stichting
mathematisch
centrum MC

AFDELING INFORMATICA IW 74/79 JUNI
(DEPARTMENT OF COMPUTER SCIENCE)
A. DE BRUIN

GOTO STATEMENTS:
SEMANTICS AND DEDUCTION SYSTEMS

Preprint

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical 'Ce.r)w:.e, 49, 2e¢ Boethaavestraat, Amstendam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsored by the Netherlands Govermment through the
Netherlands Onganization for the Advancement of Pune Research (Z.W.0).

AMS (MOS) subject classification scheme (1970) : 68A05

ACM-Computing Reviews-category: 5.24

*)

Goto statements: semantics an? deduction systems

by

A. de Bruin

ABSTRACT

A simple language containing goto statements is presented, together
with a denotational and operational semantics for it. Equivalence of these
semantical descriptions is proven.

' Furthermore, soundness and completeness of a Hoare-like proof system
for the language is shown. This is done in two steps. Firstly, a proof
system is given and validity is defined using (a variant of) direct seman-
tics. In this case soundness and completeness proofs are relatively easy.
After that, a proof system is given which is more in the style of the one
by CLINT & HOARE [5], and validity in this system is defined using continu-
ation semantics. This validity definition is then related to validity in
the first system and, using this correspondence, soundness and completeness

for the second system is proven.

KEY WORDS & PHRASES: goto statements, denotational semantics, operational
semantics, partial correctness, Hoare-like deduction
systems, soundness, completeness, continuation

semantics.

This report will be submitted for publication elsewhere.

1. INTRODUCTION

In this report we present several ways of looking at the meaning of
goto statements. We define a simple language containing goto statements,
and present an operational definition of its semantics in the sense of
COOK [6]. We also give a denotational semantics, using the concept of con-
tinuations (STRACHEY & WADSWORTH [11]). Furthermore we prove that these
definitions are equivalent.

After that we turn our attention towards a Hoare-like deduction system,
as proposed by CLINT & HOARE [5], for proving partial correctness of pro-
grams of our language. It appears to be surprisingly complicated to justify
this system. The essential rule in the deduction system is (for programs

with one label only)

{p} goto L {falsel} } {pl}A1{P}
{p} goto L {falsel} } {p}Az{pz}

- {pl}Al;L:Az{pz}

and the unusual assumption {p} goto L {false}l already gives an indication

of possible complications. The main problem is how validity of the construct
{p}a{g} has to be defined.
If we investigate how the inference rule given above will be used in

correctness proofs, we observe that the assumption {p} goto L {false} is

used as a trick to indicate that p always holds before execution of goto L.
Or, stated another way, the assertion p in the assumption serves as a so
called label invariant: if we want to prove partial correctness of a pro-

gram S which contains a label L, then we can use the assumption {p} goto L {false}

in the proof to describe that p holds whenever label L is encountered
during evaluation of S. Thus the introduction of an assumption like

{p} goto L {false} in a proof only serves the purpose to indicate what the

label invariant at L will be.
This report gives two variants of the deduction system and the above
observations are used in the first one. Here there are no assumptions, the

label invariants needed are stated explicitly within the formulae of the

system. These formulae will have the form
<L1:p1,...,Ln:pn l {pla{ql>,

where p; is the invariant corresponding to label Li' Validity of a formula
like this one has to be defined in terms of the meaning of statement A oc-
curring in it. Things become too complicated if we use the customary deno-
tational definition with continuations and environments. Techniques in the
spirit of "continuation removal" (MILNE & STRACHEY [8]) are used to define
the meaning of statements such that a definition of validity is possible
which is both perspicuous and useful. After that, soundness and completeness
of the deduction system will be proved.

Once this result has been established we investigate a deduction sys-
tem like the one given by Clint and Hoare. We give a definition of validity
of formulae like {p}A{g} using the ordinary continuation semantics. This
definition resembles closely the one given in MILNE & STRACHEY [8]. Further-

more this definition of validity is such that

{Pl} goto L, {false},...,{pn} goto L_ {falsel E {pla{q}

holds, if and only if in the other system the formula
<LyiPgse oL iR, | {p}a{ql}>

is valid. This result will then be used to prove soundness and completeness
for the second deduction system.

This two level approach has the following advantages. In the first
variant of the system we take only those elements of the Clint-Hoare system
into account that are really necessary. This has as a consequence that the
definition of validity and the arguments in the soundness and completeness
proofs are as perspicuous as possible. Though straightforward proofs of
these properties for the second system must essentially be the same as the
ones for the first variant, they are bound to be obscured through all ad-
ditional details which we have to deal with. The way we handle this problem

is to separate the "essential proof" from the "additional details".

The rules and axioms in %he second system are just like the ones in
other Hoare-like systems, and we can combine these into one system quite
easily. Using the validity definition for the second variant of the system,
as given in this report, it must be possible. to combine the results stated
here with analogous results concerning other language constructs (such as
while statements, recursive procedures and the like; cf. APT [1], APT &

DE BAKKER [2], DE BAKKER [4]).

2. SYNTAX

We use the following classes of symbols:

Var, the (infinite) class of variables with typical elements x,y,z. We
assume this class to be ordered
Lvax, the class of label variables with typical element L
FAym = {ful,...,fum}, the class of function symbols. We denote the arity
of fu, by arf,
i i
Rsym = {rel,...,ren}, the class of relation symbols. The arity of re, is

denoted by arr, .

Next, using a self-explanatory variant of BNF, we define the classes
Bexjp (boolean expressions) with typical element b, EXp (expressions) with
typical elements s,t, Stat (statements) with typical element A, and Prog

(programs) with typical element S:

Bexp b::= truelblvbzljblrel(sl,...,sarr)I...lren(sl,...,sarrn)
Exp s::= xlful(sl,...,sarfl)l...lfum(sl,...,sarfm)

Stat Aa::= x:=sl(A1;A2)|i£_b then A, else A, fi|goto L

Prog S::= L:AlL:A;S

with the additional requirement: if Ll:Al;...;Ln:An is a

program, then all labels Li are different.

The symbols fui and re, are the primitive function and relation sym-
bols. We did not specify them further, because we do not wish to go into
details concerning the basic calculations our programs S can perform.

Rather do we want to describe the way programs specify more complex calcula-

tions using these primitives as building blocks.

The clause (A,;A,) in thﬁ definition of Stat deserves some comment. It
is usual to omit parentheses in cases like this one, thus admitting the
grammar to be ambiguous. In general there is no problem there, because the
meaning of, say (AI;AZ);A3 and Al;(A2;A3) will be the same. Of course this
holds in our case too. However, complications show up in our definition of
the operational semantics. For instance, for the auxiliary semantic function

Comp the equality
Comp((Al;A2);A3) = Comp(Al;(Az;A3))

does not hold.

Putting parentheses all over the place is tedious though. We therefore
use the convention that the operator " ; " associates to the right, which
means that A

A2;...;An should be read as (Al;(A ...;AnL.)).

17 2:(
Anticipating the deduction systems of chapters 6 and 8 we give the
definition of the syntactical class As4n (the assertions) with typical

elements p,q.
Assn p::= truelplvpzljplrel(sl,...,sarrl)|...lren(sl,...,sarrn)IBx[p]

It turns out that As41m is just a language L for the first order predicate
calculus, based on the classes F4ym and Rsym. Furthermore we see that EX)p
is exactly the class of the terms of L, and that Bexp is the set of all
quantifier free formulae of L.

The rest of this paragraph gives some notational conventions and use-
ful definitions. We use the symbol = to refer to syntactical identity, i.e.,
B = C means that B and C are the same sequence of symbols. The following

abbreviations will be used:

b, A b, = ﬂ(ﬂbl v sz)

1 2
by 2Dby = by Vb,
if b1 then b2 else b3 fi = (b1Ab2) v (blAbB)

false = Tltrue

n _
[Li:AiJi=1 = Lyj:Agi...;L A .

We define the property that a label L occurs in A inductively by

a) no label occurs in a statement of the form x:=s

b) L occurs in (Al;Az) and in'\if b then A

else A, fi, if either L occurs
= 1 2 =

in A1 or L occurs in A2
c) the only label occurring in goto L is L.

Let s = [L,:a,]7 ,. We say that
i"7i7i=1

+) L is declared in S if L Li for some i (1 £ i £ n)
+) L occurs in S if either L is declared in S or L occurs in some Ai
(1 £1i £ n)

+) S is normal if all labels occurring in S are declared in S.

3. OPERATIONAL SEMANTICS

In our semantics functions will be used abundantly. Often these func-
tions will be of higher order, which means that they have functions as
arguments and/or values. In order to keep our notation as clear as possible
we first state some conventions on this point.

a) The class of all functions with domain A and range B will be denoted
by (A > B)

b) The class of all partial functions with domain A and range B will be
denoted by (A part, B)

c) The convention will be used that " - " associates to the right. For
example, A > B - C must be read as A -+ (B > C)

d) We will in general omit parentheses around arguments, using the conven-
tion that function application associates to the left. Thus, assuming
fe (A>-B~>C~>D), a€ A, be B, c e C, for some A,B,C and D, the
entity ((£(a)) (b)) (c) can be written as fabc

e) The above convention has the following exception: every syntactic entity
used as an argument will be enclosed in [*]-type brackets. This is done
to provide a clear distinction between the object language of chapter 2

and the language used to denote the semantic objects.

As a starting point of our semantical considerations we first discuss
the meaning given to the symbols in FAym and R4ym. An interpretation 1 of
the primitive symbols is an (m+n+l)-tuple <D,£21,...,fu 1X€ys... X8 >,

where

D is a non-empty domain,>
EEi is a function in (Darfi -+ D), for ib'= 1,...,m, and

r

. . arxr; .
re, is a relation ¢ D "1 (i =1,...,n).

All semantic functions to be defined will depend on an underlying
interpretation of the primitive symbols, though the notation we use won't
show this dependence. For instance, the function giving the meaning of the
expressions will be denoted by V, instead of UI or something like that.

We now choose an arbitrary interpretation I and assume this inter-
pretation to remain fixed for the rest of this paper (unless we explicitly

state otherwise).

A state is a valuation of the variables from Var in our domain of
interpretation D. The set of all states is denoted by X, with typical ele-
ment o. In principle the meaning of a statement will be a partial function
from states to states. The function is partial, due to the possibility of
nonterminating computations. We consider it useful not to allow partial
functions and therefore include the undefined state L in Z. This leads to

the following definition:
I = (Var - D) u {L}.

We denote the set of all defined states I i.e. L. = (Var > D).

o' 0
Let d € D. A variant o{d/x} of a state ¢ is a state o' differing from

o only in the variable x, or explicitly

1, if o=l and otherwise
of{d/x}= olyl if x # vy

0'620 such that o'[y] = {

d if x = y.

The next syntactic classes to be handled are Bexp and Exp. We will

define inductively the semantic functions

V: Exp -~ Iy > D
W: Bexp - ZO ~ {ff,tt}.

Note that V[s]o, and W[b]o are not defined for o=l.

DEFINITION OF V.
VIxlo = ol x]
U[fui(sl,...,sarfi)ﬂo = fEi(Vﬂslﬂc""'V[Sarfiﬂc)'

DEFINITION OF W.

W[truelo = tt
umb1Vb2Bo = tt, if WHblﬂo = tt or umbzﬂo = tt, and ff otherwise
Wl lo = tt, if W[b]lo = ££f, and ff otherwise

Itt, if <Vﬂslﬂo,...,Vﬂ

lo> e re;
Wﬂrei(sl,...,sarri)ﬂo = 1

S .
arrj

ff, otherwise.

The semantic definitions given above are basic in the sense that they
will be the same for the denotational semantics. We now turn to the opera-
tional semantics proper.

We want to define the meaning of a statement A as a function that,
given an initial state 0 as an argument, yields a so called computation
sequence T. Such a computation sequence is a possibly infinite row of
states from I, the elements of which can be viewed as the successive inter-
mediate states produced by evaluation of the statement A starting in initial
state 0. The semantic function that maps statements on their meaning in the
above sense will be called Comp.

In order to be able to handle these computation sequences, we present

the following definitions:

a) (computation sequences)

+ A
YL 1is the class of all non-empty finite sequences <o ,...,0n> for some

0
n =2 0, such that oi € L for i =0,1,...,n

Zw is the class of all infinite sequences <oo,cl,...>, such that oi € L

for all i e N

Zm, with typical element 1, is defined through 37 = Z+ v .

b) (concatenation)

® . n X
Let Tl,T € . . The concatenation of T, and T2, notation Tl T is

2 1
defined by

2’

+
1) if T1 = <00,...,on> € Z) and T, = <o',...,c£> € Z+ then
TnT = <0, 70,0 ,O",...,O">€Z+ K
1 2 0 n’ 0 m :
2) if Ty = <00,...,on> € I and T, = <06,0i,...> e ¥ then
TlnTz = <oo,01,...,on,06,o',...> e ¥
. w _
3) if 11 € Y then Tl 12 = 11.

c) (k=function)

The function k € (Zco -+ I) is defined by

1, iftex®
k(t) = {
c_,

+
if T {Onjeees0_ > € L .
o’ "“n

There is a last remark to be made before we give an exact definition
of Comp. We must be aware of the fact that A can contain substatements of
the form goto L, and we should have a way to get to know how evaluation of
A proceeds once such a substatement is reached. We therefore supply the
function Comp with an extra argument, namely an element of Prog, meant to
provide the "declaration" of the labels occurring in A. Comp will then have

the following functionality:
Comp: Prog x Stat — r B2EE, 5%

and the computation sequence Comp[<S,A>]c is meant to be the row of inter-
mediate states appearing during evaluation of A starting in state o, where

the labels are defined by the program S.

DEFINITION (Comp) .
aA. Compl[<s,a>]o = <1> if o=L
B. Compl[<s,ar>]o for ¢ € I, is defined recursively by

0
1. Comp[<s,x:=s>]c = <o{U[s]o/x}>

<0>nC0mp|[<S,A1>]]0, if Wlblo = tt
2. Comp[<s, if bthen A, else A, fi>]o =
s P R 2B B o n ,
<g> Comp|[<s,A2>]]o, if Wlblo = ££
n . _ n
<o> Compl<s,n ;A i...A >Jo, if s=[L A T _,,
3. Compl[<s, goto L>]o = and L = L, for some i, 1 <i <n

undefined, otherwise
4. Compl<s, (x:=s;A')>]o = <0{V[[s]]0/x}>nC0mp[[<S,A'>]] (c{V[slo/x})
5. Compl<s, ((a";a™);a")>Jo = <o>"Compl<s, (a"; (a";a")) >]o

6. Compl<s, (if b then A" else A™ fi;A')>]o =
I
J’<c>nCompII<s, (a";a")>Jo, if Wiblo

tt

ff

]

1<o>nC0mp[[<S, (am; A")>]o, if Wblo
7. Compl<s, (goto L;A')>]o = <o>nC0mp|I<S,goto >]o.

Some remarks on this definition will be useful. This style of defining
is taken from COOK [6]. The definition should be viewed as a method for
stepwise generating computation sequences. Each step will consist of replac-
ing an occurrence of some expression Comp[<S,A>]o using a rule from the
definition. The rule to be applied depends on the form of A and is in
fact uniquely determined by A. It is possible that this process won't termin-
ate. In that case an element 1 of I will be generated. However this T is
well defined in the sense that every member of it is precisely determined.

The difficulties that arise by allowing goto-statements in the language
are reflected in clauses 4 to 7 of the definition. The problem is that
Compﬂ<S,(A1;A2)>Ho cannot be defined easily in terms of Compﬂ<s,A1>] and

Compﬂ<S,A2>], because evaluation of A, may terminate through execution of

1

a substatement which is a jump out of A,. The solution given here is to de-

1
compose a statement (Al;A2)’ using rule 5 or 6, as long as it remains un-
clear whether an assignment or a jump has to be executed first. When this
has become known, rule 4 or 7 can be applied. The extra states <¢> which

are added in the right-hand sides of clauses 2,5,6 and 7 are strictly speak-
ing superfluous. They are introduced in order to be able to use induction
in the proof of lemma 5.2 in a more elegant way. Note however that the <o>

added in rule 3 is necessary, because we want Comp[<L:goto L, goto L>Jo to

+
be equal to <0,0,...> € Zw, not to <o> € ¥ .
Finally, from the definition it can be seen that the following holds:
if all labels in A and S are declared in S, then Comp[<S,A>]c is defined

for all o.

We close this chapter by defining the operational meaning O[S] for
each program S in P10g. This meaning will be a state transformation, i.e.
an element of (! » %). The state O0[S]c is meant to be the last element of
the computation sequence T, generated by evaluation of S starting in state

0. More precisely:

10

DEFINITION (0). The function Q has functionality

0: Prog - ¢ B2XE, 5
and is defined by

Ols]o = K(Compﬂ<s,A1;...An>]c),

if s = [L,:a, 10 .
i*iTi=1

4. DENOTATIONAL SEMANTICS

We now give semantical definitions in the style of SCOTT & STRACHEY
[9], with additions (due to STRACHEY & WADSWORTH [11] among others) to
accomodate the peculiarities that goto-statements entail. The mathematical
concepts used in these definitions are summarized below, so that we will be
able to refer to them later on. Furthermore it can serve as a very concise
introduction for those who are not yet acquainted with it. More details can

be found in STOY [10] for instance.

1. A pair <C,E} is called a complete partial order (or a cpo) iff C is a
non-empty set and E_a partial order (i.e. a relation that is reflexive,
transitive and anti-symmetric) such that
a) C contains a smallest element, called bottom and written as 1_ or

C
just L, i.e. Vo e C: L L ¢

b) Every sequence cy E_cz L ... of elements from C (called a chain,
o]
notation <c,>, or <c,>,) has a least upper bound U c,, satisfying
ii=1 ii i i
a) Ve,: c, C U c, (upper bound)
i* i =3 73

B) Vd e C: [(Ve,: ¢. C d) =Uc, C d] (the least one).
1 1 — i 1 —

2. I as defined in the previous chapter, supplied with partial order E!

defined by
oL o ¢ (o=0'V o=1)

is a cpo. A cpo with partial order defined this way is called discrete.

11

3. Let A and B be cpo's, and £ € (A - B)
a) f is called monotonic iff Va,b € A: aL b= fal fb
b) f is called strict iff f1 = 1. The class of all strict functions from
A to B will be denoted by (A > B)
c) £ is called continuous iff f is monotonic and for every chain <ai>i
in A, we have f(Q‘ai) = g (fai). The class of all continuous functions

i _
in (A + B) will be denoted by La - BI.

4. Let A and B be cpo's. Then [A -+ B] is a cpo, if order, bottom and lub
are defined by
a) fC g+ Va e A: fal ga

[asB] = @i

c) if <f,>, is a chain then U £, = ja-ld (f.a).
iTi ;i 7 i

b) 1

5. Let Ai be a cpo for i = 1,...,n. Then Alx"'XAn is a cpo, if order,

bottom and lub are defined by

a) <ayre--sa > E_<ai,...,a£> iff a; C ai fori=1,...,n

b) lA1X...XA = <l,...,Ll>

c) if <a(i),...,a(i)>. is a chain, then U(<a;l),...,aél)>) =
i

_ (1) (i
= dﬁ a, ,...,gan >,

6. Let A be a cpo. Every continuous function f € [A - Al has a least fixed
point, written uf, with properties
a) f£(uf) = uf fixed point property, notation fpp
b) Vx € Alf(x) C x = uf[C x] least fixed point property (1fp)
€) e =U et (1), with £1(1) defined by £0(1) = 1, £ () = (et w)).

We now discuss the denotational semantics for statements from Stat.
Again we are faced with problems about what to do with substatements of the
form goto L. In the operational semantics this was solved by giving Comp
n

an extra argument S = I:LJ._:AJ._]:L which was used in essence to associate

=1
with each label Li the statement Ai;...;An. The meaning of gggg_Li was
practically the same as the meaning of Ai;...;An, which could be reduced
to a state transformation (i.e. K<>C0mpﬂ<S,Ai;...;An>ﬂ, always a strict
function). This function, applied to a state ¢ yields a final state o',
which is the result of evaluation of the statement Ai;...;An. In other

words, o' is the result of evaluation of the rest of the program which will

12

be executed after goto Li has been evaluated.

The denotational semantics uses the same approach but in a more abstract
way. Instead of giving for each label a program text that specifies a state
transformation, we now provide this transformation directly. This is-orga-
nized as follows: the semantic function N is given an extra argument y, cal-
led an enyironment, which is a function from Lvat to (X +s Z). In the defi-
nition of N we then will have a clause like N[goto L]y = y[L]. (How this
YIL] is obtained from the declaration of L in a program S will be discussed
later when we come to define the meaning of programs.)

Thus we see that the meaning y[L] of the statement goto L in an environ-
ment y is a state transformation that doesn't describe the evaluation of
goto L only, but also of the rest of the program to be evaluated once goto L
has been executed. But then the same must be true for an arbitrary statement
A as well. In the operational semantics care was taken of this, because the
text of the rest of the program to be evaluated remained available (see
clauses 4-6 in the definition of Comp). Here we will use an abstraction of
this idea resembling the approach of fhe goto statement. Instead of keeping
track of a text defining a state transformation, we supply this transforma-
tion as an extra argument of N. Such a transformation ¢ is called a contin-
uation, and it is meant to describe the effect of evaluation of the "rest
of the program", textually following the statement being defined. Summariz-
ing: if ¢ specifies how evaluation of the program proceeds once the right-
hand end of A has been réached, and if y specifies for every label L how
evaluation of the program proceeds once we have reached L, then we want
N[Alvé to specify the evaluation of the program starting from the left-hand
end of A.

This approach also solves the problem how to define the meaning of
(Al;Azl in terms of the meanings of A, and A,. The meaning Nﬂ(Al;Az)By¢ of
(Al;A2) in environment y with céntinuation ¢, will be equal to the meaning
of A1 in environment y, but now with a new continuation ¢'. For if evalua-
tion of A1 terminates normally (i.e. not through execution of a goto state-
ment), then afterwards the statement A2 has to be evaluated. Thus the con-
tinuation ¢' must be equal to the meaning of A2 in environment y with con-

tinuation ¢.

13

The exact definition of N will use some new domains which will be

defined now:
a) M = (Z +s %) with typical elements ¢,y, is the domain of the continua-

b)

tions. We use thé convention that continuations appearing as an argument
of N will be enclosed in curly brackets if that improves readability.

I' = (Lvar - M) with typical element Yy, is the domain of the environments.
We define a variant y{¢/L} of an environment the same way as we did in
the case of states: (Y{¢/LHIL'] = y[L] if L' Z L, and ¢ if L' = L. We
also use a simultaneous version: (y{¢i/Li}§=1)ﬂLﬂ = y[1] if . # L, for
i=1,...,n, and ¢i if L = Li (when we use such a construct, all Li will

be different).

DEFINITION (N). The semantic function N with functionality

N: Stat T > M > M

is defined inductively by

L : ., if o=1
Nl x:=s]vy¢o =
¢ (o{V[slo/x}), otherwise,

NI (Al;Az)]]wa = Ma,lv{Ma,lv¢}a,
1 , if o=1

N[ifb thena

, elsea, filvéo = N[[A1]]y¢c, if o#2L and W[b]o = tt

NﬂAzﬂy¢0, if o#L and W[b]o = ff,

Nl goto L]yéo = y[L]o.

The claim on the functionality of N in the above definition must be

justified. It is though easy to show that VA ¢ Stat Vy e T V¢ € M:

Nlalyo € M.

The following lemma holds:

LEMMA 4.1. For all A ¢ Stat, and all vy € T we have

n+1

AP seen b > NIAD (Y9, /L, 3T Do, e TMT > .

PROOF. Straightforward by induction on the structure of A. 0

14

We now turn to the definition of the meaning of programs. The semantic
function M: Prog - T > M will be used for this purpose.

A program S = LLi:Ai]?=1 can be considered as a combination of a
statement Al;...;An and a definition of the labels Ll""’Ln' The state
M[[Li:Ai]§=1HYG is meant to be the final state reached by evaluation of
Al;...;An’starting in initial state o, where the labels Li are defined by

S (for i = 1,...,n) and all other labels by Y.

DEFINITON (M). Mﬂ[Li:Ai]§=1BY = NﬂAl;...;Anﬂ(Y{¢i/Li}?=1){kc-c}, where

n n
<¢1'7'°'¢n> = u[k<¢1,...,wn>.<NﬂAiﬂ(Y{wj/Lj}j=1)wi+1>i=1],

where wn+1 = AC°o0.

REMARKS.

a) There is an assumption in the above definition that has to be justified.
We have to show that the operator of which <¢1,...,¢n> should be the
least fixed'point is a continuous one, i.e. a member of (M* > M*]. In
that case this least fixed point exists. The fact that this transforma-
tion is continuous can be proved using lemma 4.1.

b) The function ¢i can intuitively be seen as the state transformation
defined by evaluation of Ai;...;An where the labels are defined by S
and y. This might be clarified as follows. By fpp we have

o = Malyle, /8,37) {howo}
and

n
M2, 1 orie,/n] e, =

©
I

n n
NﬂAn_lﬂ(Y{¢i/Li}i=1){NﬂAnﬂ(Y{¢i/Li}i=1){Ao-o}} =
n
= Nla__ ;a0 (vl /0, ¥,) {Ao-a}.
Repeating this argument we get

n - B
9, = NﬂAi;---;Anﬂ(Y{¢j/Lj}j=1){A0'o} (i=1,...,n).

15

Moreover, these ¢i are precisely the values which we would expect to

be associated with the labels L.
For later reference we state the following definitions and results.

LEMMA 4.2. Let S = [Li:Ai]?;l € Prog, let y € T and let ¢, be derived from

(k) (k

S and Y as in the definition of M. Also, let ¢i and vy be defined in-

ductively by:

(0)

¢, = oL fori=1,...,n
¢r(1]i)1 = \o-0 for k = 0,1,...
Y(k) = y{¢;k)/Lj}?=1 for k = 0,1,...
o N~ Ma Iy ® e rori-t,.m
4.2.1. ¢i_|]_<]¢i (l—l,..-ln).

PROOF. This is a straightforward consequence of facts 5 and 6c from the

theoretical remarks in the beginning of this chapter. [

n
4.2.2. ¢, = Nla;i...;a.] (y{¢j/Lj}j=1){)\c-0}.
PROOF. See remark b) above. [
4.2.3. 68 CMag..oa vy ool @ sisa k=120,

PROOF. Induction on k. The basic step (k=1) can be proved using the fact
that A¢+N[Alyé is monotonic and that NIIAi; .. .An]] Yo = NIIAi]] y{NI[Ai+1; .o ;An]] Yol.
The induction step is proved as follows:

(k)
i

(k=1) , (k-1) _
N[2,; Ty Oi41 =

¢

(k-1) (k-2) , (k-2)
VPN A (Y N DR T IR CON

Now we use lemma 4.1, and the fact that continuity implies monotonicity to

16

k-2 k-2 k-1 k-1 .
show that N[Ai+1ﬂy()¢;+2) E_NﬂAi+1ﬂy()¢£+2) and thus, using 4.1
again:
’ (k-1) (k-1) (k-1), _
#) C Nla, Ty {N[a, Iy $i4n 1=

HY(k—l) (k-l)‘

= Nl2;:a 40

i+l

Repeating the argument we get
(k) (k-1) _
¢, E NI CG.tasa;)i-aa)iB) Dy {Ageo} =
L i . . (k-1) .
= Nl[Ai,Ai+1,...,An]]y {Ao-0},

where the last identity is easy to prove from the definition of N. [J

We will close this chapter by taking another look at the meaning of
statements A. We saw that the function N[A] essentially yields a continua-
tion as a result. This result depends on a number of continuations, which
are supplied to N[A] either directly as an argument (the ¢ in N[A]y¢) or
implicitly through Yy, as meaning of the labels occurring in A. In the
literature (MILNE & STRACHEY [8]) a method called "continuation removal"
is described to dispose of the ¢ in the above formula, yielding a more
direct approach: the meaning of a statemen; is a state transformation
instead of a continuation transformation. This has only been done for
statements A which didn't contain goto statements as substatements.

We now take one further step: we showhow todeal with goto-substatements.
We will define a function A giving the meaning of a statement A as a

(total) function from ZO to ZO u (ZO x Lvan), such that
Alalo = o

means that evaluation of A terminates normally in state o' (i.e. not as

the result of an execution of a goto statemeht), and
Alalo = <o',L>

means that evaluation of A terminates by execution of a substatement goto L

17

in state o'.

Put another way, a statement A containing goto-substatements can be
viewed as a statement with one entry point (where evaluation of A starts),
but with several exit points, namely the normal exit point (the right-hand
end of the statement) and the special exit points (viz. the substatements
goto L). We call an exit point determined by a substatement goto L an
L-exit poiht. The function A then specifies for every initial state ¢ the
kind of exit point which will be reached and the final state in which this
exit point will be reached. This is a formalization of the considerations
by ARBIB & ALAGIC [3].

The function A, applied to a statement A and an initial state o, thus
yields a final state o' which is the result of evaluation of A, and not of
evaluation of A followed by some continuation (as was the case in N[A]y¢o).
Since in the deduction systems to be discussed later we deal with formulae
{p}a{qg}, where q is a predicate on the final state at the normal exit point,
we can expect that the function A will be more useful than N (see chapter
6).

We now give the definition of A.

DEFINITION (A). The function A with functionalityA: Stat - I -+ZOLJ(ZO><LUan)

0
is inductively defined by

Alx:=s]o = o{V[s]o/x}

AI[AZ]] (A[[Al]lc) , if AI[Al]]cr € X
Al (AI;AZ)]]G =

AﬂAlﬂc , otherwise
AﬂAlﬂo, if WlbJo = tt
Alif b then A, else A, fiJo =
AI[AZ]]G, if Wlplo = ££

Al goto L]o = <o,L>.

We have the following lemma on the relation between A and N.

LEMMA 4.3.
1°. Alalo

o' <= Vy e T V¢ € M: N[a]ly¢o = ¢o°
2°. Alalo = <o',L> = Vy € T V¢ ¢ M: N[alyoo = y[L]o'.

18

PROOF. The =-parts of 1O and 2° are straightforward by structural induction.
The <-parts can be proven by contradiction. For instance, proving 2° e,
suppose Vy € T V¢ € M: N[aly¢o = y[L]lo', and AlA]oc # <o',L>. Then we have
two possibilities.] ,

The first one is A[a]o = <o",L'> (where o' # o" or L. Z L') and thus,
using 20 nom, Vy e T V¢ € M: N[Alyoo = y[L']o". Now choose y such that
yiL]o" # f[L'Ho" and we have a contradiction.

The other possibility is A[A]c = o". Then we have (1° ne=m)

Vy € T V¢ € M: N[A]lydo = ¢0", and we reach a contradiction by choosing ¥y
and ¢ such that y[LJo' # ¢o". 0O

5. OPERATIONAL AND DENOTATIONAL SEMANTICS ARE EQUIVALENT

Our aim in this chapter is to prove the following

THEOREM 5.1. Let S = [Li:Ai]§=1‘be a program. If S is normal (i.e. all

labels in S are declared) then
Vy € T: 0[s] = M[s]v.
PROOF. We first prove O[s] C M[s]y, using the following

LEMMA 5.2. Let S = [Li:AiJ2=1 € Prog, Yy € T, and let ¢i be derived from S
and y as in the definition of M. Let A € Stat and let all labels occurring

in A and S be declared in S. Then
Vo € I: k(Compl<s,n>]o) C N[a] (Y{d)i/Li}l;:l){)\o'c}o eeo (%)

PROOF of the lemma. Because all labels are declared in S, it is impossible

that Comp[<s,A>]c be undefined. If o=L, or if o#lL and Comp[<s,A>]o ¢ v,
then the left-hand side of (%) is equal to L, and the inequality holds. So
let us assume that ozL and Comp[<s,a>Jo € zt. we prove (*) using induction
on the length of the computation sequence Comp[<S,A>]c (in fact, assuming
that this computation sequence is finite, we can prove equality in (%)).
"We distinguish several cases, depending on the structure of A. We shall

abbreviate Y{¢i/Li}§=1 to ¥.

19

a) A = x:=s. Then the left-hand side of (*) is equal to o{V[s]o/x}, and
so is the right-hand side.

tt (the other case can be

b) A = if b then A, else A, fi. Assume W[b]o

1 2
proved analogously). Then k (Compl<s,a>]o)

K (<c>nC0mpl[<S,A1>]] 0) . .Now
the length of Comp[<S,AI>]o is clearly one less than the length of
Compl <s,a>]o, so we can apply the induction hypothesis, yielding

k (Comp[<s,A>]o) = K(Comp[[<s,A1>]]o) cC
c NIIAllh_({)\o-o}c = N[aly{ro+clo.

c) A = goto L. Because all labels in A are defined in S, we have L = Lj for

some j. Thus

< (Comp[<L :a,]Iil=1 ,A>o) =

= r<(<o>”Comp[[<s,Aj;...;An>]]o) cC (ind. hyp.)
C NIIAj;...;An]H{Ao-o}o = 4 (4.2.2)
= ¢j0¢—-\—(|[1-j]]0 =

= N[goto Ljﬂ§{kc'0}0.
d) A = (x:=s;A").

k (Comp[<s,a>]o) = k(Compl<s,a'>] (c{V[s]o/x})) C (ind.)
C NMa'ly{ro-o} (c{U[slo/x}) = (def. N)
= N[x:=s]Y{M2a'1y{ c-0}}o = (def. N)

= Nﬂ(x:=s;A')ﬂ;{lU'0}O.

e) A = ((Al;Az);A')
k (Comp[<s,a>]0) = «(Comp[<s, (a,; (A,;n"))>]o) T (ind.)
C M a; (ayia')]y{roeo}o =
= N[((a;;2,) ;a")]¥{ro-0}0.
f) A= (1f b then A1 else A2 fi;A'). We suppose, without loss of generality,

that W[b]Jo = tt. Then

20

k(Compl <s,a>]0) = k(Compl<s,n ;a'>]o) C (ind. hyp.)

C Ma,;a'ly{xo-olo = (def. N)
= M[a,J7{Ma'17{r0+0}}o = | (det. Ny
- M1if b then A, else a, £l ¥{Ma'T7{A0+0}}o=

= N[if b then A, else a, _fi;A')]]?{Ac-o}o.

g) A = (goto L;A').

k (Comp[<s,a>]o) = k(Comp[<s, goto L>]o) C (ind. hyp.)

C N[goto L]y{Xo-c}o = (def. N)
= Nl goto LIY{N[A']¥{Ac+c}}0 = (def. N)

M (goto L;a*)]y{Ac+c}o.
This ends the proof of lemma 5.2. [J

We now use the lemma to prove 0L s] C M[s]y in the following way. Choose

Yy € T and ¢ € I. By definition of 0 we have
Ol slo = K(Comp[<s,A1;...;An>]o).

Now all labels in S are declared and thus the same holds for Al;...;An. The

lemma then gives us
n
k(Comp[<S,a,5...;a >lo) € Ma,;...;a] (Y{d)i/Li}i:l){?\o-c}\c,

where the ¢i are obtained from S and Yy as in the definition of M. But, for

those ¢., the definition of M gives us
. n .
NﬂAl;---;Anﬂ(Y{¢i/Li}i=1){Ao-o}o = M s]yo

which éives us the desired result.

For the proof of M[sS]y C 0[s], we again use a lemma:

LEMMA 5.3. Let S = [Li:Ai]?=1 € Prog be normal. Let y € T and k € N. Let

‘¢i,¢;k) and y(k) be derived from S and Yy as in lemma 4.2. Then, for all

A e Stat such that all labels in A are declared in S, and for all o € %,

21

we have
NLaly ® {ro-0}o T « (Compl<s,a>] o) e ()

PROOF of the lemma. We use induction on the entity <k,c[a]> with lexico-

graphic ordering< . We don't take c[A] to be the obvious complexity of A.
This wouldn't work because of the form of the definition of Comp. For in-
stance, in rule 5 the statement (A"; (A™;A')) occurring in the right-hand
side of the rule would be as complex, according to the usual complexity
measure, as ((A";A"™);A') in the left-hand side.

We define c[A] inductively by: c[x:=s] = c[goto L]=1;
cﬁAl;Azﬂ = 2c[A1B+cHA

I; clif b then A, else A, £fi] = cﬁA1B+cﬂA2H.

2 1
x:=s. Then N[x:=sly X {Ac-c}o = k(Compl<s,a>]o) = o{V[slo/x}.

a) A
b) A
Wlb]lo = tt. Then the left-hand side of (+) equals NﬂAlﬂy(k){lo-o}o, and

if b then A1 else A2 fi. Without loss of generality, we assume

the right-hand side equals K(Compﬂ<SJH?Bc). Now, because <k,cﬂA1ﬂ> <
{ <k,c[a]l>, the desired result follows from the induction hypothesis.
c) A = goto L. From the assumptions of the lemma, we infer that L = Li for

some i. Now:
Nl goto Li]]y(k){xo-o}o = (Y(k))[[Li]lc = ¢i(k)¢ C (4.2.3)
(k-1) .
C M2 ;...;n Ty {xo+olo.

Also <k—1,c[Ai;...Anﬂ> < <k,c[goto Li]>, so we can apply the induction

hypothesis
. . (k-1) .
NI[Ai,...,An]]Y {Xoeo}o C
C K(CompII<S,Ai;...;An>]]o) = (def. Comp)
= k (Comp[<s,goto Li>ﬂ0).
d) A = (x:=s;A'").

Nﬂ(x:=s;A')ﬂY(k){Ac°o}o =
= NIIA']]Y(k)'{Ac-c}(o{V[[s]]c/x}) cC (c[a'] < clx:=s;a'])

C «(Compl<s,n'>] (c{V[slo/x}))

I

I

k (Comp[<S, (x:=s;A")>]0).

22

e) A = ((a;;A,);A"). We have N[-((a,;8,):a")] = N[(a,;(a,;a"))] and
cﬂ(Al;(AZ;A'))H < cﬂ((Al;Az);A')ﬂ. The induction hypothesis thus yields

NI (Ag; (Aé;A'))]]Y(k){kc-o}o C

C «(Compl<s, (a,; (,;2a"))>]o) =

k(Compl <s, ((a,;n,);a")>]o).

f) A = (if b then A1 else A2 fi;A'). Without loss of generality, we assume

that W[b]o = tt. We then have

NHABY(k){Ao-c}o = N[[Al;A']]Y(k){Xo-c}o C (ind.hyp.)

C «(Compl[<s,A, ;A'>]o) = (Comp[<s,a>]o).

1;
g) A = (goto L;A').

NI (goto L;A')HY(k){Ad-c}c = M goto Lﬂy(k){ko-o}o C (ind. hyp.)

C k(Comp[<s,goto L>]o) = k(Compl<s,goto L;A'>]0).
This concludes the proof of lemma 5.3. [J
We now are able to prove M[s]y C 0O[s].

Misly = N[a :...;a] (Y{¢i/Li}ril=1){>\o-o} =
= NﬂAl;...;Anﬂ(Y{U ¢ik)/Li}2=1){lc'o} = (lemma 4.1)

(k) n
/L.}i=1){kc-c}).

=§ (NIIAl;...;An]] (Y{¢i i

Now, taking A = A ;An,the assumptions of lemma 5.3 are satisfied. Thus

1;...
we can conclude

(k) -

Vk € IN: N[[Al;...;An]]' (‘Y{(bi /Li};l:l){XO"G} E K ©° Comp|I<S,A1;...;An>]],

and thus

L (k) n . o .
%{J N[2ags..sa Do, /0,3, _){Xo+0} T ko Compl<s,n 5. .58 >].
But also, by definition of 0:
ko Compl<s,a;...;a > = O[sl,

which completes the proof. [J

23

Note that theorem 5.1 is independent of the interpretation of the
primitive relation and function symbols chosen, in the sense that the theo-

rem holds for all underlying interpretations I.-

6. DEDUCTION SYSTEM: FIRST VARIANT

In [7] HOARE proposed to attach meanings to programs by means of a
proof system which can be used to derive properties of programs. These
properties. are described by (partial) correctness formulae, essentially
having the form {p}S{qg}. Such a construct has informally the following
meaning: if evaiuation of S terminates, starting from an initial state in
which p (the precondition) holds, then in the final state g (the postcondi-
tion) holds.

We start with a discussion of these conditions p, which in the sequel
will be called assertions. The class of all assertions is As4n, with

typical elements p,g. We define:

p::= true|p1Vp2|7p|re1(sl,...,s)l...[ren(sl,...,sarrn)|3x[p].

arr
1

We define false, PlAPZ’ p13p2 and if b then Py else P, £fi as in chapter 2.

The assertions are meant to describe predicates on states. The semantic

function giving the meaning of assertions is T and has functionality
T: Assn ~ Zy {££,tt}.

T is defined inductively by:

a) Tltruelo = tt

b) Tﬂprpzﬂd = tt if Tﬂplﬂo = t? or Tﬂpzﬂc = tt, and ff otherwise
c) Tl plo = tt if Tlplo = ££, and ff otherwise

d) Tﬂrei(sl,...,sarri)ﬂo = tt if <Vﬂs1]c,...,Vﬁs

> -
arriﬂo € re,, and ff other

wise

e) T[3x[pllo = tt if there exists an element d in our domain of interpreta-
tion D such that T[p] (c{d/x}) = tt, and £f otherwise.

Note that T depends on the underlying interpretation I, because V does (d)),

and also through clause e) of the definition.

24

Next some definitions and results on substitution. We say that an
occurrence of a variable X in an assertion p is bound, if this occurrence
is within a sub-assertion of the formfﬂx[p']. An occurrence of x in an
assertion p is called free if it is not bound.

The result of substituting all (free) occurrences of x in s and p by
t, will be denoted by slt/x] and plt/x] respectively. The definition of
slt/x] is
a) ylt/x] = t if y = x and y otherwise ,

b) (fui(sl,...,sarfi))[t/x] = fui(sl[t/x],...,sarfi[t/x]).

Using this definition plt/x] can be defined by

a) truelt/x] = true '

b) (plva)[t/x] = pl[t/x] v p2[t/x]

c) (Mp)lt/x] = T(plt/x])

4d) (rei(sl,...,s

) Le/x] = rei(sl[t/x],...,sa ri[t/x])

arry r

(3ylpl, if x = y

Jylplt/x]], if x Z y and y does not occur in t

e) (Fylphlt/x] = ¢3zlplz/yIlt/x1] if'x Z v and y occurs in t, where z
is the first variable in Vat such that z % x,

z doesn't occur in t, z doesn't occur free in p.

The following results on substitution will be useful.

LEMMA 6.1,

a) If x doesn't occur in s then Vd € D: V[slo = V[s] (c{da/x})

b) if x doesn't occur free in p then VY4 € D: Tlplo = Tlpl (c{d/x})
c) Wslt/xJlo = V[s] (o{V[t]lo/x})

d) Tlplt/x1lo = Tlpl (o{VItlo/x}).

i

PROOF. Straightforward by induction. We prove the hardest case of d), i.e.

where the assertion has the form Jy[pl. There are three cases.

1) v = x. T 3x[pllt/x]]o = T[3x[pllo=tt iff 3d ¢ D: T[p] (c{d/x}) = tt.
Now Tlpl (o{d/x}) = Tipl (c{V[t]lo/x}{d/x}), and therefore T[3Ixlplloc = tt,
iff 3d € D: Tlpl (c{V[tlo/x}{d/x}) = tt, and this is true whenever
Tl 3x[pdl (c{V[t]lo/x}) = tt.

2) vy Z x and y doesn't occur in t. T[3ylpl)[t/x1]o = TI3ylplt/x1]lo
iff 3d € D: Tlplt/x]] (c{d/y}) = tt (ind. hyp.)

Il

tt

25

iff 3d € D: Tlpl (o{a/yHU t] (o{a/y} /x}) = tt (a))

iff 3d € D: Tlpl (c{V[t]lo/x}{d/y}) = tt

iff Tlpl (c{V[tlo/x}) = tt.

3) y Z x and y occurs in t. T[3ylpllt/x1]o = T[3zlplz/yIlt/x1]]c = (#)

where z Z x, z doesn't occur in t, z doesn't occur free in p.

Now (#) = tt iff 3d € D: T[plz/y1lt/x]] (c{d/z}) = tt (ind. hyp.)
' iff 3a e D:T[p] (ola/zH U tlo' /xHo"[x] /¥}) = tt,

where o' = o{d/z} and o" = o'{V[t]o'/x}. Now x Z z, so o"[2] = 4.

Furthermore z doesn't occur in t, so V[t]lo' = Ut (c{a/z}) = V[t]o.

Thus we get
(#) = tt iff 3d € D: T[pl (c{a/z}H V[t]o/x}{da/y}) = tt.

Because z doesn't occur in t, and y does, we have z Z y. Also we have

z Zxand y Z X, so
(#) = tt iff 3d € D: Tlpl (c{V[tlo/x}{a/y}{da/z}) = tt.

Because z doesn't occur free in p, we can use result b) of the lemma,

to get

(#) = tt iff 3d € D: Tlp] (c{V[t]o/x}{d/y}) = tt
iff T[3ylpll (c{V[t]o/x}) = tt. O

Having defined assertions and substitution, we now proceed to describe
how these notions are to be used in correctness formulae. A typical axiom

of our proof system will be the assignment axiom, roughly of the form
{pls/x]1}x:=s{p}.

This axiom can be justified by the following considerations. The
statement x:=s transforms an initial state o to a final state o' =co{V[s]o/x}.
Now suppose pls/x] is true in o, that is, T[pls/x]]loc = tt, or (lemma 6.1d)
Tlpl (c{Wlslo/x}) = tt. But o{V[s]o/x} is equal to the final state o', so
we have that p is true in ¢', which is what we wanted.

A rule of inference in the system will be the rule of composition,

stated informally

from {pl}Al{p2} and {pz}Az{p3} infer {Pl}Al;Az{pB}'

The justification of this rule goes somewhat like this. Say we start

26

evaluating A in state ¢ where P, is true. Now, after evaluation of A

1;A2' 1’

we have reached an intermediate state o' where (due to {pl}Al{pZ}) the as-

sertion P, holds. Evaluating A2 in state o' delivers a final state ¢" where
p, holds, for {pz}Az{p3} is true. Thus we have the desired result.

Another rule of inference is the rule of consequence:
from p,2p,, p;°p, and {pz}A{p3} infer {pl}A{p4},

which is obviously wvalid.

The fact that we allow goto statements in our language complicates
things. The problem becomes apparent if we take another look at the rule
of composition. For instance, if the first statement 9 in A = Al;A2 is
identical to goto L, then the justification of the rule as given above
doesn't apply anymore. After evaluation of Al’ the next statement to be
executed is not A2, as was assumed there. Complications are caused by the
fact that a statement A can have more than one exit point, namely the
normal exit point and the special L-exit points (cf. the discussion after
lemma 4.2).

We can maintain the rule of composition though, if we formulate the
meaning of the formula {pl}A{pz} somewhat differently, namely as follows:
if A is evaluated beginning in a state where <1 holds, and evaluation of A
terminates at the normal exit point of A, in state ¢', then P, holds in o'.

Now according to this informal validity definition the formula
{p} goto L {qg} eeo ()

would be valid for every assertion p and g, for evaluation of goto L always
terminates by "Jjumping away". However this brings up new problems. For

example, the formula

{true} Ll:x:=1; goto L2;L2:x:=x {x=0}

would now be derivable, by the following steps

1. {true} lex:=1b{x=1} (assignment)
2. {x=1} goto L, {x=0} #)

3. {x=0} L,:X:=X {x=0} (assignment)
4. {true} L :x:=1; goto L,; L,:x:=x {x=0} (composition) .

27

But clearly, after evaluation of Ll:x:=1; ggEg_Lz; L2:x:=x the postcondi-
tion x=1 holds.

These difficulties have been solved by CLINT & HOARE [5]. Their solu-
tion is in essence to put a restriction on the preconditions p allowed in
(#), and amounts to the following. Suppose we want to prove {p}S{qg}, where
S = L1:A1;...;Ln:An. Now assume we can find a list of label invariants
pl,...,pn.>These pi are assertions which we assume to be true every time
label Li is reached during execution of S, starting in initial state satis-
fying p. We now refine our notion of validity once more, and define wvalid-

ity (with respect to the invariants p; at Li for i = 1,...,n) informally as

follows:

The formula {p}A{q} is called valid, iff for every evaluation

of A the following holds: if p holds for the initial state, then
(%) either evaluation terminates at the normal exit point of A and

g holds, or evaluation terminates at an Li-exit point of A and

p; holds (for some i, 1 £ i < n).

One can see that, according to (%), the formulae {p} goto L; {q} are
no longer valid for all p. Validity holds however for all preconditions p

such that p 2 p;. In particular {pi} goto L, {false} is valid (i=1,...,n).

Notice also that the inference rules and the assignment axiom given earlier
remain valid according to (*).

Now if we can derive {pi}Ai{pi+1} using these rules and axioms, and
also the formulae {pj} ggEg_Lj {false}, then we know that {pi}Ai{pi+1} must
be valid according to (*). This means the following: if we consider evalua-
tion of Ai as a sub-statement of S = L :Al;...;Ln:An, starting at an initial

1

state for which p; holds, then we can infer from the validity of {pi}Ai{p }

i+l
that at the normal exit point P;q

holds, and that at every Lj—exit point
pj holds. In other words: when evaluation of Ai terminates because label L,
has been reached then the corresponding invariant pj must hold (1 < j < n).
But from this we can infer that {pl}S{pn+1} holds. For, consider an
evaluation of S with initial state satisfying Py and suppose that this
evaluation terminates. Then this evaluation can be split up in a finite

number of subsequent evaluations of sub-statements A , and since by the

28

above considerations we are assured that at all "links" labelled L. the
corresponding ihvariant pj holds we can infer that Poi1 is true when the
last evaluation of sub-statement An terminates (necessarily at the normal
exit point).

The above considerations suggest the following inference rule L5]:

- if we can derive {pi}Ai{p } (A1 =1,...,n) from the assumptions

i+1
{pj} goto Lj {false} (j = 1,...,n), then we may infer
{pl}leAli...;Ln:An{pn+1}.

Now the formula {true}s{x=0}, where S = L1:x:=1; goto L,; L,:x:=x (sc. the
above incorrect derivation) cannot be derived anymore, but a derivation of
{true}s{x=1} can be made straightforwardly (take p, = true, p, = x=1).

The inference rule given above leads to compact proofs but, as it stands,
is not so suitable for proof-theoretical considerations. Accordingly, we
shall now give a more tractable variant of the proof system. In chapter 8 we
shall give a formal justification of the above rule.

It can easily be seen that the assumptions {pj} SQEE.Lj {false}

(j =1,...,n) are introduced in the above inference rule only because our
proof system must be able to contain information on the label invariants p;
which are used in the proofs. The method that we apply is to take these in-
variants up in the formulae occurring in the proofs. Our correctness formulae

will look like
<L1:p1,...,Ln:pnlfp}A{q}>,

so the invariants p; corresponding to Li are supplied explicitly in our
formulae, instead of implicitly in the assumptions used in a proof. The in-
formal meaning of the above formula is the one as given by (*).

After this introduction the following definitions must be clear.

DEFINITION (Syntax of correctness formulae).
The class Invf (list of label invariants) with typical element D is defined
by

D::= L:plL:p,D

where it is required that if D = lepl,...,Ln:pn, then Li F4 Lj for i # j.

29

. n .
We write [Li'piji=1 instead of L :py,...,L :p .
We say (L:p) occurs in D (notation: (L:p) in D) iff L = Lj' p = pj and
n
= : y < j <n).
D = [Li.pi]i=1 for some j (1 < j < n)
The class Cont (correctness formulae) with typical element f is defined

by
“ f::= p|<D;{p}alql>| {p}siq}.
We write <D|{p}A{q}> instead of <D;{pla{gl}>.

DEFINITION (proof system H).

The axioms of H are given by the following schemes:

(A1) <D|{pls/x1}x:=s{p}>
(a2) <D|{p} goto L {falsel}>,
n
- - = -] < A
where D = [Li'pi]i=1' L = Lj’ P = py for some j (1 < j < n).
(A3) o3

where p is a valid assertion (i.e. Vo € I_: T[plo=tt).

0

The rules of inference have the form

fl""’fn

fn+1

("from fl""' and fn’ infer f ") and are given by the following schemes:

n+l

plezrp3ap4,<D|{PZ}A{93}>

(R1)
<D{{p1}A{p4}>

(R2)

{pl}S{p4}

) <p|{p, }alp,}>, <D[{p,}a'{p,}>
<D|{p1}A;A'{P3}>
<p|{prb}a{g}> <D|{pAbl}a'{q}>

(R4)

<D|{p}if b then A else A' fi {q}>

30

<p|{p }a {p,}>,...,<D|{p }a {p_, .}

n+1

(R5) -
{py Mo, 1 1o 4y}

- n
where D = [Li'Pi]i=1'

DEFINITION (normal pair, normal correctness formula, normal fragment of H).

A pair <D,A> is called normal if all labels in A occur in D.

A correctness formula f is called normal if either f is an assertion,

<D|{p}A{q}> and <D,A> is anormal pair, or f = {pl}S{g} and S is a

1

or £
normal program (i.e. all labels in S are declared).
The normal fragment of the proof system H, denoted by HN’ is the sys-

tem H restricted to normal formulae only.

DEFINITION (formal proof).
Let f ¢ Coan. A sequence f,,...,f with £, € Comr (i = 1,...,n) is called
1 n i
a formal proof of £ in H if
a) £ = £
n
b) for all fi with 1 £ i £ n the following holds:
either 1) fi is (an instance of) an axiom
or 2) there exist fil,...,fik e Corn with 1 < ij <i for 1 £3 <k,
such that
fil""'fi
£y

is (an instance of) a rule of inference.

We say that f is provable, notation F f, if there exists a formal proof of f.

The system defined above is dependent on the interpretation I of the
primitive relation and function symbols, because the axioms of (A3) are
determined by T, which function depends on I. We include all true assertions
aé axioms because we don't want to pay attention to deduction systems for
the assertions only. We want to focus on the rules which can be used to
prove properties of statements and programs. Also, in the proof of complete-
ness of our system ("every valid formula is provable") we don't want to be
‘hindered by deduction systems for the assertions which are possibly incom-

plete.

31

We now turn to the question of validity of correctness formulae (again
with respect to an interpretation I). We use the notation E f to denote
that £ is valid. An informal definition of the concept has been given in the
remarks preceding the definition of the deduction system. We will now form-
alize the ideas developed there. By now it must be clear that in the valid-
ity definition the semantic function A will be much easier in use than the
function N-(see the remarks preceding the definition of A at the end of

chapter 4).

DEFINITON (validity).
validity of a correctness formula f, notation E f, is defined by
a) E p iff Vo ¢ ZO: TMplo = tt
b) E <p|{p}a{q}> iff
Vo € ZO: Tlplo = tt =
[(ao' € 2y: Alalo=o' A Tlqlo'=tt) v
(Jo' € o 3(L:p') in D: A[A]o = <o',L> A T[p'Jo’ = tt)

c) E {p}s{q} iff Vy ¢ T Vo,0' € ZO: [(Tﬂpﬂo=tt A o' =Mslyo) = Tlglo' = tt].

In words this amounts to the following. An assertion p is valid if it
is true in all (defined) states. A formula {p}S{g} is valid, if evaluation
of S with initial state ¢ satisfying p, either doesn't terminate or term-
inates in final state ¢' for which g holds. The most complicated case is
£ = <p|{p}a{g}>. This f is valid if for every state ¢ satisfying p the fol-
lowing holds: if evaluation of A terminates normally in ¢' then we want g
to be true in ¢'; if evaluation terminates by a jump to some L in state o',
we want this L to be an Lj in D = [Li:pi]2=1, and the corresponding asser-

tion pj must be true in o'.

7. SOUNDNESS AND COMPLETENESS OF HN

In this chapter we will show that the deduction system is sound
("F £ = E £f"), and complete (" £ = [} f"). Now the definition of prov-

ability as well as that of validity shows that both notions are dependent on

32

the interpretation I chosen. In this chapter we will prove that F £ = E £
holds for all correctness formulae. The converse is not true in general.
Following COOK [6], we have to put a restriction on the interpretations
allowed: only those interpretations are taken into account which make the
class As4n expressive with respect to the language Prog. Only if Assn is
expressive we can be assured that it is possible to find suitable label

invariants PyreeesP, € Assn for every program S = [Li:Ai]2=1. The com-

pleteness theorem to be proved will then be that under every interpretation

I such that As4n is expressive with respect to Prog we have that E £ = | £

for every normal correctness formula f.

DEFINITION (validity of rules of inference).
A rule of inference

fl,...,fn

fn+1

is called valid if (& fl""’ E fn) ='k fn+1'

Note that validity of an inference rule again depends on the underlying

interpretation I just like the validity of a correctness formula.
LEMMA 7.1. Every axiom and every rule of inference in H is valid.

PROCF. |

(Al) We have to prove E <D|{p[s/x]}x:=s{p}>. We have Alx:=s]o = o{V[s]o/x}
for all o € ZO. Furthermore T[pls/xJlo= tt implies T[p] (c{V[slo/x}) = tt
by lemma 6.1d. Thus we have that for all ¢ € I, with Mpls/x1lo=tt

there is a o', namely o{V[slo/x}, such that A[x:=s]o=0c' and T[p]o'=tt.

i

(A2) We have to prove kE <DI {pj}goto Lj{false}> for D [Li:pi]z_l. Choose

o € ZO such that Tﬂpjﬂo= tt. We have AﬂggEQ_Ljﬂo = <U’Lj>' Thus there
is a ¢', namely ¢ itself and a pai; (L:p") in D, namely (Lj:pj), such
that Algoto Lj]]c = <g',L> and T[p"Jo"' = tt.

(A3) Evident.

(R1) Suppose kE P12P,, = p4°p, and E <D|{p2}A{p3}>. We want to prove
E <D|{p1}A{p4}>. Choose a 0 € L, and assume Tﬁp1]0= tt. From p,°p,

we infer T[p,Jo=tt. The fact that k <D|{p2}A{p3} holds yields

33

either o' € I.: Ala]lo=c' A T[p3ﬂ0'=tt. But in this case we can use

0
E P, > p, to infer 3o’ € I,: AlA]o=c"' A Tﬂp4]0'=tt cee (%)
or do' € 20: 3(L:p") in D: A[aJo = <o',L> A T[p"]o'=tt e e (*%)

But now we have proved Tﬂp1B0=tt = (%) V (**), and we conclude that
F <o | {p,}alp,}> holds.
(R2) Analogously.
(R3) Suppose E <D | {pl}A{p2}> and E <D] {pz}A'{p3}>. We have to prove
E <D | {p,}n;a'{py}>. Choose a o € I
E <D | {pl}A{p2}> we infer that
either (A[A]o=c' A ﬂ[pz]]o'=tt) for some o' € I

0 such that T[p1]0==tt. From

... (1)
(L:p") inD ... (2)

0
or (A[a] o=<c',L> A T[p"lo'=tt) for some o' € ZO'

ad (1). k <D | {pz}A'{p3}> and Tﬂp2ﬂ0'=tt for some o' € I give us:

0

either (A[a']o'=c" A Tﬂp3ﬂc"=tt) for some o" € I .. From A[a]o=0' and

0
A[Aa']o'=0" we infer A[A;A']o=0". Furthermore we have Tﬂp3ﬂc“=tt,

or (A[a']o'= <o",L> A T[p"Jo"=tt) for some o¢" € I_ and some pair

(L:p") in D. But then Alalo=0' and Ala']o’' = <09,L> give us
Ala;a']lo = <o",L> and we have also Tlp"lo"=tt.
ad (2). From A[A]o = <o',L> we have A[A;a']o = <o',L>. Furthermore we
have T[p"lo'=tt.
The conclusion is that for every choice of ¢ the conditions imposed
by the definition of k <D | {pl}A;A'{p3}> are satisfied.
(R4) can be proved analogously, using results like
(A[aJo=0' A W[b]o=tt) = A[if b then A else A' fiJo = o'.
(R5) Suppose k <D | {Pl}Ai{pi+1}> (i=1,...,n), where D = [Li:pi]§=1.

We have to prove E {p }[L.:A.]?_ {p_.,}, or equivalently
1 i"7iTi=1

n+l
' - . n gy’ 1=
Vy ¢ T Vo,0' € ZO[(TﬂplﬂG—tt A Mﬂ[Li.Ai]i=1ﬂyo o') =~Tﬂpn+1ﬂc tt].

(k)
i

So, choose y € T, and let ¢i, ¢, and Y(k) be derived from

[Li:Ai]:=1 and y as in Lemma 4.2. We now prove the following lemma.

LEMMA. Yk € IWN[Vo,0' € I: (T[[pi]]0=tt A o'=¢i(k)o) = T[[pn+1]]0"=tt, for

i=1,...,n+1].

PROOF (induction on k).

0) = Ag*L for i =1,...,n and
0) . .. (1) _ .
; Oi (idi) ¢n+1 = Ao°0,

Basis (k=0Q0). This is easy, because (i) ¢F

therefore there is no o' € ZO such that ¢' = ¢

34

but then the assumption reduces to Tp Jo=tt A ¢'=(Mo-0)0o=0, and thus
: n+1

the conclusion Tﬂpn+1]o'= tt holds.

Induction step. Choose an i (1 < i < n; the case i = n+l is again trivial)

and choose 0,0' € L. such that Tﬁpi]o=tt and ¢' = ¢;k+1)o. Now ¢£k+1)0 =

NHAiHy(k)Qik)c. From = <D | {pi}Ai{pi+1}> we know that

either A[a.Jo=0c" and T[p., ,Jo"=tt, for some o" € I.. But then we have

(k+1) (k)l+1 0°
0'=¢i g = ¢i+10" (using 4.3.1°%). Induction hypothesis, and
| | : |
T[pi+1]0 =tt yield Tﬁpn+1ﬂo =tt,
or Ala.]o = <0",L.> and T[p.]o"=tt, for some ¢" € I, and some j
< . (B+1) 0 (k) _° (k))
< 4 < [+ = = " n
(1 £ 3 <n). Now 0 ¢i o NﬂAiHy ¢i+10 Y [Ljﬂc ¢j o
(using 4.3.2°). Induction hypothesis and Tﬂpjﬂo“=tt'yield
|
T[[pn+1]]0 =tt.

This proves the lemma. [

Now, returning to the proof of kE {Pl}[Li:Ai]2=1{P }, we have by

n+l
e -n _ . n Vel =
definition that Mﬂ[Li.AiJi=1]Y = NﬂAl,...,Anﬂ(Y{¢i/Li}i=1){Ao o} ¢, by
Lemma 4.2.2. And ¢1 =1 ¢fk), by Lemma 4.2.1.
k
Choose o0,0' € X
(x) 0 -
¢10 =U (¢1 0)) there is a k such that ¢' = ¢
V=

Tl[pn+1 o'=tt.

This proves k {pl}[Li:AiJE=1{pn+1}’ which was the last clause in the

such that Tﬂp1]0=tt and ¢' = ¢,0. Then (because
(k)

1 0, and the lemma gives us

proof of 7.1. [

THEOREM 7.2. The proof system H is sound, i.e. for every interpretation I

and every correctness formula f we have + £ =k f.
PROOF. Induction on the length of the proof of f, using Lemma 7.1. [J

We now turn our attention to the question of completeness of the
proof system, i.e., F £ =} f£. If £ is an assertion p, then we can simply
use axiom scheme (A3), so there is no problem here.

The next possibility is £ = <D | {p}A{g}>. Suppose this f is valid.
Now we have to construct a formal proof of this formula. This will be done
using the concept of weakest precondition: we will show that for all

D e Invl, A € Stat and p € Assn (such that <D,A> is normal), we can construct

35

a q € Assn which is the weakest formula that makes <D I {gq}a{p}> valid (by
"weakest" we mean true in as many states as possible). This is part of
Lemma 7.4.

In the same lemma we show that for this assertion g the formula
<D] {q}a{p}> is provable. Once we have reached this result, the rest is
easy. We use the property that, if g expresses the weakest precondition of
A with resbect to p and D, and if k <D | {p'}a{p}> for some p' e As4n, then
we have £ p' © g (otherwise the precondition g wouldn't be the weakest

one). Thus in this case we can derive <D I {p'}a{p}> using (R1).

DEFINITION (weakest precondition).
Let A € Stat, p € Assn, D € Invl. We say that q expresses the weakest pre-

condition of A with respect to postcondition p and invariant list D iff

Vo € ZO: Tlql o=tt <
{(30' €I LA[A]Jo=c' A Tlplo*=tt]) Vv

(Jo' € Zo 3(L:p"). in D: [A[a]o = <o',L>A T[p'Jo'=tt])].

We write p = wp[A,p,D] to express this.

LEMMA 7.3. Let A € Stat, p,q € Assn, D e Invlk. If q = wplA,p,D], then
a) E <0 | {qla{p}> (i.e., p is a precondition)
b) Vp' € Assn: [k <p | {p'}a{p}> = k p' > gl (g is the weakest).

PROOF. Immediate from the definitions. [

LEMMA 7.4. For all A € Stat, p € Assn, D € Invl such that <D,A> is normal,
we can find q € Assn for which q = wplA,p,D]. Moreover for this q we also
have } <D | {ql}a{p}> in HN'

PROOF. By induction on the structure of A. We distinguish four cases.

1°. A = x:=s. Choose p € Assn and D € Invl. Then pls/x] = wplx:=s,p,D]. For,

1

choose 0 € ZO. We have to show
Tlpls/x1]o=tt <= (BG'EZOE(AHX:=SBO=0') A Tlplo'=tt]l) Vv
(30'eZ, 3(L:p") in pL (A[Al o=<0,L>) A Tlp"lo'=tt]).
Now Alx:=s]lc = o{V[s]o/x} € Lyr SO the above equivalence comes down to
Tlpls/x1]o=tt <= 30'€ZOE(AHX:=SH0=G') A Tlplo*=tt]
<= T[pl (oc{V[slo/x}) = tt,
and this is 6.2d.

36

Furthermore, we have | <D l {pls/x]}x:=s{p}> by (al).

20. A = Al;Az. Choose p € Assn and D € Invl such that <D,A> is normal. By
induction there is a q' € As4n with q' = wpﬂAz,p,DH and F <D | {q'}Az{p}>
in HN' Again by induction we have g € A$41m such that q = wpﬂAl,q';Dﬂ
and } <D | {q}Al{q'}> in HN'

First,.we will show that for this g we have g = wpﬁAl;Az,p,D]. Choose a
c € ZO. We have to prove
Tlgl o=tt < (Sc'ezofAﬂAl;A2ﬂo=0' A Tlplot=tt]l) Vv

(o'ex,. I(L:p") EE.D[A[Al;AZHG = <g'",L> A T[p'lo'=tt]).

We distinguish twoocases:
a) AﬂA1]0=0", We then have AﬂAl;Azﬂc = AﬂAzﬂo" by definition of A. Using
these facts the above equivalence reduces to
Tlql o=tt < (HU'EZO[AHA2B0"=0' A Tlplo'=tt]) v
(30'eZy 3(L:p") EE_D[AHAZHC" = <0',L> A T[p'lo'=tt]),
and by q' = wpﬂAz,p,Dﬂ this is equivalent to T[glo=tt < T[gq'lo"=tt.
Now we have by q = wpﬂAl,q',Dﬂ
Tlqlo=tt < (Bc'eZO[AHA1]0=o' A Tlq'lo'=tt]) Vv
(30'620 I(L:p") in D[A[Alﬂo = <g',L> A Tlp'lo'=tt]).
Substituting o" for A[Alﬂo (that is the assumption) the right-hand
side of the equivalence reduces to T[q']o"=tt, and we are ready.
b) AﬂAlﬂo = <g",L">. We then also have that A[Al;A2ﬂo = <g",L"> and the

definition of g = wpﬂAl;A ,p,D] reduces to

Tlglo=tt < ap"eAAAn[(L":;") in D A T[p"lo"=ttl].
But this equivalence is immediate from g = wpﬂAl,q',Dﬂ and
A[Alﬂo = <g",L">. So, we have proved that g = wpﬂAl;Az,p,DH.
The proof that <D | {q}Al;Az{p}> can be derived in HN is easy by
the assumptions on g and q' (using rule (R3) of composition), and
the fact that the pair <D,A1;A2> is normal (which means that
<D | {pl}Al{p2}> and <D | {pz}Az{p3}> are normal formulae).

3°. a = if b then A, else A, fi. Choose p € A34n and D ¢ Invl, such that

1 2
<D,A> is normal. By induction we have q4/9, € Assn such that

q, = wpla,,p,D] and <D | {q,}a,{p}> in Ho
q2 = WPI[A2IPID]] and]‘ <D l {qz}Az{p}> in HN.
We will show that for g = if b then q else q, fi we have

37

a) q = wp[if b then A, else a, fi,p,D]
b) <D | {q} if b then A, else A, fi {p}> in HN'

a) Choose a 0 € I_.. Without loss of generality W[bJo=tt. Then

0
TIif b then q else q, fiJo=tt < Tﬂq1ﬂ0=tt.

Also A[if b then A, else A, fiJo = A[[Al]]c. Now q, = wpl[Al,p,D]]

is equivalent to
Tllql]]0=tt = (Jo'ex, [A[[A1]]o=o' A Tlplo'=ttl]) v
(30'exy 3(L:p') in D [A[A Jo=<o’,L> A Tlp'Jo'=tt]).

Combining these results, we get

Tlif b then q, else g, fiJo=tt <
it 1 9 ILl
(Bc'eZo[Al[_i_g_b thenA elsea, fiJo=o' A Tlplo'=tt]) Vv

(30'ez, 3(L:p') in DLA[ifb thenh, elser, fiJo=<c',L> A Tlp'lo'=ttl)

0
and this is the result we were aiming at.

b) We have gAb = (if b then q, else q, fi) A b, and thus E gAb o ay-

Also, using (A3) and (Rl), and } <D | {ql}A{p}> (in HN) we get
<D | {qAb}Al{p}> in HN. Analogously F <D l {qATb}A2{p}> in HN.

So, by inference rule (R4): F <D | {q} if b then A, else A, £fi {p}>

in HN.
4. A = goto L. Choose p € Assn and D € Invl, such that <D,A> is normal.
This means that we have a g € As4n such that (L:q) in D. We prove
g = wplgoto L,p,D]. We have to prove
Tlalo=tt < (30'ex [Algoto LJo=0' A T[plo'=ttl) Vv

(o'ex, 3(L':p') in DLAfgoto LJo=<c',L'> A T[p'lo'=ttl).

Because AHQQEQ_LH02<0,L> € Zovaa&, the equivalence reduces to
Tlalo=tt <= 3p'eAssnl (L:p') in D A T[p'Jo=ttl.

Now we have (L:q) in D and thus the right-hand side is equivalent to
Tlglo=tt.

Furthermore, in order to show that } <D | {q} goto L {p}> in HN' we

have by (A2) + <D | {q} goto L {falsel> and by (A3) F false > p. So we

can use (R1) to derive F <p| {q} goto L {p}> in HN'
This completes the proof of Lemma 7.4. [

Observe that in this lemma it is not merely proved that there exists
a formula g expressing the weakest precondition for any A, p and D, such

that <D,A> is normal. The proof also provides a purely syntactical method

38

to derive such a formula. This shows that for every A, p and D with the
above restriction, we can construct an assertion g expressing the weakest
precondition. Thus this g is independent of the interpretation I of the
primitive relation and function symbols.

Note also that there are many assertions expressing the weakest pre-
condition of A with respect to p and D. For instance, if q = wpla,p,D] then
the same holds for g A true (to give a trivial example).

We now state and prove the completeness result for correctness formulae

having the form <D | {pla{g}>.

LEMMA 7.5. For all A € Stat, p,q € As4n and D € Invl such that <D,A> is

normal we have
E <D | {pla{q}> = F <D | {pla{ql}> in Hy-

PROOF. Choose A,p,q and D such that the assumptions are true. Suppose also
F <D | {p}a{g}>. Now by Lemma 7.4 there is a p' = wp[A,q,D] for which

F <D | {p'}a{g}> in HN' By Lemma 7.3 and k <D | {p}a{q}> we have k p > p'.
So, using (A3) and (R1) we get | <D | {p}a{gl}> in HN. g

Note that up till now no claims have been made on the interpretation
I. The only additional condition was that <D,A> should be normal. It can

be seen that this is necessary from the fact that

l= <L:p | {true} if true then x:=0 else goto L' fi {x=0}>

holds, even if L Z L'. However, there is no way to derive this correctness
formula in H.

We now turn our attention to the discussion of completeness with res-
pect to correctness formulae of the form {p}S{g}. If we want to formally
prove such a formula, we have to find suitable label invariants for all
labels declared in S. It is at this point that we have to put the restric-
tion on I which we mentioned in the introduction of this chapter.

The question arises whether in our case such a restriction is neces-
sary. WAND [12] proved that such a restriction is needed for programs without

- goto statements, but containing while statements. He constructed an inter-

pretation I and a correctness formula which was valid under I but not derivable,

39

because there was no assertion available which could express a suitable in-
variant. His counterexample can be transferred to our language in such a way
that the same arguments he uses can be applied in our situation. Therefore
we must make a restriction on I.

Before we can give an exact definition of this restriction (expres-

siveness), we have to make a few preparations.

LEMMA 7.6. Let S = [Li:Ai]?=1 € Prog and vy € T. Let ¢, be derived from S
and y as in the definition of M. If S is normal, then all ¢i are independent

of y.

PROOF. The following holds: Let A € Sfat and {Ll,...,Ln} be the set of all
labels occurring in A. Let ¢,w1,...,wn € M and vy € I'. Then
NMAJ(y{wi/Li}?=l)¢ is independent of y. This fact can be proved by induction
on the structure of A.

From this result we can infer that the operator

. >n

) n
o = >\<‘P1,---:an>'<N|IAi]](Y{le/Lj}j=1)ll)l_|_1 j=1

is independent of 7y, and thus the same must be true of <¢1,...,¢n>, being

the least fixed point ué of ¢. [

DEFINITION (transformations derived from S).
Let S be a normal program. Then the ¢i defined as in Lemma 7.6, are called

the transformations derived from S.

DEFINITION (weakest precondition of a transformation from M).
Let ¢ € M, p € Assn. We say that q expresses the weakest precondition of ¢
with respect to p iff VO‘GZO: [Tlglo=tt <> (¢o=zL = T[p] (¢0)=tt) 1.

DEFINITION (expressiveness).

Let I be an interpretation of the primitive relation and function symbols.
We say that Assn is expressive relative to Phog and I, iff for all asser-
tions p and for all normal programs S the following holds: there are asser-
tions Pyre-esPy such that p; expresses the weakest precondition of ¢i with

‘respect to p, where ¢i are the transformations derived from S (i=1,...,n).

40

If the primitive relation and function symbols of our language Prog
are such that As4n is a language for Peano arithmetic, and if IO is the
standard interpretation of this language in the natural numbers then,
using recursion theory, we can show that the transformations ¢i derived
from a normal program S are partial recursive functions in the free vari-
ables of S. A result of recursion theory is that for every partial recursive
function &: 1£< -> nﬂ‘, there is a formula p in AsAn with free variables
XyreoorXyy Yyreeea¥ys which expresses this function, i.e.

E p(&l,...,&k,él,...,ék) iff ¢(a1,...,ak) is defined and equal to
<Bl,...,6k> (where &i’gi are numerals denoting the natural numbers ai,Bi).
From this we can infer that A441 is expressive relative to Prog and the
standard interpretation IO'

Now we have enough tools to state the main lemma needed to prove com-
pleteness for formulae of the form {p}S{g}. In essence this theorem states
that the p; from the definition of expressiveness are the label invariants

which we are looking for.

LEMMA 7.7. Let I be an interpretation such that Assn is expressive relative
to Pnog and 1. Let s = [Li:Ai];‘:l € Prog be normal. Let p ¢ Assn, and let
¢i be the transformations derived from S (i =1,...,n). Let p; be the asser-
tions expressing the weakest preconditions of ¢i with respect to p

(i=1,...,n), and let P11 = p. Then
n
< .
ko<lrgep 17, | ipglagley b
for j =1,...,n.

PROOF. Choose j (1 < j £ n) and 0 € I_ such that Tﬂpjﬂc=tt. There are two

0
cases:
a),A[Ajﬂo = 0'620. According to the definition of |= <D | {pj}Aj{pj+1}>,
in this case we have to prove that Tﬂpj+1ﬂo'=tt. Now by the assumption
on pj and by definition of weakest precondition we have
Tﬁpjﬂc=tt = (¢j0¢i,=-THpH(¢jo)=tt). Also, ¢j0 = ¢ ' (by 4.3.1°,
. n
—rr 1 —_
AﬂAjﬂc—o and ¢j0 = N[Ajﬂ(Y{¢i/Li}i=1)¢j+1G)
we get Tﬂpj]o=tt = (¢j+1c'¢1 =-Tﬂpﬂ(¢j+1c')=tt). But the right-hand

side of this equivalence is (by definition of weakest precondition, and

j+10
. Combining these results,

41

by the assumption on pj+1) equivalent to Tﬂpj+1]0'=tt.
b) A[Ajﬂo = <g',L> € ZOXLuan. From the fact that S is normal, we infer that
L must be some Lk (1 £k £ n). We have to prove (by definition of
E <D | {p}a{q}>) that Tp Jo'=tt. Again we have:
Tﬂpjﬂc=tt ¢='(¢jc¢1 =»TH;M(¢jU)=tt), and now we have ¢jo = ¢ko' by 4.3.2°
(analogously to a)). Combining the results, we get
T][pj]]oétt <= (¢ 0'=L = T[p] (¢, 0")=tt)
- TIka]]o'=tt. a

We now can collect our results in the completeness theorem 7.8.

THEOREM 7.8. The deduction system HN is complete in the sense of Cook, i.e.,

for every interpretation 1 such that Assn is expressive relative to Prog

and 1, and for every normal correctness formula f, we have E £ =} f in HN'

PROCF' .
a) If £ = p € Assn, then E p = F p by (A3)
b) If £

<D | {p}a{g}> then we can apply Lemma 7.5.
c) £ = {p}ls{ql}. say s = [Li:Ai]§=1' Let ¢, be the transformations derived
from S. By Lemma 7.7 there are assertions pj, expressing the weakest

preconditions of ¢j with respect to g such that
n
< .
Fo<lngp 1 | tpylagieg b

for j =1,...,n, where'pn+1 = p.
Note that these correctness formulae are normal by the fact that {p}s{q}

and thus S is normal. Lemma 7.5 then gives us
- n
< . .
F I_Li_pi]i=1 | {pj}Aj{pj+1}> in HN
for j =1,...,n. Now we can apply rule (R5) to get
F {p,}slp_,,} in H.

Now p ., = q. Moreover Epo> p,. For, assume Tlplo=tt for some o € Zo-
Then, by F {p}s{q}, we have Vy ¢ T Vo' ¢ Lyr o' = M slyo = Tlqlo'=tt.
But M[s]yo = ¢10 (Lemma 4.2.2). Thus: o' = ¢,0 € Iy = Tlqlo'=tt. But this
is equivalent to Tﬂplﬂ =tt, using the definition of weakest precondition.
We had | {pl}s{q}. Also E p @ p,, and thus Fpo> p, by (A3). Finally,

using (R2), we conclude | {p}s{qg} in HN.]

42

8. DEDUCTION SYSTEM: SECOND VARIANT

The validity definition of Chapter 6 makes explicit use of the label
invariants P, which therefore had to be provided by the formulae of the
deduction system. The purpose of this chapter is to show that it is possible
to define validity in such a way that the label invariants are not explicit-
1y needed. We will, using continuation semantics, associate a truth value
with a formula {p}A{g}. This truth value will be dependent on the meaning of
the labels occurring within A, i.e. the value depends on the environment Y.
Consequently, we will establish a semantical function G such that for every
A, p and g we have G {p}la{q}]: T - {£f,tt}.

This leadsvto a definition of validity which turns out to be equivalent
to the one of Chapter 6 in the following sense: <[Li:pi]2=1 | {p}a{gl}> is
valid according to the definition in Chapter 6, if and only if {pl}a{ql} is
valid (using function G) in every environment y for which all formulae

{pi}goto Li {false} are valid (i = 1,...,n). Or more formally,

Fo<lr:p, 37, | {plalal> =

n
Vy € TLLA, (Gl{p,} goto L, {false}ly=tt) = Gl{pla{q}ly=ttl.

Using this new approach we can define validity for the system as given in

[5]. But, before we do that, we change this system somewhat. The system in
[5] is presented as a natural deduction system, which means that the notion
"proof from assumptions" is used. A line in a formal proof can be a formula
which is introduced as an assumption. The system also has an inference rule

in which assumptions are discharged, namely

{p'} goto L {false} F {p }Al{p'}
{p'} goto L {false} | {p'}Az{q }
{p}Al:L:Az{q}

which discharges the assumption {p'} goto L {false}, needed in the deriva-
tion of {p}Al{p'} and {p'}Az{q}. Thus, every derived formula £ in the system
of L5] will have a finite set A of assumptions attached by it, namely those

assumptions which were used to derive f.

43

We transform this natural deduction system into a sequent calculus

having formulae of the form
A > {P}A{q} '

where A is meant to be the finite set of assumptions associated with the
derivation of {p}A{g}. The advantage of this system over the natural deduc-
tion system is that validity of a formula can be defined more directly, now
that every formula incorporates the relevant assumptions.

We now define the deduction system

DEFINITION (atomic correctness formula, correctness formula).
An atomic correctness formula is a formula of the form {pl}A{gl}. The class
of all atomic correctness formulae will be denoted by Afo%, and has g as
a typical element.

A correctness formula is either an assertion, or a formula of the form
A » {p}a{ql}, or a formula of the form A - {p}S{qg}, where A (the set of
assumptions) is a finite set of atomic. correctness formulae. The class of
all correctness formulae will be denoted by Coft, and has f as a typical
element.

The correctness formulae ¢ > {p}Aa{g} and 4 > {p}S{q} will be abbreviat-
ed to {pla{gl} and {pl}s{g} respectively.

DEFINITION (deduction system H'). The axioms are
(a1) A > {p[s/x]}x:=s{p}
(A2) A > g, where g € A
(A3) p,
where p is a valid assertion (i.e. VerO: Tﬂpﬂo=tt).

The rules of inference are
(R1) p,2P,s P37P,ys A > {p,}aip,}

' A~ {p,lalp,}

(R2) P]_DPZI P33P4, A~ {pz}S{p3}
A~ {pl}s{p4}

(R3) A > {pl}A{pZ}, A~ {pz}A'{pB}
A~ {pl}A;A'{p3}

44

(R4) A > {pAbl}a{qgl}, A > {pAbl}Aa'{qg}
A+ {p} if b then A else A' fi {q}

(R5) Aua' » {pl}Al{pz},...,AUA' > {Pn}An{Pn+1}

}

n
At > Ap oyl ey

where A = { {p.} goto L, {false} | i=1,...,n},
i i

all Li are different, and no Li occurs in any assumption

in A' (i =1,...,n).

The restriction on A' in (R5) is imposed to circumvent possibilities

like the following. Suppose A = { {true} goto L, {false},{x=0}goto2L2{false} }

and A' is the singleton { {true} goto L, {false} }. Then we can derive

AUA' + {true} x:=l;goto L, {x=0} cee (#)
using the assumption in A', and furthermore

AuA' > {x=0}x:=x{x=0}.
Thus, discharging A, using "(R5)"

L, :x:=x {x=0} ee. (B)

1 esze=1- -
A' > {true} Ll.x. 1;goto L2, 2

and this formula is not valid (the assumption {true} goto L, {false} in A'

is not relevant for the validity of (6), because the meaning of

L1:x:=1;goto L L2:x:=x in any 7y, given by M, doesn't depend on the meaning

27
y[Lzﬂ of L2 anymore). Difficulties stem from the fact that the assumption

in A' was used in the derivation of (#), and not discharged.

We now come to the definition of the function G which we shall need to
define validity of correctness formulae. The main problem in defining the
value of G[{pl}a{g}] in some environment y is that N[A]y¢ is not a function
that transforms states just before evaluation of A into states immediately
after this evaluation, while g is an assertion describing the latter states.

We can however say something about the states at the normal exit point
of A in the following indirect way. Consider the formula {p}A{g} and choose
a predicate m (a function in (ZO » {ff,tt}) which we want to be true in

_every final state ¢' = N[A]yéo corresponding to an initial state o satisfying

45

Tlplo=tt. That is, we want
Vo,0'€l : L(TIplo=tt A 0'=NI[A]]y¢c) = mo'=tt].
We will abbreviate this partial correctness condition to
A{TIpl IN[2l yoinm}.

Now, as this formula must correspond to {p}A{ql}, we are looking for a
relation between g, the continuation ¢ chosen, and the predicate m. It is
reasonable to demand that 7w (¢o")=tt for every (intermediate) state o"
satisfying Tl[gJo"=tt (provided ¢c"#L). For, the continuation ¢ is the state
transformation describing what happens after evaluation of A has terminated
at the normal exit point. So we want g, ¢ and T to be related through
{Tlql }¢{w}. It turns out that this constrainton ¢ and 7 is sufficient to

lead to a satisfying validity definition.

DEFINITION (predicates; partial correctness, semantical level).
The class of predicates II, with typical element m, is defined by

I = ZO -~ {ff,tt}. For any 7,7' € Il and ¢ € M, we define

{r}¢{m'} & Vo,0"' € ZO:[(TTO=tt A o'=¢0) = n'o'=tt].

DEFINITION (G). The function G with functionality G: Afor - I » {ff,tt} is
defined by '
Gl {p}a{q}ly=tt <« Vel VoeMl{Tlql}o{r} = {TIpl INIA]y¢{n}].

We extend the domain of G to subsets A of Afor as follows

Gl Al y=tt <= VfeA: G[£f]y=tt.

DEFINITION (validity). A correctness formula f is valid (written k f) is
o

1°. £ = p and VerO: Tlplo=tt, or
2°. £ = A > {plalq} and VyeT: G[Aly=tt = G[{p}a{q}ly=tt, or
3°. £ = A~ {p}s{q} and Vyel: G[Aly=tt = {T[pl M[s]v{Tlql}.

We now investigate whether the system as it stands now is sound and
“complete. It will be proven at the end of this chapter that the system is

sound. However, the system is not complete. For instance, a formula like

46

{{p}x:=x;goto L {q}} > {p} goto L {q}

is valid but not derivable. Therefore we first prove soundness and complete-
ness of a restriction of the system, namely the system consisting of normal

correctness formulae only.

DEFINITION (normal correctness formulae). A correctness formula f is called

normal if

1°. £

2°. £ = A > {p}alq}, where A = {{pi} goto L, {false} | i = 1,...,n} such

p, or

that all Li are different and that the labels in A are all Li's, or
. £ = {p}s{q}, where S is a normal program.
The system H', restricted to the normal formulae, is called the normal

fragment of H', and denoted by Hﬁ.

There is an obvious one to one correspondence between the normal cor-
rectness formulae as defined here and the normal correctness formulae from

Chapter 6, given by the function ¢, defined by
¢lpl =p

@ﬂ{{pi} goto L, {false} l i=1,...,n} > {pla{qgll =
<[Li:pi]1;=1 | {p}a{q}>

of {p}s{g}] = {plsiql.

If we compare the axioms and inference rules of H with the ones of H' we

come to the following lemma:
LEMMA 8.1. For every normal correctness formula f we have

F £ (in H') <=} o[£] (in H).
PROOF. The < - direction is obvious. The proof of " = " essentially amounts
to showing that H' is conservative over H&, i.e. if a normal formula is
derivable in H' then it has a proof in Hﬁ. This can be shown using the fact

that every inference rule has normal premisses if its conclusion is a

normal formula. [

If we can prove the same result for validity instead of deducibility

then we can infer from the results in Chapter 7 that Hﬁ is sound and complete.

To achieve this, we first prove some lemmas, relating the definition of

validity of £ = A > {p}a{q} with validity of o[f].

47

LEMMA 8.2. Suppose f = {{pi} goto L, {false} | i = 1,...,n} > {plalq} is a

correctness formula that is normal and valid. Then the following holds:
a) Vo,0'el: (A[a]o=0"' A T[plo=tt) = Tlqlo'=tt
b) Vc,o'eZo: (AﬂAﬂo=<o',Li> A Tlplo=tt) =»Tﬁpi]o'=tt (i=1,...,n).

PROCF .

a) Choose 0,0'€Ly such that Tlplo=tt and A[A]o=c'. Choose Y, such that

b)

YoﬂLiﬂ=kc'L for i = 1,...,n. Then we can check that

Gﬂ{pi} goto L, {false}ﬂy0=tt for i = 1,...,n and thus from validity of

f we get Gﬂ{p}A{q}ﬂyo=tt. From the definition of G we then have
vrell VoeM[{T[q] }o{n} = {Tﬂpﬂ}(N[ABYO¢){W}]-
If we choose m = T[gq] and ¢ = Ao*o, we can deduce from this

{Tﬂpﬂ}(NﬂAﬂYO{Xo-c}){Tﬂqﬂ}ﬂ

]

Combining this with NHAHYO{AG°0}0
get Tlglo'=tt.

Choose 0,0'€Z. and i (where 1 < i < n) such that T[p]lo = tt and

0
Ala]lo = <0',Li>. Now, if we take Yo such that

o if o#L and T[p.Jlo = f£f
YOIIL]]]c = J
1 otherwise

for j = 1,...,n, we again have that Gﬂ{pj} goto Lj {false}ﬂyo= tt

(3 =1,...,n). Arguing the same way as in the proof of a) we come to
Vnell Voeml{Tlql }¢{n} = {Tlp]} (N[alvy ¢) {1}].

Now we choose ¢ = Aco*L and m = Ac+*ff. We then derive
{Tﬁpﬂ}(NHAHYO{Ao-L}){Ao-ff}.

Combining this with NﬂAﬂYO{Ao-l}o = YO[LiBO' (Lemma 4.3.2°) and with
Tlplo=tt we have that

YOI[Li]]O'¢J- = (Ao+ff) (YO[[Li]]c') = tt.

So we must have YOHL1]0'=.L, but this is (by definition of Yo and the
fact that o'#L) equivalent to Tﬂpiﬂo'='tt. O

o' (Lemma 4.3.1°) and Tlplo=tt, we

48

LEMMA 8.3. Suppose f = {{pi} goto L, {false} | i = 1,...,n} > {pla{q} is a

normal correctness formula. Then

E f e VerO: Tlplo=tt =
(Elo'eZO[A[[A]]c=o' A Tlglo'=tt]) Vv
(Bo'eZO[AIIA]]o=<o',Li> A T[[pi]]c'=tt]) .

PROOF. " = ". Suppose k f and T[pJo=tt. There are two possibilities (by
definition of A)
a) Ala]o

b) AlAa]o = <g',L>. Since f is normal, which means that all labels in A are

o'el,, and Lemma 8.2a yields Tlglo'=tt

an Li’ we have that L is an Li for some i (1 < i < n). We then can apply

Lemma 8.2b to obtain TﬁpiB0'==tt.

"« ", Choose y € T such that Gﬂ{pi} goto L, {false}ly=tt for i=1,...,n.
Then we must derive G[{pl}a{ql]y=tt, or equivalently
Vrell VoeML{Tlal }¢{n} = {TIp]} (N[Alv¢) {n}].

So choose m, and ¢O such that {Tﬂqﬂ}¢o{ﬂo} holds, and choose o such that
Tlpl o=tt. We have to prove g" = N[Aﬂy¢oo¢l = m,0"=tt. Again we have two
possibilities:
a) A[aA]o=0'. Then by assumption T[qJo'=tt, and by Lemma 4.3.1°;

o" = NﬂAHy¢Oo = ¢00'. From {Tﬂqﬂ}¢0{ﬂ0} we then have o"#Ll = myo"=tt.
b) Ala]o = <¢',L;>. By assumption Tﬂpiﬂo'= tt, and by Lemma 4.3.2°:

o" = NﬁAﬂy¢00 = YﬂLiﬂo'. Now we use the fact that Gﬂ{pi}gotoIi{false}ﬂY=tt,
or Vmell VoeMLT] false] ¢{r} ='{Tﬂpiﬂ}(yﬁLiB){ﬂ}]. Taking m = 7, and
¢ = Ao+Ll, we get {Tﬂpiﬂ}(Y[Liﬂ){ﬂo}, and from this we prove

o"zl = noc"=tt. O

COROLLARY. For all normal correctness formulae f we have

E f (according to the validity definition of this chapter) <
E o[£] (according to the definition of Chapter 6).

PROOF. This is the lemma for £ = A -+ {pla{q}. For all other cases for f we

have that the respective validity definitions are the same. [J

This corollary and the results of Chapter 7 now lead to

49

THEOREM 8.4. The system Hﬁ is sound and complete in the sense of Cook.

To conclude this chapter we show that system H' is sound (although,

as we have seen before) not complete.
THEOREM 8.5. For all correctness formulae £, we have f = |= f.

PROOF. Tﬁe proof is analogous to the proof of 7.1. We prove here the more
interesting cases, viz. validity of (A1), (R1) and (R5).
(A1) validity is proven if we can show that
Vyel VoeM Vrell{T[pl}¢{n} = {T[pls/xI]} (N[x:=s]v¢){w}.
So, choose Yy, ¢, m and o such that {T[p]}¢{w} and Tlpls/x]1Jo=tt hold.
Lemma 6.1d then gives T[plo'=tt, where o' = o{V[s]o/x}. Now from
Nl x:=s]vydo = ¢o' and {T[pl}¢{m} we have o" = N[x:=s]ydo=¢po'2zL=>nc"=tt.
(R1) Suppose E P3P, E p5°p, and E A > {pz}A{p3}. We then have to prove
E A~ {pl}A{p4}. Suppose that we have a y € T such that G[A]y=tt
(if there is no such y then A »> {pl}A{p4} is vacuously valid). We then
must prove Gﬂ{pl}A{p4}ﬂy=tt, or
VoeM VﬂﬁH[{THp4ﬂ}¢{ﬂ} ='{THP1B}NHAHY¢{W}. We will prove this using the
following fact:

if VerO: mo=tt = m'o=tt, then {7'}¢{m} = {n}¢{7} eee (%)

which can easily be verified.
Now suppose {T[p4ﬂ}¢{ﬂ}. From kE p;°p, and (*) we get {Tﬂp3ﬂ}¢{ﬂ}. From
this, F A +—{p2}A{p3} and G[Aly=tt, we have {Tﬂpzﬂ}(NﬂAﬂY¢){ﬂ}. Then
we use E p,7p, and (*) again to derive {Tﬂplﬂ}(N[Aﬂy¢){n}.

(R5) Let A = {{pi} goto L; {false}] i=1,...,n} where all L, are different,
and let A' be such that no Li occurs in any formula in A'. Suppose
furthermore that we have E AuA' - {pi}Ai{pi+1} for i = 1,...,n. We have

.
n+1 X) (k)

' T . n
to prove E A' > {pl}LLi'Ai]i=1{p (
So, choose y such that G[A']y=tt. Let ¢i,¢i and vy

(i=1,...,n;
k =0,1,...) be derived from y and [Li:Ai]2=1 as in Lemma 4.2. We then
have to prove {Tﬂplﬂ}¢1{Tﬂpn+1H} (take i = 1 in Lemma 4.2.2).

Now if we can prove

Vk{TI[pi]]}¢i(k){Tle 1} (1 =1,...,n+1) e (#)

n+1

50

then we are ready. For suppose we have 0,0 620 such that Tﬂplﬂc—tt

(k) (k)

and ¢' ¢10 Then (since 4)1 -L];l (¢) we have o' = (LJ ¢ Yo =

% (¢i) o) , and because L is a dJ_screte cpo theremust be a k such that
¢1o = g'. But thenwe caninfer that TIIpn+1]]0‘=tt by applying (#) with i =1
and k =
We now prove (#) by induction on k. The basis (k=0) is trivial, so we

now perform the induction step. Choose i (1 < i £ n, the case i = n+l

being trivial). We have to prove {T[p,]}¢(k+1){Tﬂ n+1H} or
{Tlp, 13 M, Iy * 6 S (7T, 13
Choose 0,0"620 such that Tﬂp Jo=tt and o" = N[A Iy k) (tio. We have to

show Tﬂpn+1]0"—tt. We do this in a way that is analogous to the proof
of Lemma 8.2, i.e. by choosing a suitable environment Yo We distinguish
three cases: AﬂAiﬂo==c', AﬂAiBo = <0',Lj> and AﬂAiﬂo = <¢g',L>, where L
is not an Lj

. AHA.B0=0 and thus (4.3.1°) o" = NHA Iy itic ¢£t;

lo'=tt, we can use the induction hypothesis to infer

o'. So, if

we prove T[p. i+1
that Tﬂpn+1ﬂ0"=tt.
We have E AUA' *'{p.}A.{p. }; we also have G[A']y=tt. Now, taking
Yo = y{Ao- L/L } _y+ We can prove that (due to the fact that no L,
occurs in A') GﬂA Byo=tt. Also, Gﬂ{pi} goto L, {Eglgg}ﬂyo=tt. Thus
we have GHAUA'BYO=tt and thus Gﬂ{pi}Ai{pi+1}ﬂyo=tt. The same way as
in the proof of 8.2a we now get that Tﬂpi+1ﬂo'=tt from AHAi]0=0'
and Tﬂpi]0=tt.

2°. Ala.]o = <¢',L.> and thus (4.3.2°) o" NHA | &% iiio =
Y(k ﬂLjBG' = ¢Jk)0' So, if we can prove Tﬂpjﬂo'=tt, then we can
use the induction hypothesis to infer that Tﬂpn+1ﬂc"=tt. We do this
by choosing y0==y{¢t/Lt}t 1 where ¢t is defined by a) ¢to =g, if
o#L and Tﬂp lo = ££; b) $ 0 = L otherwise. We again can check that

G[AuA*]y =tt and thus Gﬂ{p Ia. {p. }HY0=‘tt. In a way, analogous

to the proof of 8.2b we then canl;éduce from Tﬂpiﬂo=tt and
AIIAi]]O = <0',Lj> that T[[pj]]0'=tt.

3°. AﬂAiBo = <¢',L> where L is not an L.. Lemma 4.3.2° yields
o" = N[Aiﬂy(k) (t; y(k)ﬂLBG' = y[L]lo' (for y(k) differs from
y only in the arguments Ll""’Ln)' Now taking Yo = y{ko-L/Lj}?=1
we have that o" = YOHLHO', but also that G[AUA'Hy0=tt, so that

Gﬂ{pi}Ai{pi+1}]Yo = tt, or equivalently

51

Vrell V¢6M[{Tﬂpi+1ﬂ}¢{ﬂ} =»{TﬁpiB}N[Aiﬂyo¢{w}]- Now choose ¢ = Aol
and T = Tﬂpn+1ﬂ. We then have {Tﬂpiﬂ}(NﬂAiﬂyo{Ao-l}){Tﬂpn+1ﬂ},
which combined with AHAch = <o',L>, o" = YOHLHG' and Tﬂpiﬂc=tt
yields T[pn+1ﬂo“= tt. 0O

ACKNOWLEDGEMENTS. I am grateful to Jaco de Bakker for several remarks that
led to improvements. I owe much to Jeff Zucker. He read the manuscript care-
fully and patiently, and his stimulating remarks have had a substantial in-

fluence on the final version.

REFERENCES

[1] APT, K.R., A sound and complete Hoare-like system for a fragment of
PASCAL (preprint), Report IW 97/78, Mathematisch Centrum (1978).

L2] APT, K.R. & J.W. DE BAKKER, Semantics and proof theory of PASCAL
procedures, in: Proc. of the fourth colloguium on automata,
languages and programming, Lecture Notes in Computer Science

52, pp.30-44, Springer (1977).

(3] ARBIB, M.A. & S. ALAGIé, Proof rules for gotos, Acta Informatica 11,
pp-.139-148 (1979).

[4] BAKKER, J.W. DE, Correctness proofs for assignment statements, Report

IW 55/76, Mathematisch Centrum (1976).

[5] CLINT, M. & C.A.R. HOARE, Program proving: jumps and functions, Acta
Informatica 1, pp.214-224 (1972).

L6] cook, S.A., Soundness and completeness of an axiom system for program
verification, SIAM J. on Computing, Vol. 7, nr. 1, pp.70-90
(1978) .

[7] HOARE, C.A.R., An axiomatic basis for computer programming, Comm. of

the ACM, Vol. 12, nr. 10, pp.576-580, 583 (1969).

L8] MILNE, R. & C. STRACHEY, A theory of programming language semantics,
Chapman and Hall, London and Wiley, New York, 2 vols. (1976).

[9] scoTT, D. & C. STRACHEY, Towards a mathematical semantics for computer

languages, Proc. Symp. on computers and automata, Polytechnic

52

Institute of Brooklyn, pp.19-46 (1971); also: Tech. Mon. PRG-6,
Oxford Univ. Computing Lab.

[10] sTOY, J.E., Denotational semantics - the Scott-Strachey approach to
programming language theory, M.I.T. Press, Cambridge, Mass.
(1977) .

[11] STRACHEY, C. & C. WADSWORTH, Continuations, a mathematical semantics
for handling full jumps, Tech. Mon. PRG-11, Oxford Univ.
Computing Lab., Programming research group (1974).

L12] waND, M., A new incompleteness result for Hoare's system, J. of the
ACM, Vol. 25, nr. 1, pp.168-175 (1978).

%

ONTYANGEN g9 JuLl 1979

