
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Designing Active Objects in DEGAS

J.F.P. van den Akker, A.P.J.M. Siebes

Information Systems (INS)

INS-R9702 February 28, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301641659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report INS-R9702
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Designing Active Objects in Degas

Johan van den Akker
Arno Siebes

CWI
P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

e-mail: fvdakker,arnog@cwi.nl

ABSTRACT
This report discusses application design for active databases, in particular for the active
object-based database programming language Degas. In Degas one modularisation prin-
ciple, the object, is applied to all elements of the application, including rules. We discuss
a design process consisting of four phases, corresponding with the four kinds of capabil-
ities in a Degas object, attributes, methods, rules, lifecycles. The elements of this design
process are similar to those found in a design methodology such as OMT. To illustrate
the design process we use the example of workflow management. In addition, it shows
that the application of one modularisation to all elements of an active database leads
to a clear modularisation of the workflow application, Furthermore, this modularisation
facilitates all important workflow evolutions.

1991 Computing Reviews Classification System: H.2.1 [Information Systems]: Logical De-

sign - data models, H.2.8 [Information Systems]: Database Applications, H.4.1 [Informa-

tion Systems]: Office Automation.

Keywords and Phrases: active databases, database design, workflow management.

Note: This project is supported by SION, the Foundation for Computer Science Research

in the Netherlands through Project no. 612-323-424.

1

2 1 Introduction

1 Introduction

Active databases [19] extend traditional databases with active rules, or triggers. From their
original use for specific database tasks, such as constraint enforcement, the use of active
rules has evolved to include large parts of information systems functionality, especially as
an implementation mechanism for business rules [11]. As a consequence, the specification of
rules must become an integral part of information system design.

Modularisation is generally accepted as a necessary tool for the design and understanding
of computer software. Naturally, this also applies to rules in active databases. There are two
approaches to the modularisation of rules. Either specific modularisation mechanisms are
applied to the rules orthogonal to other modularisation, or one integral modularisation mech-
anism is applied to all elements of the database. The former approach is usually followed
in systems with a separate rulebase, such as [18]. Here, the notion of rule sets is used to
determine what rules are active and what not. This modularisation is also found in some
object-oriented systems, such as SAMOS [10]. A drawback of this approach is the presence of
an additional modularisation mechanism besides object-orientation.

In Degas [3], a temporal, active object database developed at CWI, we use the latter approach
for modularisation of rules. Like other elements of the database, rules are encapsulated in
objects. This encapsulation is motivated by the observation that rules define object behaviour.
Thus, there is no separate rulebase and no need for additional modularisation concepts for
rules.

Research on active database design has mainly focussed on analysing rule sets in order to
check desirable properties, such as termination and confluence. In this area modularisation
has also been addressed, for example in [6]. This work, however, focussed on partitioning a
given rule set. Relatively little attention has been paid to the question, how we get a rule set
for a certain application in the first place. In this paper, we investigate this issue. In particular,
we look at the elements of an object-oriented design method, such as OMT [16], that are of
importance to the derivation of rules in an application.

As an example in this paper, we use workflow. The work of many organisations is centered
around workflows. A workflow is an activity involving the coordinated execution of multiple
tasks performed by different processing entities [17]. Classical examples of workflow are the
processing of insurance claims and of loan requests. Current implementations of workflow are
mostly in separate workflow management systems (WFMS). Since most workflow management
involves a lot of data, a lot of interactions between WFMS and database take place. At the same
time, the Event-Condition-Action rules of active databases add to a database management
system the kind of reactive capabilities also found in a WFMS. Hence, we expect that in the
future workflow management will be merged into active database management systems.

Previous work on workflows in active databases is reported in [7] and [12]. In general, the use
of an active database improves the data handling capabilities in the workflow. This pertains
to the application data, as well as to the workflow management data. Hence, approaches to
workflow based on active databases such as [7] provide models of the data involved in the
workflow. This is in contrast with work such as reported in [1], based on Petri nets, with an
inherent focus on the specification of the dynamics of a workflow.

2 A short intro of Degas 3

A drawback of the approach in [7] is the lack of modularisation in the rulebase. A large set of
rules is generated for a workflow, which is only partitioned afterwards for analysis purposes.
Hence, a separate modularisation is applied to the rules. Furthermore, this modularisation is
not used in the design phase. In this paper, we consider the design of a workflow with the
other of the two approaches to rule modularisation mentioned above. In addition, we make
the modularisation during the design of the application, using design principles formulated
in this paper. We show that Degas allows us to modularise workflow management in a way
that separates concerns and that promotes flexibility. In particular, it offers a framework to
implement the workflow evolution policies described in [8].

Roadmap In Section 2, we briefly introduce the Degas model. Then, we state the Degas

database design principles in Section 3. The next section, Section 4, discusses the specifica-
tion of a workflow. In Section 5, we apply the guidelines to develop a design for workflow
enactment. The following section, Section 6, shows that this design offers the necessary flex-
ibility for evolution of the workflow. The last section contains conclusions and directions for
future research.

2 A short intro of Degas

We now give a concise introduction to the main concepts of the Degas data model. It is based
on autonomous objects. The motivation for object autonomy is on one hand a natural further
development of active object-oriented databases and on the other hand the development of
highly distributed information systems. The main contributions of Degas are:

� The integration of historical and active database functionality.

� A straightforward mechanism for object evolution, especially suited for implementing
roles.

� Complete encapsulation of an object’s behaviour, including rules.

� A good formalisation of rule semantics.

� A conceptual model for distributed information systems.

For a more elaborate introduction of Degas the reader is referred to [3]. A full formal defini-
tion of Degas can be found in [2].

The fundamental notion in Degas is the object. The definition of an object in Degas consists of
structure and behaviour. The structure of an object is defined by its attributes. The behaviour
definition of a Degas object consists of three elements: methods, lifecycles and rules. Methods
define the actions an object can execute. The lifecycle of an object specifies sequencing and
preconditions of methods. A rule states that an object will execute a given action in certain
situations, specified by events and conditions on object states.

In other words, methods and lifecycles define the potential behaviour of an object, whereas
rules describe its actual behaviour as far as can be pre-determined. Conventionally, only po-
tential behaviour is specified in an object.

4 2 A short intro of Degas

Figure 1 shows an example Degas object modelling a PIN card. Attribute and method specifi-
cation is straightforward in Degas. Lifecycles are guarded basic process algebraic expressions
[5] composed from the set of method names as basic actions using the sequential composition
(;), alternative composition (+), repetition (∗), and parallel merge (‖) operators. For example,
the third line of the lifecycle definition in our example specifies that a ReqWithdraw action
must be followed by a WithdrawOK or a WithdrawRefuse action, and that this sequence may
be repeated arbitrarily. The parallel merge operator ‖ means that two actions take place with-
out restriction on their sequence, i.e., A‖B = A;B + B;A.

Rules in Degas follow the usual Event-Condition-Action (ECA) format. The informal semantics
of an ECA rule is, that if the event occurs and the object satisfies the condition, the action is
performed. In Degas events are specified the same as lifecycles with addition of a negation
operator (¬). Conditions in lifecycles and rules can refer to historical values of attributes. If an
attribute name is parameterised by a timestamp, it refers to the value of the attribute at the
specified time. Otherwise, it refers to the current value of the attribute. The rules in PINcard
show historical references in Degas rules.

More in particular, the first rule specifies that the PINcard sends its permission for a cash
withdrawal after a request, if the total amount withdrawn during the preceding week is less
than the limit of the card. The second rule responds with a refusal, if the limit is exceeded.

The class of a Degas object specifies its inherent capabilities (= attributes, methods, lifecycles
and constraints). Object specialisation in Degas is achieved through addons. An addon models
transient capabilities of an object. Addons can be added to and deleted from an object dynam-
ically, for example, when an object engages in a relation. A restricted form of inheritance is
supported by Degas. Since this is not relevant for this paper, the interested reader is referred
to [2] for more details. Relations in Degas are also objects with structure and behaviour.

Relations between objects are objectified in Degas, as is often the case in information systems
modelling methods such as NIAM [15]. The motivation for this is a formal view of a relation
as a kind of contract. Moreover, it ensures that relations can engage in relations themselves.

Before two objects enter a relationship, certain preconditions will have to be satisfied. For
example, if two persons wish to marry, both must be of a different sex and unmarried. Like-
wise, the termination of a relationship is subject to restrictions. In a lot of relations we need
to store data and behaviour of the relation. An obvious example is the bank account relation
between a bank and its clients. This information and the capabilities to handle termination of
the relationship are stored in a relation object. The capabilities to handle the initiation of a
relationship, including the creation of the relation object, can be found in the corresponding
relation class object. A relation is initiated by sending an initiate message to the relation
class object. Depending on the application semantics of the relation the relation class object
finds a matching partner and checks the preconditions of the relation.

An object that engages in a relation is extended using the addon mechanism, because it must
gain capabilities to deal with the relationship. For example, once a person has a bank account,
he can transfer money to other bank accounts or withdraw money through a cash dispenser.
Any kind of capability can be defined in an addon. An addon, however, cannot exist indepen-
dently, like an object or a relation object. An object is extended with an addon by executing
an extend action with the addon’s name. Likewise, an addon is removed by a delete action.

2 A short intro of Degas 5

Object PINcard
Attributes

number : integer
limit : integer
account : Oid
issuer : Oid
owner : Oid
PIN : integer

Methods
ReqWithdraw(amount:integer,requester:Oid) = f

g
WithdrawOK(amount:integer,requester:Oid) = f

requester.allowed(amount)
g
WitdrawRefuse(amount:integer,requester:Oid) = f

requester.refuse(amount)
g
ChangeLimit(newLimit : integer) = f

limit = newLimit
g
ChangePIN(newPIN : integer) = f

PIN = newPIN
g

Lifecycles
([sender==issuer] ChangeLimit)∗

([sender==owner] ChangePIN)∗

(ReqWithdraw;(WithdrawOK + WithdrawRefuse))∗

Rules
On (WithdrawOK(amount,atm)(t))∗;

ReqWithdraw(reqAmount,machine)(t1)
if t1 −Min(t) ≤ 1 week

&& Sum(amount, t)+reqAmount ≤ limit
do WithdrawOK(reqAmount,machine)

On (WithdrawOK(amount,atm)(t))∗;
ReqWithdraw(reqAmount,machine)(t1)
if t1 −Min(t) ≤ 1 week

&& Sum(amount, t)+reqAmount > limit
do WithdrawRefuse(reqAmount,machine)

EndObject

Figure 1: A Degas object

6 3 Design Guidelines for Degas

3 Design Guidelines for Degas

In modelling applications for Degas, we need a number of guidelines. Since the central notion
of Degas is object autonomy, we first recapitulate the criteria for object autonomy given in
[2]:

� Complete encapsulation of the behaviour of an object.

� Strictly regulated access to an object.

� Minimal guarantees about an object’s behaviour towards other objects.

� Minimal dependency of an object on the behaviour of other object.

These criteria were used to guide the development of the Degas data model. Naturally, they
have their consequences on Degas database design. In one sentence, we can say that Degas

objects combine minimal capabilities with maximal encapsulation.

Minimal capabilities means, that at any time an object only possesses the capabilities it needs.
This applies to both time and place of information storage. An object gets information only
when it needs it. Likewise, if it needs information from another object, it will request that
information when needed. An application of this principle is, that an object is extended with
extra capabilities, when it enters a relation. If it is not in a relation, the object does not have
the information associated with that relation.

Maximal encapsulation means, that everything is defined on the object itself. It is one of the
main consequences of object autonomy. Every aspect of the behaviour of an object is defined
on the object itself, including rules. The modularisation primitives for the rules are the notions
of object-orientation, that are also applied to attributes, methods, and lifecycles.

In database design terms, the guiding principle can be rephrased as follows: An object gets
only the information it needs, but it does get all the information it needs. This has the addi-
tional advantage, that NULL-values have only one meaning in Degas: It means that the value
of the attribute is unknown. It does not mean that the attribute is not defined, since attributes
only exist during the time they are needed.

These design principles are applied to a database design process. Design in Degas encom-
passes four dependent phases:

1. Identify objects in the application and the information they possess.

2. The actions of an object

3. The activation of each action (with static constraints)

4. The lifecycle of an object (i.e. dynamic constraints)

3 Design Guidelines for Degas 7

Phase 1 The first phase of database design in Degas is concerned with the static part. It
consists of identifying the objects and their relations, and determining the information con-
tained in them. The identification of objects and their relations in a Degas database design is
not radically different from usual object-oriented design techniques [16]. Next, we determine
the data in each object. Here, we have to make a distinction between the data that is always
present, and the data that is dependent on the presence of a relation with another object. The
former are called inherent attributes, the latter are transient attributes. Suppose we have a
person object, then inherent attributes are things like name, birth date, birthplace, and sex.

The part of an object associated with a certain relation is generally called its role in the rela-
tion. The concept of roles in an object-oriented context is elaborately discussed in [20]. The
capabilities an object has to deal with a certain relation are modelled by a role. Since these ca-
pabilities are only needed when the object is involved in the relation, these are called transient
in contrast with the object’s permanently present inherent capabilities. In Degas transient ca-
pabilities of objects are defined in addons. Hence, all information associated with a role is
implemented by an addon.

A guideline in determining relations between objects is given by their information exchanges.
If an object gets information from another object, it must have a relation with it. The other
way round is also true: An object can only communicate through its relations. Hence, we use
the information flow in an application to determine the relations in the application domain.

The result of this design phase is a static Degas object model. We have defined the objects,
their relation and associated addons. Furthermore, we have defined the attributes in each of
these. Each following phase in Degas database design are all executed iteratively. First, the
inherent capabilities of objects are addressed. Then, we specify the capabilities of addons.

This iteration originates in the semantics of Degas addons. In the specification of an addon,
we can use those capabilities of the object being extended, that we are certain to be present.
In other words, an addon can use the capabilities inherent to the object it extends, and the
addons it assumes present, as declared in the extends specification. If we assume a directed
edge from each relation to its partner objects, then a Degas database design, is a Directed
Acyclic Graph (DAG) with the objects as the leaves, as is depicted in Figure 2. Hence, we can
start out from the leaves in the DAG and then progress towards the highest level relations.

Phase 2 After the specification of the information, we look at the dynamics of the objects.
This means that we have to identify the actions that can be executed on the information in
the objects. In addition to this, engaging and disengaging in relations are also actions. In the
resulting Degas database, these actions are the methods of the objects.

Initially, the approach to finding the methods is a “shopping list” approach, as it is called by
Meyer [14]. The actions of an object can be either services to the outside world, or internal
state transitions. In phase 2, this distinction is not of importance.

This phase gives us information to check the result of the previous phase. For each of the
actions, we can determine the information it needs. This information must be either available
in the object itself, in the form of an attribute, or it is obtained through a relation. Hence, we

8 3 Design Guidelines for Degas

Relation 2

Object 4Object 3

Object 2Object 1

Relation 3

Addon

Addon

AddonAddon
Relation 1

Addon AddonAddon

Figure 2: A Degas database design as a Directed Acyclic Graph

can check whether we have specified all attributes of an object. Furthermore, we can check
whether there is a relation for every information exchange between objects. Vice versa, we can
check whether every relation is used to exchange information between objects.

Phase 3 Having specified the actions an object can execute, we have to specify when these
actions are executed. We do this by specifying the situations that trigger the actions. The spec-
ification formalism of these situations is up to the designer. He can use a graphical formalism,
such as the situation diagrams introduced in [13], or another formalism. The only requirement
is, that it has a clear translation to ECA rules.

In this phase, we first specify the activation conditions inherent in an object, i.e. in an object
without any addons. After that, we specify the interaction scenario for each relation. This
interaction scenario describes the communication between the partners in the relation and
the relation object. From this scenario, we derive the activation conditions for the actions
of the objects. Please note, that these interaction scenarios can involve inherent actions of a
partner object, since these are available to addons.

Activation conditions thus derived can be either local to an object or the result of actions
of another object. The first category is found back in rules in the object itself. The second
category means invocation of a method from another object, either from a rule or from a
method of that object.

For some methods we are not be able to specify an activation condition within the appli-
cation. This is the case for activations either by users or by other software components. In
these cases, we also specify an interaction scenario for the interface relation to these agents.
This interaction scenario specifies what actions can be invoked by a user or another piece of
software.

4 Specification of workflow 9

ReceivePayment

30 days

DeliverOrder

CancelOrder

SendBill

Predecessor relation

Inhibitor relation

Figure 3: Part of an order processing workflow with a clock and task inhibition

Using the result of this phase, we can validate the list of actions specified in the previous
phase. If we are not able to formulate an activation condition for an action, it is most probably
not needed in the current application.

Phase 4 The last phase in the design of a Degas database, is to specify the temporal relations
between the actions. These are meant to express the ways an object can execute actions. The
result of this phase is the lifecycle of an object. The lifecycle specified for an addon conforms
to the lifecycle of the inherent object by the use of the communication merge to merge the life-
cycles of objects and addons. For a more elaborate discussion of lifecycle merging the reader
is referred to [4]. In terms of OMT, the lifecycle gives the dynamic model of the application,
without the activations of the state transitions.

The lifecycle provides a check on the activation conditions of the previous phase. If the acti-
vation condition contains an event expression, then this event expression must comply to the
lifecycle specified in Phase 4. A conflict here means that either the activation or the lifecycle
is incorrect.

4 Specification of workflow

The example we use in this paper to show the Degas design process is workflow management.
In the specification, we are mainly concerned with routing of an activity. For each processing
phase, we store the immediately preceding and succeeding tasks. This specification of the
routing of a workflow allows us to specify the conditions to start each processing phase in the
workflow. These conditions depend on the way it is related to its predecessors. The different
types of relations between tasks are called routing elements.

The set of preceding tasks of a task τ is denoted by the set pred(τ). Likewise, the set of
succeeding tasks is denoted by succ(τ). As an example consider the workflow in Figure 3,
which gives the workflow for billing an order. A bill is sent to the customer. If we do not
receive payment in 30 days the order is cancelled. Otherwise the order is delivered.

10 5 Designing a workflow in Degas

In this workflow we have the following predecessor and successor tasks:

succ(sendBill) = {timer(30),ReceivePayment} pred(sendBill) = ∅
succ(timer(30)) = {CancelOrder} pred(timer(30)) = {sendBill)}
succ(ReceivePayment) = {DeliverOrder} pred(ReceivePayment) = {sendBill}
succ(CancelOrder) = ∅ pred(CancelOrder) = {timer(30)}
succ(DeliverOrder) = ∅ pred(ζ) = {ReceivePayment}

Besides positive predecessors, we need the notion of negative predecessors, or inhibitors for
a task. These are tasks, that prevent the execution of another task. In the above example,
we cancel an order of a customer who has not paid his bill in 30 days. Clearly, this task is
inhibited by the payment of the bill. Hence, associated with each task τ is a set of inhibiting
tasks denoted by Inhib(τ). In the example in Figure 3 we have:

Inhib(CancelOrder) = {ReceivePayment}
Other tasks have an empty set of inhibiting tasks.

The example in Figure 3 also contains a special kind of task, that is a timer. A timer is simply
a task that is completed at the specified time past its start.. In this example, the effect is that
the ReceivePayment only inhibits the cancellation of an order if it is completed before 30 days
are over.

Furthermore, there might be certain conditions associated with the execution of a task on
a job. One of the main uses of conditions is as a criterion to choose between a number of
successor. For example, the billing procedure of a mail order company might make a differ-
ence between new customers and known customers. Hence, each task τ has an associated
precondition Precond(τ). If τ has no specific precondition, precond(τ) = True.

The Workflow Management Coalition distinguishes five routing elements [21], apart from sim-
ple sequential routing. These are AND-split, AND-join, OR-split, OR-join, and iteration. These
routing elements can be formalised in terms of predecessor and successor tasks, and pre-
conditions. This formalisation is translated to active rules to start each succeeding task. The
formalisation and active rules for each routing element is found in the appendix.

5 Designing a workflow in Degas

In this section, we apply the design guidelines from the previous section to the example of
workflow management. The minimal information and maximal encapsulation principle leads
to a modularised approach to workflow management in active databases. Current approaches
are all more or less global. In [7], groups of rules are only introduced after the rules have
been derived. Although these groups are helpful in analysis of the rulebase, they are of no
help during the design of the database. We show that the Degas approach to active database
design leads to a clean database design.

In the following discussion, we will first consider workflow in abstracto. Then, this discussion
will be illustrated by a concrete example, which is an order processing flow. The billing task
specified in the previous section is part of this order processing. This flow is depicted in
Figure 4

5 Designing a workflow in Degas 11

ReceivePayment

SendBill

CancelOrder

DeliverOrder

ReceiveConfirmation

InventoryCheck

OrderBilling

OrderDelivery

RequestDelivery

30 days

Inventory >= NumberOrdered

Delivery

Inventory < NumberOrdered

Inventory < NumberOrdered

Figure 4: The workflow for order processing

12 5 Designing a workflow in Degas

5.1 Phase 1: Identifying the Objects

A workflow management system is there to support a job getting done. This job follows a
certain activity or schema. This schema defines how the job is processed by the system. It con-
sists of a number of processing phases, or tasks that must be executed in a certain sequence.
These tasks are executed by agents. An agent can be a person or a computer program.

The job object contains the application data. In traditional, physical workflows this would be a
form. For example, in our order processing workflow it is the software equivalent of an order
form. Hence, it contains attributes like the item on order, the quantity and the negotiated
price. Hence, its attribute specification is the following:

Attributes
item : string
number : integer
price : real
currentTask : number

The agent objects1 implement the application functionality of the workflow. This means that
they can represent anything from a piece of software processing the job to an interface to a
person. Thus, agent objects form the interface to the outside world. in our example, on of the
agents is the Inventory Controller, which keeps the number of items in stock and the reserved
part of the stock.

Attributes
Inventory : integer
Reserved : integer

The third important piece of information in a workflow is routing information, embodied
by schemata. A workflow schema describes the way a certain activity is completed. Such an
activity is composed of a number of tasks that need to be executed in a certain sequence. Thus,
the schema class is an additional class in our design. These objects store workflow schemata
in terms of successors and predecessors to each task.

The relations between these three classes of objects are mainly determined by their infor-
mation exchange. There are three pairs of object classes in our example, which means three
potential binary relations. We briefly consider these three pairs. During the execution of a task
of a job by an agent, the agent object needs information from the job object. Hence, a job
object has a relation with the agent object that executes its current task. We call this relation
the TaskExecution relation. The role of the agent is that of processor, while the job is
processed. As a consequence of the minimality principle, explained in the previous section,
this relation is only present while the agent executes the task. Once the task is completed,
the relation is deleted again. In our example, the InventoryCheck relation is an example of a
TaskExecution relation. Its only attributes are the partners in the relation, Job and Schema,
that are specified in the relation clause.

In our order processing example, each phase has a separate TaskExecution relation. These
are the InventoryCheck, OrderBilling and OrderDelivery relations.

1Not to be mistaken for any kind of intelligent agents.

5 Designing a workflow in Degas 13

The next pair is job and schema objects. Every job is routed according to some schema.
Therefore, a job must be provided with routing information by a schema. This leads to a
relation between a job and a schema object, named the JobFlow relation. In this relation,
the schema has the role of router. The job is routedBy the relation. The job engages in
this relation, as soon as it is started. Again the JobFlow relation object does not store any
information.

The remaining pair, schema and agent do not have a meaningful information exchange. The
schema object contains information about the way jobs can be routed. This information is
not necessary for an agent.

The result of this design phase in terms of generic workflow objects is depicted in Figure 5.
Our concrete example is shown in Figure 6. In these pictures, the large rounded rectangles are
objects. The small rounded rectangles denote addons. A dashed border indicates a relation
object. Please note that the arrows do not imply any arity constraints on the relations. Instead,
they point to the partner objects, on which the relation object depends for its existence.

TaskExecution

AgentJob

Schema

Processor

Router

ProcessedRoutedBy

JobFlow

Figure 5: Degas object model of a workflow

5.2 Phase 2: The actions in a workflow

The next phase in the design of a workflow in Degas is to specify the actions of the different
objects.

5.2.1 Inherent actions of objects

Each agent has actions to start its task and to signal the completion of its task. Further actions
of an agent are dependent on the kind of agent. For example, the InventoryControl agent
has actions to reserve stock for an order and to put newly arrived stock in the inventory.

Methods

14 5 Designing a workflow in Degas

Order

InventoryCheck

OrderBilling

DeliveringOrder

WaitingForDelivery

RoutedBy

Router

JobFlow

Schema

BillingOrder

OrderDelivery

BillingDept

Warehouse

InventoryControl

InventoryBeingChecked

WaitingForPayment

CheckingOrder

LinkAddon

Legend

Object Relation object

Figure 6: The object schema for an order processing workflow

5 Designing a workflow in Degas 15

reserve(number:integer) = f
Reserved = Reserved + number

g
newstuff(number:integer) = f

Inventory = Inventory + number
g

The only inherent action of a job object is the action to execute a certain schema. This action
means that the job enters a JobFlow relation with a Schema object. Other actions may be
defined for other purposes, but these are not relevant in this example. Since the Extend action
is built-in in every Degas object, we do not see it back in the specification of the order object.

The services of a schema object are to provide information about the flow it defines. This
means that it can answer the question, what comes after a specific task. The answer is provided
by way of an addon that implements the routing decision to be made after each task. Hence,
the only information a job needs to provide to get an answer is the job it has just finished.
This is a consequence of the minimality of information principle. For example, in the workflow
shown in Figure 6, if a job has finished the InventoryCheck, it requests the next task from
the JobFlow relation object. It forwards the request to the Schema object, that replies with the
name of the addon implementing the OrderBilling phase.

5.2.2 Transient actions of objects

Having defined the actions in the objects, we proceed to specify the actions in relations and
their associated addons. With regard to a relation the most important issue is, what a relation
enables the partners to do. From this, we can derive the actions of the relation itself.

The JobFlow relation enables the job to follow certain workflow. Through JobFlow it requests
information on what task to execute next. Hence, the RoutedBy addon forwards a request for
the next processing phase to the JobFlow relation object.

Addon RoutedBy
extends Order
...
Methods

nextPhase(current:string) = f
jobflow.whatNext(current)

g

The JobFlow relation object contains an action to inform the job partner of its next task. The
answer is given by instructing the job object to extend itself with an addon that contains the
actions of the next task. A further action is to replace the Schema object in the relation with a
new object.

Object JobFlow
...
Methods

whatNext(task : string) = f
succ = Schema.successor(task)
Job.Extend(succ)

16 5 Designing a workflow in Degas

g
replaceSchema(newSchema:oid) = f

Schema.delete(Router)
Schema = newSchema
Schema.extend(Router)

g

The Router addon provides access to the routing information in the Schema object.

Addon Router
extends Schema
...
Methods

successor(task:string) = f
return succ(task)

g

The TaskExecution relation allows a job to be processed by an agent. The existence of
the relation means that the task will be executed, but it is not started immediately after the
creation of the relation. Hence, the Processed addon will contain the necessary actions to
start the task. In addition, it will contain actions that give the agent the information necessary
to execute its task. The Processor addon will contain the actions, that are specific to this task.
Hence, it can be regarded as an interface to the inherent actions of the agent.

In our order processing example, one specialisation of the TaskExecution relation is the
InventoryCheck. This implements the first processing phase which is done by the InventoryControl
agent. The InventoryCheck relation object implements actions to start and to finish the pro-
cessing phase.

Object InventoryCheck
Relation InventoryControl, Order
...
Methods

Start(number : integer) = f
InventoryControl.request(number)

g
Finish() = f

Order.EndInventoryCheck
g

An order object can only be a partner in the InventoryCheck relation, if it is routed by some
workflow schema. Hence, the InventoryBeingChecked addon extends an order object, that
is already extended by a RoutedBy addon. This is specified in the Extends clause of the addon
specification. The only action in this addon contains the functionality to end the phase.

Addon InventoryBeingChecked
extends RoutedBy
...
Methods

EndInventoryCheck = f
nextPhase

g

5 Designing a workflow in Degas 17

Since the InventoryControlobject is the agent for the InventoryCheck task, the CheckingOrder
addon contains most functionality. This consists of actions to request the number of items
required for the order and to reserve the items, if they can be supplied.

Addon CheckingOrder
extends InventoryControl
...
Methods

request(number : integer, dest : oid) = f

noOfItems = number
g

getit(number : integer, dest : oid) = f

reserve(number)
g

5.3 Phase 3: Activation of action

In the third phase of the Degas database design, we specify when the different actions of
an object are executed. This means that we first specify the internal activations in inherent
objects, which are derived from the static constraints of the objects. Then, we formulate the
interaction scenario for each relation, which leads to activation of actions in the partners of
the relation, as well as in the relation object itself.

The objects, defining inherent capabilities, have no relations with other objects. Hence, in-
herently no object has business rules. For our workflow application, there are no integrity
constraints on the objects, job, agent, and schema. The inherent actions may be used, how-
ever, in the addons that extend objects.

The interaction scenario for the JobFlow relation is depicted in Figure 7. The job object, in
our example the order object, requests the next task on completion of a task. The whatNext
action of the JobFlow object gets this information by a call to the successor function of the
Schema object. The JobFlow object then sends a message back to the order object. This is an
extend action to add the addon implementing the next task, in this case the OrderBilling
task.

Router

nextPhase whatNext

successor

extend

JobFlowRoutedBy

Figure 7: The interaction scenario for the JobFlow relation

18 5 Designing a workflow in Degas

The interaction scenario for the InventoryCheck relation is shown in Figure 8. The goal of this
task is to check if the inventory suffices to deliver the order. The InventoryBeingChecked
addon invokes the start action of the InventoryCheck object. At its turn it sends a request
message to the InventoryControl object. When the inventory check is successful, the getit
action is executed by the InventoryControl object. This action invokes the Finish action
of the InventoryCheck, which leads to execution of the EndInventoryCheck action of the
order object.

Start

Finish

request

getit

InventoryCheck CheckingOrder

nextPhase

InventoryBeingChecked

Start

Figure 8: The interaction scenario for the InventoryCheck relation

The internal processing of the InventoryControl object is an iteration of the request action.
As is shown in the workflow, the required number is requested from the stock. If this number
cannot be reserved, the request is repeated each time new inventory arrives.

This leads to the activations of the different actions shown in Table 1.

5.4 Phase 4: Constraints on actions

The final phase of the design process is the specification of the order of the actions. This leads
to a lifecycle for each object, that embodies its dynamic constraints. Lifecycles are specified in
Degas using a process algebraic formalism [5]. Please note that the lifecycle of an addon can
include inherent actions of the object it extends.

The order object does not have any inherent actions, so its lifecycle is empty. With regard to
the JobFlow relation, it can enter one of these relations. During the existence of the relation,
the order object can go to a next phase an arbitrary number of times. Hence, the lifecycle of
the RoutedBy addon is:

Extend(RoutedBy);nextPhase∗;Delete(RoutedBy)

The actions of an order object in the InventoryCheck relation are again limited. It en-
ters the relation and executes one action to end the relation. Hence, the lifecycle of the
InventoryBeingChecked addon becomes:

Extend(InventoryBeingChecked);
EndInventoryCheck;Delete(InventoryBeingChecked)

The inherent actions of the InventoryControl object can be executed in any desired order.
Hence, the lifecycle is:

reserve∗

newstuff∗

5 Designing a workflow in Degas 19

Object or addon specification
Action Activation

order

No actions specified

RoutedBy

nextPhase invoked by EndInventoryCheck

InventoryBeingChecked

EndInventoryCheck invoked by InventoryCheck.Finish

InventoryControl

reserve invoked by getit

newstuff invoked from outside scope of example

CheckingOrder

request - invoked by InventoryCheck.Start
- invoked by occurrence of newstuff

getit executed when a request occurs and
the inventory is sufficient.

InventoryCheck

Start executed on order.extend(InventoryBeingChecked)

Finish executed on CheckingOrder.getit

JobFlow

whatNext invoked by RoutedBy.nextPhase

ReplaceSchema invoked from outside scope of example

Router

successor invoked by JobFLow.whatNext

Table 1: Activations of actions in the workflow example

20 6 Flexibility of the workflow

The order of the actions that pertain to the InventoryCheck relation reflects the scenario
of the relation. A request action can be executed a number of times before a getit action
is executed. Furthermore, the request call is only accepted from the object itself and the
InventoryCheck relation object. The lifecycle of the CheckingOrder addon is:

request∗;getit
([sender==InventoryCheck]request)∗

([sender==self]request)∗

The other relation in our example is the JobFlow relation. The relation object only has two
actions, whatNext and replaceSchema. These can be executed in any order, but the whatNext
action is only accepted from the job object, in our example the order object:

(sender==Job)whatNext∗

replaceSchema∗

The schema side of this relation is very simple. The only action is the successor action, that
can be executed any number of times:

successor∗

Complete Application This completes the design of our workflow example. The complete
Degas source, that results from this design is given in the appendix.

6 Flexibility of the workflow

One of the chief characteristics to judge a workflow implementation is its flexibility. In partic-
ular, it must be easy to change elements of the workflow. This can be either the routing of a
workflow, or the way a task is executed. In this section, we show that the workflow design of
the previous section, using the Degas minimality principle, provides the necessary flexibility.

6.1 Evolution of the Workflow Schema

Over time, the schema of a workflow may evolve. The causes of workflow evolution can be very
diverse. They might be optimisations due to an analysis of the process, new legal requirements
on a production process, etc. In this subsection, we look at the effects of workflow evolution
on the workflow schema, i.e. the changes it causes in the routing of the workflow. Changes can
be addition or deletion of tasks to or from a workflow, and changes in the sequence of tasks
in a workflow.

In the workflow design of the previous section, routing information is stored in the schema
object. Hence, a change in the workflow routing will lead to a new schema object. This new
object might be generated in a number of ways, by transformation from an existing object or
by design from scratch. The creation of this new schema object is not of interest here, we only
consider different schema evolution policies given new or modified schema objects.

The subject of schema evolution is discussed extensively in [8]. The authors give a number
of different policies to deal with activities in an evolving schema. The goal of these policies
is to gracefully handle ongoing activities, that follow a schema that is modified. In brief, the
following policies are identified:

6 Flexibility of the workflow 21

Abort All activities following the old schema are aborted and restarted following the new
schema.

Flush Ongoing activities are completed according to the old schema, while new activities are
started following the new schema.

Progressive policies In these policies, ongoing activities are upgraded to a new schema with-
out restarting.

To cater for the Abort policy, we must provide a number of facilities in the different objects.
First, the job object must provide an action to abort its activities. This action must roll the
object back to the state it was in, when it started. Since a Degas object contains its complete
history, this is relatively easy to implement. A workflow, however, also has effects in the real
world. Since agents are responsible for the interactions with the real world, they also provide
the compensating actions. Roll back of actions is discussed in the next section.

Since routing information is communicated to the job object as late as possible, this rolling
back can be completely transparent to the job object. After each task, the job object requests
its next task. Instead of answering with the next task to complete the activity, the schema
object replies with the next compensating task to roll the job object back to its initial state.

The Flush strategy is very easy to implement in any system. In our design, every job has a
relation to a schema object. If a new schema project is created for an activity, the job object
that are already being processed simply keep their relation with the old schema object. If a
new job object is entered into the activity, it gets a relation with the new schema object.

The term progressive policies covers a number of different policies, which have in common
that an activity is finished following a modified schema without a complete rollback of the old
schema. The modified schema may or may not be the same as the new schema. A job can be
switched over to the new schema, if the completed part of the old schema conforms to the
new schema. In this case, we can simply change the schema object in the jobflow relation to
the new schema.

Other progressive policies involve a special transition schema, that is only used to complete
ongoing activities. A transition schema can implement a number of different methods. For
example, it can contain a partial rollback, to get the job in a state, where its completed work
conforms to the new schema. Another possibility is to append some special tasks at the end
of the flow in order to get the same result as produced by the new schema. This approach
is especially useful in manufacturing, where it can be used to retrofit the product with a
modification.

All these approaches imply that a schema object, containing this transitional schema, is cre-
ated. Since a job object does not contain any advance information about its routing, the
change of schema can be enacted by a simple change of JobFlow relation. This is a distinct
benefit of the Degas minimal information principle.

This approach also facilitates a final, truly ad-hoc, way of dealing with schema evolution. We
can relate a job object to an interactive schema object, that prompts the workflow adminis-
trator for the next task on completion of each task in the activity. This might be useful for
cases, where we only have a small number of job objects needing a transition schema.

22 6 Flexibility of the workflow

6.2 Undoing tasks

In order to abort jobs or to apply progressive policies to jobs, we need the ability to roll back
tasks. Aborting a task means that we have to reinstate the initial state of the job object. Some
progressive policies may involve a partial rollback to a previous state. Here, we look at the
problem of rolling back tasks in the workflow design discussed in this paper.

Previous states of a Degas object are stored as part of its history together with the actions
that brought the object into that state. Hence, all information to bring back the job object to
its original state is found in the object itself. Rolling back the actions with regard to the tasks
that were executed, is basically a question of removing these actions from the history of the
object. Since the current state is the latest state in th history, the current state of the object
will then be automatically set to the state before

Removing actions from the history of an object only rolls back changes in the object itself, it
does not undo the effects of interactions with the environment. The interactions with the phys-
ical environment of the workflow application are through the agent objects. In addition, the
job object might have relations with other objects than the agent and schema objects. Hence,
the rollback is a responsibility of both partners in the TaskExecution. As a consequence a
workflow designer must provide compensation for each phase. The job objects cannot distin-
guish these compensating tasks from ordinary tasks. If a job follows a transitional schema,
the schema object will simply give compensating tasks first as successor tasks.

Compensating tasks are analogous to the concept of compensating transactions used for sagas
[9]. The difference is, that we do not need to roll back a transaction completely to its start, but
that we can roll back only part of its actions. Hence, we relax the requirement on a saga with
sub-transactions T1, . . . , Tn with compensating transactions C1, . . . , Cn, that we execute either:

T1;T2; . . . ;Tn

or

T1; . . . ;Tj ;Cj ; . . . ;C1

for some 1 ≤ j ≤ n. Instead we have a partial order between tasks, that may be extended.
Suppose we have a partially ordered set of tasks T , where each Ti ∈ T has an associated
compensating action Ci. In addition, we have a function Compensate(τ), that yields the
compensating task of task τ. Please note that a task undoes its compensating task, so the
compensation of a task itself is its compensating task and Compensate(Compensate(τ)) =
τ Then, we have the following requirements on two subsequent tasks:

Ti;Tj Ti < Tj∧ 6 ∃t ∈ T : Ti < t < Tj

Ti;Cj Cj = Compensate(Ti)

Ci;Cj Compensate(Ci) > Compensate(Cj)
∧ 6 ∃t ∈ T : Compensate(Ci) > t > Compensate(Cj)

Ci;Tj ∃t ∈ T : t < Compensate(Ci)∧ t < Tj
∧ 6 ∃s ∈ T : s > t ∧ s < Compensate(Ci)∧ s < Tj

7 Conclusion 23

6.3 Changing Task Execution

The other main source of evolution in a workflow lies in the way tasks are executed. In
our design, the execution of tasks is a concern separated from routing, since tasks are ex-
ecuted by agent objects. The interaction between agent and job objects is specified in the
TaskExecution relation. As a consequence, changes in task execution are easily separated.

A new way of executing a task might be completely transparent, in the sense that no additional
information is needed from the job object. In this case, the only changes necessary are in the
agent object. Hence, a job entering the execution of the changed tasks gets the same relation
with the modified agent object. If the change in task execution requires additional interaction
between job and agent objects, the TaskExecution relation and its associated addons will
also need to be modified.

Whatever the type of change, the modularisation of workflow in this paper guarantees that
a task is always executed according to the latest version. This is achieved by separating task
execution from the jobs, so that a job object gets the necessary information as late as possible.
Again this is an application of the Degas minimality design principle.

7 Conclusion

In this paper, we discussed an approach to designing an active database in Degas. We de-
scribed how database design in Degas is guided by two principles: Minimality of information
and maximality of encapsulation. The minimal information principle is a guideline for the de-
signer, which is facilitated by the relation and addon mechanisms. The maximal encapsulation
principle is part of the Degas model. An advantage relative to other active databases is the
use of the ordinary object-oriented notions for modularisation of the rulebase. Hence, we do
not need additional concepts, such as a rulebase.

The Degas design guidelines were applied to the example of workflow management. Although
active databases are in general well suited for the implementation of workflow management,
there is a need for clearly modularised active database designs for this application. We have
shown that the Degas design guidelines lead to a design with clearly separated responsibili-
ties of the different objects. Furthermore, we have shown that it facilitates a straightforward
implementation of workflow evolution strategies.

References

[1] W.M.P. van der Aalst, K.M. van Hee, and G.J. Houben. Modelling workflow management
systems with high-level Petri nets. In G. De Michelis, C. Ellis, and G. Memmi, editors,
Proceedings of the Second Workshop on Computer-Supported Cooperative Work, Petri nets
and related formalisms, pages 31-50, 1994.

[2] J.F.P. van den Akker and A.P.J.M. Siebes. Degas: A temporal active data model based on
object autonomy. Technical Report CS-R9608, CWI, Amsterdam, The Netherlands, 1996.
Available through WWW (http://www.cwi.nl/˜vdakker/).

24 REFERENCES

[3] Johan van den Akker and Arno Siebes. Degas: Capturing dynamics in objects. In P. Con-
stantopoulos, J. Mylopoulos, and Y. Vassiliou, editors, Advanced Informations Systems En-
gineering - Proc. of CAiSE’96, pages 82-98, Heraklion, Crete, Greece, May 1996. Springer.
LNCS 1080.

[4] Johan van den Akker and Arno Siebes. Object histories as a foundation for an active
OODB. In R. Wagner and H. Thoma, editors, Proceedings of the 7th International Workshop
on Database and Expert Systems Applications (DEXA’96), pages 2-8, Zürich, Switzerland,
1996. IEEE Computer Society.

[5] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1990.

[6] Elena Baralis, Stefano Ceri, and Stefano Paraboschi. Modularization techniques for active
rules design. ACM Transactions on Database Systems, 21(1):1-29, 1996.

[7] F. Casati, C. Ceri, B. Pernici, and G. Pozzi. Deriving active rules for workflow enactment.
In R. Wagner and H. Thoma, editors, Proceedings of the 7th International Conference on
Database and Expert Systems Applications (DEXA’96), pages 94-115, Zürich, Switzerland,
1996. Springer. LNCS 1134.

[8] F. Casati, C. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. In Bernhard Thalheim,
editor, Conceptual Modelling - Proceedings of the 15th ER Conference (ER’96), pages 438-
455, Cottbus, Brandenburg, Germany, 1996. Springer.

[9] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proc. of the 1987 SIGMOD
Intl. Conf. on the Management of Data, pages 249-259, 1987.

[10] Stella Gatziu, Andreas Geppert, and Klaus R. Dittrich. Integrating active concepts into
an object-oriented database system. In Paris Kanellakis and Joachim W. Schmidt, editors,
The Third International Workshop on Database Programming Languages: Bulk Types and
Persistent Data, pages 399-415. Morgan Kaufmann, 1991.

[11] H. Herbst, G. Knolmayer, T. Myrach, and M. Schlesinger. The specification of business
rules: A comparison of selected methodologies. In A.A. Verrijn-Stuart and T.-W. Olle,
editors, Methods and Associated Tools for the Information System Life Cycle, pages 29-46,
Amsterdam, the Netherlands, 1994. Elsevier.

[12] Heinrich Jasper, Olaf Zukunft, and Helge Behrends. Time issues in advanced workflow
management applications of active databases. In Active and Real-Time Database Systems
(ARTDB-95), Workshops in Computing, pages 65-81. Springer, 1995.

[13] P. Lang, W. Obermair, and M. Schrefl. Situation diagrams. In R. Wagner and H. Thoma,
editors, Proceedings of the 7th International Conference on Database and Expert Systems
Applications (DEXA’96), pages 400-421. Springer, 1996. LNCS 1134.

[14] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall International, 1988.

[15] G.M. Nijssen and T.A. Halpin. Conceptual schema and relational database design : a fact
oriented approach. Prentice-Hall, New York, USA, third edition, 1990.

REFERENCES 25

[16] James Rumbaugh et al. Object-oriented Modeling and Design. Prentice-Hall, Englewood
Cliffs, USA, 1991.

[17] Marek Rusinkiewicz and Amit Sheth. Specification and execution of transactional work-
flows. In Won Kim, editor, Modern Database Systems: The Object Model, Interoperability,
and Beyond, chapter 29, pages 592-620. Addison-Wesley, 1995.

[18] Jennifer Widom. The Starburst Rule System, chapter 4 in [19].

[19] Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers and Rules for Ad-
vanced Database Processing. Morgan Kaufmann, San Francisco, CA, USA, 1995.

[20] Roel Wieringa, Wiebren de Jonge, and Paul Spruit. Using dynamic classes and role classes
to model object migration. Theory and Practice of Object Systems, 1(1):61-83, 1995.

[21] Workflow Management Coalition. Terminology and Glossary WFMC-TC-1011 2.0. Avail-
able through WWW at http://www.aiai.ed.ac.uk/WfMC/, June 1996.

26 REFERENCES

Appendix:Workflow routing elements

The Workflow Management Coalition identifies five different routing elements:

1. AND split

2. AND join

3. OR split

4. OR join

5. Iteration

A split means that a task has multiple successors, while a join means multiple predecessors.
AND means that all successors or predecessors are involved. Likewise OR means that only one
of the successors or predecessors is involved.

An AND split means that a task has a number of successors, which are all started up si-
multaneously. In the following picture, this means that the tasks β1, β2, . . . , βn are started
simultaneously after α has finished.

βn

...
α

β2

β1

@
@
@R

h- �
�
��

��
�*

The associated conditions for the execution of the tasks β1 to βn are:

α ∈ Completed(A)
∧
Inhib(β)∩ Completed(A) = ∅
∧
Precond(βi)

On End(α)
do Start(β1)
...

...
On End(α)
do Start(βn)

An AND-join specifies that a task may start only if a number of preceding tasks have all been
completed. Here, β is started after α1, α2, . . . , αn have all been completed.

αn

...
β

α2

α1
Q
Q
Q
QQs h

XXXXXz

�
�
�
��3

-

REFERENCES 27

The condition for the start of task β is:

Pred(τ) ⊆ Completed(A)
∧
Inhib(τ)∩ Completed(A) = ∅
∧
Precond(τ)

On ‖i=1...n End(αi)
do Start(β)

The previous two routing elements specified tasks that executed in parallel. We can also spec-
ify the selection of a subset of successor tasks, so that not all successor tasks need to be
executed.

α c2

cn

c1

β1

...
�
�
�
�
��3

��
��
��1

Q
Q
Q
Q
QQs βn

β2

If we formalise the workflow in terms of preconditions, predecessors, successors, and in-
hibitors, this case is not different from the AND-split. The condition for the start of each βi
again is:

α ∈ Completed(A)
∧
Inhib(β)∩ Completed(A) = ∅
∧
Precond(βi)

On End(α)
if C1

do Start(β1)
...

...
On End(α)
if Cn
do Start(βn)

An OR-join is different from an AND-join in that only one of the predecessors needs to be
completed to start the task. In the following picture, β can be started on completion of either
α1, α2, or αn.

αn

...

α2

α1

β

�
�
�
�
��3

PPPPPPq

Q
Q
Q
Q
QQs

Hence, the set of predecessors of β needs not be a subset of the set of completed tasks:

28 REFERENCES

Pred(β)∩ Completed(A) 6= ∅
∧
Inhib(β)∩ Completed(A) = ∅
∧
Precond(β)

On End(α1)
do Start(β)
...

...
On End(αn)
do Start(β)

The final routing element defined by the WfMC is iteration. Iteration means that a task α is
repeated until a condition c is satisfied. If c is satisfied, the activity proceeds with the next
task β.

c

¬c
βα? --

Iteration can be formalised as an OR-split, with α as a successor to itself with ¬c as a precon-
dition and with c as a precondition for β.

To start α: To start β:

α ∈ Completed(A)
∧
¬c
∧
Inhib(α)∩ Completed(A) = ∅

α ∈ Completed(A)
∧
c
∧
Inhib(β)∩ Completed(A) = ∅

On End(α)
if C
do Start(α)

On End(α)
if ¬C
do Start(β)

REFERENCES 29

Appendix: Degas source of the workflow example

Object Order
Attributes

number : integer
price : real
currentTask : number

Methods
Lifecycle
Rules
EndObject

Addon InventoryBeingChecked
extends RoutedBy
Attributes
Methods

EndInventoryCheck = f

nextPhase
g

Lifecycle
Extend(InventoryBeingChecked);

EndInventoryCheck;Delete(InventoryBeingChecked)
Rules

On Extend(InventoryBeingChecked)
do InventoryCheck.Start(number)

On EndInventoryCheck
do InventoryCheckClass.terminateRelation

EndObject

Object InventoryCheck
Relation InventoryControl, Order
Attributes
Methods

Start(number : integer) = f

InventoryControl.request(number)
g

Finish() = f

Order.EndInventoryCheck
g

Lifecycle
Start;Finish

Rules
EndObject

30 REFERENCES

Object InventoryControl
Attributes

Inventory : integer
Reserved : integer

Methods
reserve(number:integer) = f

Reserved = Reserved + number
g

newstuff(number:integer) = f

Inventory = Inventory + number
g

Lifecycle
reserve∗

newstuff∗

Rules
EndObject

Addon CheckingOrder
extends InventoryControl
Attributes

InventoryCheck : Oid
noOfItems : integer

Methods
request(number : integer, dest : oid) = f

noOfItems = number
g

getit(number : integer, dest : oid) = f

reserve(number)
g

Lifecycle
request∗;getit
([sender==InventoryCheck]request)∗

([sender==self]request)∗

Rules
On request(number,dest)

if number ≤ Inventory - Reserved
do getit(number,dest)

On request(,dest);newstuff;¬getit(,dest)
do request(noOfItems,dest)

On getit(number,dest)
do dest.Finish

EndObject

Addon RoutedBy
extends Order

REFERENCES 31

Attributes
jobflow : Oid
CurrentTask : string

Methods
nextPhase(current:string) = f

jobflow.whatNext(current)

Lifecycle
Extend(RoutedBy);nextPhase∗;Delete(RoutedBy)

Rules
EndObject

Addon Router
extends Schema
Attributes

jobflow : Oid
Methods

successor(task:string) = f

return succ(task)
g

Lifecycle
successor∗

Rules
EndObject

Object JobFlow
Relation Schema, Job
Attributes
Methods

whatNext(task : string) = f

succ = Schema.successor(task)
Job.Extend(succ)

g

replaceSchema(newSchema:oid) = f

Schema.delete(Router)
Schema = newSchema
newSchema.extend(Router)

g

Lifecycle
(sender==Job)whatNext∗

replaceSchema∗

Rules
EndObject

