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*) 
Goto statements: semantics and deduction systems 

I 

by 

A. de Bruin 

ABSTRACT 

A simple language containing goto statements is presented, together 

with a denotational and operational semantics for it. Equivalence of these 

semantical descriptions is proven. 

Furthermore, soundness and completeness of a Hoare-like proof system 

for the laniguage is shown. This is done in two steps. Firstly, a proof 

system is given and validity is defined using (a variant of) direct seman­

tics. In this case soundness and completeness proofs are relatively easy. 

After that, a proof system is given which is more in the style of the one 

by CLINT & HOARE [SJ, and validity in this system is defined using continu­

ation semantics. This validity definition is then related to validity in 

the first system and, using this correspondence, soundness and completeness 

for the second system is proven. 

KEY WORDS & PHRASES: goto statements, denotational semantics, operational 

semantics, partial correctness, Hoare-like deduction 

systems, soundness, completeness, continuation 

semantics. 

*) This report will be submitted for publication elsewhere. 





1 . INTRODUC~~ION 

In this report we present several ways of looking at the meaning of 

goto statemEmts. We define a simple language containing goto statements, 

and present an operational definition of its semantics in the sense of 

COOK [ 6 J. WE~ also give a denotational semantics, using the concept of con­

tinuations i(STRACHEY & WADSWORTH [11]). Furthermore we prove that these 

definitions are equivalent. 
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After that we turn our attention towards a Hoare-like deduction system, 

as proposed by CLINT & HOARE [SJ, for proving partial correctness of pro­

grams of our language. It appears to be surprisingly complicated to justify 

this system .. The essential rule in the deduction system is (for programs 

with one label only) 

{p} goto L {false} 1- {p1 }A1{p} 

{p} ~ L {false} f-- {p}A2{p2 } 

f-- {pl}Al;L:A2{p2} 

and the unusual assumption {p} goto L {false} already gives an indication 

of possible complications. The main problem is how validity of the construct 

{p}A{q} has to be defined. 

If we investigate how the inference rule given above will be used in 

correctness proofs, we observe that the assumption {p} goto L {false} is 

used as a trick to indicate that p always holds before execution of goto L. 

Or, stated another way, the assertion pin the assumption serves as a so 

called labe~[ invariant: if we want to prove partial correctness of a pro­

gram S which contains a label L, then we can use the assumption {p} goto L {false} 

in the proof to describe that p holds whenever label Lis encountered 

during evaluation of s. Thus the introduction of an assumption like 

{p} goto L {false} in a proof only serves the purpose to indicate what the 

label invariant at L will be. 

This rE~port gives two variants of the deduction system and the above 

observations are used in the first one. Here there are no assumptions, the 

label invariants needed are stated explicitly within the formulae of the 
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system. These formulae will h,ve the form 

where p. is the invariant corresponding to label L .• Validity of a fonnula 
1 1 

like this one has to be defined in terms of the meaning of statement A oc-

curring in it. Things become too complicated if we use the customary deno­

tational definition with continuations and environments. Techniques in the 

spirit of "continuation removal" (MILNE & STRACHEY [8]} are used to define 

the meaning of statements such that a definition of validity is possible 

which is both perspicuous and useful. After that, soundness and completeness 

of the deduction system will be proved. 

Once this result has been established we investigate a deduction sys­

tem like the one given by Clint and Hoare. We give a definition of validity 

of formulae like {p}A{q} using the ordinary continuation semantics. This 

definition resembles closely the one given in MILNE & STRACHEY [8]. Further­

more this definition of validity is such that 

{p1} goto L1 {false}, ••• ,{p} goto L {false} F {p}A{q} 
-- --- n -- n 

holds, if and only if in the other system the formula 

is valid. This result will then be used to prove soundness and completeness 

for the second deduction system. 

This two level approach has the following advantages. In the first 

variant of the system we take only those elements of the Clint-Hoare system 

into account that are really necessary. This has as a consequence that the 

definition of validity and the arguments in the soundness and completeness 

proofs are as perspicuous as possible. Though straightforward proofs of 

these properties for the second system must essentially be the same as the 

ones for the first variant, they are bound to be obscured through all ad­

ditional details which we have to deal with. The way we handle this problem 

is to separate the "essential proof" from the "additional details". 
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The rules and axioms in ~e second system are just like the ones in 

other Hoare-like systems, and we can combine "these into one system quite 

easily. Using the validity definition for the second variant of the system, 

as given in this report, it must be possible.to combine the results stated 

here with analogous results concerning other language constructs (such as 

while statements, recursive procedures and the like; cf. APT [1], APT & 

DE BAKKER [2], DE BAKKER [4]). 

2. SYNTAX 

We use the following classes of symbols: 

Vall., the (infinite) class of variables with typical elements x,y,z. we 

assume this class to be ordered 

LvaJL·, the class of label variables with typical element L 

F-0ym = {fu1, ••• ,fum}, the class of function symbols. We denote the arity 

of fu. by arf. 
l. l. 

R6ym = {re1, ••• ,ren}, the class of relation symbols. The arity of rei is 

denoted by arr .• 
l. 

Next, using a self-explanatory variant of BNF, we define the classes 

Be.xp (boolean expressions) with typical element b, Exp (expressions) with 

typical elements s,t, S.tat (statements) with typical element A, and P1r.og 

(programs) with typical element S: 

Be.xp b· ·= 

Exp s· ·= 

S.tat A·.= 

P1r.og S· ·= 

true lbl Vb2 l7b I rel (sl, ••• ,sarr / 1 •.• I ren (sl, ••• ,sarrn> 

xlful (s1,···,sarf1) 1 ••• ,fum(s1,··•,sarfm) 

x:=s I (A1 ;A2) I if b ~ A1 else A2 _g_l goto L 

L:AIL:A;S 

with the additional requirement: if L1:A1; ••• ;Ln:An is a 

program, then all labels L. are different. 
l. 

The symbols fui and rei are the primitive function and relation sym­

bols. We did not specify them further, because we do not wish to go into 

details concerning the basic calculations our programs Scan perform. 

Rather do we want to describe the way programs specify more complex calcula­

tions using these primitives as building blocks. 
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The clause (A1;A2) in th, definition of S.tat deserves some comment. It 

is usual to omit parentheses in cases like this one, thus admitting the 

granunar to be ambiguous. In general there is no problem there, because the 

meaning of, say (A1 ;A2);A3 and A1; (A2;A3) wi-11 be the same. Of course this 

holds in our case too. However, complications show up in our definition of 

the operational semantics. For instance, for the auxiliary semantic function 

Comp the equality 

does not hold. 

Putting parentheses all over the place is tedious though. We therefore 

use the convention that the operator 11 ; 11 associates to the right, which 

means that A1 ;A2; ••• ;An should be read as (A1; (A2; ( ••• ;An) •• }). 

Anticipating the deduction systems of chapters 6 and 8 we give the 

definition of the syntactical class A6-0n (the assertions) with typical 

elements p,q. 

It turns out that A6-0n is just a language L for the first order predicate 

calculus, based on the classes F-0ym and R6ym. Furthermore we see that Exp 
is exactly the class of the terms of L, and that Bexp is the set of all 

quantifier free formulae of L. 
The rest of this paragraph gives some notational conventions and use­

ful definitions. We use the symbol= to refer to syntactical identity, i.e., 

B = C means that Band Care the same sequence of symbols. The following 

abbreviations will be used: 

bl A b 2 _ 7(lb1 v 7b2) 

bl~ b2 - 7b1 v b2 

if bl then b 2 else b 3 fi = (bl Ab 2) V (7b1 Ab 3) 

false = 7true 

[L.:A.]~ l = L1 :A1; ••• ;L :A. 
i ii= n n 

we define the property that a label L occurs in A inductively by 

a) no label occurs in a statement of the form x:=s 



b) L occurs in (A1 ;A2) and in~ b then A1 else A2 fi, if either L occurs 

in A1 or L occurs in A2 

c) the only label occurring in goto Lis L. 

Let S = [Li:Ai]~=t· We say that 

+) L is declared in s if L L. for some i -
l. 

(1 

+) L occurs in s if either L is declared in S 

(1 ~ i ~ n) 

< . 
- l. ~ n) 

or L occurs in some A. 
l. 

+) Sis normal if all labels occurring in Sare declared in s. 

3. OPERATIONAL SEMANTICS 

In our semantics functions will be used abundantly. Often these func­

tions will be of higher order, which means that they have functions as 

arguments and/or values. In order to keep our notation as clear as possible 

we first state some conventions on this point. 

a) The class of all functions with domain A and range B will be denoted 

by (A + B) 

b) The class of all partial functions with domain A and range B will be 
part 

denoted by (A > B) 

c) The convention will be used that"+" associates to the right. For 

example, A+ B + C must be read as A+ (B + C) 

d) We will in general omit parentheses around arguments, using the conven­

tion that function application associates to the left. Thus, assuming 

f E (A+ B + C + D), a EA, b EB, CE c, for some A,B,C and D, the 

entity ((f(a)) (b)) (c) can be written as fabc 

e) The above convention has the following exception: every syntactic entity 

used as an argument will be enclosed in [·]-type brackets. This is done 

to provide a clear distinction between the object language of chapter 2 

and the language used to denote the semantic objects. 

As a starting point of our semantical considerations we first discuss 

the meaning given to the symbols in F~ym and R.6ym. An interpretation 1 of 

the primitive symbols is an (m+n+l)-tuple <D,fu1 , ••• ,fu ,re1 , ••• ,re >, 
- --m - --n 

where 

5 
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Dis a non-empty domain,) 

fu. is a function in (Darfi + D), for i = 1, ••• ,m, and 
-1 

re. is a relation c Darri (i = 1, •.• ,n). 
-1 

All semantic functions to be defined will depend on an underlying 

interpretation of the primitive symbols, though the notation we use won't 

show this dependence. For instance, the function giving the meaning of the 

expressions will be deno~ed by V, instead of v1 or something like that. 

We now choose an arbitrary interpretation I and assume this inter­

pretation to remain fixed for the rest of this paper (unless we explicitly 

state otherwise). 

A state is a valuation of the variables from Vall. in our domain of 

interpretation D. The set of all states is denoted by L, with typical ele­

ment a. In principle the meaning of a statement will be a partial function 

from states to states. The function is partial, due to the possibility of 

nonterminating computations. We consider it useful not to allow partial 

functions and therefore include the undefined state J. in L. This leads to 

the following definition: 

L (Vall.+ D) u {J.}. 

We denote the set of all defined states L0, i.e. LO= (Vall.+ D). 

Let d ED. A variant o{d/x} of a state a is a state a' differing from 

a only in the variable x, or explicitly 

!J., if a=J. and otherwise 

a{d/x}= , L 
0 E O such that a'[y] = {

a[y] 

d 

if X f y 

if X - y. 

The next syntactic classes to be handled are Bexp and Exp. We will 

define inductively the semantic functions 

V: Exp +Lo+ D 

W: Bexp +Lo+ {ff,tt}. 



Note that V[s]cr, and W[b]cr ar~ not defined for a=L. 

DEFINITION OF V. 

V[x] a = cr[x] 

V[fui (s 1, ••• ,sarfi)]cr = fui (V[s 1]cr, ••• ,V[sarfi]cr). 

DEFINITION OF W. 
W[ true] cr = tt 
W[b 1 Vb 2] cr = tt, if W[b1] cr = tt or W[b 2] cr = tt, and ff otherwise 

W[7b]cr = tt, if W[b]cr = ff, and ff otherwise 

otherwise. 

The semantic definitions given above are basic in the sense that they 

will be the same for the denotational semantics. We now turn to the opera­

tional semantics proper. 

We want to define the meaning of a statement A as a function that, 

given an initial state a as an argument, yields a so called computation 

sequence•· Such a computation sequence is a possibly infinite row of 
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states from L 1 the elements of which can be viewed as the successive inter­

mediate states produced by evaluation of the statement A starting in initial 

state a. The semantic function that maps statements on their meaning in the 

above sense will be called Comp. 

In order to be able to handle these computation sequences, we present 

the following definitions: 

a) (computation sequences) 

L+ is the class of all non-empty finite sequences <cr0 , ••• ,crn> for some 

n ~ 0, such that cr. EL for i = 0,1, ••• ,n 
1 

Lw is the class of all infinite sequences <cr0 ,cr1 , ••• >, such that cri EL 

for all i E JN 

L00
, with typical element., is defined through L00 = L+ u Lw. 

b) (concatenation) 
oo n 

Let • 1,.2 EL. The concatenation of • 1 and • 2 , notation • 1 • 2 , is 

defined by 
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1) if ·1 
n 

't 1 T 2 

2) if Tl 
n 

Tl T2 

3) • -F ]._ Tl 

c) (K-function) 

The function KE (L 

K ( T) -- {.L, 

er , 
n 

00 

➔ L) is defined by 

if TE Lw 

if T 

There is a last remark to be made before we give an exact definition 

of Comp. We must be aware of the fact that A can contain substatements of 

the form got<~ L, and we should have a way to get to know how evaluation of 

A proceeds once such a substatement is reached. We therefore supply the 

function Comp with an extra argument, namely an element of P~og, meant to 

provide the "'declaration" of the labels occurring in A. Comp will then have 

the followin<J functionality: 

Comp: P~og X S:ta;t-➔ L part) L00 

and the computation sequence Comp[<S,A>]er is meant to be the row of inter­

mediate states appearing during evaluation of A starting in state er, where 

the labels are defined by the programs. 

DEFINITION (Comp). 

A. Comp[ <S,A>]er = <.L> if er=.L 

B. Comp[<S,A>]er for er E LO is defined recursively by 

1. Comp[<S,x:=s>]cr = <cr{V[s]cr/x}> 
n 

f<a> Comp[<s,A1>]a, if W[b]cr = tt 
2. Comp[<S,ifbthenA1 elseA2 fi>]cr= l n 

<a> Comp[<s,A2>]cr, if W[b]cr = ff 

{
<cr>nComp[<S,A,;A, 1; ••• A >]cr, if S= [L1:A.J? 1' 

i i+ n i 1= 

3. Comp[<S, goto L>]cr= and L = L. for some i, 1 :,; i:,; n 
-- l 

undefined, otherwise 

4. Comp[<S, (x:=s;A')>]cr = <a{V[s]cr/x}>nComp[<S,A'>] (cr{V[s]cr/x}) 
n 

5. Comp[<S,((A";A"' );A')>]a = <a> Comp[<S,(A";(A"';A')) >]cr 



6. Comp[<S, (if b then A" ~lse A'" fi;A')>]o = 
J<o>nComp[<S,(A";A')>]o, if Wl[b]o = tt 

l <o>nComp[ <S, (A"'; A')>] o, if W[b] o = ff 

7. Comp[<S, (goto L;A')>]o = <o>nComp[<S,goto L>]o. 
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Some remarks on this definition will be useful. This style of defining 

is taken from COOK [6]. The definition should be viewed as a method for 

stepwise generating computation sequences. Each step will consist of replac­

ing an occurrence of some expression Comp[<S,A>]o using a rule from the 

definition. The rule to be applied depends on the form of A and is in 

fact uniquely determined by A. It is possible that this process won't termin­

ate. In that case an element T of Ew will be generated. However this Tis 

well defined in the sense that every member of it is precisely determined. 

The difficulties that arise by allowing goto-statements in the language 

are reflected in clauses 4 to 7 of the definition. The problem is that 

Comp[<S,(A1;A2)>]o cannot be defined easily in terms of Comp[<S,A1>] and 

Comp[<S,A2>], because evaluation of A1 may terminate through execution of 

a substatement which is a jump out of A1 • The solution given here is to de­

compose a statement (A1 ;A2), using rule 5 or 6, as long as it remains un­

clear whether an assignment or a jump has to be executed first. When this 

has become known, rule 4 or 7 can be applied. The extra states <o> which 

are added in the right-hand sides of clauses 2,5,6 and 7 are strictly speak­

ing superfluous. They are introduced in order to be able to use induction 

in the proof of lemma 5.2 in a more elegant way. Note however that the <o> 

added in rule 3 is necessary, because we want Comp[<L:goto L, goto L>]o to 
w ~+. be equal to <o,o, ••• > EE , not to <o> E ~ 

Finally, from the definition it can be seen that the following holds: 

if all labels in A and Sare declared ins, then Comp[<S,A>]o is defined 

for all o. 

We close this chapter by defining the operational meaning O[s] for 

each program Sin P~og. This meaning will be a state transformation, i.e. 

an element of (E ➔ E). The stateO[s]o is meant to be the last element of 

the computation sequence., generated by evaluation of S starting in state 

o. More precisely: 
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DEFINITION (0). The function q has functionality 

0: PIWg ➔ E part, r 

and is defined by 

ifs 

4. DENOTATIONAL SEMANTICS 

We now give semantical definitions in the style of SCOTT & STRACHEY 

[ 9], with additions ( due to STRACHEY & WADSWORTH [ 11 ] among others) to 

acc~modate the peculiarities that goto-statements entail. The mathematical 

concepts used in these definitions are summarized below, so that we will be 

able to refer to them later on. Furthermore it can serve as a very concise 

introduction for those who are not yet acquainted with it. More details can 

be found in STOY [10] for instance. 

1. A pair <C,C> is called a complete partial order (or a cpo) iff C is a 

non-empty set and~ a partial order (i.e. a relation that is reflexive, 

transitive and anti-synnnetric) such that 

a) C contains a smallest element, called bottom and written as LC or 

just L, i.e. Ve EC: LC c 

b) Every sequence c 1 ~ c 2 C ••• of elements from C (called a chain, 
00 

notation <c.>. 1 or 
1 1= 

a) Ve.: c. CU c. 

<c.>.) has a least upper bound U c1., satisfying 
1 1 i 

(upper bound) 
1 1 - j J 

$) Yd EC: [(Ve.: c. Cd) ~u c. Cd] (the least one). 
1 1- i 1-

2. E as defined in the previous chapter, supplied with partial order C, 

defined by 

cr C cr ~ ( cr=cr' v cr=L) 

is a cpo. A cpo with partial order defined this way is called discrete. 



11 

3. Let A and B be cpo's, and f E (A+ B) 

a) f is called monotonic iff Va,b EA: a Cb.,. fa C fb 

b) f is called strict iff fL = L. The class of all strict functions from 

A to B will be denoted by (A+ B) 
s 

c) f is called continuous iff f is monotonic and for every chain <a.>. 
l. l. 

in A, we have f(U a.) = U (fa.). The class of all continuous functions 
. i l. i l. 

in (A+ B) will be denoted by [A+ B]. 

4. Let A and B be cpo's. Then [A+ B] is a cpo, if order, bottom and lub 

are defined by 

a) f C g 4=> Va E A: fa ~ ga 

b) L[A+B] = Xa•LB 

c) if <f. >. is a chain then U f. = Aa•U ·(f1. a). 
l. l. i l. i 

5. Let Ai be a cpo for i = 1, ••• ,n. Then A1x •.• xAn is a cpo, if order, 

bottom and lub are defined by 

a) <a1 , ••• ,a > C <a1•, ••• ,a'> iff a.Ca! for i = 1, ••• ,n 
n - n 1. - 1. 

b) L = <L, ••. ,L> A1x ••• xA 
c) if <a(i) ,~ •• ,a(i)>. is 

1 (i) n (it 

(i) (i) 
a chain, then Li(<a1 , ... ,a >) = 

i n 
= <U a 1 , ••• ,Ua >. 

i i n 

6. Let A be a cpo. Every continuous function f E [A+ A] has a least fixed 

point, written µf, with properties 

a) f(µf) = µf fixed point property, notation fpp 

b) Vx E A[f(x) r;;;; x .,. µfr;;;; xJ least fixed point property (lfp) 

c) µf = u fi(L), with fi(L) defined by fo(L) = L, fi+l(L) = f(fi(L)). 
i 

we now discuss the denotational semantics for statements from Stat. 
Again we are faced with problems about what to do with substatements of the 

form goto L. In the operational semantics this was solved by giving Comp 
an extra argument S = [L. :A. J~ 1·, which was used in essence to associate 

l. l. 1.= 

with each label L. the statement A.; ••• ;A. The meaning of goto L. was 
i i n --1. 

practically the same as the meaning of A.; ••• ;A, which could be reduced 
l. n 

to a state transformation (i.e. K°Comp[<S,A.; ••• ;A >], always a strict 
l. n 

function). This function, applied to a state cr yields a final state cr', 

which is the result of evaluation of the statement A.; ••• ;A. In other 
i n 

words, cr' is the result of evaluation of the rest of the p~ogram which will 
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be executed after goto L. has been evaluated. 
. J. 

The denotational semantics uses the same approach but in a more abstract 

way. Instead of giving for each label a program text that specifies a state 

transformation, we now provide this transformation directly. This is-orga­

nized as follows: the semantic function N is given an extra argument y, cal­

led an environment, which is a function from Lvalt to (E + E). In the defi-
s 

nition of N we then will have a clause like N[goto L]y = y[L]. (How this 

y[L] is obtained from the declaration of Lin a program Swill be discussed 

later when we come to define the meaning of programs.) 

Thus we see that the meaning y[L] of the statement goto Lin an environ­

ment y is a state transformation that doesn't describe the evaluation of 

goto L only, but also of the rest of the program to be evaluated once gotoL 

has been executed. But then the same must be true for an arbitrary statement 

A as well. In the operational semantics care was taken of this, because the 

text of the rest of the program to be evaluated remained available (see 

clauses 4-6 in the definition of Comp). Here we will use an abstraction of 

this idea resembling the approach of the goto statement. Instead of keeping 

track of a text defining a state transformation, we supply this transforma­

tion as an extra argument of N. Such a transformation~ is called a contin­

uation, and it is meant to describe the effect of evaluation of the "rest 

of the program", textually following the statement being defined. Summariz­

ing: if~ specifies how evaluation of the program proceeds once the right­

hand end of A has been reached, and if y specifies for every label L how 

evaluation of the program proceeds once we have reached L, then we want 

N[A]y~ to specify the evaluation of the program starting from the left-hand 

end of A. 

This approach also solves the problem how to define the meaning of 

(A1;A2} in terms of the meanings of A1 and A2 • The meaning N[ (A1;A2)]y~ of 

(A1;A2} in environment y with continuation~, will be equal to the meaning 

of A1 in environment y, but now with a new continuation~•. For if evalua­

tion of A1 terminates normally (i.e. not through execution of a goto state­

ment), then afterwards the statement A2 has to be evaluated. Thus the con­

tinuation~• must be equal to the meaning of A2 in environment y with con­

tinuation~-



The exact definition of N will use some new domains which will be 

defined now: 

a) M = (L + r) with typical elements <f>,~, is tp.e domain of the continua­
s 
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tions. We use the convention that continuations appearing as an argument 

of N will be enclosed in curly brackets if that improves readability. 

b) r = (Lva/t + M) with typical element y, is the domain of the environments. 

We define a variant y{<f>/L} of an environment the same way as we did in 

the case of states: (y{<f>/L})[L'] = y[L] if L' t L, and <f> if L' - L. We 

also use a simultaneous version: (y{<f>i/Li}~=l)[L] = y[L] if Lt Li for 

i = 1, ••• ,n, and <f>, if L = L. (when we use such a construct, all L. will 
l. l. l. 

be different) • 

DEFINITION (N). The semantic function N with functionality 

N: S.t.a;t + r + M + M 

is defined inductively by 

N[x:=s]y<f>cr - {.L . . ' 
- <f>(cr{V[s]cr/x}), 

if a=.L 

otherwise, 

N[ (A1;A2)]y<f>cr = N[A1]y{N[A2]y<f>}a, 

N[ if b then A1 else A2 fi] y<f,cr = {~Al] y<f>cr: 

N[A2]y<f>cr, 

N[goto L]y<f>cr = y[L]cr. 

if a=.L 

if a;t.L and W[ b] a = tt 

if a;t.L and W[b]cr = ff, 

The claim on the functionality of Nin the above definition must be 

justified. It is though easy to show that VA E S.t.a;t Vy Er V<f> EM: 

N[A]y<f> E M. 

The following lemma holds: 

LEMMA 4.1. For all A E S.t.a;t, and ally Er we have 

n n+l 
).,<<f> 1 , ••• ,<f> +l>•N[A] (y{<f>./L.}. 1)4> +l E [M + M]. n 1 1 1= n 

PROOF. Straightforward by induction on the structure of A. D 



14 

We now turn to the definition of the meaning of programs. The semantic 

function M: Pll.og ➔ r ➔ M will be used for this purpose. 
n 

A program S - [L.:A.J. 1 can be considered as a combination of a 
. 1. 1. 1.= 

statement A1 ;: ••• ; A and a definition of the labels L1 , ••• ,L • The state n · n 
M[[L. :A.]~ 1J!ycr is meant to be the final state reached by evaluation of 

1. 1. 1.= 

A1; ••• ;A starting in initial state a, where the labels L. are defined by 
n. i 

S (for i = 1,, ••• ,n) and all other labels by y. 

where ''' - \a• a. .,,n+l -

REMARKS. 

a) There is an assumption in the above definition that has to be justified. 

We have to show that the operator of which <<t> 1 , ••• ,</>n> should be the 

least fixE3d point is a continuous one, i.e. a member of [Mn ➔ Mn]. In 

that case this least fixed point exists. The fact that this transforma­

tion is continuous can be proved using lemma 4.1. 

b) The function <p. can intuitively be seen as the state transformation 
1. 

defined b~r evaluation of A.; .•• ;A where the labels are defined by S 
" i n 

and y. This might be clarified as follows. By fpp we have 

,1, = N[ A ] ( y{ <I> • /L. } ~ 1) { fo • cr} .,,n n 1. 1. 1.= 

and 
n 

= N[A 1](y{</>./L.}. 1)</> = n- 1. 1. 1.= n 

n = N[A l;A] (y{</>./L.}. 1){\cr•cr}. n- n 1. 1. 1.= 

Repeating this argument we get 

n 
,1, • = N[ A . ; ••• ; A ] ( y { <t> • /L . } . 1 ) 0 a • a} 
.,,1. i n J J J= 

( i = 1 , ... , n) • 



Moreover, these~- are precisely the values which we would expect to 
. 1 

be associated with the labels L .• 
1 

For later reference we state the following definitions and results. 
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n-
LEMMA 4.2. Lets= [L.:A.J._1 E P~og, let y Er and let~- be derived from 

i i i- (k) (kt 
S and y as in the definition of M. Also, let ~. and y be defined in-

1 

ductively by: 

~ ~O) = ll.cYo.L for i = 1, ••• , n 
1 

~ (k) = A(YoO fork = QI 1, • • • n+l 

(k) (k) n 
y = y{~j /Lj}j=l fork = QI 1, • • • 

~ ~k+l) = N[A)y (k) ~i!i for i = 1, ••• ,n 
1 

4.2.1. ~i =, U ~ ~k) (i = 1, ••• ,n). 
k i 

PROOF. This is a straightforward consequence of facts 5 and 6c from the 

theoretical remarks in the beginning of this chapter. D 

4.2.2. 
n 

~- = N[A.; ••• ;A] (yH./L,}. 1){ll.cr•cr}. 
1 1 . n J J J= 

PROOF. See remark b) above. D 

4.2.3. 
(k) (k-1) 

~- C: N[A.; .•• ;A ]y {ll.cr•cr} 
1 - 1 n 

(1 :;:; i:;:; n, k = 1,2, ••• ). 

PROOF. Induction on k. The basic step (k = 1) can be proved using the fact 

that ;\~ •N[A]y~ is monotonic and that N[A.; ••• A ]y~ = N[A.]y{N[A.+l; ••• ;A ]y~}. 
. 1 n 1 1 n 

The induction step is proved as follows: 

N[ A ] (k-1) "' (k-1 ) = 
i y "'i+l 

Now we use lemma 4.1, and the fact that continuity implies ,monotonicity to 
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show that N[J!1i+l]y(k- 2)<J>i:;2> ~ N[Ai+l]y(k-l)<l>i:; 1> and thus, using 4.1 

again: 

(#) C N[A ] (k-1) {N[A ] (k-1)"' (k-1)} = 
- i y i+l y 'l'i+2 

Repeating the argument we get 

"'·(k) , N[ ] (k-1){ } 
't' L ( ... (A.;A.+ 1); ... );A) y Aa•a = 

l - 1 1 n 

where the last identity is easy to prove from the definition of N. □ 

We will close this chapter by taking another look at the meaning of 

statements A. We saw that the function N[A] essentially yields a continua­

tion as a result. This result depends on a number of continuations, which 

are supplied to N[A] either directly as an argument (the <j> in N[A]y<j>) or 

implicitly through y, as meaning of the labels occurring in A. In the 

literature (MILNE & STRACHEY [8]) a method called "continuation removal" 

is described to dispose of the <j> in the above formula, yielding a more 

direct approach: the meaning of a statement is a state transformation 

instead of a continuation transformation. This has only been done for 

statements A which didn't contain goto statements as substatements. 

We now take one further step: we show how to deal with goto-substatements. 

We will define a function A giving the meaning of a statement A as a 

(total) function from LO to LO u (L 0 x LvM), such that 

A[A] cr = cr' 

means that evaluation of A terminates normally in state cr' (i.e. not as 

the result of an execution of a goto statement), and 

A[ A] cr = < cr ' , L> 

means that evaluation of A terminates by execution of a substatement goto L 
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in state cr'. 

Put another way, a statement A containing goto-substatements can be 

viewed as a statement with oneentry point (where evaluation of A starts), 

but with several exit points, nam~ly the normal exit point (the right-hand 

end of the statement) and the special exit points (viz. the substatements 

goto L). We call an exit point determined by a substatement goto Lan 

L-exit point. The function A then specifies for every initial state cr the 

kind of exit point which will be reached and the final state in which this 

exit point will be reached. This is a formalization of the considerations 
~ 

by ARBIB & ALAGIC [3]. 

The function A, applied to a statement A and an initial state cr, thus 

yields a final state cr' which is the result of evaluation of A, and not of 

evaluation of A followed by some continuation (as was the case in N[A]y~cr). 

Since in the deduction systems to be discussed later we deal with formulae 

{p}A{q}, where q is a predicate on the final state at the normal exit point, 

we can expect that the function A will be more useful than N (see chapter 

6). 

We now give the definition of A. 

DEFINITION (A). The function A with functionality A: S.tctt +LO+ LO u (LO x Lvall.) 

is inductively defined by 

A[x:=s]cr = cr{V[s]cr/x} 

= {A[A2] (A[A1]cr), 

A[A1] cr , 

A[goto L]cr = <cr,L>. 

otherwise 

if W[b] cr = tt 

if W[b] cr = ff 

We have the following lemma on the relation between A and N. 

LEMMA 4.3. 

1°. A[A]cr = cr'...,;, Vy Er V~ EM: N[A]y~cr = ~cr• 

2°. A[A]cr = <cr',L> <===> Vy Er V~ EM: N[A]y~cr = y[L]cr'. 
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PROOF. The ~pa~ts of 1° and 2° are straightforward by structural induction. 

The ..,._parts can be proven by contradiction. For instance, proving 2° "<=", 

suppose Vy Er V~ EM: N[A]y~cr = y[L]cr', and A[A]cr.,, <cr',L>. Then we have 

two possibilities. 

The first one is A[A]cr- = <cr",L'> (where cr'.,, cr" or L "1- L') and thus, 

using 2° ,,.,. .. , Vy Er V~ EM: N[A]y~cr = y[L']cr". Now choose y such that 

y[L]cr'.,, y[L']cr" and we have a contradiction. 

The other possibility is A[ A] cr = cr". Then we have (1 ° ,._.,,) 
Vy Er V~ EM: N[A]y~cr = ~cr", and we reach a contradiction by choosing y 

and~ such that y[L]cr' .,, ~cr". D 

5. OPERATIONAL AND DENOTATIONAL SEMANTICS ARE EQUIVALENT 

Our aim in this chapter is to prove the following 

THEOREM. 5.1. Let S = [Li:Ai]~=l be a program. If Sis normal (i.e. all 

labels in Sare, declared) then 

Vy E r: O[s] = M[s]y. 

PROOF. We first prove O[s] C M[s]y, using the following 

LEMMA 5.2. Let S = [L.:A.J~ 1 E PJtog, y Er, and let~- be derived from S 
1 1 1= 1 

and y as in the definition of M. Let A E S:ta;t and let all labels occurring 

in A and S be declared ins. Then 

PROOF of the lemma. Because all labels are declared ins, it is impossible 

that Comp[ <S ,A>] cr be undefined. ·If cr=J., or if cr:.tJ. and Comp[ <S ,A>] cr E I:w, 

then tlie left-hand side of (*) is equal to J., and the inequality holds. So 

let us assume that cr:.tJ. and Comp[<S,A>]cr EI:+. We prove (*) using induction 

on the length of the computation sequence Comp[<S,A>]cr (in fact, assuming 

that this computation sequence is finite, we can prove equality in(*)). 

We distinguish several cases, depending on the structure of A. We shall 
n -abbreviate y{~./L.}. 1 toy. 

1 1 1= 



a) A= x:=s. Then the left-hand. side of (*) is equal to cr{V[s]cr/x}, and 

so is the: right-hand side. 

b) A=· if b ~ A1 .else A2 fi. Assume W[b]cr = tt (the other case can be 
n proved analogously). Then K(Comp[<S,A>]cr) = K(<cr> Comp[<s,A1>]cr) •. Now 

the length of Comp[<S,Ar>]cr is clearly one less than the length of 

Comp[<S,A>]cr, so we can apply the induction hypothesis, yielding 

K(Comp[<s,A>]cr) = K(Comp[<s,A1>]cr) C 
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c) A= goto L. Because all labels in A are defined in S, we have L _ 

some j. Thus 

L. for 
J 

ic(Comp[<[L.:A.J~ l'A>]cr) = 
l. l. l.= 

n = K(<cr> Comp[<S,A.; ••• ;A >]cr) C 
J n 

C N[A.; ••• ;A ]y{>-cr•cr}cr = 
- J n 

= <P . a ;,, y[ L .] a = 
J J 

= N[ goto L.] y{Acr• cr}cr. 
-- J 

d) A - (x:=s;A'). 

(ind. hyp.) 

(4.2.2) 

K(Comp[<S,A>]cr) = K(Comp[<S,A'>](cr{V[s]cr/x})) C (ind.) 

~ N[A']y{>-cr•cr}(cr{V[s]cr/x}) = 

= N[x:=s]y{N[A']y{Acr•cr}}cr = 

= N[ ( x : =s; A ' ) ] y {A a • a } cr • 

(def. N) 

(def. N) 

K(Comp[<S,A>]cr) = K(Comp[<S, (Al; (A2;A'))>]cr) C 

~ N[ (A1; (A2;A'))]y{Acr•cr}cr = 

= N[ ((A1 ;A2);A')]y{>-cr•cr}cr. 

(ind.) 

f) A= (if b then A1 else A2 fi;A'). We suppose, without loss of generality, 

that W[b] a = tt. Then 
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K(Comp[<S,A>]cr) = K(Comp[<s,A1 ;A'>]cr) C 

~ NllA 1;A']y{>.cr•cr}cr = 

= NllA1]y{N[A']y{Acr•cr}}cr = 

= Nllif b then A1 else A2 fi]y{N[A']y{>.cr•cr}}cr= 

Nllif b then A1 else A2 fi;A')]y{>.cr•cr}cr. 

g) A - (goto L;A'). 

(ind. hyp.) 

(def. N) 

(def. N) 

K(Comp[<S,A>]cr) = K(Comp[<S, goto L>]cr) C (ind. hyp.) 

~ Nllgot:.o L]y{Acr•cr}cr = 

= Nllgoto L]y{N[A']y{Acr•cr}}cr = 

= NH (goto L;A' )]y{Acr•cr}cr. 

This ends the proof of lemma 5.2. D 

(def. N) 

(def. N) 

We now use the lemma to prove O[s] ~ M[s]y in the following way. Choose 

y E r and a E: I. By definition of O we have 

Now all labels in Sare declared and thus the same holds for A1; ••• ;An. The 

lemma then gives us 

Kl[Comp[<S,A1 ; ••• ;A >]a) C N[A 1; ••• ;A] (y{cj>./L.}~ 1 ){>.cr•cr}cr, 
n - n i ii= 

where the <P. are obtained from Sandy as in the definition of M. But, for 
J. 

those cj> i, the~ definition of M gives us 

which gives us the desired result. 

For the proof of M[s]y ~ O[s], we again use a lemma: 

LEMMA 5. 3. LE?t S - [L. :A.]~ l E PJr.og be normal. Let y E r and k E JN. Let 
1 1 i= 

(k) (k) 
· <P. , <P. and y be derived from S and y as in lemma 4. 2. Then, for all 

1 J. 

A E S:ta;t such that all labels in A are declared ins, and for all a EI, 
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we have 

N[ A] y (k) O.cr • cr }cr ~ K ( Comp[ <S ,A>] cr) ••• ( +) 

PROOF of the lemma. We use induc~ion on the entity <k,c[A]> with lexico­

graphic ord1:'!ring -< • We don't take c[ A] to be the obvious complexity of A. 

This wouldn't work because of the form of the definition of Comp. For in­

stance, in rule 5 the statement (A"; (A"' ;A')) occurring in the right-hand 

side of the rule would be as complex, according to the usual complexity 

measure, as ((A";A'");A') in the left-hand side. 

We define c[A] inductively by: c[x:=s] = c[goto L]=1; 

c[A1;A2] = 2c[A1]+c[A2]; c[if b ~ A1 else A2 fi] = c[A1]+c[A2]. 

a) A= x:=s. Then N[x:=s]y(k){\cr•cr}cr = K(Comp[<S,A>]cr) = a{V[s]cr/x}. 

b) A= if b then A1 else A2 fi. Without loss of generality, we assume 

W[b]cr = tt. Then the left-hand side of (+) equals N[A1]y(k){\cr•cr}cr, and 

the right-hand side equals K(Comp[<s,A;,]cr). Now, because <k,c[A1]> < 
< <k,c[A]>, the desired result follows from the induction hypothesis. 

c) A= goto_ L. _From the assumptions of the lemma, we infer that L = Li for 

some i. Now: 

(4.2.3) 

(k-1) 
C N[A. ; ••• ;A ]y {\cr•cr}cr. 
- i n 

Also <k-1,c[A.; ••• A ]> ~ <k,c[goto L.]>, so we can apply the induction 
i n -- i 

hypothesis 

(k-1) 
N[A.; ••. ;A ]y {\a•a}a C 

i n -

C K(Comp[<S,A.; .•• ;A >]a) = 
- i n 

= K(Comp[<S,goto L.>]cr). 
-- J. 

d) A - (x:=s;A'). 

N[(x:=s;A')]y(k){Aa•a}a = 

= N[A']y(k) {\a•cr}(cr{V[s]cr/x}) C 

C K(Comp[<S,A'>] (a{V[s]a/x})) = 

= K (Comp[ <S, (x:=s;A') >] cr). · 

(def. Comp) 

( c[ A' ] -<. c[ x: =s; A'] ) 
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e) A= ((A1;P.,2 );A'). We have N[((A1 ;A2 );A')] = N[(A1;(A2;A'))] and 

c[ (A1 ; (A2;A'))] ~ c[ ((A1;A2 );A')]. The induction hypothesis thus yields 

N[ (A1 ; (A2 ;A'))]y(k){Acr•cr}cr ~ 

~ K(Comp[<S, (Al; (A2;A'))>]cr) = 

=;:: K (Comp[ <S, ( (A1; A2 ); A')>] a). 

f) A= (if b then A1 else A2 fi;A'). Without loss of generality, we assume 

that W[b] Oi = tt. We then have 

(k) (k) 
N[A]y {Acr•cr}cr = N[A1 ;A']y {Acr•cr}cr ~ (ind.hyp.) 

~ K(Comp[<s,A1;A'>]cr) = K(Comp[<S,A>]cr). 

g) A - (goto L;A'). 

(ind. hyp.) 

C K(Comp[<S,goto L>]cr) = K(Comp[<S,goto L;A'>]cr). 

This concludeis the proof of lemma 5. 3. D 

We now are able to prove M[s]y ~ O[s]. 

M[s]y = N[A1; .•• ;A] (y{cj>./L.}? 1){Acr•cr} = 
n l J. J.= 

. (k) n = N[A1; ••• ;A] (y{U cJ>. /L.}. 1){Acr•cr} = 
n k i ii= 

(lemma 4 .1) 

(k) n = U (N[A1; ••• ;A] (y{cj>, /L.}. 1 ){Acr•cr}). 
k n i ii= 

Now, taking P, = A1 ; ••. ;An' the assumptions of lemma 5. 3 are satisfied. Thus 

we can conclude 

. (k) . n 
Vk E JN: N[A1; ••• ;A] (y{cj>. /L.L 1 ){Acr•cr} CK° Comp[<S,A1; ••• ;A>], 

n i i i= - n 

and thus 

(k) n 
U N[A1; .•• ;A ]({cj>. /L.}. 1 ){Acr•cr} L K° Comp[<S,A1; ••• ;A >]. 
k n i i i= - n 

But also, by definition of 0: 

which completes the proof. D 
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Note that theorem 5.1 is independent of the interpretation of the 

primitive relation and function symbols chosen, in the sense that the theo­

rem holds for all underlying interpretations I.· 

6. DEDUCTION SYSTEM: FIRST VARIANT 

In [7] HOARE proposed to attach meanings to programs by means of a 

proof system which can be used to derive properties of programs. These 

properties are described by (partial) correctness formulae, essentially 

having the form {p}S{q}. Such a construct has informally the following 

meaning: if evaluation of S terminates, starting from an initial state in 

which p (thie precondition) holds, then in the final state q (the postcondi­

tion) holds. 

We start with a discussion of these conditions p, which in the sequel 

will be called assertions. The class of all assertions is A6~n, with 

typical elements p,q. We define: 

P • ·= .. true Jp1vp2 J7p I re1 (s 1 , ••• ,s ) J ••• J re (s 1 , ••• ,s ) I 3x[p]. 
-- arr1 n arrn 

We define false, p 1Ap2 , p 1~p2 and if b then p 1 else p 2 fi as in chapter 2. 

The assertions are meant to describe predicates on states. The semantic 

function giving the meaning of assertions is T and has functionality 

Tis defined inductively by: 

a) T[ true] o· = tt 

b) T[p1 vp2] cr = tt if T[p1 ~ cr = t~ or T[p2]cr = tt, and ff otherwise 

c) T[7p]cr = tt if T[p]cr = ff, and ff otherwise 

d) T[re.(s1 , ••• ,s )]cr = tt if <V[s 1]cr, ••• ,V[sarri·]cr> Ere., and ff other-
1. arri -1. 

wise 

e) T[3x[p]]cr = tt if there exists an element din our domain of interpreta­

tion D such that T[p] (cr{d/x}) = tt, and ff otherwise. 

Note that T depends on the underlying interpretation I, because V does (d)), 

and also through clause e) of the definition. 
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Next some .definitions and results on substitution. We say that an 

occurrence of a variable x in an assertion pis bound, if this occurrence 

is within a sub-assertion of the form 3x[p•]. An occurrence of x in an 

assertion pis called free if it is not bound. 

The result of substituting all (free) occurrences of x ins and p by 

t, will be denoted by s[t/x] and p[t/x] respectively. The definition of 

s[t/x] is 

a) y[t/x] = t if y = x and y otherwise 

b) (fui(s1 , ••• ,sarfi))[t/x] = fui (s 1[t/xJ, ••• ,sarfi[t/x]). 

Using this definition p[t/x] can be defined by 

a) true[t/x] = true 

b) (p1 vp2) [ t/x] = p 1 [ t/x] V Pi t/x] 

c) (7p)[t/x] = 7(p[t/x]) 

d) (re.(s1, ••• ,sarr,))[t/x] = re.(s1[t/x], ••• ,s [t/x]) 
i 1 i arri 

3y[p], if X : y 

3y[p[t/x]J, if x t y and y does not occur int 

e) (3y[p])[t/x,J _ 3z[p[z/y][t/xJJ if x t y and y occurs int, where z 

is the first variable in Vall. such that z t x, 

z doesn't occur int, z doesn't occur free in p. 

The following results on substitution will be useful. 

LEMMA 6.1. 

a) If X doesn't occur ins then Vd E D: V[ s] cr = V[ s] ( cr { d/ x} ) 

b) if X doesn't occur free in p then Vd E D: TIP] cr = TIP] (cr{d/x}) 

c) V[ s[ t/x]] cr = V[s] (cr{V[t]cr/x}) 

d) TI p[ t/x ]] cr = Tip] (cr{ V[ t] cr/x}). 

PROOF. Straightforward by induction. We prove the hardest case of d), i.e. 

where the assertion has the form 3y[p]. There are three cases. 

1) y = x. TI3x[p][t/x]]cr = TI3x[p]]cr=tt iff 3d ED: Tip](cr{d/x}) = tt. 

Now TIP] (cr{d/x}) = 7l[p] (cr{V[t]cr/x}{d/x}), and therefore TI3x[p]]cr = tt, 

iff 3d ED: TIP] (cr{V[t]cr/x}{d/x}) = tt, and this is true whenever 

TI 3x[p]] (cr{ V[ t] cr/x}) = tt. 

2) y t x and y doesn't occur in t. TI (3y[p]) [ t/xJ] cr = TI 3y[p[ t/xJ ]] cr = tt 

iff 3d ED: Tip[t/xJ] (cr{d/y}) = tt (ind. hyp.) 



iff 3d ED: T[p] (cr{d/y}{V[t] (cr{d/y}) /x}) = tt 

iff 3d ED: T[p] (cr{V[t]cr/x}{d/y}) = tt 

iff T[p] (cr{V[t]cr/x}) = tt. 

(a) ) 

3) y t x and y occurs int. T[3y[p][t/x]]cr = T[3z[p[z/yJ[t/xJJ]cr = (#) 

where z t x, z doesn't occur int, z doesn't occur free in p. 

Now (#) = tt iff 3d ED: T[p[z/y][t/x]] (cr{d/z}) = tt (ind. hyp.) 

iff 3d E D:T[p](cr{d/z}{V[t]cr'/xHcr"[x]/y}) = tt, 

where cr' = cr{d/z} and cr" = cr'{V[t]cr'/x}. Now x t z, so cr"[z] = d. 

Furthermore z doesn't occur int, so V[t]cr' = v!LtD (o{d/z}) = V[t]cr. 

Thus we get 

(#) = tt iff 3d ED: T[p] (cr{d/z}{V[t]cr/x}{d/y}) = tt. 

Because z doesn't occur int, and y does, we have z t y. Also we have 

z t x and y % x, so 

(#) = tt iff 3d E D: T[p] (o{V[t]cr/x}{d/y}{d/z}) = tt. 

Because z doesn't occur free in p, we can use result b) of the lemma, 

to get 

(#) = tt iff 3d ED: T[p] (o{V[t]cr/x}{d/y}) = tt 

iff T[3y[p]] (cr{V[t]cr/x}) = tt. 
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□ 

Having defined assertions and substitution, we now proceed to describe 

how these notions are to be used in correctness formulae. A typical axiom 

of our proof system will be the assignment axiom, roughly of the form 

{p[s/x]}x:=s{p}. 

This axiom can be justified by the following considerations. The 

statement x:=s transforms an initial state cr to a final state cr' =cr{V[s]cr/x}. 

Now suppose p[s/x] is true in cr, that is, T[p[s/xJ]o = tt, or (lemma 6.1d) 

T[p] (cr{V[s]o/x}) = tt. But cr{V[s]cr/x} is equal to the final state cr', so 

we have that pis true in a', which is what we wanted. 

A rule of inference in the system will be the rule of composition, 

stated informally 

The justification of this rule goes somewhat like this. Say we start 
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evaluating A1;A2 in state cr where p 1 is true. Now, after evaluation of A1 , 

we have reached an intermediate state cr' where (due to {p1}A1{p2}) the as­

sertion p 2 holds. Evaluating A2 in state cr' delivers a final state cr" where 

p 3 holds, for {p2 }A2{p3} is true. Thus we have the desired result. 

Another rule of inference is the rule of consequence: 

which is obviously valid. 

The fact that we allow goto statements in our language complicates 

things. The problem becomes apparent if we take another look at the rule 

of composition. For instance, if the first statement A1 in A= A1;A2 is 

identical to goto L, then the justification of the rule as given above 

doesn't apply anymore. After evaluation of A1 , the next statement to be 

executed is not A2 , as was assumed there. Complications are caused by the 

fact that a statement A can have more than one exit point, namely the 

normal exit point and the special L-exit points (cf. the discussion after 

lemma 4.2). 

We can maintain the rule of composition though, if we formulate the 

meaning of the formula {p1}A{p2} somewhat differently, namely as follows: 

if A is evaluated beginning in a state where p 1 holds, and evaluation of A 

terminates at the normal exit point of A, in state cr', then p 2 holds in cr'. 

Now according to this informal validity definition the formula 

{p} goto L {q} ••• (#) 

would be valid for every assertion p and q, for evaluation of goto L always 

terminates by "jumping away". However this brings up new problems. For 

example, the formula 

would now be derivable, by the following steps 

1 •. {~} L1 :x: =1 {x=1} 

2. {x=1} gcto L2 {x=O} 

3. {x=O} L2:x:=x {x=O} 

4. {true} L1:x:=1; goto L2; L2:x:=x {x=O} 

(assignment) 

(#) 

(assignment) 

(composition) • 



But clearly, after evaluation of L1:x:=1; goto L2; L2:x:=x the postcondi­

tion x=1 holds. 
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These difficulties have been solved by CLINT & HOARE [SJ. Their solu­

tion is in essence to put a restriction on the preconditions p allowed in 

(#), and amounts to the following. Suppose we want to prove {p}S{q}, where 

S = L1: A1; _· •• ; Ln: An. Now assume we can find a list of label invariants 

p 1 , ••• ,p. These p. are assertions which we assume to be true every time n 1 

label L. is reached during execution of S, starting in initial state satis-
1 

fying p. We now refine our notion of validity once more, and define valid-

ity (with respect to the invariants p. at L. for i = 1, ••• ,n) informally as 
1 1 

follows: 

The formula {p}A{q} is called valid, iff for every evaluation 

of A the following holds: if p holds for the initial state, then 

either evaluation terminates at the normal exit point of A and 

q holds, or evaluation terminates at an L.-exit point of A and 
1 

p. holds (for some i, 1 ~ i•~ n). 
1 

One can see that, according to (*), the formulae {p} goto L. {q} are 
-- 1 

no longer valid for all p. Validity holds however for all preconditions p 

such that p => p .. In particular {p.} goto L. {false} is valid (i = 1, .•• ,n). 
1 1 -- 1 

Notice also that the inference rules and the assignment axiom given earlier 

remain valid according to (*). 

Now if we can derive {p.}A.{p.+1} using these rules and axioms, and 
1 1 1 

also the formulae {p.} goto L. {false}, then we know that {p.}A.{p.+1} must 
J -- J 1 1 1 

be valid according to (*). This means the following: if we consider evalua-

tion of Ai as a sub-statement of S = L1:A1; ••• ;Ln:An, starting at an initial 

state for which pi holds, then we can infer from the validity of {p)Ai{pi+l} 

that at the normal exit point p. 1 holds, and that at every L.-exit point 
1+ J 

p. holds. In other words: when evaluation 
J 

of A. terminates because label L. 
1 J 

has been reached then the corresponding invariant p. must hold (1 ~ j ~ n). 
J 

But from this we can infer that {p1}s{pn+l} holds. For, consider an 

evaluation of S with initial state satisfying p 1, and suppose that this 

evaluation terminates. Then this evaluation can be split up in a finite 

number of subsequent evaluations of sub-statements Ai, and since by the 
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above considerations we are assured that at all "links" labelled L. the 
J 

corresponding invariant p. holds we can infer that p 1 is true when the 
J n+ 

last evaluation of sub-statement A terminates (necessarily at the normal n 
exit point) • 

The above considerations suggest the following inference rule [SJ: 

· if we can derive {p.}A.{p. 1} (i = 1, ••• ,n) from the assumptions 
1 1 1+ 

{p.} goto L. {false} (j = 1, ••• ,n), then we may infer 
J -- J 

{pl }Ll :Al; 0 0 0 ; Ln:An {pn+l}. 

Now the formula {true}S{x=0}, where S = L1:x:=1; goto L2 ; L2 :x:=x (sc. the 

above incorrect derivation) cannot be derived anymore, but a derivation of 

{~}s{x=l} can be made straightforwardly (take p 1 = ~, p 2 = x=l). 

The inference rule given above leads to compact proofs but, as it stands, 

is not so suitable for proof-theoretical considerations. Accordingly, we 

shall now give a more tractable variant of the proof system. In chapter 8 we 

shall give a formal justification of the above rule. 

It can easily be seen that the assumptions {p.} goto L. {false} 
J J 

(j = 1, ••• ,n) are introduced in the above inference rule only because our 

proof system must be able to contain information on the label invariants p. 
1 

which are used in the proofs. The method that we apply is to take these in-

variants up in the formulae occurring in the proofs. Our correctness formulae 

will look like 

so the invariants pi corresponding to Li are supplied explicitly in our 

formulae, instead of implicitly in the assumptions used in a proof. The in­

formal meaning of the above formula is the one as given by (*). 

After this introduction the following definitions must be clear. 

DEFINITION (Syntax of correctness formulae). 

The class 1nvl (list of label invariants} with typical element Dis defined 

by 

D··= L:pjL:p,D 
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We write [L. :p.]~_1 instead of L1:p1 , ••• ,L :p. 
i ii- n n 

We say (L:p) occurs in D (notation: (L:p) in D) iff L - Lj, p - pj and 

D =- [ Jn Li:pi i=l for some j (1 ~ j ~ n). 

The class Co!VL (correctness formulae) with typical element f is defined 

by 

. f: := pl<D;{p}A{q}> I {p}S{q}. 

We write <ol{p}A{q}> instead of <D;{p}A{q}>. 

DEFINITION (proof system ff). 

The axioms of Hare given by the following schemes: 

(Al) <ol{p[s/xJ}x:=s{p}> 

(A2) <Dl{p} goto L {false}>, 

where D = [L.:p.J~ 1 , L - LJ., p - pJ. for some j (1 ~ j ~ n). 
1 1 i= 

(A3) p, 

where p is a valid assertion (i.e. Vcr e: r0 : TI p] cr = tt) • 

The rules of inference have the form 

("from f 1 , ••• , and fn' infer fn+l") and are given by the following schemes: 

(R1) 

(R2) 

(R3) 

(R4) 

P1~P2,P3~P4,<Dl{p2}A{p3}> 

<DI {pl }A{p 4 }> 

P1::>p2,P3~P4,{p2}S{p3} 

{p1}S{p4} 

<ol{p1}A{p2}>, <ol{p2}A'{p3}> 

<DI {pl }A;A I {p3 }> 

<DI {pAb}A{q}> <DI {pA7b}A I {q}> 

<DI {p}if b then A else A' fi {q}> 
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(RS) 
<ol{p1}A1{p2}>, ••• ,<ol{p }A {p 1} • n n n+ 

{pl HL. :A.]~ l{p +1} 
i ii= n 

where D = [L. :p. ]~ 1 • 
l. l. 1.= 

DEFINITION (normal pair, normal correctness formula, normal fragment of H). 

A pair <D,A> is called normal if all labels in A occur in D. 

A correctness formula f is called normal if either f is an assertion, 

or f - <Dl{p}A{q}> and <D,A> is anormal pair, or f = {p}S{q} and Sis a 

normal program (i.e. all labels in Sare declared). 

The normal fragment of the proof system H, denoted by HN, is the sys­

tem H restricted to normal formulae only. 

DEFINITION (formal proof). 

Let f E ColVL. A sequence f 1 , ••• ,fn with fi E Co!VL (i = 1, ••• ,n) is called 

a formal proof off in H if 

a) f = f n 
b) for all f. 

l. 

either 1) 

or 2) 

with 

f. is 
l. 

there 

such 

1 ~ i ~ n the following holds: 

(an instance of) an axiom 

exist fi , ••• ,fi E Co!VL with 1 ~ iJ. < i for 1 ~ j ~ k, 
1 k 

that 

fi , ••• ,fi 
1 k 

fi 

is (an instance of) a rule of inference. 

We say that f is provable, notation~ f, if there exists a formal proof off. 

The system defined above is dependent on the interpretation 1 of the 

primitive relation and function symbols, because the axioms of (A3) are 

determined by T, which function depends on 1. We include all true assertions 

as axioms because we don't want to pay attention to deduction systems for 

the assertions only. We want to focus on the rules which can be used to 

prove properties of statements and programs. Also, in the proof of complete­

ness of our system ("every valid formula is provable") we don't want to be 

hindered by deduction systems for the assertions which are possibly incom­

plete. 
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We now turn. to the question of validity of correctness formulae (again 

with respect to an interpretation 1). We use the notation Ff to denote 

that f is valid. An informal definition of the concept has been given in the 

remarks preceding the definition of the deduction system. We will now form­

alize the ideas developed there. By now it must be clear that in the valid­

ity definition the semantic function A will be much easier in use than the 

function N (see the remarks preceding the definition of A at the end of 

chapter 4). 

DEFINITON (validity). 

Validity of a correctness formula f, notation Ff, is defined by 

a) F p iff Vo e: L0 : T[p]o = tt 

b) F <Dl{p}A{q}> iff 

Voe: L0 : T[p]o = tt ~ 

[ 
(30 1 e: L0 : A[A]o=o' " T[q]o'=tt) v l 
(30 1 e: Lo 3(L:p') in D: A[A]o = <o' ,L> "T[p']o' = tt) 

c) F {p}S{q} iff Vy e: r Vo,o' e: L0 : [ (T[p]o=tt " o' = M[s]yo) ~ T[q]o' = ttJ. 

In words this amounts to the following. An assertion pis valid if it 

is true in all (defined) states. A formula {p}S{q} is valid, if evaluation 

of S with initial state o satisfying p, either doesn't terminate or term­

inates in final state o' for which q holds. The most complicated case is 

f = <Dl{p}A{q}>. This f is valid if for every state o satisfying p the fol­

lowing holds: if evaluation of A terminates normally in o' then we want q 

to be true in o'; if evaluation terminates by a jump to some Lin state o', 

we want this L to be an Lj in D = [Li:pi]~=l' and the corresponding asser­

tion p. must be true in o'. 
J 

7. SOUNDNESS AND COMPLETENESS OF HN 

In this chapter we will show that the deduction system is sound 

(" I- f ~ J= f"), and complete ("Ff ~ I- f"). Now the definition of prov­

ability as well as that of validity shows that both notions are dependent on 
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the interpretation I chosen. In this chapter we will prove that ~ f => I= f 

holds for all correctness formulae. The converse is not true in general. 

Following COOK [6], we have to put a restriction on the interpretations 

allowed: only those interpretations are taken into account which make the 

class A6.6n expressive with respect to the language P~og. Only if A6.6n is 

expressive_ we can be assured that it is possible to find suitable label 

invariants p 1 , ••• ,pn E A6.6n for every program S = [L.:A.]~ 1• The com-
i l. ].= 

pleteness theorem to be proved will then be that under every interpretation 

1 such that A6.6n is expressive with respect to P~og we have that I= f => I- f 

for every normal correctness formula f. 

DEFINITION (validity of rules of inference). 

A rule of inference 

f 1 , ••• ,fn 

fn+l 

is called valid if (I= f 1 , ••• , I= fn) => I= fn+l· 

Note that validity of an inference rule again depends on the underlying 

interpretation 1 just like the validity of a correctness formula. 

LEMMA 7.1. Every axiom and every rule of inference in His valid. 

PROOF. 

(Al) We have to prove I= <ol{p[s/x]}x:=s{p}>. We have A[x:=sBo = o{V[s)o/x} 

for all o E L0 • Furthermore T[p[s/xJBo=tt implies T[p)(o{V[sBo/x})=tt 

by lemma 6.ld. Thus we have that for all o E LO with T[p[s/xJBo= tt 

there is a o', namely o{V[s)o/x}, such that A[x:=sBo= o' and T[p)o' =tt. 

(A2) We have to prove I= <DI {p.}goto L.{false}> for D = [L.:p.]~ 1• Choose 
J -- J l. l. i= 

o E LO such that T[ p Jo= tt. We have A[ goto L Jo = <cr, L. >. Thus there 
J -- J J 

is a o', namely cr itself and a pair (L:p") in D, namely (L.:p.), such 
J J 

thatA[goto LJo = <o' ,L> and T[p")o• = tt. 
-- J 

(A3) Evident. 

(Rl) Suppose I= p 1~p2 , I= p 3~p4 and I= <Dl{p2}A{p3}>. We want to prove 

I= <Dl{p1}A{p4}>. Choose a cr E L0 , and assume T[p1)cr= tt. From p 1~p2 

we infer T[p2)o= tt. The fact that I= <Dl{p2}A{p3} holds yields 
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either 30 1 E r0 : A[A]o=o' A T[p3]o'=tt. But in this case we can use 

F p 3 ~ p4 to infer 30 1 E E0 : A[A]o=o' A T[p4]o'=tt •.• (*) 

or 30 1 E r0 : 3(L:p") in D: A[A]o = <o' ,L> A T[p"]o'=tt ••• (**) 

But now we have proved T[p1]o=tt => (*) v (**), and we conclude that 

F <D I {p1}A{p4}> holds. 

(R2) Analogously. 

(R3) Suppose F <D I {pl}A{p2}> and F <o I {p2}A'{p3}>. We have to prove 

F <D {p1}A;A'{p3}>. Choose a o E r0 such that T[p1]o=tt. From 

F <D {p1}A{p2}> we infer that 

either (A[A]o=o' A T[p2]o'=tt) for some o' E r0 ••• (1) 

or (A[A]o=<o' ,L> A T[p"]o'=tt) for some o' E r0 , (L:p") in D ••• (2) 

ad (1). F <D I {p2}A'{p3}> and T[p2]o'=tt for some o' E r0 give us: 

either (A[A']o'=o" A T[p3]o"=tt) for some o" E r0 • From A[A]o=o' and 

A[A'] o '=o" we infer A[A; A'] o=o". Furthermore we have T[p3] o"=tt, 

or (A[A']o'= <o",L> A T[p"]o"=tt) for some o" E r0 and some pair 

(L:p") in D. But then A[A] o=o' and A[A •] o' = <o" ,L> give us 

A[A;A']o = <o",L> and we have also T[p"]o"=tt. 

ad (2). From A[A]o = <o',L> we have A[A;A']o = <o',L>. Furthermore we 

have T[p"] o' =tt. 

The conclusion is that for every choice of o the conditions imposed 

by the definition of F <D I {p1}A;A'{p3}> are satisfied. 

(R4) can be proved analogously, using results like 

(RS) 

(A[A]o=o' A W[b]o=tt) => A[if b then A else A' fi]o = o'. 

Suppose F <DI {p1}A.{p.+1}> (i = 1, ••• ,n), where D = [L.:p,]~ 1• 
]. ]. ]. ]. ].= 

We have to prove F {p1}[L.:A,]~ 1{p +l}, or equivalently 
i ii= n 

Vy€ r Vo,o' € Eo[(T[pl]o=tt A M[[L,:A.]1:=l]yo=o') ... T[p +l]o'=tt]. 
(k) i ii n 

So, choose y Er, and let~-, ~- and y(k) be derived from 
]. ]. 

[L.:A.]~ 1 and y as in Lemma 4.2. We now prove the following lemma. 
]. ]. i= 

LEMMA. Vk E JN[Vo,o' E E: (T[p.]o=tt A o•=~~k)o) ,.. T[p 1]o'=tt, for 
l. l. n+ 

i = 1, ••• ,n+lJ. 

PROOF (induction on k). 

Basis (k=0). This is easy, because (i) ~~O) = A0•.1 for i 
]. 

therefore there is no o' E r0 such that o' = ~iO)o; (ii) 

= 1, ••• ,n and 

~(i) = Ao•o, 
n+l 
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but then the assumption reduces to T[pn+l]o=tt A o'=(Acr•o)o=o, and thus 

the conclusion T[ p 1] o' = tt holds. n+ 

Induction step. Choose an i (1 ~ i ~ n; the case i = n+l is again trivial) 

and choose o,o' E LO such that T[p.]o=tt and a' = cf> ~k+l) 0 • Now cf> ~k+l) 0 

N[A. ]y (k) cf> ~k) a. 
1 1 1 

From I= <D I {pi}Ai{pi+l}> we know that 1 .1 
either A[Ai]o=o" and T[pi+l]o"=tt, for some 0 11 E L0 • But then we have 

o 1 =cf> ~k+l) o = cf> ~k)10 11 (using 4. 3. 1 °) • Induction hypothesis, and 
1 1+ 

T[pi+l]o"=tt yield T[pn+l]o'=tt, 

= 

or A[A.]o = <o",L.> and T[p.]o"=tt, for some 0 11 E LO and some j 
1 J J 

(1 ~ j ~ n). Now o' = c/>~k+l)o = N[A.]y(k)c/>~k+)lo = y(k)[L.]o"=cp~k)o" 
1 1 1 J J 

(using 4. 3. 2°) • Induction hypothesis and T[ p.] o"=tt yield 
J 

T[pn+l] o' =tt. 

This proves the lemma. D 

Now, returning to the proof of F {p1}[L.:A.J~ 1{p +l}, we have by 1 1 1= n 
definition that M[[L.:A.J~ 1]y = N[A1;· ••• ;A] (y{"-./L.}1: 1 ){Ao•o} = cpl by 1 1 1= n o/1 1 1= 
Lemma 4.2.2. And cp 1 = ~ cpik), by Lemma 4.2.1. 

Choose a,a' 

cp 1o = U <cf>t> o)) 

T[p f o•=tt. n+l 

E LO such that T[p1]o=tt and 0 1 = cp 1o. Then (because 
- Cle) there is a k such that o' = cp 1 a, and the lemma gives us 

'n This proves F {p1}[L.:A.J. 1{p +l}, which was the last clause in the 1 1 1= n 
proof of 7.1. D 

THEOREM 7.2. The proof system His sound, i.e. for every. interpretation 1 

and every correctness formula f we have~ f ~Ff. 

PROOF. Induction on the length of the proof off, using Lemma 7.1. D 

We now turn our attention to the question of completeness of the 

proof system, i.e., Ff~~ f. If f is an assertion p, then we can simply 

use axiom scheme (A3), so there is no problem here. 

The next possibility is f = <D I {p}A{q}>. Suppose this f is valid. 

Now we have to construct a formal proof of this formula. This will be done 

·using the concept of weakest precondition: we will show that for all 

DE Invl, A E Stat and p E A6~n (such that <D,A> is normal), we can construct 



a q E A6-0n which is the weakest formula that makes <D I {q}A{p}> valid (by 

"weakest" we mean true in as many states as possible). This is part of 

Lemma 7.4. 

In the same lemma we show that for this assertion q the formula 
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<D I {q}A{p}> is provable. Once we have reached this result, the rest is 

easy. We use the property that, if q expresses the weakest precondition of 

A with respect top and D, and if F <DI {p'}A{p}> for some p' E A6-0n, then 

we have~ p' ~ q (otherwise the precondition q wouldn't be the weakest 

one). Thus in this case we can derive <D I {p'}A{p}> using (Rl). 

DEFINITION (weakest precondition). 

Let A E S:tat, p E A6-0n, DE Invl. We say that q expresses the weakest pre­

condition of A with respect to postcondition p and invariant list D iff 

Va E L0 : T[q] cr=tt <=> 

[ 
(3cr' E L : [A[A]cr=cr' A T[p]cr'=tt]) v l 
(3cr' E L: 3(L:p'). in D: [A[A]cr = <cr' ,L>A T[p']cr'=tt]) • 

We write p ~ wp[A,p,D] to express this. 

LEMMA 7.3. Let A E S:tat, p,q E A6-0n, DE 1nvl. If q ~ wp[A,p,D], then 

a) F <D I {q}A{p}> (i.e., pis a precondition) 

b) Vp' E A6-0n: [F <DI {p'}A{p}> => F p' ~ q] (q is the weakest). 

PROOF. Immediate from the definitions. 0 

LEMMA 7.4. For all A E S:tat, p E A6-0n, DE Invl such that <D,A> is normal, 

we can find q E A6-0n for which q ~ wp[A,p,D]. Moreover for this q we also 

have~ <DI {q}A{p}> in HN. 

PROOF. By induction on the structure of A. We distinguish four cases. 

1°. A= x:=s. Choose p E A6-0n and DE Invl. Then p[s/xJ ~ wp[x:=s,p,D]. For, 

choose a E L0 • We have to show 

T[p[s/xJ]cr=tt ~ (3cr'ELO[ (A[x:=s]cr=cr') A T[p]cr'=tt]) v 

(3cr'EE0 3(L:p") in n[ (A[A]cr=<cr,L>) A T[p"]cr'=tt]). 

Now A[~:=s]cr = cr{V[s]cr/x} E L0 , so the above equivalence comes down to 

T[p[s/xJ]cr=tt ~ 3cr 1 EEO[cA[x:=s]cr=cr') A T[p]cr'=tt] 

~T[p](cr{V[s]cr/x}) = tt, 

and this is 6.2d. 
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Furthermore, we have I- <D I {p[s/xJ}x:=s{p}> by (Al). 

2°. A= A1 ;A2 . Choose p E A6-0n and DE Invl such that <D,A> is normal. By 

induction there is a q' E A6-0n with q' "' wp[A2 ,p,D] and I- <D I {q' }A2{p}> 

in HN. Again by induction we have q E A6-0n such that q "' wp[A1 ,q' ;D] 

and f- <D I {q}A1{q'}> in HN. 

First, we will show that for this q we have q "'wp[A1 ;A2 ,p,D]. Choose a 

cr E z: 0 • we have to prove 

Tiq]cr=tt = (3cr 1 EI: 0 [A[A1;A2]cr=cr' A Tip]cr'=tt]) v 

(3cr'do 3(L:p') in o[A[Al;A2]CJ = <cr',L> A Tip']cr'=tt]). 

we distinguish two cases: 

a) A[A 1]o=crll. We then have A[A 1 ;A2]cr = A[A2]cr" by definition of A. Using 

these facts the above equivalence reduces to 

Tiq]cr=tt = (3cr 1 EI: 0 [A[A2]cr"=cr' A Tip]cr'=tt]) v 

(3cr'EZ:0 3(L:p') in o[A[A2]cr" = <o' ,L> A Tip']cr'=tt]), 

and by q' "'wp[A2 ,p,D] this is equivalent to Tiq]cr=tt=Tiq']cr"=tt. 

Now we have by q "'wp[A1 ,q• ,D] 

Tiq]o=tt = (30 1 EI: 0 [A[A1]cr=cr' A Tiq']cr'=tt]) v 

(3cr'do 3(L:p') in o[A[A1]cr = <cr' ,L> A Tip']o'=tt]). 

Substituting cr" for A[A1]cr (that is the assumption) the right-hand 

side of the equivalence reduces to Tiq']cr"=tt, and we are ready. 

b) A[A1]cr = <cr",L">. We then also have that A[A1 ;A2]cr = <cr",L"> and the 

definition of q "'wp[A1;A2 ,p,D] reduces to 

TI q] cr=tt = 3p 11 EA6-0n[ (L" :p") in D A TI p"] cr"=ttJ. 

But this equivalence is immediate from q "'wp[A1 ,q•,o] and 

A[A1]o = <cr" ,L">. So, we have proved that q "' wp[A1 ;A2 ,p,D]. 

The proof that <D J {q}A1 ;A2{p}> can be derived in HN is easy by 

the assumptions on q and q' (using rule (R3) of composition), and 

the fact that the pair <D,A1;A2 > is normal (which means that 

<D J {p1 }1'.\.1{p2 }> and <D I {p2 }A2{p3 }> are normal formulae). 

3°. A= if b then A1 else A2 fi. Choose p E A6-0n and DE Invl, such that 

<D,A> is normal. By induction we have ql ,q2 E A-0-0n such that 

ql "' wp[.A,1 ,p,D] and f- <D I {ql }Al {p}> in H 
N 

q2 "' wp[A2 ,p,D] and f- <D I {q2}A2{p}> in H . 
N 

We will show that for q = if b then q 1 else q 2 fi we have 



a) q "'wp[if b then A1 else A2 fi,p,D] 

b) <D I {q} if b then A1 else A2 fi {p}> in HN. 
a) Choose a o € r0 • Without loss of generality W[b]o=tt. Then 

T[ if b then q 1 else q 2 fi] o=tt ~ T[ q 1] o=tt. 

Also A[if b ~ Al else A2 fi]o = A[A1]o. Now q 1 "' wp[Al'p,D] 

is equivalent to 

T[q1]o=tt ~ (30 1 EE0 [A[A1]o=o' "T[p]o'=tt]) v 

(30 1 €Lo 3(L:p') in D [A[Al]o=<o' ,L> " T[p']o'=tt]). 

Combining these results, we get 

T[ if b then q 1 else q 2 fi] o=tt ~ 

(3o'EE0[A[ifb thenA1 elseA2 fi]o=o' "T[p]o'=tt]) v 
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(3o'EEO 3(L:p') in o[A[ifb thenA1 elseA2 fi]o=<o' ,L> /\ T[p']o'=tt]) 

and this is the result we were aiming at. 

b) We have qAb = (if b then q 1 else q 2 fi) "b, and thus I= qAb => q 1 • 

Also, using (A3) and (Rl), and~ <o I {q1}A{p}> (in HN) we get 

~ <D I {qAb}A1{p}> in HN. Analogously~ <DI {qA7b}A2{p}> in HN. 
So, by inference rule (R4) : ~ <o I {q} g_ b then A1 else A2 fi {p}> 

in HN. 
4°. A = goto L. Choose p € MM!. and D € Invl, such that <D ,A> is normal. 

This means that we have a q € A6-0n such that (L:q) in D. We prove 

q "'wp[goto L,p,D]. We have to prove 

T[q]o=tt ~ (3o'EE [A[goto L]o=o' " T[p]o'=tt]) v 
0 . 

(3o'EE0 3(L' :p') in o[A(goto L]o=<o' ,L'> "T[p•]o'=tt]). 

Because A[goto L]o=<o,L> E r 0xLvall., the equivalence reduces to 

T[q]o=tt ~ 3p'EM-0n[(L:p') in D" T[p']o=ttJ. 

Now we have (L:q) in D and thus the right-hand side is equivalent to 

T[q]o=tt. 

Furthermore, in order to show that~ <D I {q} goto L {p}> in HN, we 

have by (A2) ~ <o I {q} goto L {false}> and by (A3) ~false=> p. So we 

can use (Rl) to derive~ <ol {q} goto L {p}> in HN. 
This completes the proof of Lemma 7.4. D 

Observe that in this lemma it is not merely proved that there exists 

a formula q expressing the weakest precondition for any A, p and D, such 

that <D,A> is normal. The proof also provides a purely syntactical method 



38 

to derive such a formula. This shows that for every A, p and D with the 

above restriction, we can construct an assertion q expressing the weakest 

precondition. Thus this q is independent of the interpretation 1 of the 

primitive relation and· function symbols. 

Note also that there are many assertions expressing the weakest pre­

condition of A with respect top and D. For instance, if q ~ wp[A,p,D] then 

the same holds for q A~ (to give a trivial example). 

We now state and prove the completeness result for correctness formulae 

having the form <D {p}A{q}>. 

LEMMA 7.5. For all A€ S:ta:t., p,q € M~n and D € 1nvl such that <D,A> is 

normal we have 

I= <o I {p}A{q}> => I- <o I {p}A{q}> in HN. 

PROOF. Choose A,p,q and D such that the assumptions are true. Suppose also 

l= <D {p}A{q}>. Now by Lemma 7.4 there is a p' ~ wp[A,q,D] for which 

I- <D {p'}A{q}> in HN. By Lemma 7.3 and I= <D I {p}A{q}> we have I= p ~ p'. 

So, using (A3) and (Rl) we get~ <D I {p}A{q}> in HN. D 

Note that up till now no claims have been made on the interpretation 

1. The only additional condition was that <D,A> should be normal. It can 

be seen that this is necessary from the fact that 

I= <L:p I {true} if~~ x:=0 else goto L' fi {x=0}> 

holds, even if L 1 L'. However, there is no way to derive this correctness 

formula in H. 
We now turn our attention to the discussion of completeness with res­

pect to correctness formulae of the form {p}S{q}. If we want to formally 

prove such a formula, we have to find suitable label invariants for all 

labels declared ins. It is at this point that we have to put the restric­

tion on 1 which we mentioned in the introduction of this chapter. 

The question arises whether in our case such a restriction is neces-

sary. WAND [12] proved that such a restriction is needed for programs without 

· goto statements, but containing while statements. He constructed an inter­

pretation 1 and a correctness formula which was valid under 1 but not derivable, 
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because there was no assertion available which could express a suitable in­

variant. His counterexample can be transferred to our language in such a way 

that the same ~rguments he uses can be applied in our situation. Therefore 

we must make a restriction on 1. 
Before we can give an exact definition of this restriction (expres­

siveness), we have to make a few preparations. 

LEMMA 7.6. Lets= [L.:A.J~ 1 € P~og and y € r. Let~- be derived from s 
1 1 1= 1 

and y as in the definition of M. If Sis normal, then all~- are independent 
1 

of y. 

PROOF. The following holds: Let A€ Stat and {L1 , .•• ,1n_} be the set of all 

labels occurring in A. Let ~,~ 1 , .•• ,~n €Mandy€ r. Then 

N[A] (y{~./L.}~ 1)~ is independent of y. This fact can be proved by induction 
1 1 1= 

on the structure of A. 

From this result we can infer that the operator 

is independent of y, and thus the same must be true of <~ 1 , •.• ,~n>' being 

the least fixed pointµ~ of~- D 

DEFINITION (transformations derived from S). 

Lets be a normal program. Then the~- defined as in Lemma 7.6, are called 
1 

the transformations derived from S. 

DEFINITION (weakest precondition of a transformation from M). 

Let~€ M, p € A6~n. We say that q expresses the weakest precondition of~ 

with respect to p iff Vo€r0 : [T[q]o=tt <=> (~o~.L.,. T[p] (~o)=tt) ]. 

DEFINITION (expressiveness). 

Let 1 be an interpretation of the primitive relation and function symbols. 

We say that A6~n is expressive relative to P~og and 1, iff for all asser­

tions p and for all normal programs S the following holds: there are asser­

tions p 1 , ••• ,pn such that pi expresses the weakest precondition of ~i with 

respect top, where~- are the transformations derived from S (i= 1, ••• ,n). 
1 
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If the primitive relation and function symbols of our language PIWg 
are such that A6-0n is a language for Peano arithmetic, and if 10 is the 

standard interpretation of this language in the natural numbers then, 

using recursion theory, we can show that the transformations~- derived 
1 

from a normal program Sare partial recursive functions in the free vari-

ables of S. A result of recursion theory is that for every partial recursive 

function ~: JNk ➔ Thf, there is a formula p in A6-0n with free variables 

x 1 , ... ,xk, y 1 , ••• ,yk, which expresses this function, i.e. 

~ p(a1 , ... ,ak,81 , ••. ,8k) iff ~(a1 , ••• ,ak) is defined and equal to 

<8 1 , ••• ,8k> (where ai,Bi are numerals denoting the natural numbers ai,8i). 

From this we can infer that A6-0n is expressive relative to P~og and the 

standard interpretation 10 • 

Now we have enough tools to state the main lemma needed to prove com­

pleteness for formulae of the form {p}S{q}. In essence this theorem states 

that the p. from the definition of expressiveness are the label invariants 
1 

which we are looking for. 

LEMMA 7.7. Let 1 be an interpretation such that A6-0n is expressive relative 

to P~og and 1. Let S = [L.:A.J~ 1 E P~og be normal. Let p E A6-0n, and let 
1 1 1= 

~i be the transformations derived from S (i = 1, ••• ,n). Let pi be the asser-

tions expressing the weakest preconditions of~- with respect top 
1 

(i = 1, ••• ,n), and let pn+l = p. Then 

for j = 1, ••• ,n. 

PROOF. Choose j (1 ~ j ~ n) and a E E0 such that T[pjDa=tt. There are two 

cases: 

a). A[AjDa = a'EE 0 • According to the definition of F <DI {pj}~j{pj+l}>, 

in this case we have to prove that T[p. 1Da'=tt. Now by the assumption 
J+ 

on p. and by definition of weakest precondition we have 
J 

T[pJa=tt ~ (~.cr;z!J._=> T[pD(~.a}=tt}. Also, ~.o = ~-+1o• (by 4.3.1°, 
. J J J n J J 
A[AJo=o' and ~.o = N[A.] (y{~./L.}. 1)~.+1o}. Combining these results, 

J J J 1 1 1= J 
we get T[pjDo=tt ~ (~j+to';i!J. ~ T[pD (~j+la')=tt). But the right-hand 

side of this equivalence is (by definition of weakest precondition, and 
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by the assumption on pj+l) equivalent to T[pj+l]o'=tt. 

b) A[Aj]o = <O 1 ,L> E L0xLvaJr.. From the fact that Sis normal, we infer that 

L must be some~ (1 ~ k ~ n). We have to prove (by definition of 

f <DI {p}A{q}>) that T[pk]cr'=tt. Again we have: 

T[p.]cr=tt ~ (<p.cr~.L => T[p] (cp.cr)=tt), and now we have cpJ.cr = cpkcr' by 4.3.2° 
J J J 

(analogously to a)). Combining the results, we get 

T[pj]cr=tt ~ (cpka•~.1 => T[p] (cpkcr')=tt) 

~ T[p ]cr'=tt. 
k 

We now can collect our results in the completeness theorem 7.8. 

D 

THEOREM 7.8. The deduction system HN is complete in the sense of Cook, i.e., 

for every interpretation 1 such that A6-0n is expressive relative to P~og 

and 1, and for every normal correctness formula f, we have Ff=> I-fin HN. 

PROOF. 

a) If f _ p E A6-0n, then I= p => I- p by (A3) 

b) If f - <D I {p}A{q}> then we can apply Lemma 7 .5. 

c) f = {p}S{q}. Say S = [L. :A.]~ 1• Let <p, be the transformations derived 
1 1 1= 1 

from S. By Lemma 7.7 there are assertions p., expressing the weakest 
J 

preconditions of <p. with respect to q such that 
J 

F <[L. :p.J~ 1 I {p.}A.{p.+1}> 
1 1 1= J ] ] 

for j = 1, ••• ,n, where p 1 = p. n+ 
Note that these correctness formulae are normal by the fact that {p}S{q} 

and thus Sis normal. Lemma 7.5 then gives us 

J-- <[L. :p. ]~ 1 
1 1 1= 

for j = 1, ••• ,n. Now we can apply rule (RS) to get 

Now pn+l = q. Moreover F p ~ p 1 • For, assume T[p]cr=tt for some cr E L0 • 

Then, by F {p}S{q}, we have Vy E r Vo' E L0 : cr' = M[s]ycr => T[q]cr•=tt. 

But M[s]ycr = cp 1cr (Lemma 4.2.2). Thus: cr' = cp 1a E LO-+ T[q]cr'=tt. But this 

is equivalent to T[p1] =tt, using the definition of weakest precondition. 

We had~ {p1}s{q}. Also F p ~ p1 , and thus J-- p ~ pl by (A3). Finally, 

using (R2), we conclude~ {p}S{q} in HN. D 
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8. DEDUCTION SYSTEM: SECOND VARIANT 

The validity definition of Chapter 6 makes explicit use of the label 

invariants p., which therefore had to be provided by the formulae of the 
l 

deduction system. The purpose of this chapter is to show that it is possible 

to define validity in such a way that the label invariants are not explicit­

ly needed.· We will, using continuation semantics, associate a truth value 

with a formula {p}A{q}. This truth value will be dependent on the meaning of 

the labels occurring within A, i.e. the value depends on the environment y. 

Consequently, we will establish a semantical function G such that for every 

A, p and q we have G[ {p}A{q}]: r -+ {ff ,tt}. 

This leads to a definition of validity which turns out to be equivalent 

to the one of Chapter 6 in the following sense: <[L. :p. J? 1 J {p}A{q}> is 
l l l= 

valid according to the definition in Chapter 6, if and only if {p}A{q} is 

valid (using function G) in every environment y for which all formulae 

{p.}goto L. {false} are valid (i = 1, ... ,n). Or more formally, 
1-- l 

n 
Vy E r[i6l (G[{pi} goto Li {false}]y=tt) => G[{p}A{q}]y=ttJ. 

Using this new approach we can define validity for the system as given in 

[5]. But, before we do that, we change this system somewhat. The system in 

[5] is presented as a natural deduction system, which means that the notion 

"proof from assumptions" is used. A line in a formal proof can be a formula 

which is introduced as an assumption. The system also has an inference rule 

in which assumptions are discharged, namely 

{p'} goto L {false} f- {p }A1{p'} 

{p'} ~ L {false} f- {p' }A2{q } 

{p}A1;L:A2{q} 

which discharges the assumption {p'} goto L {false}, needed in the deriva­

tion of {p}A1{p'} and {p' }A2{q}. Thus, every derived formula f in the system 

of [5] will have a finite set I:,. of assumptions attached by it, namely those 

assumptions which were used to derive f. 



We transfo:r::m this natural deduction system into a sequent calculus 

having formulae of the form 

/j,-+ {p}A{q}, 
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where I:,, is meant to be the finite set of assumptions associated with the 

derivation of {p}A{q}. The advantage of this system over the natural deduc­

tion system is that validity of a formula can be defined more directly, now 

that every formula incorporates the relevant assumptions. 

We now define the deduction system 

DEFINITION (atomic correctness formula, correctness formula). 

An atomic correctness formula is a formula of the form {p}A{q}. The class 

of all atomic correctness formulae will be denoted by Aoo~, and has gas 

a typical element. 

A correctness formula is either an assertion, or a formula of the form 

I:,,-+ {p}A{q}, or a formula of the form I:,,-+ {p}S{q}, where I:,, (the set of 

assumptions) is a finite set of atomic.correctness formulae. The class of 

all correctness formulae will be denoted by CoM, and has fas a typical 

element. 

The correctness formulae¢-+ {p}A{q} and¢-+ {p}S{q} will be abbreviat­

ed to {p}A{q} and {p}S{q} respectively. 

DEFINITION (deduction system H1 ). The axioms are 

(Al) I:,,-+ {p[s/xJ}x:=s{p} 

(A2) I:,, -+ g, where g E: I:,, 

(A3) p, 

where pis a valid assertion (i.e. VcrE:E 0 : T[p]cr=tt). 

The rules of inference are 

(Rl) pl:::>p2' P3~P4, I:,,-+ {p2}A{p3} 

I:,, -+ {pl }A{p4} 

(R2) pl:::>p2' P3:::>p4, /j,-+ {p2}S{p3} 

I:,,-+ {pl}S{p4} 

(R3) /j,-+ {pl}A{p2}, /j,-+ {p2}A'{p3} 

I:,,-+ {pl}A;A'{p3} 
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(R4) 

(RS) 

A+ {pAb}A{q}, A+ {pA7b}A'{q} 
A+ {p} if b then A else A' fi {q} 

A~A' + {pl}Al{p2}, ••• ,AUA' + {pn}An{pn+l} 

A'+ {pl}[Li:Ai]~=l{pn+l} 

where A= { {p.} goto L. {false} I i= 1, ••• ,n}, 
J. -- J. 

all L. are different, and no L. occurs in any assumption 
J. J. 

in A' (i = 1, ..• ,n). 

The restriction on A' in (RS) is imposed to circumvent possibilities 

like the following. Suppose A= { {~} goto L1 {false},{x=O}goto L2 {false}} 

and A' is the singleton {{~}goto L2 {false} }. Then we can derive 

••• (#) 

using the assumption in A', and furthermore 

AUA' + {x=O}x:=x{x=O}. 

Thus, discharging A, using "(RS)" 

••• (6) 

and this formula is not vaiid (the assumption{~} goto L2 {false} in A' 

is not relevant for the validity of (6), because the meaning of 

L1:x:=l;goto L2;L2 :x:=x in any y, given by M, doesn't depend on the meaning 

y[L2D of L2 anymore). Difficulties stem from the fact that the assumption 

in A' was used in the derivation of (#), and not discharged. 

We now come to the definition of the function G which we shall need to 

define validity of correctness formulae. The main problem in defining the 

value of G[{p}A{q}D in some environment y is that N[ADy~ is not a function 

that transforms states just before evaluation of A into states immediately 

after this evaluation, while q is an assertion describing the latter states. 

We can however say something about the states at the normal exit point 

of A in the following indirect way. Consider the formula {p}A{q} and choose 

a predicate n (a function in cr0 + {ff,tt}) which we want to be true in 

.every final state cr' = N[ADy~cr corresponding to an initial state cr satisfying 
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T[p]a=tt. That is, we want 

Va,a'EL 0 : [(T[p]a=tt A a•=N[A]ycpa) .,. 1ra'=tt]. 

We will abbreviate this partial correctness condition to 

{T[p] }N[A]y<j>{,r}. 

Now, as this formula must correspond to {p}A{q}, we are looking for a 

relation between q, the continuation <I> chosen, and the predicate 1r. It is 

reasonable to demand that 1T (<j>a")=tt for every (intermediate) state a" 

satisfying T[q]a"=tt (provided <j>a"~.L). For, the continuation <I> is the state 

transformation describing what happens after evaluation of A has terminated 

at the normal exit point. So we want q, <I> and 1T to be related through 

{T[q]}<1>{1r}. It turns out that this constrainton <I> and 1T is sufficient to 

lead to a satisfying validity definition. 

DEFINITION (predicates; partial correctness, semantical level). 

The class of predicates IT, with typical element 1r, is defined by 

IT= LO ➔ {ff,tt}. For any 1r,1r' E IT and <I> EM, we
1
define 

DEFINITION (G). The function G with functionality G: Aoo/t ➔ r ➔ {ff,tt} is 

defined by 

G[{p}A{q}]y=tt ~ Vmc:IT V<j>EM[{T[q] }<j>{,r} _,. {T[p] }N[A]y<j>{,r lJ. 

We extend the domain of G to subsets A of Aoolt as follows 

G[A]y=tt ~ VfEA: G[f]y=tt. 

DEFINITION (validity). A correctness formula f is valid (written I= f) is 

lo. f 

20. f 

30. f 

-

-

-

p and VaEL0 : T[p]a=tt, or 

A ➔ {p}A{q} and VyEf: G[A]y=tt.,. G[{p}A{q}]y=tt, or 

A ➔ {p}S{q} and VyEf: G[A]y=tt.,. {T[p] }M[s]y{T[q]}. 

We now investigate whether the system as it stands now is sound and 

complete. It will be proven at the end of this chapter that the system is 

sound. However, the system is not complete. For instance, a formula like 
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{{p}x:=x;goto L {q}} + {p} goto L {q} 

is valid but not derivable. Therefore we first prove soundness and complete­

ness of a restriction of the system, namely the system consisting of normal 

correctness formulae only. 

DEFINITION (normal correctness formulae). A correctness formula f is called 

normal if 

p, or 

2°. f _I::,+ {p}A{q}, where I::,= {{p.} goto L. {false} 
]. -- ]. 

i = 1, ••• ,n} such 

that all L. are different and that the labels in A are all L. 's, or 
]. ]. 

3°. f = {p}S{q}, where Sis a normal program. 

The system H•, restricted to the normal formulae, is called the normal 

fragment of 1-/ 1 , and denoted by H~. 

There an obvious one to one correspondence between the normal cor-

rectness formulae as defined here and the normal correctness formulae from 

Chapter 6, given by the function <P, defined by 

<l>[p] = p 

<P[{{p.} goto L. {false} I i = 1, ••• ,n} + {p}A{q}] = 
]. -- ]. 

<[L. :p. ]~ 1 I {p}A{q}> 
]. ]. 1..= 

<P[{p}S{q}] = {p}S{q}. 

If we compare the axioms and inference rules of H with the ones of H• we 

come to the following lemma: 

LEMMA 8.1. For every normal correctness formula f we have 

f- f (in H1 ) ~ f- <l>[f] (in H). 

PROOF. The<= - direction is obvious. The proof of 11 ~ 11 essentially amounts 

to showing that H• is conservative over H~, i.e. if a normal formula is 

derivable in H• then it has a proof in H~. This can be shown using the fact 

that every inference rule has normal premisses if its conclusion is a 

normal formula. 0 

If we can prove the same result for validity instead of deducibility 

then we can infer from the results in Chapter 7 that H~ is sound and complete. 



To achieve this, we first prove some lemmas, relating the definition of 

validity off=~+ {p}A{q} with validity of ~[f]. 
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LEMMA 8.2. Suppose f = {{p.} goto L. {false} I i = 1, ••• ,n} + {p}A{q} is a 
l. -- l. 

correctness formula that is normal and valid. Then the following holds: 

a) Ycr,cr 1 d 0 : (A[A]cr=cr' " T[p]cr=tt) ~ T[q]cr'=tt 

b) Ycr,cr'€t.0 : (A[A]cr=<cr' ,L.> " T[p]cr=tt) ~ T[p.]cr'=tt Ci = 1, ••• ,n). 
l. l. 

PROOF. 

a) Choose cr,cr'€I0 such that T[p]cr=tt and A[A]cr=cr'. Choose y0 such that 

y0[Li]=A<J•i for i = 1, ••• ,n. Then we can check that 

G[{p.} goto L. {false}]y0=tt for i = 1, ••• ,n and thus from validity of 
l. -- l. 

f we get G[{p}A{q}]y0=tt. From the definition of G we then have 

V1r€IT Y<j>€M[{T[q]}<p{1f} ~ {T[p]}CN[A]y04>){1r}J. 

If we choose 1r = T[q] and <j> = A<J•cr, we can deduce from this 

{T[p]} OJ[A] Yo{ A<J•cr}) {T[q]}. 

Combining this with N[A]y0{Acr•cr}cr = a' (Lemma 4.3.1°) and T[p]cr= tt, we 

get T[ q] (JI =tt. 

b) Choose cr,cr'€I0 and i (where 1 ~ i ~ n) such that T[p]cr = 

A[ A] (J = < (J I ' L . > • 
l. 

Now, if we take y0 such that 

a;ti and T[ p .] a = ff 
J Yo[Lj]cr = {~ if 

.... otherwise 

tt and 

for j = 1, ••• ,n, we again have that GII{p.} goto L. {false}]y0 =tt 
J -- J 

(j = 1, ••• ,n). Arguing the same way as in the proof of a) we come to 

Now we choose <j> = A<J•i and 1r = A<J•ff. We then derive 

{T[p]} (N[A]y 0{Acr•i}) {Acr•ff}. 

Combining this with N[A]y0{Acr•i}cr = y0[Li]cr' (Lemma 4.3.2°) and with 

T[p] a= tt we have that 

y0[L)cr';ti ~ (Acr•ff) Cy0[Li]cr') = tt. 

So we must have y0[Li]cr' =i, but this is (by definition of y0 and the 

fact that cr';ti) equivalent to T[p.]cr'=tt. D 
l. 
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LEMMA 8.3. Suppose f = {{p.} goto L. {false} I i = 1, ••• ,n} ➔ {p}A{q} is a 
1 1 

normal correctness formula. Then 

F f..,. Vcre:I: 0 : T[p]cr=tt .. 

[ 
(3cr'e:E [A[A]cr=cr' " T[q]cr'=tt]) v ] 

(3cr'e:t0°[A[A]cr=<cr' ,L.> " T[p.]cr'=tt]) 
1 1 

PROOF. 11 =:> 11 • Suppose Ff and T[p]cr=tt. There are two possibilities (by 

definition of A) 

a) A[A]o = o'e:I:0 , and Lemma 8.2a yields T[q]o'=tt 

b) A[A]o = <o',L>. Since f is normal, which means that all labels in A are 

an L., we have that Lis an L. for some i (1 ~ i ~ n). We then can apply 
1 1 

Lemma 8. 2b to obtain T[p.] o' = tt. 
1 

II -4= II • Choose y e: r such that G[ {p.} goto L. {false}]y = tt for i = 1, ••• ,n. 
1 1 

Then we must derive G[ {p}A{q}]y = tt, or equivalently 

Vire: II V<j>e:M[ { T[ q] }<j>{ ,r} =:> { T[ p] } (N[ A] y<j>) { ,r} J. 

So choose ir 0 and <1> 0 such that {T[q] }<1> 0{ir0 } holds, and choose a such that 

T[p]o=tt. We have to prove 0 11 = N[A]y<j>0o~.L =:> 1r00 11=tt. Again we have two 

possibilities: 

a) A[A]o=o'. Then by assumption T[q]o'=tt, and by Lemma 4.3.1°: 

0 11 = N[A]y<j>0o = <1> 00•. From {T[q] }<t>0{ir0 } we then have 0 11 ~.L =:> 1r0 0 11=tt. 

b) A[A]o = <cr' ,L.>. By assumption T[p.]cr' = tt, and by Lemma 4.3.2°: 
1 1 

0 11 = N[A]y<j> 0cr = y[L.]o'. Now we use the fact that G[{p.}gotoL.{false}]y=tt, 
1 1 -- 1---

or Vire:II V<j>e:M[T[ false]<!>{ ,r} .,. {T[p.]} (y[ L.] ){ ,r} J. Taking ,r = ir0 and 
1 1 

<I>= Ao•.L, we get {T[p.]}(y[L.]){ir0}, and from this we prove 
1 1 

o"~.L.,. 1r 0 11 =tt. □ 
0 

COROLLARY. For all normal correctness formulae f we have 

(according to the validity definition of this chapter)..,. 

(according to the definition of Chapter 6). 

PROOF. This is the lemma for f = ~ ➔ {p}A{q}. For all other cases for f we 

have that the respective validity definitions are the same. D 

This corollary and the results of Chapter 7 now lead to 
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THEOREM 8.4. The system H~ is sound and complete in the sense of Cook. 

To conclude this chapter we show that system H• is sound (although, 

as we have seen before) not complete. 

THEOREM 8.5. For all correctness formulae f, we have~ f '"°'Ff. 

PROOF. The proof is analogous to the proof of 7.1. We prove here the more 

interesting cases, viz. validity of (Al), (Rl) and (RS). 

(Al) Validity is proven if we can show that 

Vy€f V(j>EM VirEJI[{T[pD}(j>{-rr} ,.. {T[p[s/xJ]} (N[x:=s] y(j>) { ,r}. 

So, choose y, <!>,,rand a such that {T[p]}<f>{,r} and T[p[s/xJ]a=tt hold. 

Lemma 6.ld then gives T[p]a'=tt, where a'= a{V[s]a/x}. Now from 

N[x:=s]y(j>a = (j>a' and {T[p] }q>{,r} we have a" = N[x:=s]y(j>a=(j>a'~.L,..ira"=tt. 

(Rl) Suppose F p 1~p2 , F p 3~p4 and FA ➔ {p2 }A{p3}. We then have to prove 

FA ➔ {p1}A{p4}. Suppose that we have a y Er such that G[A]y=tt 

(RS) 

(if there is no such y then A ➔ {p1}A{p4 } is vacuously valid). We then 

must prove G[{p1}A{p4}]y=tt, or 

V(j>EM VirEJI[{T[p4]}q>{,r},.. {T[p1]}N[A]y(j>{,r}. We will prove this using the 

following fact: 

••• ( *) 

which can easily be verified. 

Now suppose {T[p4]}(j>{,r}. From F p 3~p4 and (*) we get {T[p3]}(j>{,r}. From 

this, FA ➔ {p2}A{p3} and G[A]y=tt, we have {T[p2]}(N[A]y(j>){,r}. Then 

we use F p 1~ 2 and(*) again to derive {T[p1]}(N[A]y(j>){,r}. 

Let A= {{p.} goto L. {false} I i = 1, ••• ,n} where all L. are different, 
l. -- l. --- l. 

and let A' be such that no L. occurs in any formula in A'. Suppose 
l. 

furthermore that we have F AUA' ➔ {p.}A.{p. 1} for i = 1, ••• ,n. We have 
l. l. 1.+ 

to prove FA' ➔ {p1}[L.:A.J~_1{p +l}. 
1 1 1.- n (k) (k) 

So, choose y such that G[A']y=tt. Let<!>.,<!>. and y (i = 1, ••• ,n; 
l. l. 

k = 0,1, ••• ) be derived from y and [L.:A.J~ 1 as in Lemma 4.2. We then 
. l. l. 1.= 

have to prove {T[p1 ]}<f> 1{T[pn+l]} (take i = 1 in Lemma 4.2.2). 

Now if we can prove 

(k) 
'v'k{T[p.] }q>. {T[p +1]} 

i l. n 
( i = 1 , ••• , n+ 1) ••• (#) 
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then we are ready. For suppose we have cr,cr'€EO such that T[p1]cr=tt 
. . (k) (k) _ 

and cr' = cf> cr. Then (since <1> 1 = LI (<1> 1 ) we have cr' = (~ cf>i ) cr -
(k) 1 k -

= LI (cf> 1 a) , and because E is a discrete cpo there must be a k such that 

cj> 1~= a'. ~ut then we can infer that T[pn+l]cr'=ttby applying(#} with i = 1 

and k = k. 

We now prove (#) by induction on k. The basis (k= 0) is trivial, so we 

now perform the induction step. Choose i (1 ~ i ~ n, the case i = n+l 

being trivial). We have to prove {T[p,]}cj>~k+l){T[p 1]} or 
(k) (k) 1. 1. n+ 

{T[p.]}(N[A)y c/>.+l){T[pn+l]}. 
1. 1. (k) (k) 

Choose cr,cr"€E0 such that T[p.]cr=tt and cr" = N[A.]y cf>, 1a. We have to ]. ]. 1.+ 
show T[pn+l]cr"=tt. We do this in a way that is analogous to the proof 

of Lemma 8.2, i.e. by choosing a suitable environment y0 • We distinguish 

three cases: A[A.]cr= cr', A[A.]cr = <a' ,L.> and A[A.]cr = <cr' ,L>, where L 
]. ]. J ]. 

is not an L .• 

1°. A[A.]cr=~' and thus (4.3.1°) a"= N[A.]y(k)cj>~k+)lcr = cj>~k)1cr•. So, if 
l. l. l. B 

we prove T[pi+l]a'=tt, we can use the induction hypothesis to infer 

that T[pn+l]a"=tt. 

We have p AUA' + {p.}A.{p.+1}; we also have G[b']y=tt. Now, taking 
]. ]. ]. 

n 
y0 = y{Acr•i/Li}i=l' we can prove that (due to the fact that no Li 

occurs in A') G[A']y0=tt. Also, G[{pi} goto Li {false}]y0=tt. Thus 

we have G[6ub']y0=tt and thus G[{pi}Ai{pi+l}]y0=tt. The same way as 

in the proof of 8.2a we now get that T[pi+l]cr'=tt from A[Ai]a=cr' 

and T[ p.] a=tt. 

A[A.]cr ~ <cr',L.> and thus (4.3.2°) cr" = N[A.]y(k)cj>~k)1cr = 
kt ~ 1. 1.+ 

y( [L.]cr' = cj>.k>cr•. So, if we can prove T[p.]cr'=tt, then we can 
J J J 

use the induction hypothesis to infer that T[p 1] cr"=tt. We do this n+ 
by choosing yO = y{it/Lt}~=l' where ~t is defined by a) ~ta = a, if 

a~i and T[pt]cr = ff; b) ~tcr = i otherwise. We again can check that 

G[ 6u6 '] y O=tt and thus G[ {pi }Ai {pi+l}] y O = tt. In a way, analogous 

to the proof of 8.2b we then can deduce from T[p.]a=tt and 
]. 

A[A.]cr = <cr' ,L.> that T[p.]cr'=tt. 
]. J J 

A[A.]cr = <a',L> where Lis not an L .• Lemma 4.3.2° yields 

a"~ N[Ai]y(k)cj>~~~cr• = y(k)[L]cr' = ~[L]a' (for y(k) differs from 

y only in the arguments L1 , ••• ,Ln). Now taking yO = y{Acr•i/Lj};=l 

we have that a" = yO[L]cr', but also that G[AuA']yO=tt, so that 

G[{p.}A.{p, 1}]yO = tt, or equivalently ]. ]. 1.+ 
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'v'1rETI V<j>EM[{T[p. 1]}<1>{7r} => {T[p.]}N[A.]y0<j>{7r}]. Now choose <j> = \a•.L 
· 1+ 1 1 

and 1r = T[p 1]. We then have {T[p.]}(N[A.]y0Oa•.L}){T[p 1]}, n+ 1 1 n+ 
which combined with A[Ai]a = <a' ,L>, a" = y0[L]a' and T[p)cr=tt 

yields T[pn+l] a"= tt. 0 
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