq) (Vn) (Vs) = (def. Ve>

(N[p] (Vsl)h{N[n$$v] (Vsl)h(Vcl) }) (Va) (Vq) (Vn) (Vs) = (def. N)

N[p&(n$$v)] (Vsl)h(Vcl) (Va) (Vq) (Vn) (Vs) =

23

24

-1 The last equality holds by Lemma 4.1 and the fact that V Vn = n.

9. c = <n1$$v,s1 ,h,c1>. We have to prove

v cPcc:1 A<a ,q,n,.?t <v,h[Vn1 :Vn]»)) =
(Vcl) (Va) (Vq) (Vnl((Vsl{h[Vnl:Vn]/v})
and this holds by induction and the definition of V5 •

10. c = <n1 •• v,s 1,h,c1>. We have to prove

V<P<c 1A<a,qA<v,h[Vn1:VnJ>,n,s>)) =
(Vcl) (Va) (AS" (Vqs){h[Vnl:Vn]/v}) (Vn) (Vs)
and this holds by induction and the definition of VQ.

11. c = <*p,s 1,h,c1>. We ha.ve to prove

V<P<p,s,h,c1,a,q,n,s>) = N[pB <Vs>h<Vc1> <Va> <Vii> <Vn> <Vs>,
which holds by induction and the definition of Ve.

12. c = <p1vp2,s1,h,c1>. We have

V<P<cA<a,q,n,s>>> =
V(P<p1,s1,h,c1,<p2,s1,h,c1,a,q,n>,q,n,s>> = (ind. hyp.)

(V<pl,sl,h,cl>) (V<p2,s1,h,cl,a,q,n>) (Vq) (Vn) (Vs) = (def. VC,VA)
N[plB (Vsl)h(Vcl){N[p2B (Vsl)h(Vcl) (Va) (Vq) (Vn)}(Vq) (Vn) (Vs) =

N[p1vp2B (Vs 1)h(Vc1> (Va> (Vq> (Vn> (Vs> =(def.Ve>

CV<p1 vp2,s 1 ,h,c1>> <Va> <Vii> cVn> <Vs>.

13. c = <p1&p2,s1,h,c1>. We have

V<P<cA<a,q,n,s>)l =

V(P<p1,S11h,<p2,s1,h,c1>,a,q,n,s>) = (ind. hyp.)

(V<p1 ,s1,h, <p2,s1,h,c1») (Va) (Vq) (Vn) (Vs).= (2x def. Ve>

N[p1B (Vsl) h{N[p2B (Vsl)h(Vcl)}(Va) (Vq) (Vn) (Vs) = (def. N)
N[p1&P2B (Vsl)h(Vcl) (Va) (Vq) (Vn) (Vs) = (def. Ve>
(V<p1&P2,s1,h,c1>) (Va) (Vq) (Vn) (Vs). □

COROLLARY 5.8. For all p, hands, we have

O[pB h s ~ ~ ,.. VcO[pB h s> = M[pB h <Vs>.

PROOF. Immediate from Lemma 5.7. D

25

The other case to be taken care of is the case that O[p) h s = .L.

We will show in the sequel that this case cannot occur, that is that evalua­

tion of any machine configuration always terminates. It is sufficient to

show that there exists a complexity measure Con machine configurations

such that the function step decreases this measure for all configurations

which are not final.

LEMMA 5.9. If there exists a function C: M ➔ N such that for all m which

are not final we have C(m) > C(step m); then for all p, hands we have

that O[p) h s ~ .L.

PROOF. We give two proofs depending on which definition of Pis chosen.

1 (The fixed point definition). It is a well known result that P = U </>.,
i 1

where ~0 = Am•.L and</>. 1 = Am•final(m) ➔ m, </>. (step m). The following
o/ 1+. 1

property will now be proved by induction on i:

(m~.L A <I>. (m) = .L) => C[mD ~ i.
1

Basis. Trivial.

Induction step. Suppose <l>i+l (m) = .L. This implies that mis not final,

so we have</>. 1 (m) = <j>. (step m). The induction hypothesis gives that
1+ 1

C[step mD ~ i and the property of C yields that C[mD > C[step mD ~ i and

therefore C[mD ~ i+l.

Having proved (*) we now remark that (U <I> •) (m) = .L => Vi: <I>. (m) = .L =>
i 1 1

Vi: C[mD ~ i which is clearly impossible.

2 (The row definition). If P(m) = .L then there exists an infinite row

m = m1, m2 = step(m1), ••. with all mi not final. That is, there e~ists

an infinite row m1,m2, ••• for which C[miD ~ C[mi+lD, and this is not pos­

sible because for all m. we have C[m.D ~ 0. D
1 1

The rest of this chapter will be devoted to a definition of a function

C with the desired property. We use the following observations.

1. A machine configuration m = <p,s' ,h,c,a,q,n,s> consists in essence of

a. A row of pattern components, namely p and the components in the list c.

b. An alternative a, which is in essence a list, the elements of which

are again rows of pattern components.

26

Combining a. and b., we can view a machine configuration as a list

<r1, ••• ,rn> of rows of pattern components (ri = <pi 1, ••• ,pik>, for

some k).

2. Operations, as given by the function step, that change the above list

are the following:

a. Operations which change the list into one which is smaller by one

element. These are the operations that correspond to a failure in the

pattern match. A failure causes backtracking, which amounts to popping

a new element from the stack a. From this we can conclude that C must

be a function that is strictly increasing in the length of the list.

b. Operations which take one element from the first row of the list.

These correspond to cases in which the match succeeds immediately,

for instance nil, n$$v, n .. v, h' (if the match succeeds). The effect

is that the first ele'ment is taken from the subsequent c.

We conclude that C must be a strictly increasing function of the

length of the first row in the list.

c. Op~rations, corresponding to patterns p$v, p.v and p 1&p2 , that add an

element to the first row of the list. For these operations the fol-

lowing must hold: C(<<p1&p2 , ••• >, ••• >) > C(<<p1,P2 ,.· •• >, ••• >).

d. Operations, corresponding to p 1vp2 which enlarge the list by one
A

element. The following must hold: C(<<p1vp2> rest>, ••• >) >
A A

C(<<p1> rest,<p2> rest, ••• >).

If we now define C(list of rows) = C(<r1 , ••• ,rn>) = C(r1)+ ••• +C(rn) then

the property required in a. is satisfied, provided C(r.) > O. If we take
l.

C(r) = C(<p1, ••• ,pk>) = C(p1)x ••• xC(pp), then also the property from b.

holds, provided C(p) > 1. Finally, we can meet the restrictions posed inc.

and d. by taking C (pl &p2) = C (p1) xC (p2) + 1, and C (p1 vp2) = C (p1) +C (p2) + 1,

respectively.

The above considerations are formalized in the next definition.

DEFINITION 5.10 (C).

1. (C(p)). C(h) = C(nil) = C(abort) = C(fail) = C(n$$v) = C(n •• v) = 2

C(v) = 3

C(p$v) = C(p.v) = 3xC(p)

C C * p > = C (p > + 1

C(p1Vp2) = C(p1)+C(p2) + 1

C (pl &p2) = C (pl) xC <P2> + 1.

2. (C(c)). C(<READY>) = 2

C(<p,s1,h,c>) = C(p)xC(c).

3. (C(a}). C(<FAIL>) = 1
A

C(c <a,q,n>) = C(c)+C(a).

4. (C (m)). C (m} = 1 if final (m) holds
A

C(c <a,q,n,s>) = C(c)+C(a).

From this definition the following can be established.

LEMMA 5.11.

1. Vp: C(p) ~ 2

2. Ve: C(c) ~ 2

3. Va: C(a) ~ 1 and C(a) = 1 ~ a= <FAIL>

4. C(<p,s 1,h,c,a,q,n,s>) = C(p)xC(c)+C(a)

5. Vm: C(m) ~ 1 and C(m) = 1 ~ final(m).

PROOF. Easy. 0

This lemma can be used to prove the result that we were up to:

LEMMA 5.12. 7 final(m) ~ C(step m) < C(m).

27

PROOF. By cases and easy. The proof has been done informally in the remarks

preceding Definition 5.10. 0

6. ANOTHER OPERATIONAL SEMANTICS

This chapter shows what the consequences can be for the equivalence

proof as given in Chapter 5, if another operational semantics is taken. In

this chapter we will give an operational semantics in the style of COOK

[2], which has also been used in DE BAKKER [1]. We will use definitions from

Chapter 3, but occasionally we will feel free to overwrite the definitions

from that chapter, for instance the functions O and C will be defined anew

here.

28

In the new approach we chose to separate again the two phases that can

be distinguished in the overall matching process, namely the pattern build­

ing phase and the matching phase. For this means we first introduce a new

syntactic class, the pattern structures, which are the results of pattern

building, that is which are patterns without free variables.

o E Pa.t6:tltuct, the pattern structures.

This class can be defined by o::= hlnillabortlfaillo$vlo.vln$$vln .. vl*PI

o 1vo2 1o1&o2 •

Notice the clause *Pin this definition. Free variables in p will be bound

by the *-operator.

We have the following lemma on the denotational meaning of pattern

structures which should not be a surprise by now:

PROOF. Easy, by checking the definition of N. □

This lemma justifies the following definition of the meaning function

L: Pa.t6:tltuct ➔ S:tlt ➔ C ➔ c, namely L[o] = N[o]s for some s Es.

We now introduce the pattern evaluation function E which transforms a

pattern expression p, relative to a stores, into a corresponding pattern

structure. This function E: Pat ➔ S ➔ Pa.t6:tJLuct is defined by cases as:

E[p]s = p for p = h, nil, abort, fail, n$$v, n .. v and *P'

E[v]s = s4v)

E[p$v] s = (E[p]s) $v

E[p. v]s = (E[p] s). v

E[pl &p2]s = (E[p1)s) & (E[p2) s)

E[pl Vp2] s = (E[p1]s) v (E[p2)s).

We have the following lemma, which will be needed in the equivalence proof.

LEMMA 6.2. Vp E Pat Vs ES: N[p] (Vs) = L[E[p]s].

PROOF. By cases (induction on the structure of p). The interesting cases are

those where p ,/. Pa.t6:tltuct. We give two examples: p = v, p = P 1 &p2 •

1. N[v] (Vs) = N[(Vs)4v)] (Vs) = (by Lemma 5.6) N[s(vD] (Vs) =

L[s(vD] because s4vD is an element of S;tJr,, and therefore of Pa:tobr,,uc.;t.

Now, for the same reason, we have by the definition of E that

E[s4v~] = s(tr), and we are ready.

2. N[pl&p2] (Vs) h c = N[pl] (Vs) h {N[p2] (Vs) h c} = :ind.)

= L[E[pl]s] h {L[E[p2]s] h c} = (def. L)

= N[E[pl]s] .§1 h {N[E[p2]s] .§1 h c} = (def. N)

= N[(E[p1] s) & (E[p2]s)] s 1 h c = (def. L and E)

L[E[p1&p2]s] h c. □

29

We will next give the new operational semantics. The operational mean­

ing function O (which has again functionality 0: Pa;t + S;tJr,, + S + R) is

defined in terms of an auxiliary function P. The function P takes (among

others) a pattern structure and delivers a finite row of intermediate

results which are triples. Each triple consists of a cursor position

(a numeral), a store and a queue of conditional assignments accumulated.

Such a row of intermediate results can be seen as the trace left by the

pattern matching process. We thus need ~1e following definition:

i EI= (Num u {FAIL,ABORT}) x S x L, tl,e class of intermediate results.

We furthermore define the tail function K which takes the last element of

We now define the function P: PatJ.i;tJr,,uc.;t + Sbr,, +I+ I+ inductively

as follows:

{
<V-l n',s,q> if h' = h[Vn:n']

1. P[h'] h <n,s,q> =
<FAIL,s,q> otherwise

2. P[nil] h <n,s ,q> = <n,s ,q>

3. P[fail] h <n,s,q> = <FAIL,s,q>

4. P[abortB h <n,s,q> = <ABORT,s,q>
A

5. P[o$v] h <n,s,q> = <n,s,q> P[o&(n$$v)] h <n,s,q>

6 • P[o. v] h <n, s , q>
A = <n,s,q> Pl[o&(n •• v)B h <n,s,q>

A
7. P[n'$$v] h <n,s,q> = <n,s <v,h[Vn• :Vn]>,q>

A
8. Pl[n' .• v] h <n,s,q> = <n,s,q <v,h[Vn' :Vn]>>

30

9. P[o1vo2] h <n,s,q> =
A A A

n'.tFAIL ➔ <n,s,q> P[o1] h <n,s,q> ,<n,s,q> P[o1] h <n,s,q> P[o2] h <n,s' ,q>,

where <n' ,s' ,q> = K (P[o 1] h <n,s ,q>)
A

10. P[*p] h <n,s,q> = <n,s,q> P[E[p]s] h <n,s,q>

11. P[o&o2] h <n,s,q> = (where o = h 1 , nil, abort, fail, n"$$v or n" •• v)
A -n' = FAIL,ABORT ➔ <n,s,q> P[o] h <n,s,q>,
A - A

<n,s,q> P[o] h <n,s,q> P[o2] h <n' ,s' ,q'>,

where <n',s',q'> = K(P[o] h <n,s,q>}
A

h <n,s,q> = <n,s,q> P[o1 & (o2&o3))] h <n,s,q>
A

h <n,s,q> = <n,s,q> P[(o1&o3) v (o2&o3)] h <n,s,q>
A

h <n,s,q> = <n,s,q> P[o1 & ((n$$v) &o2)] h <n,s,q>
A

h <n , s , q> = <n , s , q> Pl[o 1 & ((n •• v) & o 2)] h <n , s , q>

12. P[(o1 &o2) & o 3]

13. P[(o1 vo2) & o 3]

14. P[(o 1$v) & o2]

15. P[Co1 .v) & o 2]

16. P[(*p)&o2] h
A

<n,s,q> = <n,s,q> Pl[(E[p]s) & o2] h <n,s,q>.

Remarks.

The essential difference with the definition of step in Chapter 3 is

that here we do not use explicit stacks (c and a). The alternatives remain­

ing are remembered implicitly as can be seen from clause 9: matching against

o 1 v o2 amounts to matching against o 1 if this match succeeds or is aborted.

Otherwise it is the same as matching against o 1 and afterwards against o 2

starting with the correct intermediate result <n,s',q>.

The subsequents to be applied later are in principle retained in the

pattern component itself. Clauses 11 through 16 all deal with patterns of

the form o & o'. Clause 11 (o = o) gives the case where o does not have

implicit alternatives which means that no backtracking too is possible. In

that case matching against o is tried, and we go on if this match succeeds.

In all 0th.er cases (12 - 16) we have to find out which elementary pattern

component has to be matched against first. We solved this by first decom­

posing the first operand of o & o' until an elementary pattern is reached.

For instance the pattern structure (((h1 vh2) $v) & fail) & o' will be rewritten

as follows (where we assume that matching starts with cursor position given

by the numeral n) :

(((h1vh2)$v) &fail) &o' ➔

((h 1 Vh2) $v) & (fail & o') ➔

(clause 12)

(clause 14)

(h1 vh2) & ((n$$v) & (fail & o 1)) ➔ (clause 13)

(h1 & ((n$$v) & (fail & o'))) v (h2 & ((n$$v) & (fail & 0 1)).

31

Now we use clause 9, and first investigate the first operand of this dis­

junction which is (h1 & ((n$$v) & (fail & o'))). On this pattern structure we

then apply clause 11, clause 1, etc.

Notice also clause 10 and 16 of the definition. If, while matching,

the scanner encounters an *-operator, first the corresponding patt~rn com­

ponent is evaluated using E, before proceeding.

The claim on the functionality of P, in particular that P yields
+ values in I , and also the statement that the above definition is an induc-

tive one, has to be justified. We do this by presenting a complexity measure

Con pattern structures such that all structures occurring in the right-hand

sides of the clauses of the definition of P have smaller C-values than the

o's in the corresponding left-hand sides. The following function C, defined

on Pa:t by structural induction, does the job:

C[h] = C[v] = C[nil] = C[abort] = C[fail]

C[p$v] = C[p. v] = 2C~ p] + 2

C[n$$v] = C[n .. v] = 1

C[*p] = C[p] + 1

C[p1&p2] 2C[p1] + C[p2]

C[p1vp} max{C[p1],C[p2]}+1.

We are now ready to define the function O with functionality

0: Pa:t ➔ S.tJi ➔ S ➔ Ras follows:

O[p] h s = (n' = ABORT,FAIL)
A

➔ <n',s'>,<n',s' q'>,

where <n' ,s' ,q'> = K(P[E[p]s] h <O,s,<>>.

In order to be able to prove an equivalence result similar to the one

in Chapter 5, we need some auxiliary facts:

LEMMA 6.3.

1. N[(pl &p2) & P3] N[pl & (p2&P3)]

2. N[(pl Vp2) & P} = N[(pl &p3) V (p2&p3)]

N[(p1 $v) & p 2]
-1

& p2)] 3. s 1 h C a q n s = N[p 1 & ((V n$$v) s1 h C a q n s

N[(pl . v)I & p 2] s l h
-1

& p2)] 4. C a q n s = N[p1 & ((V n •. v) s1 h c a q n s

5. N[<*P1> &p2] s1 h ca q n(Vs) = N[(E[pl]s) &p2] s 1 h ca q n (Vs> .

32

PROOF.

1 and 2. By writing out the respective clauses in the definition of N.
3 and 4. By Lemma 4.1, by result 1 of this lemma, and by the fact that

N[p1] = N[p2] implies N[p1&p3] = N[p2&p3].

5. N[(*p1) &p2] s 1 h ca q n (Vs)= (def. N)

N[*P1] s 1 h {N[p2] s 1 h c} a q n (Vs) = (def. N)

N[p1] (Vs) h {N[p2] s 1 h c} a q n (Vs) = (Lemma 6.2, 6.1)

N[E[p1]s] s 1 h {N[p2] s 1 h c} a q n (Vs) = (def. N)

N[(E[pl]s) & P2] s1 h c a q n (Vs). □

Now if we want to prove O and M equivalent it appears that we have to

formulate a rather complicated induction hypothesis relating N and P. This

is due to the fact that in the operational definition of this chapter no

counterparts of the entities c and a from the denotational definition exist.

We have to capture the effects that subsequents and alternatives may have by

formulating the following induction hypothesis. The main trick is that we

capture the effect of the alternative a in the denotational definition by

quantifying over all alternatives.

LEMMA 6.4. For all o, h, n, sand q we have

P[o] h <n,s,q> ~ Aa•L[o] h ready a (Vq) (Vn) (Vs)

where list~~ iff

[

either K (list)

or K (list)

or K (list)

= <FAIL,s1,q1> and~= Aa•a(Vs1) l
= <ABORT,s 1 ,q1> and~= Aa•<ABORT,(Vs1)>

= <n 1 ,s1 ,q1> and~= Aa•<Vn 1, (Vq1) (Vs 1)> •

PROOF. By induction on the C-complexity of o. We have to distinguish all

cases as occurring in the definition of P which is tedious. So we give a few

typical examples. We define lhs = K(P[o] h <n,s,q>> and rhs =

Aa• L[o] h ready a (Vq) <Vn> (Vs> •

2. (nil) lhs = <ii,s,q> and rhs = Aa•<Vn, (Vq) (Vs)>

3. (fail) lhs = <FAIL,s,q> and rhs = Aa•a(Vs)

8 (I) h lb ' ' ,A b[V ' V' J d • n •• v We ave s = <n,s,q <v, n: n >> an

rbs = Aa•L[n' •. v] b ready a (Vq) (Vn) (Vs) =
Aa•ready a (As•((Vq)s){b[Vn' :Vn]/v}) (Vn) (Vs) =

<Vn,((Vq) (Vs)){b[Vn' :Vn]/v}>.

33

So we have to prove that this is equal to (V(qA<v,b[Vn' :Vn]>)) (Vs) and

this is true by the definition of V •
Q

9. (o1 Vo2). Let <n2 ,s2 ,q2> = K (P[o1] b <n,s,q>).

A. n 2 = ABORT.

Then lbs= <ABORT,s2,q2> and by induction we have for all a':

L[ol] b readya' (Vq)(Vn)(Vs) = <ABORT,Vs2>.

This holds in particular for a' = L[o 2] b ready a (Vq) (Vn) and we

thus get for all a: L[o1vo2] b ready a (Vq) (Vn) (Vs) = <ABORT,Vs 2>.

B. n2 E Num.
The argument is similar to that in case A.

C. n2 = FAIL.

We have lbs= K(P[o2] b <n,s 2 ,q>).

By induction we have for all a' that

L[o1] b ready a' (Vq) (Vn) (Vs) = a' (Vs2). This holds in particular for

a' = L[o2] b ready a (Vq) (Vn) and we get

rbs = Aa•L[o1vo2] b ready a (Vq) (Vn) (Vs) =

Aa•L[o1] h ready {L[o2] b ready a (Vq) (Vn)}(Vq) (Vn) (Vs) =

Aa•L[o2] b ready a (Vq) (Vn) (Vs2).

Now we can apply the induction hypothesis, for C[o2] < C[o1vo2].

12. ((o1&o2) & o 3). Use Lemma 6.3.1, and the induction hypothesis (notice

that C[o1 & (o2&o3)] < C[Co 1&o2) & o3].

16. ((*p) & o 2). Use Lemma 6.3.5 and the induction hypothesis. D

THEOREM 6.5. For all p, bands we have V(O[p] b s) = M[p] b (Vs).

PROOF. We have M[p] b (Vs) = N[p] (Vs) b ready fail (As•s) 0 (Vs) =

= L[E[p]s] .h ready fail (As•s) 0 (Vs) by Lemma 6.2.

Let K(P[E[p]s] b <O,s,<>> = <n 1,s1,q1>. There are three cases.

1. n 1 =FAIL.By Lemma 6.4.: M[p] b (Vs) = fail (Vs 1) = <FAIL,Vs 1>.

By the definition of Owe have O[p] b s = <FAIL,s 1>.

2. If n 1 = ABORT, then by Lemma 6.4 we have that M[p] b (Vs) = <ABORT,Vs 1>

and by the definition of Owe have O[p] b s = <ABORT,s 1>.

34

3. If n 1 E Num then Lemma 6.4 gives M[p] h (Vs) = <Vn1 ,(Vq1) (Vs 1)>, while

the definition of O yields O[p] h s = <n 1 ,s1Aq1>. Now by Lemma 5.2:
A V<n 1,s1 q1> = <Vn 1,(Vq1) (Vs 1)> and we are ready. □

7. CONCLUDING REMARKS AND ACKNOWLEDGEMENTS

This report presents the first results of a project in which we aim to

study various semantical aspects of the matching process in SNOBOL4. The

next step to be taken is to allow patterns as values of variables, instead

of strings as was the case here. This will lead to a (denotational) store

S which will be a function from variables to patterns, where patterns are

modelled by functions which describe (amongst others) store transformations.

This suggests a reflexive (circular) definition of the domain of stores,

and an equivalence proof like the one given here will be much harder to

construct.

This is why we chose to do some "ground work" first, and this paper

presents the results of it. We chose the SNOBOL subset such that all essen­

tial aspects of pattern matching are reflected in it, apart from the idea

that patterns can be values of variables.

The denotational semantics given here should be compared with the one

given by TENNENT [9] which is far more complicated due to the fact that a

much larger subset of SNOBOL4 is involved here. Our semantics can be viewed

as a simplification of Tennent's, resulting in a semantics that describe

the matching process clearly with no more tools and complications than

needed.

In Chapter 6 we showed that one has to be careful in designing an

operational semantics, if one wishes to prove- an equivalence result. The

semantics of Chapter 3 is inspired by the operational semantics in STOY [8].

We borrowed his idea to carefully provide for each denotational notion a

correspondingr operational notion. For instance our operational semantics

uses a class of subsequents and a class of alternatives which correspond

to the denotational domains C and A. This made the equivalence proof

manageable, as can be seen when one compares the proof in Chapter 5 with the

one in Chapter 6 where an operational semantics was used which was less

carefully designed.

Apart from Stoy's, the papers by GIMPEL [3] and PAGAN [6] should be

mentioned. They provided many useful details about the peculiarities of

the SNOBOL language.

Finally, I like to mention Jaco de Bakker, who has read an earlier

version of this paper and who came up with useful comments, and also

Ruurd Kuiper with whom I had fruitful discussions on the topics treated

here.

REFERENCES

[1] BAKKER, J.W. DE, Mathematical theory of program correctness, Prentice

Hall Int. (1980).

[2] COOK, S.A., Soundness apd completeness of an axiom system for program

verification, SIAM J. on Computing, Vol. 7, nr. 1, pp. 70-90

(1978) •

35

[3] GIMPEL, J.F., A theory of discrete patterns and their implementation

in SNOBOL4, Comm. of the ACM, Vol. 16, nr. 2, pp. 91-100 (1973).

[4] LANDIN, P.J., The mechanical evaluation of expressions, Computer J.,

Vol. 6, nr. 4, pp. 308-320 (1964).

[5] MILNE, R. & C. STRACHEY, A theory of programming language semantics,

Chapman and Hall, London and Wiley, New York, 2 vols. (1976).

[6] PAGAN, F.G., Formal semantics of a SNOBOL4 subset, Computer Languages,

Vol. 3, pp. 13-30 (1978).

[7] STOY, J.E., Denotational semantics - the Scott-Strachey approach to

programming language theory, M.I.T: Press, Cambridge, Mass. (1977).

[8] STOY, J.E., The congruence of two programming language definitions,

to appear.

[9] TENNENT, R.D., Mathematical semantics and design of programming

languages, University of Toronto, Technical Report nr. 59 (1973).

1 1 D 1980

