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Summary

Uncertainty is ubiquitous in many areas of science and engineering. It may result from the inade-
quacy of mathematical models to represent the reality or from unknown physical parameters that
are required as inputs for these models. Uncertainty may also arise due to the inherent randomness
of the system being analyzed. For many problems of practical interest, uncertainty quantification
(UQ) can involve computations that are intractable even for the modern supercomputers, if conven-
tional mathematical techniques are utilized. The reason is typically a product of complexity factors
associated with many samples needed to compute the statistics, and for each sample, complexity
associated with the spatio-temporal scales characteristics to the system.

The main objective of this research is to obtain multilevel solvers for stochastic fluid flow problems
with high-dimensional uncertainties. In our approach, the complexity arising due to sampling is
overcome by the multilevel Monte Carlo (MLMC) method and complexity due to spatio-temporal
scales is eliminated via the multigrid solver. Historically, Monte Carlo (MC) type methods have
been proven to be the methods of choice for problems with a large uncertainty dimension as they
do not suffer from the curse of dimensionality. A well-known computational bottleneck associated
with the plain MC method is the slow convergence of the sampling error. For problems involving a
wide range of space and time scales, ensuring a low mean square error will require a large number
of MC samples on a very fine computational mesh making the estimator very expensive. Inspired
by the multigrid ideas, the MLMC method generalizes the standard MC to multiple grids, exhibiting
an exceptional improvement. The efficiency of the MLMC method comes from solving the problem
of interest on a coarse grid and subsequently adding corrections based on finer mesh resolutions.
On the coarsest grid, a large number of samples can be computed inexpensively. The corrections
computed on finer grids, have smaller variances and can be estimated accurately using only fewer
samples. The estimates at different levels are then combined using a telescopic sum.

A fast and robust black-box solver is very important for designing an efficient MLMC estimator.
Therefore, combining the MLMC method with a multigrid method seems natural, where the
multigrid method is employed for the numerical solution of a partial differential equation (PDE)
with uncertainty on a certain scale. Developing a multigrid method for problems with random
inputs is challenging, as depending on the random inputs, the multigrid convergence rate may
have a high variance or even diverge for certain samples. In this thesis, we also develop multigrid
methods that are well suited to an MLMC setting. We pay special attention to the choice of the
multigrid components and provide modifications needed in a deterministic multigrid solver to deal
with the stochasticity.

We study four different fluid flow problems: single-phase flow in porous media with highly
heterogeneous diffusion coefficients; a multi-physics problem involving advection-dominated
transport in a coupled Darcy-Stokes system; a nonlinear multi-phase flow in variably saturated
porous media; and turbulent flows with high Reynolds number. For all these problems, we encounter
uncertainties that are extremely high-dimensional where the unknown physical parameters are
modeled as an infinite-dimensional random field or even as an infinite-dimensional random tensor
field.

To gain an insight into the MLMC method, we also study the theory and sampling strategies, in
Chapter 2. Then, we explore the possibilities for improving the complexity of the MLMC method
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vi Summary

using higher-order discretization schemes in Chapter 3. Here, we also describe a framework to
combine a full multigrid (FMG) solver with the MLMC estimator using the same hierarchy of grids.
This coupling of a FMG solver with the MLMC estimator is highly appealing, as we can obtain
linear-scaling UQ methods for many problems.

In Chapter 4, we study a non-standard Local Fourier Analysis (LFA) to predict the asymptotic
convergence factors of multigrid solvers for PDEs with random or jumping coefficients. The
proposed LFA technique can be used to compute the convergence statistics of multigrid solvers in
advance and can be used to optimize the MLMC simulation.

Devising an efficient MLMC method for coupled multi-physics problems is highly challenging.
A careful selection of numerical schemes for each subproblem is needed to avoid a high cost per
sample without any gain in accuracy. For such systems, the approximation of each subproblem
may give rise to different convergence rates depending on the regularity of the solution variables
and on the discretization order of the numerical schemes. These aspects are studied in Chapter 5
where we discuss a multigrid MLMC approach for stochastic transport in a coupled Darcy-Stokes
system. With the combination of numerical schemes described in this chapter, we are able to obtain
an asymptotically optimal MLMC estimator that has the same computational complexity as its
deterministic counterpart.

The standard MLMC method relies on a sequence of coarse grids for cost reduction. For stiff
nonlinear systems, a convergent solution can only be obtained on relatively finer grids, thereby
limiting the full potential of the MLMC method. To deal with this shortcoming, we explore a
parametric continuation strategy for nonlinear PDEs in Chapter 6. The key idea is to simplify
the nonlinearity as we move to coarse grids. This way we circumvent the problem of divergence
as simpler nonlinear problems are now solved on coarser levels. To test the effectiveness of this
approach, we consider flow in variably saturated porous media that is modeled using the nonlinear
Richards’ equation. For a widely used solution method based on the modified Picard iteration, we
show that the parametric continuation approach can accelerate the convergence of the standard
MLMC method for nonlinear problems.

In Chapter 7, we extend the MLMC framework for quantifying model-form uncertainties as-
sociated with the Reynolds-Averaged Navier-Stokes (RANS) simulations. The RANS equations
combined with turbulence closure models are widely utilized in engineering to predict flows at high
Reynolds numbers. The turbulence models are typically derived using a combination of physical
insight and empirical data-fitting. This modeling approach, although computationally inexpensive
introduces large modeling errors in the RANS prediction. This work describes two stochastic exten-
sions for RANS models based on random eddy viscosity and a random Reynolds Stress Tensor (RST)
which are solved using the MLMC method. The random eddy viscosity is obtained by perturbing
the baseline eddy viscosity using Gaussian random fields with some prescribed spatial covariance.
Similarly, the random RST is derived by perturbing the deterministic baseline RST. For the proposed
method, we show that the asymptotic cost of the MLMC estimator does not deteriorate with an
increase in uncertainty dimension. Here, we also demonstrate that the two stochastic models are
sufficiently general and can reliably bound the possible flow behavior.

This PhD thesis reports on the multilevel approach for UQ of fluid flow problems. Our focus is
on the development of fast uncertainty propagation algorithms. We also show the generality of the
considered stochastic models for different classes of flow. As a next step, based on the machinery
developed in this work, one can further develop efficient data-driven inverse UQ algorithms for
parameter calibration and quantification of model errors.



Samenvatting

Onzekerheid is een alom vertegenwoordigd onderdeel van veel technisch-wetenschappelijke vak-
gebieden en modellen. Voorbeelden van bronnen van onzekerheid zijn ten eerste de fout van een
model ten opzichte van de fysische realiteit en ten tweede onbekende parameters waarvan een
model athangt. Het is ook mogelijk dat het fysische model zelf onzekerheid bevat. Het modelleren
van onzekerheid staat bekend als onzekerheidskwantificering (afgekort UQ, naar het Engels Uncer-
tainty Quantification), maar met conventionele technieken uit dit vakgebied kunnen veel relevante
problemen niet worden opgelost. Dit komt doordat de benodigde berekeningen zelfs voor moderne
supercomputers te complex zijn. De reden hiervan is tweeledig. Ten eerste kan de onzekerheid
alleen gekwantificeerd worden door het onderliggende deterministische model vaak op te lossen en
ten tweede is het onderliggende model complex door de vele schalen van het probleem (zowel in
ruimte als in tijd).

Het hoofddoel van dit onderzoek is het afleiden van numerieke multilevel oplossingsmetho-
den welke toegepast kunnen worden op stochastische vloeistof dynamica problemen met hoog
dimensionale onzekerheden. Onze aanpak bestaat uit het combineren van de multilevel Monte
Carlo (MLMC) methode met de multigrid methode, waardoor zowel de problematiek van de vele
model evaluaties alsmede de complexiteit van de vele schalen in het model zelf worden tegen
gegaan. Het is algemeen bekend dat (gewone) Monte Carlo (MC) methoden effectief omgaan met
hoog dimensionale onzekerheden, omdat de hoeveelheid benodigde numerieke oplossingen van
het model niet afhangt van het aantal onzekerheden (dit fenomeen staat bekend als de curse of
dimensionality). Echter ondanks deze kenmerkende eigenschap zijn er veel numerieke oplossingen
van het model nodig om tot een accurate schatting te komen. Dit speelt vooral wanneer er vele
schalen in het probleem zijn. MLMC gaat dit effect tegen door MC toe te passen op meerdere
roosters van het onderliggende model, waardoor er substantieel minder tijd nodig is om tot een
oplossing te komen. Het idee is om het onderliggende model vaak numeriek op lossen gebruik
makende van een grof rooster en vervolgens de fout die hierdoor gemaakt wordt te corrigeren
gebruik makende van oplossingen bepaald met steeds fijner wordende roosters. Het grove rooster
kan gebruikt worden om het model vaak numeriek op te lossen, aangezien dit snel en effectief kan.
De variantie tussen een oplossing op het grove rooster en een fijn rooster is klein, dus er zijn maar
weinig numerieke oplossingen nodig op een fijn rooster om accurate statistieken te berekenen. De
correcties worden vervolgens gecombineerd door middel van een telescopische som.

MLMC is een grote verbetering ten opzichte van MC, maar vereist nog steeds een snelle en
robuuste numerieke oplossingsmethode voor het onderliggende model. Een voor de hand liggende
idee is om de MLMC methode te combineren met een multigrid methode, waarbij de multigrid
methode wordt gebruikt voor het oplossen van een parti€le differentiaalvergelijking (PDV) op een
vooraf bepaalde schaal. Het is niet evident om een multigrid methode te gebruiken wanneer de
parameters van de differentiaalvergelijking stochasten zijn, aangezien athankelijk van de parameters
de multigrid methode langzaam (met hoge variantie) of zelfs niet convergeert. In deze dissertatie
worden multigrid methodieken ontwikkeld die zeer effectief zijn in combinatie met MLMC. We
letten vooral op de juiste keuze van alle onderdelen in multigrid en ontwikkelen aanpassingen daar
waar nodig.

We bestuderen vier verschillende vloeistof dynamica problemen: eenfasige stroming in poreuze
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media met sterk variabele diffusie; een combinatie van een door advectie gedomineerde stroming en
een Darcy-Stokes systeem; een niet-lineaire meerfasige stroming in verzadigde poreuze media; en
turbulente stroming met hoog Reynoldsgetal. In alle problemen komen extreem hoog dimensionale
onzekerheden voor waarbij de onzekere fysische parameters gemodelleerd worden als oneindig
dimensionale stochastische velden of zelfs als oneindig dimensionale stochastische tensorvelden.

Om inzicht te verwerven in MLMC bestuderen we in Hoofdstuk 2 de wiskundige theorie en
strategie€n om steekproeven te bepalen. Daarna verkennen we in Hoofdstuk 3 de mogelijkheden
om de MLMC methode te versnellen gebruik makende van hogere orde discretisatie methodieken.
We beschrijven hier ook een raamwerk om full multigrid (FMG) te combineren met MLMC, waarbij
beide methoden gebruik maken van dezelfde roosterhiérarchie. De koppeling tussen FMG en
MLMC is veelbelovend, aangezien de tijdscomplexiteit van de verkregen UQ methodieken in veel
gevallen lineair schaalt.

In Hoofdstuk 4 leiden we een nieuwe lokale Fourier analyse (LFA) af om asymptotische con-
vergentie van multigrid oplossingen van PDV’s met willekeurige coéfficiénten te voorspellen. De
afgeleide LFA techniek kan gebruikt worden om convergentie van multigrid technieken vooraf de
kwantificeren en kan gebruikt worden om MLMC simulaties te optimaliseren.

Het is niet eenvoudig een efficiénte MLMC methode te ontwikkelen voor problemen waarin
verschillende fysische fenomenen gekoppeld zijn. Het is van belang om nauwkeurig de numerieke
schema’s te kiezen welke gebruikt worden voor ieder fenomeen of submodel zodat de precisie
van ieder onderdeel hetzelfde is. De convergentiesnelheid kan verschillen tussen de onderdelen,
afhankelijk van de regulariteit van de oplossing en de discretisatie van het fysische submodel. Deze
aspecten worden beschouwd in Hoofdstuk 5, waarin een multigrid MLMC methode wordt afgeleid
voor een stochastische stroming in een gekoppeld Darcy-Stokes systeem. De numerieke schema’s
die worden afgeleid in dit hoofdstuk worden gecombineerd, om zo een asymptotisch optimale
MLMC schatter te verkrijgen, welke dezelfde complexiteit heeft als het deterministische probleem.

The standaard MLMC methode maakt gebruik van een serie grove rooster om de effectiviteit te
waarborgen. Echter voor stijve niet-lineaire systemen is het alleen mogelijk om een geconvergeerde
numerieke oplossing te verkrijgen op relatief fijne roosters, waardoor de effectiviteit van MLMC
afneemt. Om dit probleem op te lossen verkennen we in Hoofdstuk 6 parametrische voortzetting, wat
toegepast kan worden op niet-lineaire PDV’s. Het idee is om de niet-lineariteit voor grove roosters
te vereenvoudigen. Hiermee kan sneller een geconvergeerde numerieke oplossing verkregen,
aangezien het probleem aanzienlijk versimpeld is. Om de effectiviteit van deze aanpak te testen
wordt deze toepast op stroming in een verzadigd poreus medium, wat gemodelleerd wordt door
middel van de niet-lineaire vergelijking van Richards. We gebruiken een methode welke gebaseerd
is op de veelgebruikte Picard iteratie om aan te tonen dat parametrische voortzetting de convergentie
van MLMC in niet-lineaire problemen aanzienlijk kan versnellen.

In Hoofdstuk 7 bereiden we het MLMC raamwerk uit om de modelonzekerheden van de stati-
onaire Navier-Stokes vergelijkingen voor de gemiddelde stroming te kwantificeren. Deze verge-
lijkingen staat bekend als de de Reyolds-averaged Navier-Stokes vergelijkingen, oftewel de RANS
vergelijkingen. De RANS vergelijkingen worden vaak in combinatie met een turbulentie-model
gebruikt om het gedrag van vloeistoffen met een hoog Reynoldsgetal te voorspellen. De turbulentie-
modellen worden normaal gesproken verkregen door fysisch inzicht en empirische data-analyses.
Deze aanpak zorgt voor modellen die snel numeriek opgelost kunnen worden, maar een grote
inherente fout bevatten. In Hoofdstuk 7 worden twee stochastische expansies voor RANS modellen
beschreven, welke gebaseerd zijn op een willekeurige eddy viscositeit en een willekeurige Reynolds
stress tensor (RST). Deze worden opgelost gebruik makende van de MLMC methode. De willekeu-
rige eddy viscositeit is verkregen door de gebruikelijke waarde van de eddy viscositeit op te tellen bij
een hoog-dimensionaal Gaussisch proces. Op dezelfde wijze wordt de willekeurige RST verkregen.
We laten zien dat de benodigde tijd om de nieuwe MLMC methodieken toe te passen asymptotisch
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niet toeneemt wanneer de hoeveelheid onzekere parameters toeneemt. We laten ook zien dat de
twee stochastische modellen voldoende generiek zijn en daardoor in staat zijn de vloeistofstroming
correct te voorspellen.

Deze dissertatie beschrijft een multilevel UQ aanpak, welke wordt toegepast op vloeistof dy-
namica problemen. De aandacht gaat specifiek uit naar het ontwikkelen van snelle propagatie
methoden. We laten ook de brede toepasbaarheid van de stochastische modellen zien. De volgende
stap is om, gebruik makende van de in dit werk ontwikkelde methodes, efficiénte UQ algoritmes
te ontwikkelen om gebruik makende van data parameters te kalibreren en model onzekerheid te
kwantificeren.
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Introduction

Due to formidable progress in computers and algorithms, many problems in science and engineering
can be simulated with a high level of detail using computer programs. These programs encode
mathematical models describing the underlying physics of the problem. The models also contain
a number of physical parameters that describe the state of the physical system. Predictions of
these models may become uncertain when the true physics or parameters describing the reality are
unknown or due to natural randomness in the physical system.

Sources of uncertainty in a mathematical model are typically categorized as epistemic uncertainty
(due to lack of knowledge) or aleatoric uncertainty (due to inherent randomness). Within epistemic
uncertainty, we encounter parametric uncertainties where the parameters that are input to the
mathematical model are not completely known, for instance, the permeability field in subsurface
flow modeling. Another type of epistemic uncertainty is model bias (or structural uncertainty) that
arises due to inaccuracies in a mathematical model. In some cases, simplifications made just to
reach stable numerical solutions may also introduce a model bias. The uncertainty in the epistemic
sources can be reduced by acquiring more data regarding the model parameters or by incorporating
additional physics in the mathematical model.

Some physical systems exhibit uncertainties that are irreducible i.e. cannot be reduced by
acquiring more information about the process. Due to the inherent randomness, the outcome of
these processes may differ even when the same experiment is repeated multiple times (for example,
drawing cards from a shuffled pack). Typically, aleatoric variables are sampled from some probability
distribution that is part of the model of the system.

One may also have to deal with operational uncertainties, for example, when exact boundary
or initial conditions are not available. For some problems, with geometric uncertainty where the
geometry of the problem is not known accurately, for example, the shape of an airfoil. The above
uncertainty can again be classified as epistemic or aleatoric uncertainty. This distinction will be
relevant in order to decide whether data acquisition is needed to reduce the uncertainty.

Stochastic extensions of deterministic models can be derived by modeling the inputs as random
variables. For example, in subsurface flow modeling it is common to model the unknown perme-
ability as a lognormal random field. Uncertainties due to model bias can be dealt with in a number
of ways. A common practice is the addition of a discrepancy function to capture the model bias
[1]. Another possibility is to perturb the quantities obtained from deterministic simulations. The
amount of perturbation is typically decided based on some physical constraints. In the turbulence
modeling literature, a number of stochastic turbulence models have been derived by perturbing the
Reynolds stresses obtained from deterministic simulations [2-4].
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Once the stochastic model is formulated, an efficient Uncertainty Quantification (UQ) technique
is required to compute the statistical moments of the output quantities of interest. This choice
typically depends on the uncertain dimension. Other practical factors such as the ease of implemen-
tation and the availability of an iterative solver which is robust with respect to the random input,
also play a role in the selection of a suitable UQ technique. These UQ techniques are sometimes
categorized as either intrusive (requires modifications in the deterministic solver) or non-intrusive
(deterministic solver is used as a black-box) approaches. Notably one of the most popular intrusive
techniques is the stochastic Galerkin (SG) method based on the generalized Polynomial Chaos (gPC)
expansion [5-7]. The SG formulation of the stochastic PDEs typically results in a set of coupled
deterministic equations. For SG methods, the existing iterative solvers cannot be directly utilized
and may need drastic modifications. Furthermore, the implementation becomes highly involved
when we deal with complicated PDEs involving nonlinear terms or multi-physics problems.

Another class of well-established UQ techniques includes stochastic collocation (SC) methods [7,
8] that are based on deterministic sampling approaches. The sampling nodes in the random space are
computed using cubature rules. The main advantage of the SC method lies in its non-intrusiveness,
hence, existing deterministic solvers can be utilized. The computational cost is governed by the
number of nodes, that however increase exponentially with an increase in the stochastic dimensions.
Another drawback of the conventional SC approach is that it may not adequately represent those
regions in the stochastic space where strong nonlinearities or discontinuities may be present. Sparse
grid based SC methods are nowadays standard as they allow us to reduce the number of nodes
drastically without losing the order of accuracy. However, for very large uncertainty dimensions,
the sparse grid SC methods can still be very expensive.

In this thesis, we will work with fluid flow problems and high-dimensional uncertainties. For
such problems, Monte Carlo (MC) type methods have been proven to be effective UQ tools as they
do not suffer from the curse of dimensionality, are easy to implement and have a high parallelization
potential. Moreover, these MC-type methods can accurately represent the entire stochastic space
given a sufficiently large number of samples. A well-known drawback of the plain MC method is
the slow convergence of the sampling error, with (V[Q]/N)/2, where V[Q] is the sample variance
of the quantity of interest Q and N is the number of samples. This makes the plain MC method very
expensive for flow problems that are already computationally intensive in their deterministic setting.
We point out that quasi-Monte Carlo methods which use deterministically chosen sample points
in an appropriate (usually high-dimensional) parameter space can yield a convergence rate better
than O(N~1/2). However, we do not investigate QMC based estimators in this work. The focus of
this thesis is to improve the efficiency of the standard MC method using a multilevel framework.

1.1. Multilevel solvers

A combination of multilevel approaches can, in principle, help us to eliminate the computational
complexities arising due to both MC sampling as well as the spatio-temporal scales characteristics.
In this thesis, we report multilevel solvers for fluid flow problems where complexities associated to
the sampling are overcome by the multilevel Monte Carlo (MLMC) method and complexities due
to spatio-temporal scales via the multigrid solver.

The idea of the MLMC method was introduced by Heinrich [9] to speed up the computation of
high-dimensional integrals. This multilevel idea was further developed and improved by Giles [10] to
reduce the order of complexity of Monte Carlo path simulations for stochastic differential equations
(SDEs). The improved efficiency of the MLMC method comes from building the estimate for a
quantity of interest Q, on a hierarchy of grids or levels, by exploiting the linearity of the expectation

operator, i.e.
L

E[QL] = E[Qo] + D E[Qs — Q—1], (1.1)

=1
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forall ¢ € {0,1,...,L}. On the coarsest grid, for ¢ = 0, the expectation is inexpensive to compute
accurately. For large values of £ where the numerical solution is comparatively expensive, only a
few realizations are required as the variance of the correction term V[Q, — Q,_;] is significantly
smaller compared to the variance of Q,, i.e. V[Q,]. While offering large savings over the standard
MC method, MLMC retains all the important properties of MC methods like parallelization and
possible combination with other variance reduction techniques (see e.g. [11-13]).

As for any non-intrusive UQ method, the computational cost of the MLMC estimator also
depends on the efficiency of the black-box solver used to compute samples on different mesh
resolutions. Combining the MLMC method with multigrid solvers [14-16] seems ideal as multigrid
solvers can, in general, obtain scale independent convergence rates. Classical iterative methods
such as Jacobi or Gauss-Seidel iterations are only efficient for eliminating high-frequency errors
between the exact solution and its numerical approximation. When these high-frequency errors
are projected on coarser grids they again appear oscillatory. Therefore, by using a hierarchy of
grids, these basic iterative schemes can be made efficient for eliminating all high and low error
components. This idea forms the basis for a multigrid solver. A multigrid iteration starts with a basic
iterative relaxation on the finest grid called the pre-smoothing. Then, the residual obtained after
smoothing is transferred to the next coarser grid using an appropriate restriction operator. As the
same problem needs to be solved on the coarser grid, the same relaxation method may be applied to
eliminate the corresponding components of the error. This process is recursively extended until the
coarsest grid is reached where a direct solution of the problem is cheap. After that, the corrections
obtained on the coarsest level is transferred to the next finer grid using an appropriate prolongation
operator. Here, additional relaxations known as the post-smoothing may be performed to remove
error components introduced from the prolongation step. This is repeated until the finest grid is
reached. This completes one multigrid cycle. A number of multigrid cycles may be required to
reach up to the discretization accuracy. Note that the efficiency of the multigrid solver depends on
the choice of smoothers, transfer operators, coarse grid discretizations, etc.

A good initial approximation can accelerate the convergence of an iterative scheme. Obtaining
a good initial approximation by means of inexpensive coarser grid computations is known as nested
iteration. The combination of nested iteration and multigrid cycling results in the so-called full
multigrid (FMG) algorithm. The FMG algorithm is the most efficient class of multigrid solvers
since it is considered to be asymptotically optimal, i.e. the number of arithmetic operations required
is proportional to the number of grid points, with only a small constant of proportionality. Hence,
combining the MLMC method with the FMG solvers also open up the possibilities for designing
linear-scaling UQ techniques.

Developing a multigrid method for problems with random inputs is challenging, as depending
on the random inputs, the multigrid convergence rate may have a high variance or even diverge
for certain samples. Therefore, another focus of this thesis is to develop multigrid solvers that are
suitable for the MLMC estimator. We pay special attention to the choice of the multigrid components
and provide modifications needed in the deterministic multigrid solver to deal with the stochasticity.

1.2. Stochastic flow problems

We will work with four different flow problems with applications ranging from subsurface flow to
aerodynamics. They can be further categorized into linear and nonlinear PDE models; single and
multi-phase flows and also based on the number of physical processes occurring simultaneously, as
single-physics or multi-physics problems. Next, we discuss the relevance of the considered problems
and the motivation to use multilevel methods to solve their stochastic formulations.
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1.2.1 Darcy flow

Darcy’s equation [17] is used to study the flow in a porous medium. This model finds its application
in hydrogeology to study the groundwater flow through an aquifer. To model such flows, the
permeability values should be known at all locations in the domain. This is usually not feasible
and only a few sparse measurements are available. It is common practice to model the subsurface
permeability as a lognormal random field [18-20]. Further, as a realistic geologic formation exhibit
highly fluctuating permeabilities, its random realizations should be based on covariance functions
with a small correlation length and a large variance in order to enforce a low spatial regularity
in the samples of the permeability field. Such covariance models translate to a high-dimensional
uncertainty as it requires a large number of Fourier modes (in the context of the Karhunen-Loeve
expansion) to adequately represent the random fields. Moreover, due to low spatial regularity, the
PDE must be solved on a sufficiently refined mesh to reduce the discretization error up to reasonably
low values. Hence, for many realistic problems, a combination of the MLMC method with multigrid
solver may be the only feasible approach for UQ.

1.2.2 Transport in a Darcy-Stokes system

A multi-physics Darcy-Stokes model can be used to study the interaction between surface water
and groundwater flow. This model can be employed to design and analyze filtration devices used
for industrial applications, simulate blood flows, etc. The coupled Darcy-Stokes model, when
combined with a transport equation, for instance, the advection-diffusion equation can be utilized
to study different dynamical processes, like pollution. The combined model is highly relevant for the
investigation and assessment of the accidental discharge of radioactive contaminants or chemical
spills in the surface water bodies and the subsequent transport to the connected aquifers.

The transport in the coupled Darcy-Stokes flow becomes uncertain when certain physical
quantities such as fluid viscosity or permeability of the porous media are not completely known.
Furthermore, for some contaminant transport problems, initial and inflow conditions may also
be uncertain. Uncertainty is further exacerbated if a lower-order discretization scheme is used
in the case of advection-dominated flows due to excessive numerical diffusion. Typically, the
computational cost for solving even the deterministic version can be very expensive. Therefore,
computing stochastic moments such as the mean, variance for relevant output quantities using
plain Monte Carlo or deterministic sampling methods can easily become intractable. We propose a
special combination of numerical schemes for each subproblem, that, when utilized in a multilevel
framework, greatly reduce the computational cost for UQ of stochastic transport.

1.2.3 Multi-phase flow in porous media

Many problems in water resource management related to irrigation systems, groundwater recharge,
mining operation, etc., require a robust and accurate simulation of multi-phase (air and water)
variably saturated flows. These flows are commonly simulated using the nonlinear Richards’
equation [21]. This PDE model in combination with van Genuchten and Mualem parameterization
are highly successful in predicting transport for a number of soil types. As the solutions are extremely
sensitive to the soil parameters, the prediction capability of these models is influenced by the quality
of the soil measurement data. For many problems, complete information of these quantities is not
available, necessitating probabilistic modeling of these parameters. We can derive the stochastic
formulation of Richards’ equation by modeling these soil parameters as random fields.

The randomness in these soil parameters may result in path-wise highly nonlinear systems,
therefore, Monte Carlo based methods are most appropriate for these uncertain PDEs, as they can
adequately represent the complete stochastic space. Using the plain vanilla Monte Carlo method
for the strongly nonlinear Richards’ equation is highly expensive, as widely used solvers (based on,
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for e.g., Picard or Newton iteration) require a very fine spatio-temporal mesh to converge to the
correct solution. Moreover, a straightforward application of the MLMC method may not be very
effective as only a few coarse grids can be utilized, due to the nonlinearity.

1.2.4 Turbulence modeling

Turbulence is a multi-scale phenomenon, which presents a challenge for simulation. Resolving all
scales of turbulent flow is impractical, necessitating the modeling of turbulence effects. Reynolds-
averaged Navier-Stokes (RANS) approaches split the flow into time-averaged and fluctuating parts,
and the fluctuating parts are modeled. This modeling approach has historically been performed
with a combination of physical insight and empirical data-fitting and has resulted in the RANS
model becoming the dominant fluid modeling paradigm in engineering. However progress in RANS
modeling has stalled to some extent; existing models can be inaccurate, and no error estimates exist.
Uncertainty quantification has a role in continuing the improvement of RANS closure models. In
particular, all models have model-form uncertainty, in which particular modeling assumptions
made are known to be unreliable in some cases (often under specific, known conditions). A key
example is the Boussinesq hypothesis, and there are many attempts to introduce uncertainty into
closure models to relax this assumption. These attempts consist of introducing randomness into
the modeled Reynolds Stress Tensor (RST), either by perturbing eigenvalues or tensor-invariants
[2, 3, 22], or by perturbing the entire matrix [4]. Generally, these perturbations are specified globally,
in order to keep the uncertain dimension moderate. This is contrary to the fact that the Boussinesq
approximation is only locally an inaccurate approximation. We, therefore, need methods capable of
efficient propagation of high-dimensional field uncertainty in a RANS prediction.

The MLMC approach is an attractive option for efficient propagation of uncertainty in RANS
turbulence models as it can be used to design estimators for which the computational complexity
is the same as solving a deterministic problem on the finest grid. Furthermore, these estimators
are relatively easy to implement. There are a number of challenges that need to be overcome in
order to apply MLMC to RANS problems, for instance, when the grid convergence is unreliable for
the considered hierarchy of levels. Another concern is when the fine-scale features (e.g. boundary-
layers) are unresolved on coarse levels and may not result in any variance reduction for the MLMC
estimator.

1.3. Roadmap

The remainder of the thesis is organized as follows:

Chapter 2 contains the theory of multilevel Monte Carlo methods applied to a generic stochastic
fluid flow problem. This chapter covers the core material that is utilized in the succeeding chapters.
We discuss different sampling strategies along with the key factors that control the cost of the MLMC
estimator. Recent advancements in the multilevel Monte Carlo method are also reviewed.

In Chapter 3, we show that a high-order discretization scheme can improve the computational
complexity of the MLMC method. We demonstrate this for a Darcy flow problem, where we utilize
a fourth-order finite-volume discretization to show improved MLMC convergence compared to
the commonly utilized second-order schemes. The resulting fourth-order discrete system is solved
using a multigrid solver based on a defect correction strategy build upon a cell-centered multigrid
method. Additionally, we also discuss a practical way of combining a full multigrid solver with the
multilevel Monte Carlo estimator constructed on the same mesh hierarchy. The contents of this
chapter are published in [23].

In Chapter 4, we investigate an approach to quantify the statistics of multigrid solvers when
utilized to solve partial differential equations with random coefficients. Specifically, our analysis
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method is based on a non-standard Local Fourier Analysis (LFA) that can assess the multigrid
convergence for problems with random and jumping coefficients. This LFA technique is described
for a simple cell-centered multigrid method for Darcy flow problem in a random porous medium.
The statistics extracted from this analysis help us to estimate apriori the time needed for solving
certain uncertainty quantification problems by means of a multigrid multilevel Monte Carlo method.
The contents of this chapter have been presented in [24].

Chapter 5 deals with uncertainty quantification of advection-dominated contaminant transport
in a coupled Darcy-Stokes flow system using the multigrid multilevel Monte Carlo method. The
uncertainty in the flow arises due to an uncertain permeability field for the porous media. We show
that the contaminant transport is highly sensitive to the heterogeneity of the permeability field and
also to the accuracy of the discretization scheme. To solve the steady-state Darcy-Stokes flow with a
highly heterogeneous diffusion coefficient, a specific monolithic multigrid algorithm is presented.
Furthermore, the unsteady advection-dominated transport equation is numerically solved using
the Alternating Direction Implicit (ADI) based implicit time-stepping scheme. We demonstrate
that the proposed combination of the numerical schemes is efficient in generating samples for the
MLMC estimator. The findings of this work are published in [25].

In Chapter 6, we solve the stochastic nonlinear Richards’ equation using a parametric continua-
tion based multilevel Monte Carlo estimator. The key idea is to solve simpler nonlinear problems
on the coarser levels and the strongly nonlinear target problem only on the finest grid level. When
dealing with strongly nonlinear problems, the standard MLMC method may not be very effective,
as these problems require highly refined meshes to converge, thus, only a few expensive grids
can be incorporated in the MLMC hierarchy. To demonstrate the potential of our novel approach,
we utilize the widely used modified Picard iteration as the solution method and show significant
speed-up for a number of test problems. The contents of this chapter are presented in [26].

Chapter 7 extends the MLMC framework to stochastic turbulence modeling, for quantifying
model-form uncertainties associated with the Reynolds-Averaged Navier-Stokes (RANS) simulations.
We consider two high-dimensional stochastic extensions of the RANS equations to demonstrate
the applicability of the MLMC method. The first extension is derived from global perturbation of
the baseline eddy viscosity field using a lognormal random field. A more general second approach
is considered where the Reynolds Stress Tensor is sampled as a positive definite random matrix
with spatial correlation ensuring realisability. Experiments for two fundamental flows along with
comparisons in terms of cost and accuracy are made with the plain Monte Carlo method. Results of
this chapter are reported in [27].

Chapter 8 draws conclusions for each chapter and for the complete thesis work. We also pose
some open research questions and discuss topics for further research.



Theory of multilevel Monte Carlo

In this chapter a detailed theoretical description of the multilevel Monte Carlo estimator is presented.
We describe the method for a generic stochastic fluid flow problem and compare the standard and
multilevel Monte Carlo estimators in terms of accuracy and computational cost. Different sampling
strategies to determine level-dependent samples are also discussed. Also a brief summary on the recent
developments in multilevel Monte Carlo methods is provided.

2.1. Introduction
Let us define a general mathematical model for stochastic flow problems

L(x,w,u(x,w)) = f(x,w), (2.1)

where £ denote a stochastic differential operator; u(x, ) represents solution (i.e. flow field) and
f(x,w) is source. Both are functions on physical space x € D C R" and random event w € Q. The
complete probability space is denoted by (Q, F, P), where Q is the sample space with o-field F c 2%
as a set of events and probability measure P : F — [0, 1]. We further assume that u(x, w) belongs to
the functional space L2(Q, D) corresponding to the space of square-integrable measurable functions
u : Q — L%(D) for the probability space (Q, F, P). These spaces are equipped with the norm

1
1 p—
- 2
|[ux, @)|| 2.0 = E [Hu(x, cu)”iz@)] 2 = (f f u(x, cu)dxdcu) i (2.2)
aJ
The discrete version of the continuous problem (2.1) on a spatial mesh D, is defined as

Lh(xh’w’uh(xhaw» = fh(xhsw)a (23)

where x;,, € D, with h > 0 as the largest mesh width in D, and quantities £, u; and f}, are the
discrete approximations of £, u and f, respectively. We further assume that under the limit 4 — 0,
the model (2.3) converges to the exact solution, i.e. u, — u.

Our aim is to estimate the stochastic moments of some functional of the solution u;, using the
multilevel Monte Carlo method. We first introduce the standard MC estimator as it forms the
building block for the MLMC estimator. We will closely follow the descriptions from [10, 13, 28-32].

7
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2.2. Standard Monte Carlo

For simplicity, we use the solution field u;, as the quantity of interest (QoI). Assuming that we are
able to compute N independent identically distributed (i.i.d) random samples {uh(col-)}fi , on the
computational grid D, the unbiased MC estimator for E[u,] can be derived as

1

N
Elup] ~ EMC[uy,] = ~ > up(w)), (2.4)
i=1

where w; € Q. The above estimator is easy to implement. One needs to generate N i.i.d. samples
of random inputs and solve the discrete flow problem (2.3) for each sample. These samples are

averaged to obtain the MC estimate ZJ{‘;’C [uy,]. Similarly, the unbiased estimator for the variance
V[uy] is defined as

N
Viugl & VY€l = g 3 (wn(p) = £YCTy1) 25)
i=1

Higher moments of u;, can be computed analogously from the ensemble.

2.2.1 Accuracy of the MC estimator

We quantify the accuracy of the MC estimator E%C[uh] in terms of the L?— based mean square
2

error (MSE) measure H[E[u] - flz\\fc[uh]H @) There are two sources of error in EZZ\‘;’C [uy,] due to

discretization and finite sampling. Using the triangle inequality, the two errors can be expressed

separately and the MSE can be bounded as

2 2
[EL] = 22| < NET] = Bl 7o) + |[Eltn] = 22 Tun) 1oy 26

The discretization error can simply be bounded as:
[ELw = ][ 2y < oh®, @7

where ¢, is a constant and a > 0 is the rate of decay of the discretization bias. As the exact solution
E[u] is not available, a relative error measure, for example ||E[uy,] — E[uy]|| L2(p) Can be used to
bound the exact discretization error, as

||[E[uh - u2h] | |L2(ﬂ)

— (2.8)

||Elu = up]||r20p) <

The above relation can be easily derived using the reverse triangle inequality and (2.7). Here the
quantity ||E[uy — uzp||;2(py can be numerically approximated using the MC method with a few
samples. Similarly, the rate o can also be derived numerically. Typically, the value of a depends
on the regularity of the Qol in the stochastic and physical space, and also on the order of the
discretization scheme used to solve the PDE.
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2
The next task is to quantify the sampling error ||[E[uh] — ZJI\‘,’I “Tuy] | | QD) We can show that

2

N
2 1
[t 2l Py = E| Bl — 2 3 e ]
i=1 LZ(D)
1 || ’
= E N2 D Eluy] — up(e;) ]

N

i=1

N
D Elup(x, )] — up(x, ;) dxl. (2.9)

J=1

Due to the fact that the samples are mutually independent, the terms with i # j vanish and by
linearity of the expectation, we may write

N
2 1
|[Eltn] = 23 Ttn]|| o ) = N2 2E l/@ (Elup(x, )] — up(x, )’ Xm
i=1
1 N 2
= N2 Z ||Eltn] = vn||2q,0)
i=1

|V unl|| 20,

where the term || V[upl||;2q.0) := ||[Elunl - uh||i2(ﬂ,®) denotes the sample variance and can be
numerically estimated. Therefore, the MSE of the £y “[u;,] can be compactly expressed as

1VIun]|| 20,0

N (2.11)

_ +MC 2 ay2
For a given mesh D), the MC estimator can achieve an MSE of O(h?*) at best. Therefore, the
number of MC samples to achieve convergence are obtained by balancing the sampling error with
the discretization error, i.e.
N = O(h™). (2.12)

More generally, to achieve an MSE of O(¢2), we can choose h = O('/%) and N = O(¢~2), assuming
|| V]| 12(q.p) 18 constant, independent of h. With this, if we express the cost to compute one
sample of u, by W, = O(h~7), where y > 1, we obtain a total cost of

W%AC,(E) =NW, = O(27/%), (2.13)
to achieve a MSE of O(e?). It is pointed out that the computational complexity of the standard
MC method can be improved using an optimal solver, for e.g., a full multigrid (FMG) solver with
y = d, where d is the number of spatial dimensions. Another way to reduce the cost is by using a
higher-order discretization, i.e. with an increased value for a. A larger value of ¢ can give the same
accuracy on a coarser grid and can therefore make the MC simulation significantly cheaper. In
practice the plain MC method can be very expensive. Consider, for instance, a 2D problem with an
optimal solver with y = 2 and a second-order accurate discretization with o = 2. In this case, we
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get a complexity of O(¢73), therefore to reduce the MSE by a factor of 2, we need to spend 8 times
more computational effort.

Next, we show that by using a multilevel approach the complexity of the plain MC can be
improved, and for some problems even an optimal multilevel estimator can be derived, in the sense
that the total cost is only a small constant factor of one deterministic solve on the finest resolution.

2.3. Multilevel Monte Carlo

In the following, we describe MLMC estimators for the same quantity u,,. First, we construct a
hierarchy of spatial grids {D, }§=0 for the spatial domain D where the largest cell-width for level ¢
defined as

hy =shy, for hy>0, (2.14)

where h, is largest cell-width on the coarsest mesh D, and s > 1 represents a grid refinement factor.
Now, using the linearity of the expectation operator, we can build the estimate on this hierarchy of
meshes as

[E[uhL uh uhg — uhf_l]. (2.15)

0

”M“

On the coarsest grid for ¢ = 0, expectations are inexpensive to compute accurately and for large
values of ¢, where numerical solutions are comparatively expensive, only a few realizations are
required as the variance of the correction term V[uy,, — uy,,_, | is significantly smaller compared
to the variance of uy,, i.e. V[uy, ]. Our description of the MLMC estimator will be based on a
geometric hierarchy of grids, however this is not a necessary criterion. A valid MLMC estimator
can be constructed using a hierarchy that consists of levels with increasing cost and accuracy.

Each of the expectations in (2.15) can be approximated using the standard MC estimator defined
in (2.4) as

L
Eluy, | = Ei\“ up, | 2 EMC [up, — up,_, ]
=0
N, (2.16)

Z up, (@;) = up, , (@) |,

”M“

with N, € N denoting the level-dependent number of MC samples. For notational convenience,
we set u;,_ = 0. The MC estimators at different levels are mutually independent. The samples
up, (w;) — uy,_,(w;) at any level ¢ on two discretization levels h, and h,_, are generated using the
same random input w;. This is done in order to keep the sampling variance V[u;,, — uy,_ | small,
thus, only a few samples are required to compute E[u;,, — uy,,_, | accurately.

2.3.1 Accuracy of the MLMC estimator

Similar to the MC estimator, the MSE in the MLMC estimator Z"*[uy, | can be represented as

[Er] - 2 < ||Elul - Elw,

“LZ(D) * “[E[“hL] - fim[

uhL]”LZ(Q,D) ) (2.17)

)| 0,
The first term corresponds to the discretization error and is bounded in a similar manner as in (2.8),
that is,

||[E[u — Up, H < cohf. (2.18)

LX(D) —
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The second term in (2.17) corresponds to the sampling error of the MLMC estimator. Using similar
arguments as in (2.9)-(2.10), we can show that

L
2
||[E[uhL] - fﬁ“[uhL]HLz(Q,D) = E Z Elup, —up, ,1- ff\\éc[uhf —uy, ]
L 2
_ _ _MCp,
= [EfZ:O[H[E[uhf uhf_l] fo [uhf uht,_l] LZ(Z))]
L 2
_ _ _MCp,
= 6Z=IO|E [”[E[uhf uhﬁ_l] fo [th uhé)_l] LZ(D)]
N 7 )
- X N—giﬂ[E[H[E[uhf — 1= [, @) = @]
- 1Vellz2.0
= - @.n (2.19)
€=0 ¢
where || V¢||2q.0) 1= H[E[”hg —uy,_ 1= [uy, — uhf—l]HiZ(Q,D) corresponds to the level-dependent

variance. Thus, the sampling error of the MLMC estimator is just the sum of sampling errors from
individual MC estimators in (2.16). We further assume that the level-dependent variance decays
with a rate 8 as

1Vellaam = O € =1,2,..L, B>0. (2.20)
Now, the MSE of the MLMC estimator can be expressed as
L

||Elul ~ ziWL[uhL]H;(Q’D) < (cohg)z + ;
=0

| Vf”LZ(Q,l)). (2.21)
Ne

Again, to obtain a tolerance of 9(¢?) both errors in the above bound should be reduced to 9(¢?). The
finest level grid size is obtained in the same way as the standard MC, i.e. h; = O(¢!/%). Practical
implementation of the MLMC estimator however does not require a value of L in advance (see
Algorithm 1). Usually, we start with a small L and increase the number of levels until the following
criterion is met,

||[E[uhL - ”hL_l]”Lz(p) < (s* —1)g, (2.22)

which is obtained by (2.8) and taking ||[E[u - ”hL]H L) = & To obtain level-dependent samples

N,, a number of strategies exist in the MLMC literature. We discuss two commonly used sampling
approaches that will be utilized in this thesis.

2.3.2 Sampling based on optimization

As proposed in [10, 28], the level-dependent samples N, can be obtained by solving an optimization
problem that minimizes the total cost needed for reducing the sampling error to 2 i.e.

. < L || Ve i |L2(Q,D) )
min Z NeWe | st Z —N, - (2.23)
£=0 £=0 4
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where W, = O(h;y) is the cost of one sample on level ¢. By treating N, as a continuous variable
and using a Lagrange multiplier {2, we can formulate the constraint equation as:

L
d _
T 2 NeWie + N Vi ey | = 0 (2.24)
¢\ k=0
which yields
|| Ve| |L2(Q,LD)
Ny =¢ —w, (2.25)

where ¢ = ¢72 Zi:o \/ [V 12@.0) Wk It is straightforward to see that for £ > 0 the number of

samples decays as Ny, = N,s~B+")/2 where s is the grid scaling factor defined earlier. The total
cost to obtain a MSE of O(¢?) is given by

2

L L
W) = 3 NeWe =72 | 3\ [11Velliaam) e | - (2.26)
=0 £=0

Note that the cost from level ¢ is determined by the product || V|| . We = (‘)(hi,ﬁ _y)). Thus, we
have the following three scenarios: i) For § > y, the dominant cost comes from the coarsest level ii)
for B = y all levels equally contribute to the total cost and iii) for § < y, the dominant cost comes
from the finest level. For completeness, we now state the generalized MLMC complexity (for proof
see [28]).
0(c?), it g>v,
WML(e) = {0 (e2(loge)?), if B=y, (2.27)
O(e0-P/*) if B<y.

Further, if 8 < y and 8 = 2a, we obtain the cost WML (¢) = O(e77/%) = O(h,"), which is of the
same order as the cost of one fine grid solve. For this case, the MLMC estimator is optimal as the
cost has the same computational complexity as the deterministic version of the problem.

The parameters o and 8 depend on the regularity of the solution as well as the numerical
method used to approximate the PDE and can be increased by using high-order discretizations for
sufficiently smooth solutions. Typically, these parameters do not change with the spatial dimension.
On the other hand, the rate y increases with dimension and when using an optimal solver it is
approximately equal to the spatial dimension d. This implies that for some quantities of interest
the asymptotic cost might change when dealing with higher-dimensional problems. Therefore,
a high-order MLMC scheme may help in countering this effect. Even for the case where we do
not have the scope of asymptotic improvement, we can reduce the number of MLMC levels by
increasing o and the number of samples by improving the parameter 3.

The MLMC estimator Zﬁ“[um] (2.16) can be computed using the following heuristic algorithm
proposed by Giles [10]:

Algorithm 1 MLMC algorithm

Fix the tolerance €, number of levels L = 2 and initial number of samples N, for ¢ =0, 1, 2.
Compute quantities Eﬁff [up, — up,_, L||Vel| 2.0y % B for all levels.

Using (2.25) update the number of samples N, for all levels.

Evaluate the extra samples and update fﬁéc[uh , = Un,_ 1| | Vel 2.0y % B for all levels.

Test for convergence using the criterion (2.22), if converged quit and assemble Eﬁ“[um].
If not converged, set L = L + 1 and || V|| .o = 1Vr-1llr2q.n) s7#, and repeat steps 3-6.

AN A i A e




2.4. Recent developments 13

The above algorithm is sensitive to the choice of initial number of samples. Using a small initial
number of samples may lead to an abrupt termination without reaching the specified tolerance. On
the other hand, using a large number of initial samples may lead to over sampling. A more detailed
analysis of this algorithm is provided in [29].

2.3.3 Fixed sampling approach

In many applications, only a certain fixed number is feasible as the choice of the finest level sample
N;. In such cases, the number of samples on coarser levels can simply be derived by equilibrating
sampling errors on coarser levels with the finest level, i.e.

HWHLZ(Q D) HVL”LZ(Q D)
— = . fi =0,1,..,L—1. 2.2
N, N, or ¢=0,1,.., (2.28)
Using (2.20), we obtain the sampling sequence as
N, = [N sPL=0], (2.29)

Moreover, to reduce the sampling error to the discretization error, one can choose N; such that
Vel 2.0 /N = O(hf"‘). The authors in [30-32] have shown that this sampling strategy has a
similar asymptotic cost as the sampling strategy based on the optimization described in Section
2.3.2.

This sampling approach greatly simplifies the MLMC implementation as the number of samples
on all levels is known apriori. Also, the computational work can be easily distributed in a parallel
computing environment. On the other hand, parallelization of the heuristic Algorithm 1 is non-
trivial as every refinement step may result in a different number of extra samples on all levels.

2.4. Recent developments

Since the MLMC field is undergoing rapid development, by no means does this section serve as
a comprehensive review. Only a few notable works are mentioned. A number of extensions and
generalizations of the multilevel Monte Carlo method has been proposed recently. An important ex-
tension is the Multilevel Quasi-Monte Carlo (MLQMC) estimator proposed in [13, 33] for lognormal
diffusion problems. For sufficiently smooth diffusion coefficients, the MLQMC estimator can result
in an asymptotic cost which is better than O(¢72). Another extension known as the Multi-index
Monte Carlo (MIMC) was proposed in [34]. The approach generalizes the notion of levels to multi-
ple dimensions. Typically, the standard MLMC estimator is based just on the hierarchy of spatial
grids. Suppose for a problem, in addition to spatial refinement, the accuracy also improves with
temporal refinement or with the increase in the number of basis functions used in the stochastic
approximation. For such problems, a multi-dimensional hierarchy of indices can be constructed for
a more effective variance reduction. Another interesting extension is represented by the unbiased
variants of the multilevel estimator [35, 36]. These methods are based on randomization of levels, i.e.
defining a probability distribution for sampling levels. These estimators are difficult to implement
and the practical benefits are problem dependent.

2.5. Conclusions

In this chapter, we presented the standard MLMC method for a general stochastic fluid flow problem.
In the upcoming chapters, we apply MLMC methodologies to an array of fluid flow problems. We
will present different numerical strategies to improve the MLMC parameters, for instance, high-
order schemes to increase o and 8, and multigrid solvers tailored specifically to the problem at
hand, thus improving the parameter y. Another principle issue in designing the MLMC estimator is
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the correct treatment of random inputs on two levels such that the telescopic identity is not violated.
These issues will also be studied in detail in the upcoming chapters.



Multigrid MLMC and improvements from
high-order schemes

This chapter explores high-order schemes for improving the convergence of a multilevel Monte Carlo
method for elliptic partial differential equations with lognormal random coefficients, in combination
with the multigrid solution method. In detail, a fourth-order accurate finite-volume discretization is
discussed. With the help of the Matérn family of covariance functions, coefficient fields with different
degrees of smoothness are simulated. The idea behind using a fourth-order scheme is to capture the
additional regularity in the solution introduced due to higher smoothness of the random field. Second-
order schemes commonly utilized for these types of problems are not able to fully exploit this additional
regularity. This chapter also introduces a practical way of combining a full multigrid solver with the
multilevel Monte Carlo estimator constructed on the same mesh hierarchy. Through this integration,
one full multigrid solve at any level provides a valid sample for all the preceding Monte Carlo levels. A
number of numerical experiments are presented confirming excellent performance of the fourth-order
multilevel estimator compared to the second-order variant.

3.1. Introduction

We focus on the development and analysis of a multilevel Monte Carlo method based on a high-
order finite-volume (FV) approximation of a class of elliptic PDEs with random coefficients, stated
as:

where the unknown p is a scalar-valued function, k is a random field and f is a source function,
defined in some domain D € R". The above PDE finds its application, for instance, in hydrogeology
for modeling subsurface flows with k representing the permeability. We are particularly interested
in computing expected values of different functionals of the solution p, denoted by Q := Q(p). Due
to the high-dimensional nature of the random field k, it becomes very challenging to obtain reliable
estimates of these hydrogeological quantities. The choice of appropriate uncertainty quantification
tools boils down to computational efficiency. In the present context, Monte Carlo (MC) type
methods are sometimes favored [37] due to their dimension independent convergence properties
and simplicity of implementation. For standard MC methods, the root-mean-square error (RMSE)

This chapter is based on the article “A multigrid multilevel Monte Carlo method using high-order finite-volume scheme
for lognormal diffusion problems”, published in International Journal for Uncertainty Quantification, 7(1):57-81 (2017)
[23].
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converges as (V[Q]/N)'/2, where N is the number of samples and V[Q] is the sample variance. This
slow convergence with respect to N is, however, the main drawback of the method. To remedy this,
various sampling and variance reduction techniques have been applied, for example, the authors in
[38] have applied a quasi-Monte Carlo method to improve the convergence rate for this problem.
More recently, MLMC methods have also been formulated for this problem (see e.g. [39-41]), which
lead to a dramatic cost reduction compared to the classical MC approach.

There are two objectives of this chapter. First is to show that a high-order discretization scheme
can be used to reduce the computational costs of the MLMC estimator for problems that exhibit high
spatial smoothness. In previous work, Giles [42] has shown an improvement from O(¢2(log)?)
complexity to O(¢~2) to achieve a RMSE of O(¢) using a Milstein discretization compared to an
Euler path discretization for SDEs and certain financial payoffs with Lipschitz bound. This gain was
achieved due to an improvement in the strong convergence order of the schemes that is central to
the efficiency of the multilevel method. In this work, we choose to use a fourth-order accurate finite-
volume (FV) method for solving (3.1). The key ingredient for achieving this high-order accuracy is
using a fourth-order accurate quadrature rule to approximate the boundary fluxes at each control
volume. So far, the MLMC literature on Darcy flow problems relies on a second-order accurate
finite-element (FE) or FV discretization scheme. We show that for certain linear functionals of
p the overall asymptotic cost of the MLMC method can be improved under some smoothness
assumptions. Even for the case when no asymptotic gain is possible, we show a reduction in terms
of the number of MLMC levels and samples.

The second objective is to define a structure in which the multilevel estimator is integrated into
amultilevel solver. To demonstrate this, we use a full multigrid (FMG) solver [14] based on the same
grid hierarchy as the MLMC estimator for the numerical PDE solution. We will describe in detail
the modifications required to transform this solver for the MLMC method so that the telescopic
identity to approximate the expectation is not violated. This method is particularly effective for
quantities with low spatial regularity. Further, we also provide an efficient and scalable multigrid
solver for the fourth-order linear system in 2D obtained by combining a cell-centered multigrid for
the second-order discretization with the defect correction strategy.

The outline of this chapter is as follows. We begin by defining the stochastic Darcy flow problem
in Section 3.2. In Section 3.3, the second- and fourth-order discretization schemes in two dimensions
are described in detail. Section 3.4 is devoted to the technical details required to construct the
FMG solver for both discretization schemes. In Section 3.5 we explain the procedure for coupling
a FMG solver with the multilevel estimator. Sections 3.6 and 3.7 describe methods for sampling
and upscaling of Gaussian random fields, respectively. In Section 3.8 we provide some numerical
results for different quantities of interest and compare the cost of different MC estimators.

3.2. Stochastic Darcy flow

We consider a steady-state single phase flow in a 2D porous media
-V - (k(x,0)Vpx,w)) =f(x), for xeDcCR2. (3.2)

We denote by w € Q, a random event in the complete probability space (Q, F, P) defined earlier.
Quantity p represents the fluid pressure, k is the random permeability field and f is a known
source term. The PDE (3.2) is the result of the coupling between the Darcy flux q := —kVp and
the incompressiblity condition V - q = f. We consider deterministic mixed Dirichlet-Neumann
boundary conditions,
0

p(x,-) =gp(x) for x€0Dp, and k(x, w)ﬁ(x, ) =gyv(x) for xe€dDy, (3.3)
where 0Dy and 0Dy represent the boundaries for Dirichlet and Neumann boundary conditions,
respectively, and n denotes the outward normal to d2Dy. In the context of fluid flow problems,
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Dirichlet boundary conditions represent the pressure values at inflow and outflow heads, whereas
the Neumann boundary conditions define the pressure gradient at the boundaries perpendicular to
the main flow direction.

In stochastic subsurface flow modeling, it is well recognized that a lognormal random field
may accurately represent the permeability of a naturally occurring heterogeneous porous medium
[18-20]. We model the permeability field by means of a lognormal field, i.e. log k(x, ) := Z(X, w)
is a zero mean Gaussian random field forx € D := D J 8Dy |J 8Dy and w € Q. Therefore,

E[Z(x,-)] =0,

— (3.4)
COV(Z(XL ')9Z(X2’ )) = |E[Z(X1’ ')Z(X27 )]’ X1, Xy € D.

The lognormal property ensures a positive permeability throughout the domain. For further simpli-
fication, we consider an isotropic and stationary Gaussian process, which can be obtained from a
homogeneous covariance function Cg : R? — R, such that

CoV(Z(Xy,+), Z(X3, ")) = Co(r), Wwith r=[[xX; —X;]. (3.5)
For the problem to be well-posed, we assume
kmin :=mink(x,w) >0 and kp,y 1= max k(X,») < . (3.6)

To generate samples of the Gaussian random field Z, the covariance matrix is derived from the
family of Matérn functions [43, 44] characterized by the parameter set ® = (v,, 4., 02), and has the

standard form
27 <2«/ r )ch (2\/ r ) (3.7)
C =gi—— — — . .
o) = ey 2z B BV,

Here, I is the gamma function and K, is the modified Bessel function of the second kind. The
parameter v, > 1/2 defines the smoothness, g2 > 0 is the variance and 1. > 0 is the correlation
length of the Gaussian process. The Matérn model has great flexibility in modeling spatial processes
because of parameter v, which governs the differentiability of the random field. For v, = 1/2,
the Matérn function corresponds to an exponential model and for v. — oo to a Gaussian model.
Furthermore, the other two parameters A, and o2 dictate the number of peaks and the amplitude of
the random field, respectively. The realizations of Gaussian random fields are Hélder continuous
ie. Z(x,) € C”(E) almost surely with the exponent 0 < 7 < v, [45]. For v, > 1, the realizations
are continuously differentiable. In the recent years, (3.2) has been extensively studied and the
theoretical error estimates of the solution are refined; taking into account the regularity of the
lognormal coefficient field, see for e.g. [11, 39, 46-48].

3.3. Finite-volume discretization
When modeling the subsurface flow process, FV type methods are usually preferred due to the local
conservation property [49]. In this section, we derive an FV approximation of the problem (3.2)
using second- and fourth-order discretization schemes on a 2D cell-centered grid. Our method will
follow ideas from [50-53].

We begin by defining a cell-centered grid D), on a unit square domain as a family of nodes given
by

Dy =§(x,-,yj) X = (i—%)h,yj = (j—%)h;i,j = 1,2,...,m;m=% , (3.8)

where h is the mesh width. A control volume with center (x;, y;) is denoted by Dg’j ) andits boundary

as az)g’f ) = Ui:l apg’f " with x denoting the four cell faces. In each of the finite volumes Dg’j ),
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the integral formulation of (3.2) takes the form

f -V - (kVp)dx = f fdx. (3.9)
D) D)

Using the Gauss divergence theorem, the left-hand side of the above integral is reformulated as a
boundary integral for boundary 52)2’] ) and n, is the unit normal vector to that face

4
f - =V - (kVp)dx = — Z - kVp-n,ds,. (3.10)
opel =1 o

For cell ABCD in Figure 3.1, the boundary integrals are given by
B

4 ap ¢ ap D o5 A ap
- kVp-n.dS =/ k—dx—f K2Lg —f k—dx+f KP4y, 3.11)
;faﬂs.j,x> P Theon 4 Oy z  Ox y c 0y b Ox Y

We define the normal flux as F* = kVp - n, and the so-called face-averaged normal flux as
(F*) = % S 5ptin FrdS,. Now, we can rewrite the integral form of the PDE in terms of face-averaged
h

fluxes at face centers of cell ABCD,

R [(FAB) — (FBC) — (FCDY 4 (FPAY] = / fdx. (312)

@)
Dh

We approximate the above flux-balance equation to second- and fourth-order accuracy in the Sections
3.3.1 and 3.3.2, respectively.

R
y
(F) @ O ® (F)
2)2 J) X
A (F’B> B
h

Figure 3.1: A volume D;i’j ) and face-averaged normal fluxes at face centers.

3.3.1 Second-order discretization

To approximate (3.12) to second-order accuracy, we use a central difference scheme to compute the
gradient Vp - n,. For the face "BC", for example, we find

c
@ 1 op 1 Pi+1,j — Di,j
FBC = — k—d = — k <_ )h
(F*) h_/B ax Y hl i+§,j h

Fluxes at other faces are approximated similarly. To approximate the above fluxes, we need the value
of coefficient along the interface. As shown in [54], a harmonic average of k; j and k;,; ; is more
general and works well for both smooth and discontinuous fields. As we only work with smooth

+ Oh). (3.13)




3.3. Finite-volume discretization 19

coefficient fields in this chapter, we approximate k;,, , ; by the arithmetic mean of k; ; and k; ;.
The right-hand integral in (3.12) is approximated using the midpoint rule /. fdx = h*f; j +0O(h?).
h

Finally, we get the discrete equation for volume Dg’j ) as

—k 1 pij—k 1 pipjtkijpij—k 1piji—k 1pija= hzfi,j’ (3.14)
1—5,j l+5,j l,j—; l,]+5

where Ei’ j = ki1/2j + Kig1/2,j + Kij—1/2 + Ki j11/2- This is a standard 5-point stencil. For Dirichlet
boundary conditions, i.e. p = gp, a one-sided difference instead of central difference in (3.13) is
employed. A Neumann boundary condition is applied by directly using gy in place of the finite-
difference approximation.

3.3.2 Fourth-order discretization

To explain the fourth-order discretization, we shall weaken the regularity assumptions for the
coefficient field and the source term. As our approximations of fluxes and the right-hand side in
(3.12) are based on Taylor’s expansion, we assume f and k are at least C*, which guarantees p € C>.
Since our problem involves a Holder continuous permeability field, the convergence of the FV error
for different smoothness values v, will be studied numerically.

We describe a fourth-order scheme for a regular 2D spatial grid. The following approach can be
extended to other more complex grid systems such as mapped coordinates and locally-refined grids
(see [50, 51]). To compute the face-averaged normal fluxes defined in (3.12), we use a fourth-order
accurate quadrature rule. We will now explain in detail the computation of the face-averaged
normal flux for the face "BC":

4 h2 52 FBC

(FBC >( S + O(h%), (3.15)

gt 24 9y? | 1.

5] i+-,j

2 2
2BC
where P is the transverse Laplacian of the flux at the center of face. The above relation can
y i+1/2,j

be derived using Taylor’s expansion of the flux integrals in (3.11) [53]. We can reduce the above
expression to

2

@ d h?dk 0
(FPe)Y =ty 1 (SE) 4+ P
+-,

4
— . 1
dx i+ 129y Jdydx + O (3.16)

. 1 .
i+,
5 J

i+—,j
2 2"

The above form has a smaller stencil size as (3.15). The derivation is provided in Appendix 3.A.
Each term in the above expression is computed with fourth-order accuracy.

Computation of <a_p> 1
ox i+5,j

Using the same relation as (3.15), one can write

5} 5} 2 33
i+—. ] 1
i+ 2] ey

d0x ax 24 dy2dx
Next, using Taylor’s expansion, we define an auxiliary variable

1
pP.1. =57 [27(Pi+1,j = Di,j) — (Piy2,j — Pi—1,j)] , (3.18)

i+,
>
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see Figure 3.2 (left) for the stencil. We cannow use p 1 for computing the elements in (3.17) as
+-,]
2

=y
= —h2 + O(h%), (3.19)

op
ox

. 1 .
i+,
>

L N R + O(h?) (3.20)
dy2dx| 1. h3 pi+l,j—1 pi+l,j pi+l,j+1 ' '
l+2,J 2 2 2
. 3%p
Computation of 1
ayax i+_,j
2
For this term, we use
3%p 1 |- _
=— - + O(h?). 3.21
dydx Hlj 2h? pi+§,j+1 pi+%,j—1 (h%) (3:21)
>

Derivations for the rest of the terms are provided in Appendix 3.A. This completes the fourth-order
accurate face-averaged flux computation for face "BC". Averaged fluxes at other faces are computed
analogously. Finally, we obtain a 21-point stencil in a 5 X 5 block, which is centered at the cell on
which the flux divergence is computed. In case of 1D problems, we do not have any transverse
derivatives and we obtain a 5-point stencil. Regarding the right-hand side of (3.12), we use the

fourth-order quadrature rule on the cell l)g’j ), i.e.

/ fdx = h?
DD

where A is the Laplacian operator computed with second-order accuracy.

f+ Z—zAf + O(h*) (3.22)

L]

Yj
o o o
p 1.
o ....o...."....léz.’]. 1 [5) (o] (e] o o (o]
D C D (6]
P 1
o D@ 4:2. [5) — X o o o o (e]
Al B Al B
o DGO ]O [e] [e] [e] o o
P 1
i+=,jt1
2
o o o

Figure 3.2: Left Grid points at cell-centers required to compute (6 p/ <3x>i+1 12 using (3.18). Right A 5x5 block required

to compute the flux divergence of cell ABCD.
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Boundary conditions

We only explain the discretization at the right and bottom boundaries with Dirichlet and Neumann
boundary conditions, respectively. The stencil for the other boundaries can be deduced similarly.
Further, we assume the same number of nodes (equal to m) along the x- and y- directions as in
the grid definition (3.8). We prefer a ghost cell approach which greatly simplifies the discretization
around the faces next to the boundaries. On the right boundary, we use a quartic polynomial
extrapolation to update the ghost points p (see Figure 3.3) at cell centers. In case of Dirichlet
boundary conditions, we use:

s,

~ 1
pm+1’j = g llzggDm+l] - 140pm,] + 70pm—1,j - 28pm—2,j + Spm_S’jl , (323)

where m denotes the index of the cell centers of the control volumes that are located on the boundary.
Furthermore, to compute p,, ., /2, At the face centers of a Dirichlet boundary (labeled as B1 in
Figure 3.3), we use a cubic polynomial

184gDm 1 —225py j+ 50ppy_1j — 9pm_27jl. (3.24)

p 1 =—
m+=,j 60 +-,
2" 2

We also consider the Neumann boundary conditions at the bottom boundary. The ghost points are
updated using the quartic polynomial given by

~ 1
Pim+1 = 5 l—24h "8, 1+ 17Pim +9Pim—1 = SPim—2 + pi,m—Sl . (3.25)
T2

At corners (e.g. point C1 in Figure 3.3), the ghost points are extrapolated by averaging the val-
ues obtained from a quartic polynomial which uses 5 adjacent ghost point values along the two
coordinates. The contribution from the x-coordinate reads

DPm+1,0 = 5Pmo — 10Pm—10 + 10Py_20 — SPm—-30 + Pm—s0- (3.26)

Quantity g, ... = h- 8N min 2 at the face-centers of a Neumann boundary. For the corner faces

on the boundaries (e.g. the point labeled B2 in Figure 3.3), we approximate the transverse Laplacian
aZFBZ azp

using one-sided finite-differences.

0x2 Im,21/2 9yox li+1/2,j
pb=8p
Bl _
o o o o e ep
Yj
X;
[ ]
[ ]
ap _ B2
3 8N °
o [} [} [} [ |
C1

Figure 3.3: Points near or at the boundary which require stencil modification to incorporate boundary conditions and
ghost points (denoted by the gray circles and square).
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3.4. Full Multigrid algorithm

Now we describe in detail the construction of a geometric FMG solver for the FV discretization
developed in the previous section. For the sake of brevity, we will denote the linear system obtained
from the second- and fourth-order FV discretizations by

£Ppy =f2, (327)
£, =0, (3.28)

respectively. The elements of 624) are provided in Appendix 3.B. The linear systems (3.27) and
(3.28) are solved by the multigrid methods MG2 and MG4, respectively. Further, the full multigrid
variants of MG2 and MG4 are denoted by FMG2 and FMG4, respectively.

Typically, a multigrid solver for elliptic problems is easy to construct. A large number of efficient
multigrid algorithms can be found in the literature. For a similar problem, the authors in [54, 55]
have shown that a multigrid method based on a cell-centered grid using fixed transfer operators
that do not depend on matrix coefficients can provide a decent convergence speed, even for highly
discontinuous coefficients. They use a second-order FV discretization scheme. In this section we
describe a robust and scalable fourth-order accurate multigrid solver.

There are different ways of constructing a multigrid solver for a fourth-order discretization. One
way is to follow the standard multigrid approach of using an appropriate smoother and transfer
operators. Due to the large size of the fourth-order operator 5(4), it becomes difficult to find efficient

smoothing schemes compared to the second-order operator Lf). Also, transfer operators will be
much more complex, especially, if we are aiming for the independence of coefficient magnitude.
A second alternative is to solve the linear system in (3.28) via a High-Order Defect Correction
(HODC) scheme. This defect correction scheme employs lower-order schemes to obtain higher-
order accuracy. Also from a programmer’s point of view, it is more convenient to implement
the HODC scheme. In our case, we use a second-order multigrid algorithm (MG2) and HODC
to construct a fourth-order multigrid solver (MG4). We devote the next section discussing the
intricacies.

3.41 MG2cycle

Our MG2 method resembles the cell-centered multigrid (CCMG) algorithm proposed in [54].
Components required to construct a two-grid cycle are discussed below.

Pre- and post-smoothing: There are different possible choices available for the smoothers. In CCMG
the ILU smoother works very well but it is quite involved compared to basic iterative smoothers,
like Jacobi or Gauss-Seidel smoothers. We will use a Gauss-Seidel Red-Black (GS-RB) smoother in
our algorithm.

Defect computation and Restriction: The defect r =f ) L(Z) , is computed and is restricted to

grid D, using a bilinear restriction operator [RZh] to obtain r The stencil form for this restriction
reads:

- q2h
11 00
1 1 3 2 0
RZ”! [
(R, = 1¢ *
0 2 31
00 11
B dh

Coarse grid correction: We apply a direct method, e.g. Gaussian elimination, to solve the coarsest

grid problem, L(zzh) IZ‘h r’z‘h in a two-grid setting. The prolongation of e’z‘h is done using a piece-wise
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constant operator [P;‘h] to obtain eZ which is added to p,. The stencil reads:

h _
Ph = * , (3.29)
2h

This process is recursively extended to many grid levels. The transfer operator needs to be modified
appropriately at the boundaries. The coarse grid operator ngh) is obtained via a direct discretization
using an upscaled version of the fine grid coefficient field. The upscaled procedure is outlined in
Section 3.7. The coarse grid operator can also be obtained algebraically via the Galerkin coarse grid
method where ,C(zzh) = Rith)PZh. The Galerkin approach will be discussed in detail in Chapter 4.

3.4.2 MG4 cycle via defect correction

In many scenarios, constructing an iterative solver for lower-order discretizations is comparatively
easy. A defect correction strategy [14, 56, 57] can be used to formulate an “outer iteration” where
only the right-hand-side of the lower-order linear system is modified on the finest grid using the
higher-order linear system for the same problem. As the left-hand-side of the linear system remains
the same, a lower-order multigrid cycle can be utilized to perform an “inner iteration”. In this
case, we consider the second- and fourth-order linear systems defined in (3.27) and (3.28) and the
inner iteration uses the MG2 cycle described in the previous subsection. The j-th defect correction
iteration is given by

LPpl = fr, with  f =P - cWplTt 4 LPp (3.30)

We regard this iteration as the MG4 cycle. The new approximation p’;l is obtained by rearranging:
2D\—1 @)y -1 2)\—1 p(4

= (I = (D)Ll + (£P) 1D, (3:31)

Usually, an initial approximation pg is provided by a solution obtained from a nested FMG solution
of second-order accuracy. This scheme converges to the solution of the fourth-order discrete problem
if the spectral radius of iteration matrix is strictly less than one, i.e. (I — (Lf))‘lﬁf)) < 1. This
criterion was verified using the Fourier analysis described in [14] for frozen coefficients (for Poisson’s
equation).

Remark 3.4.1 It is non-trivial to prove the convergence rate of high-order defect correction scheme for
an oscillatory permeability field. We rely on the numerical results to demonstrate the robustness of the
solver with respect to covariance parameters A, and o>.

3.4.3 FMG structure

Both MG2 and MG4 cycles can be easily incorporated into the FMG-hierarchy to obtain FMG2 and
FMG4 solvers, respectively.

Typically, the FMG algorithm can be classified as either "fixed" or "accomodative” [15]. In the
former approach, the number of cycles is fixed on all FMG levels beforehand, whereas in the latter
approach, the number of cycles is adaptively decided based on some criterion. The accomodative
algorithm can be highly effective in optimizing the number of cycles over the FMG levels, especially,
for problems involving random coefficient fields. In practice, the error cannot be computed but
the optimal switching criteria can be based on residual reduction. The switch from grid 2h — h is
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made when a norm of the residual on grid 2/ drops below some tolerance ;. For example, we
can use the constraint

lIres), Il

0 < &maG» (332)
Ires?, 11

where ||resgh||2 and ||res£h| |, are residuals in the 2-norm, computed from the initial solution
and after j multigrid cycles (MG2 or MG4) at the 2h grid level, respectively. All accommodative
algorithms have the disadvantage that they require some extra work of computing residual norms.
On the other hand, accommodative algorithms are robust. For a coefficient field with large o2
and small 4., the linear systems of equations, (3.27) and (3.28), are highly ill-conditioned. In such
cases, the residual norm computations are inexpensive relative to other calculations. In the next
section, we perform some experiments to study the dependence of the number of cycles required
on different grid levels on the regularity of the PDE solution.

Although the accommodative criterion does not always guarantee a reduction of error to the
truncation level, it typically can optimize the work on each level. For coupling of the FMG solver
with the MLMC estimator, we need to solve the linear system on a sequence of grids. Therefore,
the switch to the next grid level is made only after the solution at the current level has reached the
discretization accuracy. Currently, there are no theoretical proofs to compute apriori the number
of iterations required at FMG levels for problems with random coefficients. Therefore, we use a
conservative stopping criterion (gp;g < 107°) for residuals on these grids in order to ensure that the
solution has reached the level of truncation error.

Another key component of an FMG algorithm is the FMG-interpolation. Usually, any high-order
scheme gives an accurate solution even on a very coarse grid. Thus, it is important to translate
this accuracy to the next finer grid level using an appropriate interpolation scheme for the coarse
grid solution. In our algorithm, we use a fourth-order accurate bicubic interpolation (3.33). Due to
non-nested nodes in the cell-centered grid hierarchy, we get a relatively large interpolation stencil.
This interpolation can be seen as a two-step procedure described in Figure 3.4. First, we generate
auxiliary points at the corners and face centers (indicated by the gray circles) of coarse cells using
stencil [H;‘h](l) and [th](z), respectively.

-1 0 0 -1
1109 9 0 )
h 1) — = h 1@ = —[— —

115,14 = = o * o o and [IT%, ] _16[ 1 9 9 -1]. (3.33)
-1 0 0 -1

In step two, we use the auxiliary and coarse grid nodes to generate points that are the fine grid
nodes using the same stencil [H;’h](l). Near boundaries and corners, appropriate modifications can
be used.

3.5. Coupling of MLMC with FMG (FMG-MLMC)

To describe the coupling, we briefly recall the MLMC estimator from Chapter 2. Expectation of a
quantity of interest, Q;, := Qp, (P, ), can be expressed as

L
E[Qn, 1 = E[Qy ]+ D E[Qn, — Qp,_, 1, (3.34)
=1

and the unbiased MLMC estimator for E[Q, | can be based on standard MC as

L Mo L N
£ [Qp, ] = Ny Zi Qpy(w;) + ; N, ;(Qh{; (w;) = Qp,_, (@) |, (3.35)

=1
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Figure 3.4: Schematic representation of FMG-interpolation procedure Left: Generation of auxillary points at corners
and face centers of coarse cells Right: Interpolation at cell centers of fine grid using coarse grid and auxillary points.

where w; € Q. The above estimator is based on a hierarchy of cell-centered grids (3.8) with uniform
coarsening such that h, = s~'h,_; with s = 2. We assume that the level-dependent variance

Ve =V[Qp, —Qp,_, |1 = O(h?) with 8 > 0. The level-dependent samples N, are determined using
the following formula (see Section 2.3.2):

L
v
Ne =|e2 X AVVWi |4 | =, (3.36)
k=0 We

where 2 is the desired MSE and the cost per sample is denoted by W, = O(h;”), withy > d and d
the spatial dimension. The finest grid size is given as h; = O(¢'/*), where a > 0 is the rate of decay
of the discretization bias. More details on the MLMC estimator can be found in Chapter 2.

For every sample Qj, (@;), an expensive linear system of equations obtained from the discretiza-
tion of the PDE (3.2) needs to be solved. Due to flexibility and ease of use, an optimal "black-box"
multigrid solver e.g. AMG1RS5 [58] is often preferred for this purpose. One of the disadvantages of
such solver is that we do not have access to the solutions on the coarser grid levels. For the MLMC
estimator which requires samples at different grid hierarchies, one can benefit from a geometric full
multigrid (FMG) solver based on the MLMC grid hierarchy. The efficiency of an FMG solver comes
from using an inexpensive-to-compute solution on a coarser grid as a good initial approximation
for the solution on the next grid level. There are two-fold benefits of using an FMG solver for an
MLMC method. Firstly, these kinds of solvers are asymptotically optimal and can solve the linear
system in O(h;d) operations. Secondly, the solution at each FMG level can be utilized to compute
samples of the quantity of interest.

Here we benefit from the fact that the permeability field is generated using the same random
sample w on a sequence of meshes {Dj,,, g*:o’ t €{0,1,...,L}, and essentially represents the same
field, but it is sampled at more nodes as we move to the finer grids. Therefore, the FV approximation
of pressure py,. on the level £* can be utilized to accelerate the solve on the next finer level £* + 1
and at the same time can be used to compute Qy,,, .

We use the notation FMG' to denote an FMG solver with grid levels {hg*}§*=0. ‘We now demon-

strate how to compute a sample of the quantity of interest at all MLMC levels using the FMG"
solver. First the permeability field is generated at all levels using the same random sample w;,
i =1,2,..,N;. Using this field, we formulate the linear system at each grid level of FMG* ,1.e.

Ly, (@)pp, = fr, for ¢ €{0,1,..L} (3.37)
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Solver Ph, Samples
FMG’ N, =N,
2 Pn, ~
FMG N,=N,—-N,
Ph, ~
FMG' N,=N,—-N,
Ph ~
FMG’ Ny=N,-N,

Figure 3.5: Schematic representation of a 4-level FMG-MLMC method. The black dots represent the converged solution

points and the double lines represent the FMG-interpolation H’z“h. FMG solvers are listed on left and the number of

samples to be computed from these solvers is listed on the right.

We begin by solving the coarsest grid problem, £y, (w;)pp, = fp, upto the discretization accuracy and
computing the sample Qj, (w;). Then, the interpolated version of this solution th Dh,» Where H;‘h is
the FMG-interpolation operator, is utilized as an initial approximation for the problem on the next
level £ = 1. Again, after a few multigrid cycles we obtain the solution p, and subsequently compute
Qp, (w;). This is done recursively till the finest level L. This way, based on one FMG solve, we get one
sample of the quantity of interest at each grid level i.e. Qp (;), (Qp, (@;) — Qp,(@;)); ..., (Qp, (w;) —
Qpn,_,(@;)), -, (Qp, (@;) — Qp,_, (w;)). Repeating this process for N; independent realizations of the
random field, we get Ny samples at all MLMC levels. Now, for the next coarser MLMC level L — 1, we
just need to compute N;_; = (N;_; — N;) extra samples using the solver FMG™™!. These samples
are computed in similar fashion as above. We note that, for any level 0 < ¢ < L, we already have
Ny, samples from higher levels ¢ + 1, ..., L. Therefore, the remaining samples N, to be computed
at level ¢ are given by

ﬁf =Ng —N€+1. (338)

Note that on the finest level MLMC level L, we have N; = N;. A straightforward computation
using (3.36) shows that for the levels 0 < ¢ < L, the number of samples grows as:

B+y)
Ng=Neys 2, (3.39)

where s is the grid scaling factor defined earlier. From (3.38) and (3.39), we get the reduction in the
number of samples as:
N, B+

L-1-5 2 . 3.40
No=1-s (3.40)

This shows that the reduction in the number of samples is more pronounced when the rates § and
y are small. In other words, the “recycling” of the coarse grid samples is more effective when N,
decays slowly with level. Figure 3.5 represents a 4-level FMG-MLMC method using a simplified
FMG cycle. The computational cost of the FMG-MLMC estimator is calculated as Z;zo N, W,.
For comparison, the cost of the standard MLMC estimator based on the "black-box" approach
will be NgW, + le;=1 N,(W, + W,_;). This shows that the FMG approach will result in higher
computational gain.

In practice, the FMG-MLMC algorithm can be implemented by slightly modifying the MLMC
algorithm described in Section 2.3.2, see also [10, 28]. The implementation details are provided in
Algorithm 2.
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Algorithm 2 FMG-MLMC algorithm

1: Start with L’ = 1 and run some initial number of FMG solves at level L'.

2: Estimate the sample variance V,,¢ = 0,1, ..., L’ by using the available number of samples.

3: Using (3.36) compute the optimal number of samples, N, for all £ = 0,1,...,L" and then
compute N, = Ny, — Ny_;.

4: Evaluate the extra N, samples by using the FMG' solver and update V, for all levels.

5: Test for convergence using the criterion |E[Q), — Qp, ]| < (s% — 1)%, if converged, set L = L.

6: If not converged, set L’ = L’ + 1 and go back to step 2.

When using this procedure it is important to ensure that the telescopic identity (3.35) is not
violated. For this, we need to confirm that the definitions of Q;,, when computing E[Qp,, — Q,_, ]
and E[Qy,,, — Qp, ] have the same expectation, i.e.

E[Qp, 197 = E[Q,, 1Y) for ¢ €{0,1,..,L—1}. (3.41)

The standard FMG approach where the coarse grid problem is formulated using Galerkin coarsening
or a direct discretization of the problem with a restricted coefficient field from fine grid may lead to
some additional bias which may decay at a slower rate than the FV error itself. Therefore, to avoid
this, we recommend generating the coefficient field on coarse grids using the same random vector
w;. We will present one way of doing this in Section 3.7.

The coarsest level in the FMG solver is decided on the basis of certain stability criteria. In
general, the coarsest level should be able to provide a minimum level of resolution to the problem
such that it serves as a meaningful initial guess for the next level in the FMG hierarchy. In particular,
for the groundwater flow problem the coarsest mesh size should be of the order of the correlation
length, i.e., hy = O(4,).

Remark 3.5.1 We point out that due to sample reuse in the FMG-MLMC estimator, samples on
different levels are correlated. Therefore, when estimating the sampling error for this estimator, the
covariance between different levels should also be incorporated. Obtaining an analytic bound for the
FMG-MLMC estimator with correlated samples is not straightforward. In [59] the authors proposed a
valid way of estimating sampling error by taking multiple independent estimators. The paper uses
multiple QMC estimators to approximate variance, however, this approach also works for the standard
MC.

3.6. Sampling Gaussian random fields

Several techniques exist to generate samples of Gaussian random fields such as the Cholesky
decomposition, the truncated Karhunen-Loéve (KL) expansion [5] or using spectral generators
(circulant embedding techniques) [60-62]. The realization of Z can be based on the Karhunen-Loéve
(KL) decomposition:

Z(xw) =Y \//qujj(x)gj, £ ~ N (0,1). (3.42)
j=1

Here, A; and ¥ jare eigenvalues and eigenfunctions of the covariance kernel C¢(X;, X,), obtained
from the solution of the Fredholm integral,

/ Cq;(xl, Xz)‘P(Xl)dxl = AIP(Xz). (3.43)
D

The sum in (3.42) represents an infinite dimensional uncertain field with diminishing contributions
of the eigenmodes. The sum is truncated after a finite number of terms, Mg;, which is usually
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decided by balancing the KL truncation error with other sources of error, such as discretization
or sampling errors. For Gaussian processes with small correlation lengths and large variances,
typically a large number of terms is needed to include all important eigenmodes [5]. The evaluation
of eigenmodes in the KL expansion is expensive as it requires solving the integral equation (3.43)
for each mode.

When using a stationary covariance model, a fast sampling of random fields can be achieved via
a spectral generator which employs the discrete FFT (Fast Fourier Transform). Contrary to the KL
expansion, spectral generators provide an exact representation of random fields on the sampling
mesh. There are several ways of constructing a spectral generator, we use the Fast Fourier Transform
moving average (FFT-MA) technique from [60] to decompose the covariance matrix Cy(r). Although
this sampling method is similar to the Cholesky factorization technique, the key idea is to make the
computational domain periodic. Thus, the resulting covariance operator is also periodic, which
can now be decomposed as a convolutional product. The samples of random fields are computed
using cheaper vector-vector products compared to the expensive matrix-vector operation required
when using the Cholesky factorization. As a periodic covariance function sampled on a uniform
grid results in a circulant covariance matrix, these methods are sometimes also referred to as the
circulant embedding technique. In the following, we provide a brief description of the FFT-MA
method from [60].

Let us denote by z;, = Z(x;,,w) € RM the correlated Gaussian random vector sampled on mesh
Dy, with M = m X m as the total number of grid points (cf. (3.8)). Using a Cholesky decomposition
of the covariance matrix Cg € RMXM one can obtain zy,:

Ci =U,U] anduse z,=Uy, (3.44)

where U, € RM*M js an upper triangular matrix with positive diagonal entries and y,, € RM is
a vector of i.i.d. samples from the standard normal distribution. The FFT-MA method is based
on a decomposition of the covariance function C4(r) (recall (3.7)) as a convolutional product of
some function Sg(r) and its transpose S(’D(r) := Sg(—r). In a discrete setting, we can express this
decomposition as

Cp =S *S,, (3.45)

where * denotes the convolution product and the vectors ¢, s;, are vectors obtained by evaluating
Co(r) and Sg(r), respectively, at grid points of the mesh D,,. A correlated random vector z; can
now be synthesized by using the convolution product,

Zp =Sy * Yp- (3.46)

The FFT-MA method performs the above computations in the frequency domain. As the FFT
requires periodicity, first the vector ¢, is transformed into a periodic signal, which is also real,
positive and symmetric. More details on the practical aspects of this transformation, see for e.g.
[38, 61, 62]. Also the resulting vector s, is real, positive and symmetric and s, = s;l. As the
convolution product in the spatial domain is equivalent to the component-wise product in the
frequency domain, we can rewrite (3.45) as

Flep) = F(sp) - Fsp) = F(sp) = \V F(ep), (3.47)

where F denotes the discrete FFT and - denotes component-wise multiplication. It is pointed out
that the component-wise square-root operation does not pose any problems as the power spectrum
F(cy) is real, positive. Next, we express the convolution product in (3.46) as a vector-vector product
in the frequency domain as

F(zp) = F(sp * yn) = F(sp) - F(yp). (3.48)
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—1
In the final step, an inverse fast Fourier transform & is applied to obtain the samples for the
Gaussian random fields

2= F (F(sn)- F(yn). (3.49)

Due to the periodicity in the covariance vector ¢, the resulting random field z,, is also periodic.
Thus, we only retain the part of the vector that corresponds to the physical domain. We also remark
that it takes two FFT evaluations to obtain one sample of z;, (ignoring the FFT operation in (3.47)
that is performed just once). Therefore, in terms of the number of floating point operations, the
sampling cost is significantly smaller compared to one multigrid solve for the mesh sizes considered.

3.7. Upscaling Gaussian random fields

While estimating the correction term E[Qj, —Qp,_, | in the telescopic sum (3.34), the approximations
Qp, (w;) and Qy,, _, (w;) need to be positively correlated such that the variance V[Qj, —Qy,_, ] is small.
This is typically achieved by first sampling the fine grid Gaussian random field, Z(x;, , @;) to compute
Qp, (w;) and using an upscaled version, Z(xy,,_,, w;) for Qp,,_, (@;). Many of the upscaling algorithms
based on homogenization techniques in the context of deterministic PDEs, such as [63, 64], cannot
be directly applied to obtain the upscaled permeability. This is because these homogenization
procedures may result in a modified covariance structure on the coarser levels. When using the KL
expansion an upscaled random field can be obtained by using the same Gaussian vectors {§ j}?/iKlL in
the expansion on both levels as:

MKL

Z(xp, @) = Z\//Tj‘l’j(xhg)fj, (3.50)
j=1
MKL

Z(Xp, ) = Z\//Tj‘l’j(th_l)é“j, (3.51)
j=1

When using the spectral generator, the coarse grid random field can be obtained by using the
covariance upscaling [32] that employs the spectral generator on two consecutive grids using the
same normally distributed vector yj,, (from Eq. (3.44)). As in the case of the FFT-MA algorithm,
the vector yj, is associated with respective grid points, a coarser realization z;, | of the fine grid
Gaussian random field z;, can be obtained by using multi-dimensional averaging of the vector yy,, .
For instance, in two dimensions for the cell-centered mesh,

i—1,2j—-1 2i—1,2j 2i,2j—1

i,j 1 2 2i,2j
Ly _ 1 2J
Vi, , = 5, +y, Ay YD (3.52)

where (i, j) is the cell index for the mesh D, . The scaling by a factor 2 is needed to obtain a

standard normal distribution for the averaged quantity y;; - The coarse random field can now be
simply assembled as

2, =F (F(sp,) Fyn, ). (3.53)

This process can be recursively applied to generate upscaled random fields for all coarser levels of
the FMG solver. As the averaging in (3.52) smooths out high frequencies, the upscaled version z;, |
will also be smoother compared to zj,, .

3.8. Numerical results

In this section we examine in detail the performance of various components described in the
preceding sections. We consider PDE (3.2) on domain D € (0, 1)? with a mixed Dirichlet-Neumann
boundary conditions,
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gp(0,y)=1, gp(1,y)=0, and (3.54)
gn(x,0)=0, gy(x,1)=0, for x,y€(0,1), (3.55)

respectively. For all tests we consider f = 0 so that the regularity of p only depends on the Matérn
parameters. All numerical schemes are implemented in MATLAB and results are generated on a
common workstation.

3.8.1 Multigrid convergence

Our first task is to illustrate the convergence rates of the 2D multigrid solver for the second- and
fourth-order FV discretizations, as described in the preceding sections. A theoretical convergence
analysis for the exponential covariance (v, = 1/2) has been conducted in [65] for two-level multigrid
along with different choices of smoothers. Here, we consider challenging cases with higher variances
and small correlation lengths. For this we choose 6 different combinations of the Matérn parameters
(cf. Table 3.1) with increasing order of complexity in terms of solvability of the linear system. Also,
we show one random realization of the Gaussian random field generated using each of the six
Matérn parameters in Figure 3.6. These examples clearly show that for the considered Matérn
parameters, the simulated permeability fields can exhibit large fluctuations and a variation of more
that 10 orders of magnitude can be encountered for the cases with o2 = 3.

Table 3.1: Different combinations of the Matérn parameters ® = (v., ., 02) with increasing complexity from left to right.

@, o, o, @, i @y
(2.5,0.3,1) (1.503,1) (0.50.3,1) (2.50.1,3) (1.50.1,3) (0.5,0.1,3)

For a fixed ® and h we generate 100 samples of the random field. Then, for each sample we
run the multigrid as well as the FMG cycles. The reduction factor of a multigrid cycle for the i-th
realization of the random field is defined as

1/x;

|[res)’ || .
pii=]———t , for i=1,2,..,100, (3.56)
llres, ||2

with ||re52| |, the 2-norm of the residual from a zero initial guess and ||reszi ||, the residual after

x; multigrid iterations required to achieve the reduction, ||resZ" [2/1 |re32| |, < 107°. Finally, the
average reduction factor is computed as

1 100
(P) =155 l;pi- (3.57)

In all the test cases, we only consider the multigrid V(1,1)-cycle. Further, we fix the coarsest
grid based on the correlation length with hy, = 1/16 for 4, = 0.3,62 = 1 and hy, = 1/32 for
A. = 0.1,02 = 3. First, we consider the multigrid cycle MG2 for a second-order accurate solution
and the corresponding full multigrid cycle FMG2. The reduction rate of a multigrid V-cycle is
governed by the number of multigrid levels as well as by how well the random field is resolved at
the multigrid levels. Figure 3.7 (left) presents the average reduction rates, (o), with different mesh
widths. Additionally, Table 3.2 provides the numerical value along with the observed standard
deviation, o, for the MG2 algorithm. For each parameter set, the average reduction factor is roughly
the same for different grid sizes with slight improvement as we move to a finer grid. We also see
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Figure 3.6: Examples of Gaussian random field (log k) generated using parameter sets ®; — &, . The colour bars
indicate the variation in the order of magnitude.

that the deterioration in the average reduction factor is more pronounced with increasing variance
compared to the decreasing smoothness and correlation length. In order to measure the efficiency
of the FMG2 cycle, we run a single cycle and check for the residual reduction. If not converged
then extra V-cycles are run which is denoted by k%2, Table 3.3 provides the bound for the average
numbers of MG2[FMG2] iterations, (xM2)[(xF'MC2)], required to reduce the residual by a factor of
1075, Also, note that the FMG2 method improves as we move to the finer grids for all cases.

Similarly, we investigate the reduction rates of the multigrid cycle MG4 for a fourth-order
accurate solution along with its full multigrid variant FMG4, based on the defect correction strategy.
We follow a similar procedure as above to measure the performance of these solvers. Also, we
use the fourth-order solver only for the cases with v, > 1 as we do not expect any improvement
for the rough cases (®3, @) over the second-order discretization. Table 3.4 reports the average
reduction rates to achieve the stopping criteria along with the standard deviations. From Figure
3.7 (right), we observe that the average reduction rate for MG4 cycle stabilizes around 0.45. The
better performance for cases &4, @5 can be attributed to the use of h, = 1/32 compared to ®;, P,
which use h, = 1/16. Table 3.5 provides the number of defect correction steps (kM) for the MG4
method. Using an initial guess from an FMG2 cycle instead of using a zero initial guess can reduce
the number of iterations. Next, the quantity (xM5*) shows the dependence of the defect correction
steps combined with the FMG4 solver on the regularity of the solution. As expected, more iterations
are required when the regularity decreases. Interestingly, the FMG4 solver is very efficient as it
converges to the stopping criterion in one cycle on finer grids, which is a huge improvement when
compared to the number of MG4 iterations that falls around 20. Note that for finer grids such as
1/512, the residual reduction by a factor of 10~® may not be enough to reach the discretization
accuracy and should be further lowered.

A few remarks are in order. Improvement in the average reduction rate was observed with
the F(1,1)- and W(1,1)-cycles but V(1,1)-cycle was the fastest to reach the stopping criteria. The
combination 02 = 3 and 4, = 0.1, using h, = 1/16, resulted in a very slow convergence and in
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divergence for some cases. Further, on coarser grids (till 64x64), the performance of the sparse
direct solver in MATLAB is superior in terms of CPU times compared to the MG4/FMG4 solvers.
This is due to the dominating setup cost compared to the MG4 iterations itself.

3.8.2 Convergence of the FMG-MLMC method
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'."1)1
o O
0.5 O D3 | 0.
o,
-»‘1)5 <t i’
0.4 By & 04 1
* =
|
30.3
'.'<D1
0.2 o,
w4
>
I I I 01 1 1 1
32 64 128 256 512 32 64 128 256 512
ht ht

Figure 3.7: Average reduction factor for MG2- and MG4-cycles for different h.

Table 3.2: Average reduction factor [standard deviation], (p)[c], for different grid sizes for MG2 cycles.

o | h=1/32 h=1/64 h=1/128 h=1/256 h=1/512
@, | 0.134[0.013] 0.130[0.010] 0.126[0.008] 0.122[0.006] 0.118[0.003]
@, | 0.144[0.031] 0.137[0.017] 0.130[0.010] 0.123[0.005] 0.120[0.007]
@, | 0.181[0.025] 0.184[0.025] 0.179[0.028] 0.173[0.022] 0.160[0.017]
o, - 0.234[0.078] 0.237[0.130] 0.208[0.106] 0.178[0.075]
®s - 0.248[0.087] 0.266[0.125] 0.270[0.169] 0.223[0.123]
Dy - 0.313[0.061] 0.345[0.097] 0.374[0.149] 0.330[0.086]

Table 3.3: Average number of iterations for MG2 [FMG2], (xM¢2)[(x™M%2)], for different grid sizes.

® |h=1/32 h=1/64 h=1/128 h=1/256 h=1/512

@, | 8[3]
®, | 8[4]
;| 9[5]
D, -
@ -
Dy -

8[2]
8[3]
9[4]
11[5]
11[5]
13[7]

8[2]
8[2]
9[4]
12[5]
13[5]
15[7]

7[1]
8[1]

In this section, we test the convergence of the FMG-MLMC methods outlined in the previous
sections. We denote by FMG2-MLMC and FMG4-MLMC, the multilevel estimators obtained from
second- and fourth-order discretization, respectively. Further, we denote by MC2 and MC4 the
single-level Monte Carlo estimators using the second- and fourth-order discretizations, respectively.
Figure 3.8 shows the average CPU time required to solve the second- and fourth-order linear
systems in 2D using the full multigrid solver for one random sample. The time required to generate
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Table 3.4: Average reduction factor [standard deviation], (p)[c], for different grid sizes for MG4 cycles.

® | h=1/32 h=1/64 h=1/128 h=1/256 h=1/512

@, | 0.496[0.038] 0.483[0.026] 0.468[0.021] 0.456[0.017] 0.443[0.019]
@, | 0.502[0.041] 0.478[0.030] 0.468[0.025] 0.455[0.021] 0.445[0.021]
o, - 0.520[0.041] 0.457[0.030] 0.437[0.025] 0.427[0.021]
@ - 0.562[0.082] 0.488[0.070] 0.446[0.047] 0.428[0.041]

Table 3.5: Average number of iterations for MG4 [FMG4], (xM%*)[(xT™4)], for different grid sizes.

® |h=1/32 h=1/64 h=1/128 h=1/256 h=1/512

o, | 21[2] 20[2] 19[1] 19[1] 18[1]
D, 21[3] 20[2] 19[1] 19[1] 18(1]
D, - 23[3] 19[2] 18[1] 18[2]
8 - 26[5] 21[2] 18(2] 17(2]

one random sample by the circulant embedding technique is also provided. We note that the cost
of solving the linear system dominates for the given range of h,. Therefore, in all our numerical
results we will assume that the cost to compute one sample grows with the rate y = d = 2. Since
our code is not optimized, we will use a standardized cost model where we set the cost to compute
one sample, W, = h;d, in order to compare the costs of different estimators rather than using the

CPU times.
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Figure 3.8: Average CPU times (in sec) for the solution of second- and fourth-order discretizations along with the time
to generate one sample of random field via the circulant embedding method for 2D problem with ® = (1.5,0.1,1).

We will now compute the expected values of the different quantities of interest using the FMG-
MLMC estimators. We refer readers to [39, 41, 66] for the convergence proofs for different linear
functionals of the solution p of the Darcy flow equation. The first output quantity of interest is the
horizontal flux at the center of domain x* = (1/2,1/ )7, ie.

dp(x,w)
Q(p) = —k(x,0) ———| , (3.58)
0X @

where the partial derivative 22 ;X’w) is computed using Taylor’s expansion with O(h?) accuracy. In
X
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Figure 3.9: Parameter a (left) and S (right) observed for horizontal flux —k Z—p ) where x* = (1/2,1/2)" from the

FMG2-MLMC scheme with 1. = 0.1, g2 = 1 for different smoothness parameters v, with the reference grid h* = 1/256.
The integer in the triangles illustrates the convergence rates w.r.t to h.

Figure 3.9, we show the convergence rate of the FMG2-MLMC method with A, = 0.1, 02 = 1 and
smoothness parameter v, € {0.5,1,1.5,2.5}. For each v., we compute the expectation |E[Qj,, — Qp-]|
and the variance V[Qj,, — Q-] from 10,000 independent realizations of the random field using the
FMG?2 solver with the finest grid h* = 1/256. The purpose here is to show that the approximation
at each FMG level has reached the discretization accuracy and can be used as valid sample for the
MLMC estimator. Also, we see that the rate of convergence « (left) of the expectation, [E[Q},, —Qp]l,
improves with increasing smoothness but stalls after v. > 1. The convergence rate 8 (right) of the
variance, V[Qj,, — Q- ], does however improve with smoothness until 8 reaches the value 4 which
follows from the inequality V[Q] < E[Q?]. This verifies the inability of second-order schemes to
capture additional regularity in the solution obtained when v, > 1.

In Figure 3.10, we use the FMG4-MLMC method for the same quantity of interest and compare
with the FMG2-MLMC method for v, = 1.5 (top) and v, = 2.5 (bottom). Again, the partial derivative
dp(x,w)/dx is computed using Taylor’s expansion with O(h*) accuracy. To differentiate between
the two methods, we denote the convergence rates by a®, 8@ and a®, B for second- and fourth-
order, respectively. The empirical values of these parameters obtained from regression are listed on
the top of each figure. We observe that a® > a® and B® > @ for both smoothness values and
the difference is more pronounced with increasing smoothness of the random field. Recall that a
higher value of a implies fewer MLMC levels and a higher 3 corresponds to fewer MLMC samples
on those levels.

In Figure 3.11, we compare the standardized cost to compute the expected values of the hor-
izontal flux at the center with different tolerances e. We use the coarsest grid h, = 1/8 for both
FMG2-MLMC and FMG4-MLMC estimators. These results are produced using Algorithm 2 pro-
vided in Section 3.5. The estimators FMG2-MLMC and FMG4-MLMC converge with the rate O(¢~2)
consistent with the MLMC theorem (8 > y = 2). The cost of the FMG4-MLMC estimator is however
significantly lower than the other estimators which can be attributed to higher o and 5. The MC2
method converges with the expected rate O(¢=3), whereas MC4 converges to O(¢~%8) (left) and
improves slightly with O(¢=%>°) (right) for the smoother test case. Next, we consider the mean of
the solution p in D,

Qp) = l%l f  plxa)dx (3.59)

The above integral is approximated using a fourth-order quadrature rule. In Figure 3.12, we compare
the convergence rates of the two methods for smoothness parameter v, = {1.5, 2.5}. The top two
plots show the convergence rates for the relatively “easier” Matérn parameter set ® = (2.5,0.3,1)
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Figure 3.10: Comparison of parameter « (left) and 8 (vight) observed for horizontal flux —k where

x* =(1/2,1/2)T from FMG2-MLMC/FMG4-MLMC scheme.

with h, = 1/4, whereas the middle and the bottom two plots present more challenging parameters
® = (1.5,0.3,3) and ® = (2.5, 0.3, 3), respectively, both with h, = 1/8. For all these test cases, we
observe similar improvements in the MLMC parameters as the previous quantity of interest from
using the fourth-order discretization. Again, these parameters can be used to predict the asymptotic
cost of different estimators. Here we would like to point out that, the discretization error from the
second-order discretization is already very small (< 1073) on the coarser grids. For applications
which do not require a very small tolerance, an estimator based on a fourth-order discretization
may be more expensive.

In the presence of strong gradients, the constant term in the discretization error can be large.
This is also observed in the top left plot of Figure 3.12. In these situations, using high-order schemes
can also result in an expensive MLMC estimator. The issue can be tackled using a hybrid MLMC
estimator which utilizes the second-order scheme on coarser levels and the fourth-order scheme on
the finer levels. The cut-off level being the coarsest grid where the fourth-order solution becomes
more accurate compared to the second-order solution. This approach is easy to implement and
does not lead to any violation of the telescopic sum.

3.9. Conclusions

We have presented a multilevel estimator based on a fourth-order accurate discretization of the
stochastic Darcy flow problem with smooth coefficient fields. Our goal was to exploit the additional
regularity in the numerical solution of the PDE to achieve faster MLMC convergence. We utilized a
fourth-order FV discretization scheme to approximate the PDE solution. Additionally, we provided
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Figure 3.11: Cost to obtain RMSE less than ¢ in the horizontal flux for the 2D problem using different estimators. The
covariance parameters are ® = (1.5,0.1,1) (left) and ® = (2.5,0.1, 1) (right).

an efficient multigrid algorithm to solve the linear system arising from this discretization. A useful
feature of this multigrid algorithm is that it uses a simple second-order multigrid solver combined
with a defect correction strategy to obtain a fourth-order accurate solution. Further, we showed
that this solver is able to handle coefficient fields with large variability and small correlation length
scales. Numerical experiments clearly show the benefits of using a high-order discretization in
terms of improved MLMC parameters o and 3, which dictate the number of MLMC levels and
samples, respectively, for smoothness v, > 1. The fourth-order MLMC estimator reached the
required tolerance at a much lower cost compared to the estimator based on the second-order
discretization. Also, we showed that the fourth-order method leads to an asymptotic gain in case of
the single-level MC estimator.

In this work, we confined ourselves to 2D problems and observed that § > y for all quantities of
interest leading to an asymptotic cost O(¢~2). However, for 3D and unsteady problems for which
y is typically large, using a second-order method might lead to situations where g < y with the
associated MLMC complexity of O(e~2~¢—#)/«). In such scenarios, a higher « and g from the
fourth-order scheme will improve this complexity.

Clearly, one of the issues with high-order schemes is that the cost of assembling and solving
the linear system is more expensive compared to lower-order schemes (for same grid size) and
therefore, the computational gains become evident only when the applications require a relatively
small tolerance.

We have also proposed an approach to integrate a full multigrid solver with a multilevel estimator
with the same mesh hierarchy. The algorithm is described in detail and all modifications required
in the FMG solver are discussed. This combination results in computational savings which however,
depend on the rate of decay of the MLMC samples with the levels. Although, we confined ourselves
to a simplified version of the multigrid solver based on fixed transfer operators, this framework
is easily extendable to more sophisticated solvers. Furthermore, the extension of this approach is
straightforward to other uncertainty quantification problems in physics and engineering where a
multigrid solver is used to solve the sparse linear system.
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Appendix

3.A. Approximation of high-order terms

Continuing the analysis from Section 3.3.2, we provide the approximation of the remaining high-
order terms. @

: BC
Computation of (F*°) " 1)
We now derive relations between face-averaged values and face-center point values. We can rewrite
(3.15) as

@ _ 9P w2 [e%kop ok ?p . 3p
FEeY® — i 2P n9%kap ok N |
) Ox iyl T dy? ox * dy dydx + kayzax + O(h%) (3.60)
2

i+=,j
S
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. . . . ) .
Thus, the face-averaged flux is expressed in terms of a point-wise value of k and a_p and their

X
derivatives at the center of the face. As the expansion in (3.15), one can also write

h? 3%k

k =k - - Oh* 3.61
BoLL = T aa gy o T O (o0
2 2 Y
ap> dp h? d°p
or = £ - + O(h*). (3.62)
<5X Hé’j o0x i+%,j 24 9y20x i+%,j
Hence, if we combine (3.61)-(3.62), we can reduce (3.60) to
@ ap h?dk 98°p
P, g, (3B), LR 00, 353
( >i+2’j 2 dx i%,j 129y dydx i%,j
Computation of (k) and &
i+1/2,) oy li+1/2,j

Assuming that the coefficient field is smooth and is sampled at cell-centered locations, we first
interpolate the coefficient values at face-centered locations using a centered fourth-order finite
difference scheme, i.e.

1
ki+lj =16 [9(ki,j + kit1,j) — (kioyj + ki+2,j)] + O(h*), (3.64)
>
2
ok =i[k L -2 1 4k 1 ]+<9(h2>. (3.65)
oy2|. 1. h2| i+-,j-1 =, i+o,j+l
l+2,] 2 2 2

We can compute (k);,, /, ; using (3.61). The term Z—k from (3.63) only needs to be computed
’ Yli+1/2,j
with O(h?) accuracy as it is multiplied with h? . Therefore,

ok

5 Lic v —k 1 1+0m). (3.66)

N ﬂ i+-,j+1 i+=,j-1
2 J 2 J

. 1 .
i+=,
5 J

3.B. Fourth-order linear operator

Next we describe the elements of the the fourth-order linear operator 13514). For brevity, we use e, w, n
and s to denote the four faces with centers (X412, ¥;), (Xi—1/2,¥})> (X1, ¥j41/2) and (X3, ¥j-1/2),
respectively. The fourth-order discrete operator away from the boundary can be represented as

) 1
LY = , , ) 2|,
h 1152h2
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with

lo = 1188 >, (k)y,

d=e,w,n,s

lo1 = —44(k), —1188(k), +27 D, (2(k), — Viky),
d=n,s

log = —44(k), —1188(¢k), +27 D, (2(k), + Viky),
d=n,s

ILip = —44(k), — 1188 (k) +27 Y, (2(k)y — Viky),
d=e,w

ho = —44(k),—1188¢k), +27 D, (2(k), + Viky),
d=e,w

i = ) kg — Vikg) =27 D) (2¢k), — Viky),
d=e,n d=w,s

Ly = 2 QU),+Viky) =27 D) k), + Viky),
d=w,s d=e,n

hr= =27Q2(k), + VPkp) = 2(K)g = V'ky) = (2 (k), + V°ke) = 27(2(k),, = V"ky),

I, = —2(k), — V¥ky) —27Q2(k), + V°k,) — 27(2(k), — V°k,) — (2(k), + V"k,)),
lo,—2 = 44(k),, , loo = 44(k), l_50 = 44(k);, o =44(k),,
Ly = 2(k), — Vks, 1y, = 2(k) + Voki,

L= 2¢k),— V'k,, L, =2(k),+V'k,,
l—l,—2 = 2 <k>w - Vwkw, l_1’2 =2 (k)e - Veke,
l]_’_z = 2<k>w + Vwkw, 11,2 = 2<k>e + Veke.

where V¢k, denote the gradient of k along the face d and is computed using Eq. (3.66).






Local Fourier analysis of multigrid
methods for SPDEs

A non-standard Local Fourier Analysis (LFA) variant for accurately predicting the multigrid conver-
gence of problems with random and jumping coefficients is discussed. This LFA method is based on a
specific basis of the Fourier space rather than the commonly used Fourier modes. To show the utility of
this analysis, as an example, a simple cell-centered multigrid method for solving a steady-state single
phase flow problem in a random porous medium is analyzed. A number of challenging benchmark
problems are considered to demonstrate the prediction capability of the proposed LFA. The information
provided by this analysis can help us to estimate apriori the time needed for solving certain uncertainty
quantification problems by means of a multigrid multilevel Monte Carlo method.

4.1. Introduction

For any sampling-based UQ technique such as Monte Carlo type methods, the availability of a
highly efficient and robust (w.r.t. the random inputs) iterative solver becomes critical. In general,
the sample-wise computational cost can become highly heterogeneous, depending on the random
inputs. Therefore, if the performance statistics of such solvers were known apriori, one could utilize
this information to optimize and parallelize the MC simulations efficiently.

In this chapter, we present a non-standard Local Fourier Analysis (LFA) technique to predict
the convergence rate of multigrid solvers for problems involving random and jumping coefficients.
Standard LFA techniques are typically based on constant coefficient discretization stencils, whereas
for stochastic PDEs we encounter varying coefficients throughout the computational domain, due
to the randomness. One of the main contributions of this work is to generalize the LFA towards
problems with random and jumping coefficients, with the aim of predicting, apriori, the total
time needed to solve UQ problems. Some efforts have already been done in [67] regarding the
generalization of LFA for jumping coefficients. The novelty of our approach lies in the choice
of basis functions. Here, we utilize a new basis from the Fourier space rather than the standard
Fourier modes. We benchmark the prediction capability of the proposed LFA technique using a set
of challenging jumping coefficient problems and a number of spatially correlated random fields
with varying heterogeneity.

This chapter is based on the article “On local Fourier analysis of multigrid methods for PDEs with jumping and random
coefficients”, SIAM Journal on Scientific Computing, 41(3), A1385-A1413 (2019) [24]

41
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Another highlight of this chapter is the use of the LFA predictions to optimize the multilevel
Monte Carlo computations. Combining MLMC methods with multigrid seems natural, where the
multigrid method is employed for the numerical solution of a PDE which is based on a sample of
the stochastic quantity on a certain (fine or coarse) scale (see also the previous chapter). Due to
the stochasticity, however, we deal with PDE problems with jumping coefficients, where different
jump patterns are encountered each time a new random field is generated. The generalization of
the LFA towards these PDEs will provide us insight in the average number of multigrid iterations,
the spread of the convergence factors, amongst other things. This information helps to estimate
the total CPU time needed for the multiple multigrid computations in a multilevel Monte Carlo
setting. We consider it useful to construct a technique to assess the quality of the choice of the
multigrid components in the context of the PDEs with random problems before the actual multigrid
computation has taken place.

In this work, we will employ a basic cell-centered multigrid (CCMG) algorithm for solving
elliptic PDEs with a variable coefficient field. The components of this algorithm include a simple
Gauss-Seidel iteration as the smoother, a piecewise constant prolongation operator and its adjoint
as the restriction and a direct discretization technique to define the discrete operators on the
coarse grids. We show that for this special combination, the coarse grid discretization operators
are equivalent to the ones obtained from commonly used Galerkin operators [16]. We utilize this
CCMG method to perform MLMC simulations with different permeability parameters. It may be
surprising that such a basic algorithm converges well in the context of the generated random fields,
where computation takes place for thousands of different samples. Despite we restrict ourselves
to this basic CCMG to demonstrate the accuracy of the predictions of the novel LFA technique,
we emphasize that this approach can be used for a wider range of problems, discretizations, and
multigrid methods. In fact, we think that the proposed LFA allows us to deal in an easy way with
challenging problems for which a standard LFA is very difficult to apply or even impracticable.

The chapter is organized as follows. In Section 4.2 we introduce the context of PDEs with
jumping and random coefficients, together with their discretization by a cell-centered finite volume
scheme. A discussion on multigrid methods for this type of problems is also included, and the
multigrid components that will be considered in this work are also defined. Section 4.3 is devoted
to the generalization of the LFA to deal with jumping coefficients and problems with random fields.
In Section 4.4, we present results obtained by this analysis for different benchmark problems with
jumping coefficients. Section 4.5 presents the LFA results for problems with random coefficients,
and in Section 4.7 multilevel Monte Carlo computations for PDEs with random coefficients are
presented. Finally, in Section 4.8 conclusions are drawn.

4.2. Jumping coefficients, random coefficients, multigrid

Robust and efficient iterative solution methods are very relevant for partial differential equations
with variable coefficients. For PDEs with jumping coefficients, multigrid methods have already
shown to be this type of solvers. When using Monte Carlo methods, in the case of elliptic PDEs with
random coefficient fields, many samples of the random field are generated and for each field, the
numerical solution should be computed. This can take substantial CPU time if very many samples
are required. For a fixed sample of the random field, we deal with an elliptic PDE with varying
coefficients, due to the randomness. Multigrid comes in naturally as a highly efficient solution
method for the resulting PDEs. In this section, we explain this setting and we briefly describe an
efficient multigrid method based on a cell-centered grid and a finite volume discretization.
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4.2.1 PDEs with jumping and with random coefficients

We start with classical PDE problems with jumping coefficients. In particular, we deal with the
following two-dimensional diffusion equation on the square domain D = (0, ¢ )2,

=V - (k(x)Vp(x)) fx), xe€D, (4.1)
p(x) = gx), x€0dD, (4.2)

where k(x) is a function which may be discontinuous across internal boundaries.

To discretize this problem, we use a cell-centered finite volume method based on the harmonic
average of the diffusion coefficient k(x). We consider a uniform grid 2, with the same step size
h =¢/M,M € N in both directions,

Dy = {(xi,» %3,)s %, = (o =1/ Dbl = 1,.., M, = 1,2}, (4.3)

This gives, for each interior cell with center (x; , x;,), denoted by DZJZ, a five-point scheme

h h h h h _ ¢h
cil,izpil’iz + wil,izpil_l,iz + eil,izpil‘f‘l,iz + Sil,izpi1,i2—1 + nil,izpil’i2+1 - fi1,i2’ (4-4)
where

W = 2 Kiy iy ki 1,5, no_ 2 Kiy i, Kiy 41,0,
i, ’ iy . . .
1R h? kil,iz + kil—l,iz 1R h? k11,12 + k11+1,12

s _ 2 kil,izkil,iz—l W= 2 kil,izkil,i2+1
i 2k . a4k i 2k . 4k
= h2 ki i, + ki -1 = h? ki i, + ki iy
h (il h h h
ini (wil,iz i, Ty, T Sil,iz)’

with, for instance, k; ;, the diffusion coefficient associated with the cell DZ’iz. By interior cell we
mean a cell for which none of its edges lies at the boundary of the domain. This scheme is changed
appropriately for the cells close to the boundary.

We also recall the elliptic PDEs with random coefficient fields from Chapter 3. The PDE of our
interest describes the steady-state single-phase flow in a random porous medium. Denoting by w an
event in the probability space (Q, F, ), with sample space Q, g-algebra F and probability measure
P, the permeability in the porous medium is described by k(x, w) : DXQ - R, . The PDE is then
given by

-V - (kx,w)Vpx,w)) = f(xX), x€D,weAqQ, (4.5)

with f as a source term. The engineering interest in the solution of (4.5) is typically found in
expected values of linear functionals of the solution p, denoted by Q := Q(p).

To discretize these problems, we use the same cell-centered finite volume method based on the
harmonic average of the random diffusion coefficient as previously described for problems with
jumping coefficients. We make the common assumption that the permeability random field is
constant over each cell of the grid.

4.2.2 Multigrid for PDEs with jumping and with random coefficients

In this work, the multigrid components for the above cell-centered discrete problems are chosen as
follows. We use a lexicographic Gauss-Seidel iteration as the multigrid smoother and we consider
standard coarsening obtained by doubling the mesh size in both directions. Each coarse cell is
the union of four fine cells, and, since the unknowns are located in the cell-centers, this results
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in a non-nested hierarchy of grids. We consider a simple prolongation operator Pgh, that is, the
piecewise constant interpolation operator. In stencil notation, it is given by

h

h _
Py, = * , (4.6)

1 1
2h

where x denotes the position of a coarse grid unknown. The classical stencil notation shows the
contribution of the coarse grid node to the neighbouring fine grid nodes. The restriction operator
Rflh is chosen as the scaled adjoint of the prolongation, given in stencil form by
2h
1 1 1
R = 2 * ) 4.7)
1 1
h
The coarse grid operators are constructed by direct discretization defining the diffusion coefficients
at the edges of the coarse cells appropriately, which we will describe in more detail. We assume that
the diffusion coefficient k(x) is piecewise constant on the fine grid. The flux over an edge, dependent
on the solution in the two adjacent cells, is calculated based on the harmonic average. The values of
the diffusion coefficients at a coarse edge located between two coarse cells, however, are calculated
as the arithmetic average of the corresponding fine grid coefficients, see Figure 4.1 for a more de-
tailed description. As it was pointed in [68], this direct discretization procedure is equivalent to the
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Figure 4.1: Schematic representation of permeability upscaling used in the multigrid hierarchy (h-2h-4h). (a)
Permeability values generated at cell-centers (blue dots). (b) Permeability values at face-centers (red dots) obtained from
the harmonic mean (HM) of permeabilities from two adjacent cell-centers. (c) Permeability at face-centers (bigger red

dots) of 2h-grid is the arithmetic mean (AM) of permeabilities from face-centers of the h-grid. (d) Permeability at
face-centers (biggest red dots) of 4h-grid is the arithmetic mean (AM) of permeabilities from face-centers of the 2h-grid.

h
2h°

1/2 in the previous expression is due to the lack of consistency of the operator RithPg‘h with the
differential operator [69]. In the next result, we prove that both discretizations are indeed equivalent.

often used Galerkin approach, i.e., Ly, = %RithP but computationally more efficient. The factor

PROPOSITION 1. Let Ly, be the fine-grid operator based on the cell-centered finite volume dis-
cretization of problem (4.5) on a uniform grid of mesh size h = ¢ /M with M even. Let P;’h be the

piecewise constant prolongation operator and Rﬁh its adjoint. Then, the Galerkin coarse grid operator
Ly, = 5 RithPg‘h is equivalent to a direct discretization on the coarse grid based on the arithmetic
average of the corresponding fine grid coefficients.
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Proof: We prove the equivalence for a coarse grid cell l)“ 2 such that none of its edges lies on

the boundary of the domain. The equivalence for coarse cells close to boundaries with Dirichlet or
Neumann boundary conditions can be proven similarly. By applying the restriction operator Rff‘ in

(4.7), the equation associated with the cell 2)11 h2 by using the Galerkin approach is given by

—(RZthP WD, = %((th R D)oty iy + LnPhy D)oty —1.21, + TPl D)oy 2iy1 +
(LiPL, P)oiy—1.21,-1)- (4.8)
Taking into account that the prolongation operator is piecewise constant, we obtain
(Lp,P th)zq,ziz = egil,zl-zpilﬂ,iz + wﬁ‘il,z,-zpil,iz + n?il,Zizpil,i2+l +
Sgil,Zizpilsiz + Cgi1,2izpi1’i2’
and similar expressions for the other terms in (4.8). By substituting these expressions in (4.8), the

following discretization for the coarse cell Dll 2 i5 obtained

2h h 2h 2h
_(R LhP p)11 i = l i pil iy + wi i pil—l i) + eil’izpi1+1,i2+

11 lzpll ip—1 +n p11 ip+1> (4-9)
where

Y B A h o _ 1 h

i, — g ( Wi —12i, T w2i1—1,2i2—1) o G, T g ( i 2i, T eZi1,2i2—1>’

o _ Lo h o _ 1 h
Sii, T % ( S2i, 2i—1 T S2i1—1,2i2—1)’ =3 ( 2i—120, T n2i1,2i2) ;

2h 2h 2h 2h | 2h

i1,y (wil’iz i1,ip + i1,ip 11,12)

We observe that this scheme is equivalent to a direct discretization on the coarse grid where
the diffusion coefficients on the edges are the arithmetic averages of the corresponding fine grid
coefficients.

Remark 4.2.1 In order to achieve a mesh-independent multigrid convergence following the analysis
from [70], the next condition must be satisfied:

m, +m, > Mg, (4.10)

where the orders m, and m, are the highest degree plus one of the polynomials that are exactly
interpolated by Ph and RZh respectively, and M 4, is the order of the PDE to be solved. For PDE (4.5),
we have M ,q, = 2 and for the considered operators (4.6) and (4.7), we get m,, = m, = 1, which does
not satisfy the inequality (4.10). In [71] it is shown, however, that this condition is not needed to prove
uniform convergence. The idea is to use the power of the theoretical approach provided in [72].

4.2.3 Discussion about other multigrid methods for jumping coefficients

In the context of algebraic multigrid methods for the numerical solution of partial differential equa-
tions, basically, two prevailing methods have proved their use for multiple engineering problems, i.e.,
algebraic multigrid and aggregation-based multigrid methods, [73-77]. These methods converge
remarkably well, for example, for scalar PDEs with jumping coefficients. It is not always easily
understood why these methods, and particularly the aggregation-based method, converge so well.

The origin of these algebraic methods may be found already in the early days of multigrid, where
black-box multigrid with operator-dependent transfer operators (restriction and prolongation) and
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Galerkin coarse grid operators for structured vertex-centered Cartesian grids was proposed in [78-
80]. This can be seen as a predecessor of classical AMG, where these components were essentially
enhanced by a flexible coarsening strategy.

The aggregation-based multigrid methods, with their origin in the work by Mandel [77] (smoothed
aggregation), may be related to the cell-centered multigrid methods as proposed in [54, 81]. In [81],
it was shown that constant, i.e., operator-independent, transfer operators, in combination with
Galerkin coarse grid discretization provided highly efficient multigrid results for cell-centered
discretizations of elliptic PDEs that included jumping coefficients. These cell-centered multigrid
components were augmented with robust smoothing, like Incomplete Lower-Upper decomposition
(ILU) relaxation. The individual contributions of the coarse grid correction and the smoothing
parts were difficult to distinguish. Also, a cell-centered multigrid based on coarsening by a factor of
three together with operator-dependent interpolations was explored in [82].

4.3. Local Fourier Analysis for variable coefficients

In this section, we describe LFA in a setting which allows us to estimate the multigrid convergence
factors for problems with jumping coefficients and problems with random fields. A discrete linear
operator with constant coefficients, which is formally defined on an infinite grid, is usually assumed
for carrying out a standard local Fourier analysis. As we will show, this assumption can be relaxed
by considering a discrete operator with constant coefficients in appropriate infinite subgrids. This
allows us to generalize the analysis to problems for which the discrete operator consists of different
stencils. A key point in this improved analysis is to consider a specific basis of the Fourier space,
rather than the standard basis which is based on the Fourier modes. The use of this new basis will
simplify the analysis.

We start from a regular infinite grid D, with grid size h in both directions. Such an infinite grid
will be split into n X n subgrids in the following way. First of all, a window comprising n X n cells of
the original grid is adequately chosen, and, subsequently, we consider its periodic extension. The
choice of the size of the n x n window is made such that the variability of the discrete operator in
the computational grid can be appropriately represented, as will be explained by means of examples
of different nature. Once n is fixed, the infinite subgrids are defined as follows (see Figure 4.2 for
an example with n = 2),

DK = {(k,Dh + (nky, nky)h | ky,ky € Z3}, k,1=0,...,n—1. (4.11)

For each low frequency, 6° c0,, = (- /nh, T /nh]?, we introduce the grid-functions:

5 00
*—BH 6 B¢ ®Dn
O D°
O—X—O0—x—0
o DYt
09— x pll
o o o
0o

Figure 4.2: Infinite grid 2, divided into the corresponding subgrids for n = 2.
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10", % = (6", X)) (), k1= 0,...,n =1, X € D, (4.12)

00
where goh(eoo, x) = e®¥ *is the standard Fourier mode on D), corresponding to the frequency 6.
It is easy to see that the subspace generated by these n? grid-functions,

F1(6™) = spanfyi (6™, ), k,1=10,..,n—1} (4.13)
is the same as the one spanned by the n? Fourier modes goh(eg(l), -) associated with the frequencies:
o = 6% + (k, D%’ k1=0,..,n—1 (4.14)

In the case n = 2, the basis {¢go(e°°, ), gb;ll(eoo, ), zp;f’(e‘)", D), 1,021(900, )} is related to the standard
basis of Fourier modes {goh(eoo, ), qoh(en, ), qoh(elo, ), cph(em, -)} in the following way:

¢2°(ezz> <oh<el) 11 1 1 ¢h(91)
Gl en@ ) |_1[ 1 1 -1 -1 || en6.)
sy [TM gy |73 1 -1 a1 1 || e (45
$2(6™, ) on(6,) 1 -1 1 =1/ g,",")

It is well-known that Fourier modes are eigenfunctions of any constant coefficient linear discrete
operator Ly, thatis, L,¢,(8,%x) = L,(8)p,(6, x). Therefore, the representation of L, with respect toa
basis of n? Fourier modes is a diagonal matrix with diagonal elements ih(e"’) withk,[=0,..,n—1.

In general, the Fourier representation with respect to the basis of functions {zph }k |—o is a dense

matrix. We will denote it by ih(e"o).
If we consider the five-point standard discretization of the Laplace operator on a uniform grid
of mesh size h,

) -1
14 -1 (4.16)
-1

its Fourier symbol with respect to the standard basis of Fourier modes is a diagonal matrix with
diagonal elements equal to

%(4 — 2.c0s(6M) — 2.cos(6K)),

(see [14], for instance) whereas the Fourier representation with respect to the new basis in the case
n = 2 is given by

2 0 cos(6Y’) cos(6)°)
~ 00 2 0 2 cos(8%)  cos(6%) 00 00 A00
B = 2| cosst®) cosel®) 2 0| with 0 =@, @17)
cos(8)%) cos(6y°) 0 2

Notice that, for example, the first row of the previous symbol is obtained by looking at the decom-
position of the stencil (4.16) into the connections among the unknowns located at the different
subgrids D’;l defined in (4.11). In particular, following the notations in Figure 4.2, the s-¢, « — ]
and « — o connections are given by the following stencils

ICINE R U Y O
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giving rise to the symbols

4 2 00 2 00

w cos(6y"), w2 cos(6;"),
which appear in the first row of (4.17), whereas there is no « — X connection. The rest of the rows is
analogously computed. The procedure to obtain the Fourier symbol of a smoothing operator S,
which is based on a splitting of the discrete operator L, = L;l' + L, , is analogous with the new basis.
The smoothing iteration is given by

L;wh + L;wh = fu,

with wy, the approximation of the solution before the smoothing step and wj, the approximation
after the smoothing step. By computing the symbols of L;[' and L, as before, the Fourier symbol of
the smoothing operator is given by

Sn(6™) = —=@TH1(6™)L; (™. (4.18)

The Fourier symbol corresponding to a lexicographic Gauss-Seidel iteration for the five-point
standard discretization of the Laplace operator on a uniform grid of mesh size h, in the case n = 2,
is as in (4.18), where

2 0 0 0
~ 2 0 2 cos(8%) cos(8% ~ ~ -~
1= 2| ooy o S T 5@ =L@ - e, @a9)
X
cos(@SO) 0 0 2

Once the Fourier representation of the smoothing operator with respect to the new basis is obtained,
we can define the smoothing factor by using the change of basis matrix. For example, for the case
n = 2, the smoothing factor is obtained by

H(Sp) = sup p(2,MS,(6°)M1),

00
67 €0,

where Q, is the projection operator onto the space of high-frequency components and M is the
change of basis matrix given in (4.15).

4.3.1 LFA formulations for cell-centered grids

In Section 4.2, we didn’t distinguish between cell- and vertex-centered grids. The generalized LFA
indeed works well for both types of discretization. By introducing the coarse grids and their relation
with the fine grids, we need to fix the approach of interest. Since here we will focus on cell-centered
discretizations, from now on the description of the analysis will be given for this case, although it
may be applied to the vertex-centered case in a similar way by defining appropriately the coarse
meshes.

According to the location of the coarse-grid points in a regular cell-centered grid, we define for a
fixed n the following infinite coarse subgrids of D,:

DX = {(h/2,h/2) + (k,2h + (nky,nkp)h | ky ky € Z}, k,1=0,..,n/2—1. (4.20)

Due to the relation between the grid-functions of the new Fourier basis given in (4.12) and the
standard Fourier modes, it can be shown that the coarse-grid correction operator C,, = I, —
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P! L2IR2'L),, where P!, and R?" are the prolongation and restriction operators, Ly, and Ly, are the

fine- and coarse-grid operators and I, is the identity, satisfies the following invariance property:
Cp : FTO™) - 7 (™).
More concretely, for 6% € @,,, = (=7 /2nh, 7 /2nh]?, the following properties of the operators in
C}, are fulfilled:
1. Lh’ Ih . ?nZ(eOO) e d \Tn2(600),

2. Ly, : F0426%) — 71 /426™),
3. R (™) - 726",

h . ”/4 00 2, 400
4. Pt 70267 - 77 (6™

From these invariance properties we can compute the Fourier representations of the corresponding
operators. As an example, we will describe next the representation of Rflh with respect to the

grid-functions {z,b (2600)}2/12:01
work.

We first consider the basic restriction operator obtained as the adjoint of the piecewise constant
prolongation operator with stencil form (4.7). Its Fourier representation with respect to the new
Fourier basis is given by

nd {1,b’gl(600)}k =0 for the restriction operators considered in this

ﬁih(eoo) _ %( o1 OX+6)/2 EP+O1)/2 HEX-6)/2  LHON—-0X)/2 )

In the case of the cell-centered restriction operator by Wesseling/Khalil [54], that is,

2h
11 0 0
R 2 0
Rih=ﬁ * , (4.21)
0 2 31
0 0 11
h

the Fourier representation is given by
e—z(eg°+eg°)/z(2 + ezzsyo + ezlego)

ey = L| O e 4 e
16 OP—80)/2(3 4 (2P —6%)
(EP—62)/2(3 4 (2(OX-61)y

As an immediate consequence of these invariance properties and the invariance property of the
smoothing operator, also the two-grid operator Kih = (C,S/, where v denotes the number of

smoothing steps, leaves the subspaces F ZZ(GOO) invariant. Its Fourier representation is given by
R21(6™) = C,,(6™)82(6™) = (1,,(6™) — P1, (6™)L;1(6™)R(6™)L,,(6*))S)(6™).

Finally, we can compute the asymptotic two-grid convergence factor as the supremum of the spectral
radii of (n? x n?)—matrices, as follows

p(Ki") = sup p(R2(6™Y),
e E@)Znh

where @,,,, is the subset of @,,,, in which we remove the frequencies 6 such that the determinant
of the Fourier symbol of L;, or L,;, vanishes.
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4.4. LFA results for PDEs with jumping coefficients

In this section, we apply the proposed LFA to predict the multigrid convergence factors for a collec-
tion of benchmark problems with jumping coefficients taken from the literature [63, 78, 83]. The
test cases cover a variety of possible inhomogeneities including jumps that are not aligned with the
coarse grid. In all these problems, equation (4.1) is numerically solved in the domain D = (0, 1)?,
by using a mesh of grid-size h = 1/128. In particular, the following jumping coefficient benchmark
problems, characterized by the distribution of the diffusion coefficient, are considered here:

1. Vertical jump. Function k(x, y) is defined in the following way (see also Figure 4.3 (a))

1, if x<§+h,

k(x,y) = ) 1
103, if x25+h.

2. Four corner problem. The domain is divided into four regions in which the diffusion
coefficient is varying, see Figure 4.3 (b). In particular,

2
104, if (x,y)e(O,%+h),
1, if (x,y)e(O,%+h)x(%+h,1
1072 if (x,y)e(§+h,1)x(%+h,1

10~* otherwise.

k(x,y) = ; )’
)

b

3. Square inclusion. In this example we assume a square inhomogeneity in one cell within
the square domain, see Figure 4.3 (c). The diffusion coefficient is defined as

ko if Gy e(5-h %)2

1, otherwise,

k(x,y) =

where values k, = 10* and k, = 10~ are considered.

4. Periodic square inclusions. This test is taken from [64]. We consider a structured pattern
of square inclusions of size 2h X 2h as depicted in Figure 4.3 (d). The diffusion parameter is
k(x,y) = 1 inside the dark region and k(x, y) = 1000 inside the white region.

5. Periodic L-shaped inclusions. In the last test case, we consider a structured pattern of
L-shaped inclusions as in Figure 4.3 (e). The diffusion parameter is k(x, y) = 10* inside the
white region and k(x, y) = 1 inside the dark region.
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LFA

Multigrid
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Distribution of the diffusion coefficients for the five considered examples on a unit square domain and

Figure 4.3

corresponding 8 X 8 window used in the LFA.
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To perform the theoretical analysis, the periodic extension of a window of size 8 X 8 has been chosen,
where the diffusion coefficient is prescribed in such a window according to its definition, see Figure
4.3 (right side). In all numerical tests a random initial guess is chosen, and the right-hand side and
boundary conditions are set to zero to be able to determine asymptotic convergence factors. In this
way, we avoid round-off errors permitting us to perform as many iterations as needed. In practice,
we have seen that 50 iterations are sufficient.

Next, we show the excellent correspondence between the theoretical analysis and the experimental
results for these test cases. Two combinations of inter-grid transfer operators are considered. The
first combination, denoted here by (CP,CR), is based on the use of piecewise constant prolongation
(4.6) and its adjoint as the restriction (4.7). In the second combination we change to a higher
polynomial order interpolation operator which is the adjoint to the Wesseling/Khalil restriction
(4.21). This choice is denoted by (WP,CR). Moreover, a standard damped Jacobi smoother (damping
with w = 0.8) is considered as well as the proposed lexicographic Gauss-Seidel smoother.

Pre-, post-smoothing steps
(1,0) (1,1) (2,2)
(CP,CR) | 0.42(0.42) 0.18(0.19) 0.04(0.03)
GS
Vertical jump (WP,CR) | 0.41(0.37) 0.19(0.16) 0.07(0.11)
1. | (CBCR) [0,65(0.65) 043(042) 0.19(0.19)
| (WPCR) | 0.63(0.59) 0.40(0.35) 0.19(0.19)
Gs | (CRCR) [ 0.42(037) 0.15(0.12) 0.04(0.03)
Fot corner problem (WP,CR) | 0.40(0.39) 0.16(0.16) 0.09(0.09)
1ac. | (CPCR) [063(061) 040(039) 0.16(0.16)
| (WPCR) | 0.62(0.62) 0.40(0.40) 0.19(0.18)
Gs | (CRCR) [ 045(044) 021(0.19) 0.04(0.04)
o (WP,CR) | 0.41(0.40) 0.18(0.17) 0.11(0.11)
Sq. inclusion (k = 10%) 1ac. | (CPCR) | 060(065) 036(042) 0.13(0.19)
4 | (WP,CR) | 0.60(0.62) 0.38(0.37) 0.22(0.21)
Gs | (CPCR) | 0.46(0.45) 0.21(0.20) 0.05(0.05)
o _ (WP,CR) | 0.41(0.40) 0.19(0.19) 0.12(0.12)
Sq. inclusion (k = 107%) 1ac. | (CPCR) [ 061(065) 038(042) 0.15(0.19)
4% 1 (WP,CR) | 0.61(0.59) 0.39(0.39) 0.23(0.23)
Gs | (CRCR) [064(061) 0.43(0.42) 041(041)
Periodic Sq inclusions (WP,CR) | 0.62(0.61) 0.43(0.41) 0.41(0.40)
1nc. | (CBCR) [081(0.78) 0.66(0.65) 0.44(0.46)
| (WPCR) | 0.81(0.80) 0.66(0.65) 0.44(0.43)
Gs | (CRCR) [ 0.50(0.50) 0.32(0.26) 0.21(0.21)
Periodic LS. inclusions (WP,CR) | 0.54(0.53) 0.40(0.40) 0.30(0.30)
1ac. | (CPCR) [071(063) 054(0.48) 0.36(0.35)
| (WPCR) | 0.71(0.71)  0.56(0.56) 0.42(0.42)

Table 4.1: Asymptotic two-grid convergence factors predicted by LFA and the corresponding computed average
multigrid convergence factors (in parenthesis) using two-grid cycles and different pre- and post-smoothing steps for the
five examples.

In Table 4.1, for different numbers of smoothing steps, for two different smoothers and for the
two combinations of restriction and prolongation operators, we provide the two-grid convergence
factors predicted by the novel LFA for each of the proposed numerical experiments. We also display
in parenthesis the average after 50 iterations of the experimentally computed multigrid convergence
factors by using two-grid cycles. For all these cases, we observe a very accurate match between the
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analysis results and the rates experimentally obtained. Regarding the size of the window to perform
the LFA, we have observed that a window of size 8 X 8 is enough to achieve excellent predictions in
all considered benchmark problems. For example, for the vertical jump test, the two-grid analysis
considering four smoothing steps of the Gauss-Seidel smoother and the combination (CP,CR) of
inter-grid transfer operators provides a factor of 0.11 when a 2 x 2 window is used, a factor of 0.06
for a 4 X 4 window, and a factor of 0.04, which matches perfectly the real convergence, when the
8 X 8 window is considered.

We remark that with the current multigrid approach, the quality of the coarse grid discretization
may not be satisfactory, for example, for chessboard or L-shaped inclusion examples. For such
cases, we either recommend using more powerful smoothers such as the ILU smoother or adapt the
coarsening. Furthermore, for PDEs with strong local variations in the coefficient fields, homoge-
nization techniques [63, 78, 83] may also be used to obtain the coarser representation of the fine
grid problem. Comparing the results of the two combinations of inter-grid transfer operators, we
observe a very similar performance for all five test cases studied here. In the rest of the chapter, we,
therefore, choose the strategy (CP,CR) because of its simplicity and low computational cost.

4.5. LFA results for PDEs with random coefficients

Here, we consider the SPDE (4.5) defined on a unit square domain D = (0, 1)> with homogeneous
Dirichlet boundary conditions. Two different types of diffusion coefficients based on random jumps
and lognormal random fields are studied. The randomly jumping coefficient problem can be seen
as a transition from the deterministic to a stochastic setting.

4.5.1 Randomly jumping coefficients

To simulate random jumps, the domain 2 is subdivided into square-blocks of size [1/8 X 1/8] and
the value of the coefficients on each of the blocks is sampled as

k=eV with U~ U{-m,m} and m € Z. (4.22)

In other words, U is an independent identically distributed (i.i.d.) integer sampled from a discrete
uniform distribution U{—m, m}. Here, the integer m defines the order of magnitude of the jumps,
an example for m = 5 is shown in Figure 4.4. Notice that for this choice of m, we may encounter
interfaces with maximum jumps of magnitude equal to e'°. For each random realization of the
jumping coefficient field, we compare the LFA two-grid convergence factors with the computed
asymptotic convergence factors of the multigrid method by using W-cycles. To perform the LFA, we
again use a window of size 8 X 8. Furthermore, regarding LFA the randomly jumping coefficient
problem is similar to the four corner problem in Figure 4.3 (d) with the magnitude of each block
given by (4.22) and the cross-point exactly at the center of the LFA block. Regarding the multigrid
components, a lexicographic Gauss-Seidel iteration is employed as the smoother, and the simplest
combination (CP,CR) of inter-grid transfer operators is chosen. Also, we use a 4 X 4 grid as the
coarsest in the multigrid hierarchy. To determine the asymptotic convergence factors of the multigrid
method, the right-hand side is again set to zero.

The experimental convergence factor of the multigrid method for the i-th realization of the
random field is then computed, as follows:

{Hreskilloo
[={— @

I/Ki
5 } , for i=1,2,..,Nyg, (4.23)
[|resO|| s

where ||res||, is the infinity norm of the residual obtained from an initial solution and ||res” ||,
is the residual after x; iterations of the multigrid cycle. We use these quantities to calculate the
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E i5
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Figure 4.4: An example of random realization of U = In k with m = 5 on a unit square domain.
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average and the standard deviation of the asymptotic convergence factors:

1 Nue 1 Ny 5
= ) E [ — — , 424
(oo = — g{ P oMo =l T ; (pi = (Puc) (4.24)

respectively. These averaged quantities are defined similarly for the LFA results (based on LFA
two-grid factors), and are denoted, respectively, by (o) r4 and oy 4.

In Figure 4.5, we show the comparison, the mean + standard deviation, of the LFA prediction
and the multigrid convergence for jump parameter m = 2 (left) and m = 5 (right) computed using
Nira = Ny = 100. Overall, a good match between the LFA and MG convergence is seen up to
one decimal place. We also observe that for this specific jumping coefficient problem, there is no
further improvement with an increase in the number of smoothing steps after the W (2, 2)—cycle.

0.5 T T T T T 0.5 T
W (1, 1)[MG] ™ -+ (1,1)[MG]
W (2,2)[MC] W (2,2)[MG]
0.4 W (3,3)[MC] | 0.4 W (3,3)[MC] |4
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$-W(2,2)[LFA] §-W (2, 2)[LFA]
s 0.3 W(3,3)[LFA]l{ & 0.3 T [ w3.3)[LFA]
H H I %%
02498 g g % —4 =02 \\+* +
1 T , - - JL ,,,,,,
0.1 \ “"\t’s; - 0.1 . N \" y
O 1 1 1 - 1 