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Summary

Uncertainty is ubiquitous in many areas of science and engineering. It may result from the inade-
quacy of mathematical models to represent the reality or from unknown physical parameters that
are required as inputs for these models. Uncertainty may also arise due to the inherent randomness
of the system being analyzed. For many problems of practical interest, uncertainty quanti�cation
(UQ) can involve computations that are intractable even for the modern supercomputers, if conven-
tional mathematical techniques are utilized. The reason is typically a product of complexity factors
associated with many samples needed to compute the statistics, and for each sample, complexity
associated with the spatio-temporal scales characteristics to the system.

Themain objective of this research is to obtainmultilevel solvers for stochastic �uid �owproblems
with high-dimensional uncertainties. In our approach, the complexity arising due to sampling is
overcome by the multilevel Monte Carlo (MLMC) method and complexity due to spatio-temporal
scales is eliminated via the multigrid solver. Historically, Monte Carlo (MC) type methods have
been proven to be the methods of choice for problems with a large uncertainty dimension as they
do not su�er from the curse of dimensionality. A well-known computational bottleneck associated
with the plain MC method is the slow convergence of the sampling error. For problems involving a
wide range of space and time scales, ensuring a low mean square error will require a large number
of MC samples on a very �ne computational mesh making the estimator very expensive. Inspired
by the multigrid ideas, the MLMCmethod generalizes the standard MC to multiple grids, exhibiting
an exceptional improvement. The e�ciency of the MLMCmethod comes from solving the problem
of interest on a coarse grid and subsequently adding corrections based on �ner mesh resolutions.
On the coarsest grid, a large number of samples can be computed inexpensively. The corrections
computed on �ner grids, have smaller variances and can be estimated accurately using only fewer
samples. The estimates at di�erent levels are then combined using a telescopic sum.

A fast and robust black-box solver is very important for designing an e�cient MLMC estimator.
Therefore, combining the MLMC method with a multigrid method seems natural, where the
multigrid method is employed for the numerical solution of a partial di�erential equation (PDE)
with uncertainty on a certain scale. Developing a multigrid method for problems with random
inputs is challenging, as depending on the random inputs, the multigrid convergence rate may
have a high variance or even diverge for certain samples. In this thesis, we also develop multigrid
methods that are well suited to an MLMC setting. We pay special attention to the choice of the
multigrid components and provide modi�cations needed in a deterministic multigrid solver to deal
with the stochasticity.

We study four di�erent �uid �ow problems: single-phase �ow in porous media with highly
heterogeneous di�usion coe�cients; a multi-physics problem involving advection-dominated
transport in a coupled Darcy-Stokes system; a nonlinear multi-phase �ow in variably saturated
porousmedia; and turbulent �owswith highReynolds number. For all these problems, we encounter
uncertainties that are extremely high-dimensional where the unknown physical parameters are
modeled as an in�nite-dimensional random �eld or even as an in�nite-dimensional random tensor
�eld.

To gain an insight into the MLMC method, we also study the theory and sampling strategies, in
Chapter 2. Then, we explore the possibilities for improving the complexity of the MLMCmethod
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vi Summary

using higher-order discretization schemes in Chapter 3. Here, we also describe a framework to
combine a full multigrid (FMG) solver with the MLMC estimator using the same hierarchy of grids.
This coupling of a FMG solver with the MLMC estimator is highly appealing, as we can obtain
linear-scaling UQ methods for many problems.

In Chapter 4, we study a non-standard Local Fourier Analysis (LFA) to predict the asymptotic
convergence factors of multigrid solvers for PDEs with random or jumping coe�cients. The
proposed LFA technique can be used to compute the convergence statistics of multigrid solvers in
advance and can be used to optimize the MLMC simulation.

Devising an e�cient MLMC method for coupled multi-physics problems is highly challenging.
A careful selection of numerical schemes for each subproblem is needed to avoid a high cost per
sample without any gain in accuracy. For such systems, the approximation of each subproblem
may give rise to di�erent convergence rates depending on the regularity of the solution variables
and on the discretization order of the numerical schemes. These aspects are studied in Chapter 5
where we discuss a multigrid MLMC approach for stochastic transport in a coupled Darcy-Stokes
system. With the combination of numerical schemes described in this chapter, we are able to obtain
an asymptotically optimal MLMC estimator that has the same computational complexity as its
deterministic counterpart.

The standard MLMCmethod relies on a sequence of coarse grids for cost reduction. For sti�
nonlinear systems, a convergent solution can only be obtained on relatively �ner grids, thereby
limiting the full potential of the MLMC method. To deal with this shortcoming, we explore a
parametric continuation strategy for nonlinear PDEs in Chapter 6. The key idea is to simplify
the nonlinearity as we move to coarse grids. This way we circumvent the problem of divergence
as simpler nonlinear problems are now solved on coarser levels. To test the e�ectiveness of this
approach, we consider �ow in variably saturated porous media that is modeled using the nonlinear
Richards’ equation. For a widely used solution method based on the modi�ed Picard iteration, we
show that the parametric continuation approach can accelerate the convergence of the standard
MLMCmethod for nonlinear problems.

In Chapter 7, we extend the MLMC framework for quantifyingmodel-form uncertainties as-
sociated with the Reynolds-Averaged Navier-Stokes (RANS) simulations. The RANS equations
combined with turbulence closure models are widely utilized in engineering to predict �ows at high
Reynolds numbers. The turbulence models are typically derived using a combination of physical
insight and empirical data-�tting. This modeling approach, although computationally inexpensive
introduces large modeling errors in the RANS prediction. This work describes two stochastic exten-
sions for RANS models based on random eddy viscosity and a random Reynolds Stress Tensor (RST)
which are solved using the MLMCmethod. The random eddy viscosity is obtained by perturbing
the baseline eddy viscosity using Gaussian random �elds with some prescribed spatial covariance.
Similarly, the random RST is derived by perturbing the deterministic baseline RST. For the proposed
method, we show that the asymptotic cost of the MLMC estimator does not deteriorate with an
increase in uncertainty dimension. Here, we also demonstrate that the two stochastic models are
su�ciently general and can reliably bound the possible �ow behavior.

This PhD thesis reports on the multilevel approach for UQ of �uid �ow problems. Our focus is
on the development of fast uncertainty propagation algorithms. We also show the generality of the
considered stochastic models for di�erent classes of �ow. As a next step, based on the machinery
developed in this work, one can further develop e�cient data-driven inverse UQ algorithms for
parameter calibration and quanti�cation of model errors.



Samenvatting

Onzekerheid is een alom vertegenwoordigd onderdeel van veel technisch-wetenschappelijke vak-
gebieden en modellen. Voorbeelden van bronnen van onzekerheid zijn ten eerste de fout van een
model ten opzichte van de fysische realiteit en ten tweede onbekende parameters waarvan een
model afhangt. Het is ook mogelijk dat het fysische model zelf onzekerheid bevat. Het modelleren
van onzekerheid staat bekend als onzekerheidskwanti�cering (afgekort UQ, naar het Engels Uncer-
tainty Quanti�cation), maar met conventionele technieken uit dit vakgebied kunnen veel relevante
problemen niet worden opgelost. Dit komt doordat de benodigde berekeningen zelfs voor moderne
supercomputers te complex zijn. De reden hiervan is tweeledig. Ten eerste kan de onzekerheid
alleen gekwanti�ceerd worden door het onderliggende deterministische model vaak op te lossen en
ten tweede is het onderliggende model complex door de vele schalen van het probleem (zowel in
ruimte als in tijd).

Het hoofddoel van dit onderzoek is het a�eiden van numerieke multilevel oplossingsmetho-
den welke toegepast kunnen worden op stochastische vloeistof dynamica problemen met hoog
dimensionale onzekerheden. Onze aanpak bestaat uit het combineren van de multilevel Monte
Carlo (MLMC) methode met de multigrid methode, waardoor zowel de problematiek van de vele
model evaluaties alsmede de complexiteit van de vele schalen in het model zelf worden tegen
gegaan. Het is algemeen bekend dat (gewone) Monte Carlo (MC) methoden e�ectief omgaan met
hoog dimensionale onzekerheden, omdat de hoeveelheid benodigde numerieke oplossingen van
het model niet afhangt van het aantal onzekerheden (dit fenomeen staat bekend als de curse of
dimensionality). Echter ondanks deze kenmerkende eigenschap zijn er veel numerieke oplossingen
van het model nodig om tot een accurate schatting te komen. Dit speelt vooral wanneer er vele
schalen in het probleem zijn. MLMC gaat dit e�ect tegen door MC toe te passen op meerdere
roosters van het onderliggende model, waardoor er substantieel minder tijd nodig is om tot een
oplossing te komen. Het idee is om het onderliggende model vaak numeriek op lossen gebruik
makende van een grof rooster en vervolgens de fout die hierdoor gemaakt wordt te corrigeren
gebruik makende van oplossingen bepaald met steeds �jner wordende roosters. Het grove rooster
kan gebruikt worden om het model vaak numeriek op te lossen, aangezien dit snel en e�ectief kan.
De variantie tussen een oplossing op het grove rooster en een �jn rooster is klein, dus er zijn maar
weinig numerieke oplossingen nodig op een �jn rooster om accurate statistieken te berekenen. De
correcties worden vervolgens gecombineerd door middel van een telescopische som.

MLMC is een grote verbetering ten opzichte van MC, maar vereist nog steeds een snelle en
robuuste numerieke oplossingsmethode voor het onderliggende model. Een voor de hand liggende
idee is om de MLMC methode te combineren met een multigrid methode, waarbij de multigrid
methode wordt gebruikt voor het oplossen van een partiële di�erentiaalvergelijking (PDV) op een
vooraf bepaalde schaal. Het is niet evident om een multigrid methode te gebruiken wanneer de
parameters van de di�erentiaalvergelijking stochasten zijn, aangezien afhankelijk van de parameters
de multigrid methode langzaam (met hoge variantie) of zelfs niet convergeert. In deze dissertatie
worden multigrid methodieken ontwikkeld die zeer e�ectief zijn in combinatie met MLMC. We
letten vooral op de juiste keuze van alle onderdelen in multigrid en ontwikkelen aanpassingen daar
waar nodig.

We bestuderen vier verschillende vloeistof dynamica problemen: eenfasige stroming in poreuze
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media met sterk variabele di�usie; een combinatie van een door advectie gedomineerde stroming en
een Darcy–Stokes systeem; een niet-lineaire meerfasige stroming in verzadigde poreuze media; en
turbulente stroming met hoog Reynoldsgetal. In alle problemen komen extreem hoog dimensionale
onzekerheden voor waarbij de onzekere fysische parameters gemodelleerd worden als oneindig
dimensionale stochastische velden of zelfs als oneindig dimensionale stochastische tensorvelden.

Om inzicht te verwerven in MLMC bestuderen we in Hoofdstuk 2 de wiskundige theorie en
strategieën om steekproeven te bepalen. Daarna verkennen we in Hoofdstuk 3 de mogelijkheden
om de MLMCmethode te versnellen gebruik makende van hogere orde discretisatie methodieken.
We beschrijven hier ook een raamwerk om full multigrid (FMG) te combineren met MLMC, waarbij
beide methoden gebruik maken van dezelfde roosterhiërarchie. De koppeling tussen FMG en
MLMC is veelbelovend, aangezien de tijdscomplexiteit van de verkregen UQ methodieken in veel
gevallen lineair schaalt.

In Hoofdstuk 4 leiden we een nieuwe lokale Fourier analyse (LFA) af om asymptotische con-
vergentie van multigrid oplossingen van PDV’s met willekeurige coë�ciënten te voorspellen. De
afgeleide LFA techniek kan gebruikt worden om convergentie van multigrid technieken vooraf de
kwanti�ceren en kan gebruikt worden omMLMC simulaties te optimaliseren.

Het is niet eenvoudig een e�ciënte MLMCmethode te ontwikkelen voor problemen waarin
verschillende fysische fenomenen gekoppeld zijn. Het is van belang om nauwkeurig de numerieke
schema’s te kiezen welke gebruikt worden voor ieder fenomeen of submodel zodat de precisie
van ieder onderdeel hetzelfde is. De convergentiesnelheid kan verschillen tussen de onderdelen,
afhankelijk van de regulariteit van de oplossing en de discretisatie van het fysische submodel. Deze
aspecten worden beschouwd in Hoofdstuk 5, waarin een multigrid MLMC methode wordt afgeleid
voor een stochastische stroming in een gekoppeld Darcy–Stokes systeem. De numerieke schema’s
die worden afgeleid in dit hoofdstuk worden gecombineerd, om zo een asymptotisch optimale
MLMC schatter te verkrijgen, welke dezelfde complexiteit heeft als het deterministische probleem.

The standaard MLMC methode maakt gebruik van een serie grove rooster om de e�ectiviteit te
waarborgen. Echter voor stijve niet-lineaire systemen is het alleen mogelijk om een geconvergeerde
numerieke oplossing te verkrijgen op relatief �jne roosters, waardoor de e�ectiviteit van MLMC
afneemt. Om dit probleem op te lossen verkennen we in Hoofdstuk 6 parametrische voortzetting, wat
toegepast kan worden op niet-lineaire PDV’s. Het idee is om de niet-lineariteit voor grove roosters
te vereenvoudigen. Hiermee kan sneller een geconvergeerde numerieke oplossing verkregen,
aangezien het probleem aanzienlijk versimpeld is. Om de e�ectiviteit van deze aanpak te testen
wordt deze toepast op stroming in een verzadigd poreus medium, wat gemodelleerd wordt door
middel van de niet-lineaire vergelijking van Richards. We gebruiken een methode welke gebaseerd
is op de veelgebruikte Picard iteratie om aan te tonen dat parametrische voortzetting de convergentie
van MLMC in niet-lineaire problemen aanzienlijk kan versnellen.

In Hoofdstuk 7 bereiden we het MLMC raamwerk uit om demodelonzekerheden van de stati-
onaire Navier–Stokes vergelijkingen voor de gemiddelde stroming te kwanti�ceren. Deze verge-
lijkingen staat bekend als de de Reyolds-averaged Navier–Stokes vergelijkingen, oftewel de RANS
vergelijkingen. De RANS vergelijkingen worden vaak in combinatie met een turbulentie-model
gebruikt om het gedrag van vloeisto�en met een hoog Reynoldsgetal te voorspellen. De turbulentie-
modellen worden normaal gesproken verkregen door fysisch inzicht en empirische data-analyses.
Deze aanpak zorgt voor modellen die snel numeriek opgelost kunnen worden, maar een grote
inherente fout bevatten. In Hoofdstuk 7 worden twee stochastische expansies voor RANS modellen
beschreven, welke gebaseerd zijn op een willekeurige eddy viscositeit en een willekeurige Reynolds
stress tensor (RST). Deze worden opgelost gebruik makende van de MLMC methode. De willekeu-
rige eddy viscositeit is verkregen door de gebruikelijke waarde van de eddy viscositeit op te tellen bij
een hoog-dimensionaal Gaussisch proces. Op dezelfde wijze wordt de willekeurige RST verkregen.
We laten zien dat de benodigde tijd om de nieuwe MLMC methodieken toe te passen asymptotisch
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niet toeneemt wanneer de hoeveelheid onzekere parameters toeneemt. We laten ook zien dat de
twee stochastische modellen voldoende generiek zijn en daardoor in staat zijn de vloeistofstroming
correct te voorspellen.

Deze dissertatie beschrijft een multilevel UQ aanpak, welke wordt toegepast op vloeistof dy-
namica problemen. De aandacht gaat speci�ek uit naar het ontwikkelen van snelle propagatie
methoden. We laten ook de brede toepasbaarheid van de stochastische modellen zien. De volgende
stap is om, gebruik makende van de in dit werk ontwikkelde methodes, e�ciënte UQ algoritmes
te ontwikkelen om gebruik makende van data parameters te kalibreren en model onzekerheid te
kwanti�ceren.
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1
Introduction

Due to formidable progress in computers and algorithms, many problems in science and engineering
can be simulated with a high level of detail using computer programs. These programs encode
mathematical models describing the underlying physics of the problem. The models also contain
a number of physical parameters that describe the state of the physical system. Predictions of
these models may become uncertain when the true physics or parameters describing the reality are
unknown or due to natural randomness in the physical system.

Sources of uncertainty in amathematicalmodel are typically categorized as epistemic uncertainty
(due to lack of knowledge) or aleatoric uncertainty (due to inherent randomness). Within epistemic
uncertainty, we encounter parametric uncertainties where the parameters that are input to the
mathematical model are not completely known, for instance, the permeability �eld in subsurface
�ow modeling. Another type of epistemic uncertainty is model bias (or structural uncertainty) that
arises due to inaccuracies in a mathematical model. In some cases, simpli�cations made just to
reach stable numerical solutions may also introduce a model bias. The uncertainty in the epistemic
sources can be reduced by acquiring more data regarding the model parameters or by incorporating
additional physics in the mathematical model.

Some physical systems exhibit uncertainties that are irreducible i.e. cannot be reduced by
acquiring more information about the process. Due to the inherent randomness, the outcome of
these processes may di�er even when the same experiment is repeated multiple times (for example,
drawing cards from a shu�ed pack). Typically, aleatoric variables are sampled from some probability
distribution that is part of the model of the system.

One may also have to deal with operational uncertainties, for example, when exact boundary
or initial conditions are not available. For some problems, with geometric uncertainty where the
geometry of the problem is not known accurately, for example, the shape of an airfoil. The above
uncertainty can again be classi�ed as epistemic or aleatoric uncertainty. This distinction will be
relevant in order to decide whether data acquisition is needed to reduce the uncertainty.

Stochastic extensions of deterministic models can be derived by modeling the inputs as random
variables. For example, in subsurface �ow modeling it is common to model the unknown perme-
ability as a lognormal random �eld. Uncertainties due to model bias can be dealt with in a number
of ways. A common practice is the addition of a discrepancy function to capture the model bias
[1]. Another possibility is to perturb the quantities obtained from deterministic simulations. The
amount of perturbation is typically decided based on some physical constraints. In the turbulence
modeling literature, a number of stochastic turbulence models have been derived by perturbing the
Reynolds stresses obtained from deterministic simulations [2–4].

1
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Once the stochasticmodel is formulated, an e�cient Uncertainty Quanti�cation (UQ) technique
is required to compute the statistical moments of the output quantities of interest. This choice
typically depends on the uncertain dimension. Other practical factors such as the ease of implemen-
tation and the availability of an iterative solver which is robust with respect to the random input,
also play a role in the selection of a suitable UQ technique. These UQ techniques are sometimes
categorized as either intrusive (requires modi�cations in the deterministic solver) or non-intrusive
(deterministic solver is used as a black-box) approaches. Notably one of the most popular intrusive
techniques is the stochastic Galerkin (SG)method based on the generalized Polynomial Chaos (gPC)
expansion [5–7]. The SG formulation of the stochastic PDEs typically results in a set of coupled
deterministic equations. For SG methods, the existing iterative solvers cannot be directly utilized
and may need drastic modi�cations. Furthermore, the implementation becomes highly involved
when we deal with complicated PDEs involving nonlinear terms or multi-physics problems.

Another class of well-establishedUQ techniques includes stochastic collocation (SC)methods [7,
8] that are based on deterministic sampling approaches. The sampling nodes in the random space are
computed using cubature rules. The main advantage of the SC method lies in its non-intrusiveness,
hence, existing deterministic solvers can be utilized. The computational cost is governed by the
number of nodes, that however increase exponentially with an increase in the stochastic dimensions.
Another drawback of the conventional SC approach is that it may not adequately represent those
regions in the stochastic space where strong nonlinearities or discontinuities may be present. Sparse
grid based SC methods are nowadays standard as they allow us to reduce the number of nodes
drastically without losing the order of accuracy. However, for very large uncertainty dimensions,
the sparse grid SC methods can still be very expensive.

In this thesis, we will work with �uid �ow problems and high-dimensional uncertainties. For
such problems, Monte Carlo (MC) type methods have been proven to be e�ective UQ tools as they
do not su�er from the curse of dimensionality, are easy to implement and have a high parallelization
potential. Moreover, these MC-type methods can accurately represent the entire stochastic space
given a su�ciently large number of samples. A well-known drawback of the plain MC method is
the slow convergence of the sampling error, with (V[Q]∕N)1∕2, where V[Q] is the sample variance
of the quantity of interest Q andN is the number of samples. This makes the plain MCmethod very
expensive for �ow problems that are already computationally intensive in their deterministic setting.
We point out that quasi-Monte Carlo methods which use deterministically chosen sample points
in an appropriate (usually high-dimensional) parameter space can yield a convergence rate better
than O(N−1∕2). However, we do not investigate QMC based estimators in this work. The focus of
this thesis is to improve the e�ciency of the standard MC method using amultilevel framework.

1.1. Multilevel solvers
A combination of multilevel approaches can, in principle, help us to eliminate the computational
complexities arising due to both MC sampling as well as the spatio-temporal scales characteristics.
In this thesis, we reportmultilevel solvers for �uid �ow problems where complexities associated to
the sampling are overcome by the multilevel Monte Carlo (MLMC) method and complexities due
to spatio-temporal scales via the multigrid solver.

The idea of the MLMC method was introduced by Heinrich [9] to speed up the computation of
high-dimensional integrals. Thismultilevel ideawas further developed and improved byGiles [10] to
reduce the order of complexity of Monte Carlo path simulations for stochastic di�erential equations
(SDEs). The improved e�ciency of the MLMC method comes from building the estimate for a
quantity of interest Q, on a hierarchy of grids or levels, by exploiting the linearity of the expectation
operator, i.e.

E[QL] = E[Q0] +
L∑

l=1
E[Ql − Ql−1], (1.1)
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for all l ∈ {0, 1, ..., L}. On the coarsest grid, for l = 0, the expectation is inexpensive to compute
accurately. For large values of l where the numerical solution is comparatively expensive, only a
few realizations are required as the variance of the correction term V[Ql − Ql−1] is signi�cantly
smaller compared to the variance of Ql, i.e. V[Ql]. While o�ering large savings over the standard
MC method, MLMC retains all the important properties of MC methods like parallelization and
possible combination with other variance reduction techniques (see e.g. [11–13]).

As for any non-intrusive UQ method, the computational cost of the MLMC estimator also
depends on the e�ciency of the black-box solver used to compute samples on di�erent mesh
resolutions. Combining the MLMCmethod with multigrid solvers [14–16] seems ideal as multigrid
solvers can, in general, obtain scale independent convergence rates. Classical iterative methods
such as Jacobi or Gauss-Seidel iterations are only e�cient for eliminating high-frequency errors
between the exact solution and its numerical approximation. When these high-frequency errors
are projected on coarser grids they again appear oscillatory. Therefore, by using a hierarchy of
grids, these basic iterative schemes can be made e�cient for eliminating all high and low error
components. This idea forms the basis for amultigrid solver. Amultigrid iteration starts with a basic
iterative relaxation on the �nest grid called the pre-smoothing. Then, the residual obtained after
smoothing is transferred to the next coarser grid using an appropriate restriction operator. As the
same problem needs to be solved on the coarser grid, the same relaxation method may be applied to
eliminate the corresponding components of the error. This process is recursively extended until the
coarsest grid is reached where a direct solution of the problem is cheap. After that, the corrections
obtained on the coarsest level is transferred to the next �ner grid using an appropriate prolongation
operator. Here, additional relaxations known as the post-smoothingmay be performed to remove
error components introduced from the prolongation step. This is repeated until the �nest grid is
reached. This completes one multigrid cycle. A number of multigrid cycles may be required to
reach up to the discretization accuracy. Note that the e�ciency of the multigrid solver depends on
the choice of smoothers, transfer operators, coarse grid discretizations, etc.

A good initial approximation can accelerate the convergence of an iterative scheme. Obtaining
a good initial approximation by means of inexpensive coarser grid computations is known as nested
iteration. The combination of nested iteration and multigrid cycling results in the so-called full
multigrid (FMG) algorithm. The FMG algorithm is the most e�cient class of multigrid solvers
since it is considered to be asymptotically optimal, i.e. the number of arithmetic operations required
is proportional to the number of grid points, with only a small constant of proportionality. Hence,
combining the MLMCmethod with the FMG solvers also open up the possibilities for designing
linear-scaling UQ techniques.

Developing a multigrid method for problems with random inputs is challenging, as depending
on the random inputs, the multigrid convergence rate may have a high variance or even diverge
for certain samples. Therefore, another focus of this thesis is to develop multigrid solvers that are
suitable for theMLMC estimator. We pay special attention to the choice of themultigrid components
and provide modi�cations needed in the deterministic multigrid solver to deal with the stochasticity.

1.2. Stochastic �ow problems

We will work with four di�erent �ow problems with applications ranging from subsurface �ow to
aerodynamics. They can be further categorized into linear and nonlinear PDE models; single and
multi-phase �ows and also based on the number of physical processes occurring simultaneously, as
single-physics or multi-physics problems. Next, we discuss the relevance of the considered problems
and the motivation to use multilevel methods to solve their stochastic formulations.
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1.2.1 Darcy �ow

Darcy’s equation [17] is used to study the �ow in a porous medium. This model �nds its application
in hydrogeology to study the groundwater �ow through an aquifer. To model such �ows, the
permeability values should be known at all locations in the domain. This is usually not feasible
and only a few sparse measurements are available. It is common practice to model the subsurface
permeability as a lognormal random �eld [18–20]. Further, as a realistic geologic formation exhibit
highly �uctuating permeabilities, its random realizations should be based on covariance functions
with a small correlation length and a large variance in order to enforce a low spatial regularity
in the samples of the permeability �eld. Such covariance models translate to a high-dimensional
uncertainty as it requires a large number of Fourier modes (in the context of the Karhunen-Loève
expansion) to adequately represent the random �elds. Moreover, due to low spatial regularity, the
PDEmust be solved on a su�ciently re�nedmesh to reduce the discretization error up to reasonably
low values. Hence, for many realistic problems, a combination of the MLMCmethod with multigrid
solver may be the only feasible approach for UQ.

1.2.2 Transport in a Darcy-Stokes system

Amulti-physics Darcy-Stokes model can be used to study the interaction between surface water
and groundwater �ow. This model can be employed to design and analyze �ltration devices used
for industrial applications, simulate blood �ows, etc. The coupled Darcy-Stokes model, when
combined with a transport equation, for instance, the advection-di�usion equation can be utilized
to study di�erent dynamical processes, like pollution. The combinedmodel is highly relevant for the
investigation and assessment of the accidental discharge of radioactive contaminants or chemical
spills in the surface water bodies and the subsequent transport to the connected aquifers.

The transport in the coupled Darcy-Stokes �ow becomes uncertain when certain physical
quantities such as �uid viscosity or permeability of the porous media are not completely known.
Furthermore, for some contaminant transport problems, initial and in�ow conditions may also
be uncertain. Uncertainty is further exacerbated if a lower-order discretization scheme is used
in the case of advection-dominated �ows due to excessive numerical di�usion. Typically, the
computational cost for solving even the deterministic version can be very expensive. Therefore,
computing stochastic moments such as the mean, variance for relevant output quantities using
plain Monte Carlo or deterministic sampling methods can easily become intractable. We propose a
special combination of numerical schemes for each subproblem, that, when utilized in a multilevel
framework, greatly reduce the computational cost for UQ of stochastic transport.

1.2.3 Multi-phase �ow in porous media

Many problems in water resource management related to irrigation systems, groundwater recharge,
mining operation, etc., require a robust and accurate simulation of multi-phase (air and water)
variably saturated �ows. These �ows are commonly simulated using the nonlinear Richards’
equation [21]. This PDE model in combination with van Genuchten and Mualem parameterization
are highly successful in predicting transport for a number of soil types. As the solutions are extremely
sensitive to the soil parameters, the prediction capability of these models is in�uenced by the quality
of the soil measurement data. For many problems, complete information of these quantities is not
available, necessitating probabilistic modeling of these parameters. We can derive the stochastic
formulation of Richards’ equation by modeling these soil parameters as random �elds.

The randomness in these soil parameters may result in path-wise highly nonlinear systems,
therefore, Monte Carlo based methods are most appropriate for these uncertain PDEs, as they can
adequately represent the complete stochastic space. Using the plain vanilla Monte Carlo method
for the strongly nonlinear Richards’ equation is highly expensive, as widely used solvers (based on,
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for e.g., Picard or Newton iteration) require a very �ne spatio-temporal mesh to converge to the
correct solution. Moreover, a straightforward application of the MLMCmethod may not be very
e�ective as only a few coarse grids can be utilized, due to the nonlinearity.

1.2.4 Turbulence modeling

Turbulence is a multi-scale phenomenon, which presents a challenge for simulation. Resolving all
scales of turbulent �ow is impractical, necessitating the modeling of turbulence e�ects. Reynolds-
averaged Navier-Stokes (RANS) approaches split the �ow into time-averaged and �uctuating parts,
and the �uctuating parts are modeled. This modeling approach has historically been performed
with a combination of physical insight and empirical data-�tting and has resulted in the RANS
model becoming the dominant �uidmodeling paradigm in engineering. However progress in RANS
modeling has stalled to some extent; existing models can be inaccurate, and no error estimates exist.
Uncertainty quanti�cation has a role in continuing the improvement of RANS closure models. In
particular, all models have model-form uncertainty, in which particular modeling assumptions
made are known to be unreliable in some cases (often under speci�c, known conditions). A key
example is the Boussinesq hypothesis, and there are many attempts to introduce uncertainty into
closure models to relax this assumption. These attempts consist of introducing randomness into
the modeled Reynolds Stress Tensor (RST), either by perturbing eigenvalues or tensor-invariants
[2, 3, 22], or by perturbing the entire matrix [4]. Generally, these perturbations are speci�ed globally,
in order to keep the uncertain dimension moderate. This is contrary to the fact that the Boussinesq
approximation is only locally an inaccurate approximation. We, therefore, need methods capable of
e�cient propagation of high-dimensional �eld uncertainty in a RANS prediction.

The MLMC approach is an attractive option for e�cient propagation of uncertainty in RANS
turbulence models as it can be used to design estimators for which the computational complexity
is the same as solving a deterministic problem on the �nest grid. Furthermore, these estimators
are relatively easy to implement. There are a number of challenges that need to be overcome in
order to apply MLMC to RANS problems, for instance, when the grid convergence is unreliable for
the considered hierarchy of levels. Another concern is when the �ne-scale features (e.g. boundary-
layers) are unresolved on coarse levels and may not result in any variance reduction for the MLMC
estimator.

1.3. Roadmap

The remainder of the thesis is organized as follows:

Chapter 2 contains the theory of multilevel Monte Carlo methods applied to a generic stochastic
�uid �ow problem. This chapter covers the core material that is utilized in the succeeding chapters.
We discuss di�erent sampling strategies along with the key factors that control the cost of theMLMC
estimator. Recent advancements in the multilevel Monte Carlo method are also reviewed.

In Chapter 3, we show that a high-order discretization scheme can improve the computational
complexity of the MLMC method. We demonstrate this for a Darcy �ow problem, where we utilize
a fourth-order �nite-volume discretization to show improved MLMC convergence compared to
the commonly utilized second-order schemes. The resulting fourth-order discrete system is solved
using a multigrid solver based on a defect correction strategy build upon a cell-centered multigrid
method. Additionally, we also discuss a practical way of combining a full multigrid solver with the
multilevel Monte Carlo estimator constructed on the same mesh hierarchy. The contents of this
chapter are published in [23].

In Chapter 4, we investigate an approach to quantify the statistics of multigrid solvers when
utilized to solve partial di�erential equations with random coe�cients. Speci�cally, our analysis
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method is based on a non-standard Local Fourier Analysis (LFA) that can assess the multigrid
convergence for problems with random and jumping coe�cients. This LFA technique is described
for a simple cell-centered multigrid method for Darcy �ow problem in a random porous medium.
The statistics extracted from this analysis help us to estimate apriori the time needed for solving
certain uncertainty quanti�cation problems bymeans of amultigridmultilevelMonte Carlomethod.
The contents of this chapter have been presented in [24].

Chapter 5 deals with uncertainty quanti�cation of advection-dominated contaminant transport
in a coupled Darcy-Stokes �ow system using the multigrid multilevel Monte Carlo method. The
uncertainty in the �ow arises due to an uncertain permeability �eld for the porous media. We show
that the contaminant transport is highly sensitive to the heterogeneity of the permeability �eld and
also to the accuracy of the discretization scheme. To solve the steady-state Darcy-Stokes �ow with a
highly heterogeneous di�usion coe�cient, a speci�c monolithic multigrid algorithm is presented.
Furthermore, the unsteady advection-dominated transport equation is numerically solved using
the Alternating Direction Implicit (ADI) based implicit time-stepping scheme. We demonstrate
that the proposed combination of the numerical schemes is e�cient in generating samples for the
MLMC estimator. The �ndings of this work are published in [25].

In Chapter 6, we solve the stochastic nonlinear Richards’ equation using a parametric continua-
tion based multilevel Monte Carlo estimator. The key idea is to solve simpler nonlinear problems
on the coarser levels and the strongly nonlinear target problem only on the �nest grid level. When
dealing with strongly nonlinear problems, the standard MLMCmethod may not be very e�ective,
as these problems require highly re�ned meshes to converge, thus, only a few expensive grids
can be incorporated in the MLMC hierarchy. To demonstrate the potential of our novel approach,
we utilize the widely used modi�ed Picard iteration as the solution method and show signi�cant
speed-up for a number of test problems. The contents of this chapter are presented in [26].

Chapter 7 extends the MLMC framework to stochastic turbulence modeling, for quantifying
model-formuncertainties associatedwith theReynolds-AveragedNavier-Stokes (RANS) simulations.
We consider two high-dimensional stochastic extensions of the RANS equations to demonstrate
the applicability of the MLMCmethod. The �rst extension is derived from global perturbation of
the baseline eddy viscosity �eld using a lognormal random �eld. A more general second approach
is considered where the Reynolds Stress Tensor is sampled as a positive de�nite random matrix
with spatial correlation ensuring realisability. Experiments for two fundamental �ows along with
comparisons in terms of cost and accuracy are made with the plain Monte Carlo method. Results of
this chapter are reported in [27].

Chapter 8 draws conclusions for each chapter and for the complete thesis work. We also pose
some open research questions and discuss topics for further research.



2
Theory of multilevel Monte Carlo

In this chapter a detailed theoretical description of the multilevel Monte Carlo estimator is presented.
We describe the method for a generic stochastic �uid �ow problem and compare the standard and
multilevel Monte Carlo estimators in terms of accuracy and computational cost. Di�erent sampling
strategies to determine level-dependent samples are also discussed. Also a brief summary on the recent
developments in multilevel Monte Carlo methods is provided.

2.1. Introduction
Let us de�ne a general mathematical model for stochastic �ow problems

ℒ(x, !, u(x, !)) = f(x, !), (2.1)

where ℒ denote a stochastic di�erential operator; u(x, !) represents solution (i.e. �ow �eld) and
f(x, !) is source. Both are functions on physical space x ∈ D ⊂ ℝn and random event ! ∈ Ω. The
complete probability space is denoted by (Ω,F,ℙ), whereΩ is the sample space with �-�eld F ⊂ 2Ω
as a set of events and probability measure ℙ ∶ F→ [0, 1]. We further assume that u(x, !) belongs to
the functional space L2(Ω,D) corresponding to the space of square-integrable measurable functions
u ∶ Ω→ L2(D) for the probability space (Ω,F,ℙ). These spaces are equipped with the norm

||||||u(x, !)||||||L2(Ω,D) ∶= E
[||||||u(x, !)||||||

2
L2(D)

] 1
2 = (∫

Ω
∫

D
u(x, !)dxd!)

1
2
. (2.2)

The discrete version of the continuous problem (2.1) on a spatial meshDℎ is de�ned as

ℒℎ(xℎ, !, uℎ(xℎ, !)) = fℎ(xℎ, !), (2.3)

where xℎ ∈ Dℎ with ℎ > 0 as the largest mesh width inDℎ and quantities ℒℎ, uℎ and fℎ are the
discrete approximations of ℒ, u and f, respectively. We further assume that under the limit ℎ → 0,
the model (2.3) converges to the exact solution, i.e. uℎ → u.

Our aim is to estimate the stochastic moments of some functional of the solution uℎ using the
multilevel Monte Carlo method. We �rst introduce the standard MC estimator as it forms the
building block for the MLMC estimator. We will closely follow the descriptions from [10, 13, 28–32].

7
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2.2. Standard Monte Carlo
For simplicity, we use the solution �eld uℎ as the quantity of interest (QoI). Assuming that we are
able to compute N independent identically distributed (i.i.d) random samples {uℎ(!i)}Ni=1 on the
computational gridDℎ, the unbiased MC estimator for E[uℎ] can be derived as

E[uℎ] ≈ EMC
N [uℎ] ∶=

1
N

N∑

i=1
uℎ(!i), (2.4)

where !i ∈ Ω. The above estimator is easy to implement. One needs to generate N i.i.d. samples
of random inputs and solve the discrete �ow problem (2.3) for each sample. These samples are
averaged to obtain the MC estimate EMC

N [uℎ]. Similarly, the unbiased estimator for the variance
V[uℎ] is de�ned as

V[uℎ] ≈ VMC
N [uℎ] ∶=

1
N − 1

N∑

i=1

(
uℎ(!i) − EMC

N [uℎ]
)2
. (2.5)

Higher moments of uℎ can be computed analogously from the ensemble.

2.2.1 Accuracy of the MC estimator

We quantify the accuracy of the MC estimator EMC
N [uℎ] in terms of the L2− based mean square

error (MSE) measure ||||
||||E[u] − EMC

N [uℎ]
||||
||||
2

L2(Ω,D)
. There are two sources of error in EMC

N [uℎ] due to
discretization and �nite sampling. Using the triangle inequality, the two errors can be expressed
separately and the MSE can be bounded as

||||
||||E[u] − EMC

N [uℎ]
||||
||||
2

L2(Ω,D)
≤ ||||||E[u] − E[uℎ]||||||

2
L2(D) +

||||
||||E[uℎ] − EMC

N [uℎ]
||||
||||
2

L2(Ω,D)
. (2.6)

The discretization error can simply be bounded as:

||||||E[u − uℎ]||||||L2(D) ≤ c0ℎ�, (2.7)

where c0 is a constant and � > 0 is the rate of decay of the discretization bias. As the exact solution
E[u] is not available, a relative error measure, for example ||||||E[uℎ] − E[u2ℎ]||||||L2(D) can be used to
bound the exact discretization error, as

||||||E[u − uℎ]||||||L2(D) ≤
||||||E[uℎ − u2ℎ]||||||L2(D)

2� − 1 . (2.8)

The above relation can be easily derived using the reverse triangle inequality and (2.7). Here the
quantity ||||||E[uℎ − u2ℎ]||||||L2(D) can be numerically approximated using the MC method with a few
samples. Similarly, the rate � can also be derived numerically. Typically, the value of � depends
on the regularity of the QoI in the stochastic and physical space, and also on the order of the
discretization scheme used to solve the PDE.
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The next task is to quantify the sampling error ||||
||||E[uℎ] − EMC

N [uℎ]
||||
||||
2

L2(Ω,D)
. We can show that

||||
||||E[uℎ] − EMC

N [uℎ]
||||
||||
2

L2(Ω,D)
= E[

||||||||||

||||||||||
E[uℎ] −

1
N

N∑

i=1
uℎ(!i)

||||||||||

||||||||||

2

L2(D)

]

= E[
1
N2

||||||||||

||||||||||

N∑

i=1
E[uℎ] − uℎ(!i)

||||||||||

||||||||||

2

L2(D)

]

= 1
N2E[∫

D

⎛
⎜
⎝

N∑

i=1
E[uℎ(x, ⋅)] − uℎ(x, !i)

⎞
⎟
⎠

⎛
⎜
⎝

N∑

j=1
E[uℎ(x, ⋅)] − uℎ(x, !j)

⎞
⎟
⎠
dx]. (2.9)

Due to the fact that the samples are mutually independent, the terms with i ≠ j vanish and by
linearity of the expectation, we may write

||||
||||E[uℎ] − EMC

N [uℎ]
||||
||||
2

L2(Ω,D)
= 1

N2

N∑

i=1
E [∫

D
(E[uℎ(x, ⋅)] − uℎ(x, !i))

2 dx]

= 1
N2

N∑

i=1

||||||E[uℎ] − uℎ||||||
2
L2(Ω,D)

=
||||||V[uℎ]||||||L2(Ω,D)

N , (2.10)

where the term ||||||V[uℎ]||||||L2(Ω,D) ∶=
||||||E[uℎ] − uℎ||||||

2
L2(Ω,D) denotes the sample variance and can be

numerically estimated. Therefore, the MSE of the EMC
N [uℎ] can be compactly expressed as

||||
||||E[u] − EMC

N [uℎ]
||||
||||
2

L2(Ω,D)
≤ (c0ℎ�)2 +

||||||V[uℎ]||||||L2(Ω,D)
N . (2.11)

For a given mesh Dℎ, the MC estimator can achieve an MSE of O(ℎ2�) at best. Therefore, the
number of MC samples to achieve convergence are obtained by balancing the sampling error with
the discretization error, i.e.

N = O(ℎ−2�). (2.12)

More generally, to achieve an MSE of O("2), we can choose ℎ = O("1∕�) and N = O("−2), assuming
||||||V[uℎ]||||||L2(Ω,D) is constant, independent of ℎ. With this, if we express the cost to compute one
sample of uℎ byWℎ = O(ℎ−), where  ≥ 1, we obtain a total cost of

WMC
ℎ,N (") = NWℎ = O("−2−∕�), (2.13)

to achieve a MSE of O("2). It is pointed out that the computational complexity of the standard
MC method can be improved using an optimal solver, for e.g., a full multigrid (FMG) solver with
 ≈ d, where d is the number of spatial dimensions. Another way to reduce the cost is by using a
higher-order discretization, i.e. with an increased value for �. A larger value of � can give the same
accuracy on a coarser grid and can therefore make the MC simulation signi�cantly cheaper. In
practice the plain MC method can be very expensive. Consider, for instance, a 2D problem with an
optimal solver with  = 2 and a second-order accurate discretization with � = 2. In this case, we
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get a complexity of O("−3), therefore to reduce the MSE by a factor of 2, we need to spend 8 times
more computational e�ort.

Next, we show that by using a multilevel approach the complexity of the plain MC can be
improved, and for some problems even an optimal multilevel estimator can be derived, in the sense
that the total cost is only a small constant factor of one deterministic solve on the �nest resolution.

2.3. Multilevel Monte Carlo
In the following, we describe MLMC estimators for the same quantity uℎ. First, we construct a
hierarchy of spatial grids {Dl}Ll=0 for the spatial domainD where the largest cell-width for level l
de�ned as

ℎl = s−lℎ0, for ℎ0 > 0, (2.14)

where ℎ0 is largest cell-width on the coarsest meshD0 and s > 1 represents a grid re�nement factor.
Now, using the linearity of the expectation operator, we can build the estimate on this hierarchy of
meshes as

E[uℎL] = E[uℎ0] +
L∑

l=1
E[uℎl − uℎl−1]. (2.15)

On the coarsest grid for l = 0, expectations are inexpensive to compute accurately and for large
values of l, where numerical solutions are comparatively expensive, only a few realizations are
required as the variance of the correction term V[uℎl − uℎl−1] is signi�cantly smaller compared
to the variance of uℎl , i.e. V[uℎl]. Our description of the MLMC estimator will be based on a
geometric hierarchy of grids, however this is not a necessary criterion. A valid MLMC estimator
can be constructed using a hierarchy that consists of levels with increasing cost and accuracy.

Each of the expectations in (2.15) can be approximated using the standardMC estimator de�ned
in (2.4) as

E[uℎL] ≈ EML
L [uℎL] ∶=

L∑

l=0
EMC
Nl

[uℎl − uℎl−1]

=
L∑

l=0

⎛
⎜
⎝

1
Nl

Nl∑

i=1
uℎl(!i) − uℎl−1(!i)

⎞
⎟
⎠
,

(2.16)

with Nl ∈ ℕ denoting the level-dependent number of MC samples. For notational convenience,
we set uℎ−1 = 0. The MC estimators at di�erent levels are mutually independent. The samples
uℎl(!i) − uℎl−1(!i) at any level l on two discretization levels ℎl and ℎl−1 are generated using the
same random input !i. This is done in order to keep the sampling variance V[uℎl − uℎl−1] small,
thus, only a few samples are required to compute E[uℎl − uℎl−1] accurately.

2.3.1 Accuracy of the MLMC estimator

Similar to the MC estimator, the MSE in the MLMC estimator EML
L [uℎL] can be represented as

||||
||||E[u] − EML

L [uℎL]
||||
||||
2

L2(Ω,D)
≤ ||||

||||E[u] − E[uℎL]
||||
||||
2

L2(D)
+ ||||

||||E[uℎL] − EML
L [uℎL]

||||
||||
2

L2(Ω,D)
. (2.17)

The �rst term corresponds to the discretization error and is bounded in a similar manner as in (2.8),
that is,

||||
||||E[u − uℎL]

||||
||||L2(D) ≤ c0ℎ�L . (2.18)
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The second term in (2.17) corresponds to the sampling error of the MLMC estimator. Using similar
arguments as in (2.9)-(2.10), we can show that

||||
||||E[uℎL] − EML

L [uℎL]
||||
||||
2

L2(Ω,D)
= E

⎡
⎢
⎢
⎣

||||||||||

||||||||||

L∑

l=0
E[uℎl − uℎl−1] − EMC

Nl
[uℎl − uℎl−1]

||||||||||

||||||||||

2

L2(D)

⎤
⎥
⎥
⎦

= E
L∑

l=0
[
|||||
|||||E[uℎl − uℎl−1] − EMC

Nl
[uℎl − uℎl−1]

|||||
|||||
2

L2(D)
]

=
L∑

l=0
E [

|||||
|||||E[uℎl − uℎl−1] − EMC

Nl
[uℎl − uℎl−1]

|||||
|||||
2

L2(D)
]

=
L∑

l=0

⎡
⎢
⎣

1
N2
l

Nl∑

i=1
E [||||

||||E[uℎl − uℎl−1] − [uℎl(!i) − uℎl−1(!i)]
||||
||||
2

L2(D)
]
⎤
⎥
⎦

=
L∑

l=0

||||||Vl||||||L2(Ω,D)
Nl

, (2.19)

where ||||||Vl||||||L2(Ω,D) ∶=
||||
||||E[uℎl − uℎl−1] − [uℎl − uℎl−1]

||||
||||
2

L2(Ω,D)
corresponds to the level-dependent

variance. Thus, the sampling error of the MLMC estimator is just the sum of sampling errors from
individual MC estimators in (2.16). We further assume that the level-dependent variance decays
with a rate � as

||||||Vl||||||L2(Ω,D) = O(ℎ�l) l = 1, 2, .., L, � > 0. (2.20)

Now, the MSE of the MLMC estimator can be expressed as

||||
||||E[u] − EML

L [uℎL]
||||
||||
2

L2(Ω,D)
≤

(
c0ℎ�L

)2
+

L∑

l=0

||||||Vl||||||L2(Ω,D)
Nl

. (2.21)

Again, to obtain a tolerance ofO("2) both errors in the above bound should be reduced toO("2). The
�nest level grid size is obtained in the same way as the standard MC, i.e. ℎL = O("1∕�). Practical
implementation of the MLMC estimator however does not require a value of L in advance (see
Algorithm 1). Usually, we start with a small L and increase the number of levels until the following
criterion is met,

||||
||||E[uℎL − uℎL−1]

||||
||||L2(D) < (s� − 1)", (2.22)

which is obtained by (2.8) and taking ||||
||||E[u − uℎL]

||||
||||L2(D) = ". To obtain level-dependent samples

Nl, a number of strategies exist in the MLMC literature. We discuss two commonly used sampling
approaches that will be utilized in this thesis.

2.3.2 Sampling based on optimization

As proposed in [10, 28], the level-dependent samplesNl can be obtained by solving an optimization
problem that minimizes the total cost needed for reducing the sampling error to "2 i.e.

min
⎛
⎜
⎝

L∑

l=0
NlWl

⎞
⎟
⎠

s.t.
L∑

l=0

||||||Vl||||||L2(Ω,D)
Nl

= "2, (2.23)
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whereWl = O(ℎ−l ) is the cost of one sample on level l. By treating Nl as a continuous variable
and using a Lagrange multiplier �2, we can formulate the constraint equation as:

)
)Nl

⎛
⎜
⎝

L∑

k=0
NkWk + �2N−1

k
||||||Vk||||||L2(Ω,D)

⎞
⎟
⎠
= 0, (2.24)

which yields

Nl = �

√||||||Vl||||||L2(Ω,D)
Wl

, (2.25)

where � = "−2
∑L

k=0

√
||||||Vk||||||L2(Ω,D)Wk. It is straightforward to see that for l > 0 the number of

samples decays as Nl+1 = Nls−(�+)∕2 where s is the grid scaling factor de�ned earlier. The total
cost to obtain a MSE of O("2) is given by

WML
L (") =

L∑

l=0
NlWl = "−2

⎛
⎜
⎝

L∑

l=0

√
||||||Vl||||||L2(Ω,D)Wl

⎞
⎟
⎠

2

. (2.26)

Note that the cost from level l is determined by the product ||||||Vl||||||L2(Ω,D)Wl = O(ℎ(�−)l ). Thus, we
have the following three scenarios: i) For � > , the dominant cost comes from the coarsest level ii)
for � =  all levels equally contribute to the total cost and iii) for � < , the dominant cost comes
from the �nest level. For completeness, we now state the generalized MLMC complexity (for proof
see [28]).

WML
L (") =

⎧

⎨
⎩

O
(
"−2

)
, if � > ,

O
(
"−2(log ")2

)
, if � = ,

O
(
"−2−(−�)∕�

)
, if � < .

(2.27)

Further, if � <  and � = 2�, we obtain the costWML
L (") = O("−∕�) = O(ℎ−L ), which is of the

same order as the cost of one �ne grid solve. For this case, the MLMC estimator is optimal as the
cost has the same computational complexity as the deterministic version of the problem.

The parameters � and � depend on the regularity of the solution as well as the numerical
method used to approximate the PDE and can be increased by using high-order discretizations for
su�ciently smooth solutions. Typically, these parameters do not change with the spatial dimension.
On the other hand, the rate  increases with dimension and when using an optimal solver it is
approximately equal to the spatial dimension d. This implies that for some quantities of interest
the asymptotic cost might change when dealing with higher-dimensional problems. Therefore,
a high-order MLMC scheme may help in countering this e�ect. Even for the case where we do
not have the scope of asymptotic improvement, we can reduce the number of MLMC levels by
increasing � and the number of samples by improving the parameter �.

The MLMC estimator EML
L [uℎL] (2.16) can be computed using the following heuristic algorithm

proposed by Giles [10]:

Algorithm 1MLMC algorithm
1: Fix the tolerance ", number of levels L = 2 and initial number of samples Nl for l = 0, 1, 2.
2: Compute quantities EMC

Nl
[uℎl − uℎl−1],

||||||Vl||||||L2(Ω,D), �, � for all levels.
3: Using (2.25) update the number of samples Nl for all levels.
4: Evaluate the extra samples and update EMC

Nl
[uℎl − uℎl−1],

||||||Vl||||||L2(Ω,D), �, � for all levels.
5: Test for convergence using the criterion (2.22), if converged quit and assemble EML

L [uℎL].
6: If not converged, set L = L + 1 and ||VL||L2(Ω,D) = ||VL−1||L2(Ω,D) s

−�, and repeat steps 3-6.
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The above algorithm is sensitive to the choice of initial number of samples. Using a small initial
number of samples may lead to an abrupt termination without reaching the speci�ed tolerance. On
the other hand, using a large number of initial samples may lead to over sampling. A more detailed
analysis of this algorithm is provided in [29].

2.3.3 Fixed sampling approach

In many applications, only a certain �xed number is feasible as the choice of the �nest level sample
NL. In such cases, the number of samples on coarser levels can simply be derived by equilibrating
sampling errors on coarser levels with the �nest level, i.e.

||||||Vl||||||L2(Ω,D)
Nl

=
||VL||L2(Ω,D)

NL
for l = 0, 1, ..., L − 1. (2.28)

Using (2.20), we obtain the sampling sequence as

Nl = ⌈NLs�(L−l)⌉. (2.29)

Moreover, to reduce the sampling error to the discretization error, one can choose NL such that
||VL||L2(Ω,D) ∕NL = O(ℎ2�L ). The authors in [30–32] have shown that this sampling strategy has a
similar asymptotic cost as the sampling strategy based on the optimization described in Section
2.3.2.

This sampling approach greatly simpli�es the MLMC implementation as the number of samples
on all levels is known apriori. Also, the computational work can be easily distributed in a parallel
computing environment. On the other hand, parallelization of the heuristic Algorithm 1 is non-
trivial as every re�nement step may result in a di�erent number of extra samples on all levels.

2.4. Recent developments
Since the MLMC �eld is undergoing rapid development, by no means does this section serve as
a comprehensive review. Only a few notable works are mentioned. A number of extensions and
generalizations of the multilevel Monte Carlo method has been proposed recently. An important ex-
tension is the Multilevel Quasi-Monte Carlo (MLQMC) estimator proposed in [13, 33] for lognormal
di�usion problems. For su�ciently smooth di�usion coe�cients, the MLQMC estimator can result
in an asymptotic cost which is better than O("−2). Another extension known as the Multi-index
Monte Carlo (MIMC) was proposed in [34]. The approach generalizes the notion of levels to multi-
ple dimensions. Typically, the standard MLMC estimator is based just on the hierarchy of spatial
grids. Suppose for a problem, in addition to spatial re�nement, the accuracy also improves with
temporal re�nement or with the increase in the number of basis functions used in the stochastic
approximation. For such problems, a multi-dimensional hierarchy of indices can be constructed for
a more e�ective variance reduction. Another interesting extension is represented by the unbiased
variants of the multilevel estimator [35, 36]. These methods are based on randomization of levels, i.e.
de�ning a probability distribution for sampling levels. These estimators are di�cult to implement
and the practical bene�ts are problem dependent.

2.5. Conclusions
In this chapter, we presented the standardMLMCmethod for a general stochastic �uid �ow problem.
In the upcoming chapters, we apply MLMC methodologies to an array of �uid �ow problems. We
will present di�erent numerical strategies to improve the MLMC parameters, for instance, high-
order schemes to increase � and �, and multigrid solvers tailored speci�cally to the problem at
hand, thus improving the parameter . Another principle issue in designing the MLMC estimator is
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the correct treatment of random inputs on two levels such that the telescopic identity is not violated.
These issues will also be studied in detail in the upcoming chapters.



3
Multigrid MLMC and improvements from

high-order schemes

This chapter explores high-order schemes for improving the convergence of a multilevel Monte Carlo
method for elliptic partial di�erential equations with lognormal random coe�cients, in combination
with the multigrid solution method. In detail, a fourth-order accurate �nite-volume discretization is
discussed. With the help of the Matérn family of covariance functions, coe�cient �elds with di�erent
degrees of smoothness are simulated. The idea behind using a fourth-order scheme is to capture the
additional regularity in the solution introduced due to higher smoothness of the random �eld. Second-
order schemes commonly utilized for these types of problems are not able to fully exploit this additional
regularity. This chapter also introduces a practical way of combining a full multigrid solver with the
multilevel Monte Carlo estimator constructed on the same mesh hierarchy. Through this integration,
one full multigrid solve at any level provides a valid sample for all the preceding Monte Carlo levels. A
number of numerical experiments are presented con�rming excellent performance of the fourth-order
multilevel estimator compared to the second-order variant.

3.1. Introduction
We focus on the development and analysis of a multilevel Monte Carlo method based on a high-
order �nite-volume (FV) approximation of a class of elliptic PDEs with random coe�cients, stated
as:

− ∇ ⋅ k∇p = f, (3.1)

where the unknown p is a scalar-valued function, k is a random �eld and f is a source function,
de�ned in some domainD ∈ ℝn. The above PDE �nds its application, for instance, in hydrogeology
for modeling subsurface �ows with k representing the permeability. We are particularly interested
in computing expected values of di�erent functionals of the solution p, denoted by Q ∶= Q(p). Due
to the high-dimensional nature of the random �eld k, it becomes very challenging to obtain reliable
estimates of these hydrogeological quantities. The choice of appropriate uncertainty quanti�cation
tools boils down to computational e�ciency. In the present context, Monte Carlo (MC) type
methods are sometimes favored [37] due to their dimension independent convergence properties
and simplicity of implementation. For standard MC methods, the root-mean-square error (RMSE)

This chapter is based on the article “A multigrid multilevel Monte Carlo method using high-order �nite-volume scheme
for lognormal di�usion problems”, published in International Journal for Uncertainty Quanti�cation, 7(1):57-81 (2017)
[23].

15
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converges as (V[Q]∕N)1∕2, whereN is the number of samples and V[Q] is the sample variance. This
slow convergence with respect to N is, however, the main drawback of the method. To remedy this,
various sampling and variance reduction techniques have been applied, for example, the authors in
[38] have applied a quasi-Monte Carlo method to improve the convergence rate for this problem.
More recently, MLMCmethods have also been formulated for this problem (see e.g. [39–41]), which
lead to a dramatic cost reduction compared to the classical MC approach.

There are two objectives of this chapter. First is to show that a high-order discretization scheme
can be used to reduce the computational costs of theMLMC estimator for problems that exhibit high
spatial smoothness. In previous work, Giles [42] has shown an improvement from O("−2(log ")2)
complexity to O("−2) to achieve a RMSE of O(") using a Milstein discretization compared to an
Euler path discretization for SDEs and certain �nancial payo�s with Lipschitz bound. This gain was
achieved due to an improvement in the strong convergence order of the schemes that is central to
the e�ciency of the multilevel method. In this work, we choose to use a fourth-order accurate �nite-
volume (FV) method for solving (3.1). The key ingredient for achieving this high-order accuracy is
using a fourth-order accurate quadrature rule to approximate the boundary �uxes at each control
volume. So far, the MLMC literature on Darcy �ow problems relies on a second-order accurate
�nite-element (FE) or FV discretization scheme. We show that for certain linear functionals of
p the overall asymptotic cost of the MLMC method can be improved under some smoothness
assumptions. Even for the case when no asymptotic gain is possible, we show a reduction in terms
of the number of MLMC levels and samples.

The second objective is to de�ne a structure in which the multilevel estimator is integrated into
amultilevel solver. To demonstrate this, we use a full multigrid (FMG) solver [14] based on the same
grid hierarchy as the MLMC estimator for the numerical PDE solution. We will describe in detail
the modi�cations required to transform this solver for the MLMC method so that the telescopic
identity to approximate the expectation is not violated. This method is particularly e�ective for
quantities with low spatial regularity. Further, we also provide an e�cient and scalable multigrid
solver for the fourth-order linear system in 2D obtained by combining a cell-centered multigrid for
the second-order discretization with the defect correction strategy.

The outline of this chapter is as follows. We begin by de�ning the stochastic Darcy �ow problem
in Section 3.2. In Section 3.3, the second- and fourth-order discretization schemes in two dimensions
are described in detail. Section 3.4 is devoted to the technical details required to construct the
FMG solver for both discretization schemes. In Section 3.5 we explain the procedure for coupling
a FMG solver with the multilevel estimator. Sections 3.6 and 3.7 describe methods for sampling
and upscaling of Gaussian random �elds, respectively. In Section 3.8 we provide some numerical
results for di�erent quantities of interest and compare the cost of di�erent MC estimators.

3.2. Stochastic Darcy �ow
We consider a steady-state single phase �ow in a 2D porous media

−∇ ⋅ (k(x, !)∇p(x, !)) =f(x), for x ∈ D ⊂ ℝ2. (3.2)

We denote by ! ∈ Ω, a random event in the complete probability space (Ω,F,ℙ) de�ned earlier.
Quantity p represents the �uid pressure, k is the random permeability �eld and f is a known
source term. The PDE (3.2) is the result of the coupling between the Darcy �ux q ∶= −k∇p and
the incompressiblity condition ∇ ⋅ q = f. We consider deterministic mixed Dirichlet-Neumann
boundary conditions,

p(x, ⋅) = gD(x) for x ∈ )DD, and k(x, !)
)p
)n

(x, ⋅) = gN(x) for x ∈ )DN , (3.3)

where )DD and )DN represent the boundaries for Dirichlet and Neumann boundary conditions,
respectively, and n denotes the outward normal to )DN . In the context of �uid �ow problems,
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Dirichlet boundary conditions represent the pressure values at in�ow and out�ow heads, whereas
the Neumann boundary conditions de�ne the pressure gradient at the boundaries perpendicular to
the main �ow direction.

In stochastic subsurface �ow modeling, it is well recognized that a lognormal random �eld
may accurately represent the permeability of a naturally occurring heterogeneous porous medium
[18–20]. We model the permeability �eld by means of a lognormal �eld, i.e. log k(x, !) ∶= Z(x, !)
is a zero mean Gaussian random �eld for x ∈ D ∶= D

⋃
)DD

⋃
)DN and ! ∈ Ω. Therefore,

{
E[Z(x, ⋅)] = 0,
cov(Z(x1, ⋅), Z(x2, ⋅)) = E[Z(x1, ⋅)Z(x2, ⋅)], x1, x2 ∈ D.

(3.4)

The lognormal property ensures a positive permeability throughout the domain. For further simpli-
�cation, we consider an isotropic and stationary Gaussian process, which can be obtained from a
ℎomogeneous covariance function CΦ ∶ ℝ2 → ℝ+ such that

cov(Z(x1, ⋅), Z(x2, ⋅)) = CΦ(r), with r = ||x1 − x2||2. (3.5)

For the problem to be well-posed, we assume

kmin ∶= min k(x, !) > 0 and kmax ∶= max k(x, !) <∞. (3.6)

To generate samples of the Gaussian random �eld Z, the covariance matrix is derived from the
family ofMatérn functions [43, 44] characterized by the parameter set Φ = (�c, �c, �2c ), and has the
standard form

CΦ(r) = �2c
21−�c
Γ(�c)

(2
√
�c
r
�c

)
�c
K�c (2

√
�c
r
�c

) . (3.7)

Here, Γ is the gamma function and K�c is the modi�ed Bessel function of the second kind. The
parameter �c ≥ 1∕2 de�nes the smoothness, �2c > 0 is the variance and �c > 0 is the correlation
length of the Gaussian process. The Matérn model has great �exibility in modeling spatial processes
because of parameter �c, which governs the di�erentiability of the random �eld. For �c = 1∕2,
the Matérn function corresponds to an exponential model and for �c → ∞ to a Gaussian model.
Furthermore, the other two parameters �c and �2c dictate the number of peaks and the amplitude of
the random �eld, respectively. The realizations of Gaussian random �elds are Hölder continuous
i.e. Z(x, ⋅) ∈ C�(D) almost surely with the exponent 0 < � < �c [45]. For �c > 1, the realizations
are continuously di�erentiable. In the recent years, (3.2) has been extensively studied and the
theoretical error estimates of the solution are re�ned; taking into account the regularity of the
lognormal coe�cient �eld, see for e.g. [11, 39, 46–48].

3.3. Finite-volume discretization
When modeling the subsurface �ow process, FV type methods are usually preferred due to the local
conservation property [49]. In this section, we derive an FV approximation of the problem (3.2)
using second- and fourth-order discretization schemes on a 2D cell-centered grid. Our method will
follow ideas from [50–53].

We begin by de�ning a cell-centered gridDℎ on a unit square domain as a family of nodes given
by

Dℎ = {(xi, yj) ∶ xi =
(
i − 1

2

)
ℎ, yj =

(
j − 1

2

)
ℎ; i, j = 1, 2, ..., m;m = 1

ℎ
}, (3.8)

whereℎ is themeshwidth. A control volumewith center (xi, yj) is denoted byD
(i,j)
ℎ and its boundary

as )D(i,j)
ℎ =

⋃4
�=1 )D

(i,j,�)
ℎ with � denoting the four cell faces. In each of the �nite volumesD(i,j)

ℎ ,
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the integral formulation of (3.2) takes the form

∫
D(i,j)
ℎ

−∇ ⋅ (k∇p)dx =∫
D(i,j)
ℎ

fdx. (3.9)

Using the Gauss divergence theorem, the left-hand side of the above integral is reformulated as a
boundary integral for boundary )D(i,j,�)

ℎ and n� is the unit normal vector to that face

∫
D(i,j)
ℎ

−∇ ⋅ (k∇p)dx = −
4∑

�=1
∫

)D(i,j,�)
ℎ

k∇p ⋅ n�dS�. (3.10)

For cell ABCD in Figure 3.1, the boundary integrals are given by

−
4∑

�=1
∫

)D(i,j,�)
ℎ

k∇p ⋅n�dS� =∫
B

A
k
)p
)y
dx−∫

C

B
k
)p
)x

dy−∫
D

C
k
)p
)y
dx+∫

A

D
k
)p
)x

dy. (3.11)

We de�ne the normal �ux as F� = k∇p ⋅ n� and the so-called face-averaged normal �ux as
⟨F�⟩ = 1

ℎ
∫)D(i,j,�)

ℎ
F�dS�. Now, we can rewrite the integral form of the PDE in terms of face-averaged

�uxes at face centers of cell ABCD,

ℎ
[⟨
FAB

⟩
−

⟨
FBC

⟩
−

⟨
FCD

⟩
+

⟨
FDA

⟩]
=∫

D(i,j)
ℎ

fdx. (3.12)

We approximate the above�ux-balance equation to second- and fourth-order accuracy in the Sections
3.3.1 and 3.3.2, respectively.

ℎ

y

x

A B

CD

D(i,j)
ℎ

⟨
FBC

⟩⟨
FDA

⟩

⟨
FAB

⟩

⟨
FCD

⟩

Figure 3.1: A volumeD(i,j)
ℎ and face-averaged normal �uxes at face centers.

3.3.1 Second-order discretization

To approximate (3.12) to second-order accuracy, we use a central di�erence scheme to compute the
gradient ∇p ⋅ n�. For the face "BC", for example, we �nd

⟨
FBC

⟩(2)
= 1
ℎ
∫

C

B
k
)p
)x

dy = 1
ℎ

[k
i+
1
2
,j
(
pi+1,j − pi,j

ℎ
)ℎ] +O(ℎ). (3.13)

Fluxes at other faces are approximated similarly. To approximate the above �uxes, we need the value
of coe�cient along the interface. As shown in [54], a harmonic average of ki,j and ki+1,j is more
general and works well for both smooth and discontinuous �elds. As we only work with smooth
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coe�cient �elds in this chapter, we approximate ki+1∕2,j by the arithmetic mean of ki,j and ki+1,j.
The right-hand integral in (3.12) is approximated using themidpoint rule∫D(i,j)

ℎ
fdx = ℎ2fi,j+O(ℎ2).

Finally, we get the discrete equation for volumeD(i,j)
ℎ as

− k
i−
1
2
,j
pi−1,j − k

i+
1
2
,j
pi+1,j + ki,jpi,j − k

i,j−
1
2

pi,j−1 − k
i,j+

1
2

pi,j+1 = ℎ2fi,j, (3.14)

where ki,j = ki−1∕2,j + ki+1∕2,j + ki,j−1∕2 + ki,j+1∕2. This is a standard 5-point stencil. For Dirichlet
boundary conditions, i.e. p = gD, a one-sided di�erence instead of central di�erence in (3.13) is
employed. A Neumann boundary condition is applied by directly using gN in place of the �nite-
di�erence approximation.

3.3.2 Fourth-order discretization

To explain the fourth-order discretization, we shall weaken the regularity assumptions for the
coe�cient �eld and the source term. As our approximations of �uxes and the right-hand side in
(3.12) are based on Taylor’s expansion, we assume f and k are at least C4, which guarantees p ∈ C5.
Since our problem involves a Hölder continuous permeability �eld, the convergence of the FV error
for di�erent smoothness values �c will be studied numerically.

We describe a fourth-order scheme for a regular 2D spatial grid. The following approach can be
extended to other more complex grid systems such as mapped coordinates and locally-re�ned grids
(see [50, 51]). To compute the face-averaged normal �uxes de�ned in (3.12), we use a fourth-order
accurate quadrature rule. We will now explain in detail the computation of the face-averaged
normal �ux for the face "BC":

⟨
FBC

⟩(4)
= FBC

i+
1
2
,j
+ ℎ2

24
)2FBC

)y2
||||||||i+1

2
,j
+O(ℎ4), (3.15)

where )2FBC

)y2
|||||i+1∕2,j

is the transverse Laplacian of the �ux at the center of face. The above relation can
be derived using Taylor’s expansion of the �ux integrals in (3.11) [53]. We can reduce the above
expression to

⟨
FBC

⟩(4)
i+
1
2
,j
= ⟨k⟩

i+
1
2
,j

⟨)p
)x

⟩

i+
1
2
,j
+ ℎ2

12
)k
)y

)2p
)y)x

||||||||i+1
2
,j
+O(ℎ4). (3.16)

The above form has a smaller stencil size as (3.15). The derivation is provided in Appendix 3.A.
Each term in the above expression is computed with fourth-order accuracy.

Computation of
⟨ )p
)x

⟩

i+
1
2
,j

Using the same relation as (3.15), one can write

⟨)p
)x

⟩

i+
1
2
,j
= [

)p
)x

+ ℎ2

24
)3p
)y2)x

]
i+
1
2
,j

+O(ℎ4). (3.17)

Next, using Taylor’s expansion, we de�ne an auxiliary variable

�
i+
1
2
,j
= 1
24

[
27(pi+1,j − pi,j) − (pi+2,j − pi−1,j)

]
, (3.18)
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see Figure 3.2 (left) for the stencil. We can now use �
i+
1
2
,j
for computing the elements in (3.17) as

)p
)x

|||||||i+1
2
,j
=

�
i+
1
2
,j

ℎ
+O(ℎ4), (3.19)

)3p
)y2)x

||||||||i+1
2
,j
= 1
ℎ3

[�
i+
1
2
,j−1

− 2�
i+
1
2
,j
+ �

i+
1
2
,j+1

] +O(ℎ2). (3.20)

Computation of )2p
)y)x

||||||i+1
2
,j

For this term, we use

)2p
)y)x

||||||||i+1
2
,j
= 1
2ℎ2

[�
i+
1
2
,j+1

− �
i+
1
2
,j−1

] +O(ℎ2). (3.21)

Derivations for the rest of the terms are provided in Appendix 3.A. This completes the fourth-order
accurate face-averaged �ux computation for face "BC". Averaged �uxes at other faces are computed
analogously. Finally, we obtain a 21-point stencil in a 5 × 5 block, which is centered at the cell on
which the �ux divergence is computed. In case of 1D problems, we do not have any transverse
derivatives and we obtain a 5-point stencil. Regarding the right-hand side of (3.12), we use the
fourth-order quadrature rule on the cellD(i,j)

ℎ , i.e.

∫
D(i,j)
ℎ

fdx = ℎ2 [f +
ℎ2

24∆f]
i,j

+O(ℎ4) (3.22)

where ∆ is the Laplacian operator computed with second-order accuracy.

A B

CD

xi

yj

�
i+
1

2
,j−1

�
i+
1

2
,j

�
i+
1

2
,j+1

A B

CD

Figure 3.2: Left Grid points at cell-centers required to compute
⟨
)p∕)x

⟩
i+1∕2,j

using (3.18). Right A 5×5 block required
to compute the �ux divergence of cell ABCD.
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Boundary conditions
We only explain the discretization at the right and bottom boundaries with Dirichlet and Neumann
boundary conditions, respectively. The stencil for the other boundaries can be deduced similarly.
Further, we assume the same number of nodes (equal to m) along the x- and y- directions as in
the grid de�nition (3.8). We prefer a ghost cell approach which greatly simpli�es the discretization
around the faces next to the boundaries. On the right boundary, we use a quartic polynomial
extrapolation to update the ghost points p̃ (see Figure 3.3) at cell centers. In case of Dirichlet
boundary conditions, we use:

p̃m+1,j =
1
35 [128gDm+1

2
,j
− 140pm,j + 70pm−1,j − 28pm−2,j + 5pm−3,j] , (3.23)

wherem denotes the index of the cell centers of the control volumes that are located on the boundary.
Furthermore, to compute �m+1∕2,j at the face centers of a Dirichlet boundary (labeled as B1 in
Figure 3.3), we use a cubic polynomial

�
m+

1
2
,j
= 1
60[184gDm+1

2
,j
− 225pm,j + 50pm−1,j − 9pm−2,j]. (3.24)

We also consider the Neumann boundary conditions at the bottom boundary. The ghost points are
updated using the quartic polynomial given by

p̃i,m+1 =
1
22 [−24ℎ ⋅ gNi,m+1

2

+ 17pi,m + 9pi,m−1 − 5pi,m−2 + pi,m−3] . (3.25)

At corners (e.g. point C1 in Figure 3.3), the ghost points are extrapolated by averaging the val-
ues obtained from a quartic polynomial which uses 5 adjacent ghost point values along the two
coordinates. The contribution from the x-coordinate reads

p̃m+1,0 = 5p̃m,0 − 10p̃m−1,0 + 10p̃m−2,0 − 5p̃m−3,0 + p̃m−4,0. (3.26)

Quantity �i,m+1∕2 = ℎ ⋅ gNi,m+1∕2 at the face-centers of a Neumann boundary. For the corner faces
on the boundaries (e.g. the point labeled B2 in Figure 3.3), we approximate the transverse Laplacian
)2FB2

)x2
|||||m,1∕2

and )2p
)y)x

|||||i+1∕2,j
using one-sided �nite-di�erences.

C1

B1
p̃

B2)p
)y
= gN

p = gD

yj

xi

Figure 3.3: Points near or at the boundary which require stencil modi�cation to incorporate boundary conditions and
ghost points (denoted by the gray circles and square).
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3.4. Full Multigrid algorithm
Now we describe in detail the construction of a geometric FMG solver for the FV discretization
developed in the previous section. For the sake of brevity, we will denote the linear system obtained
from the second- and fourth-order FV discretizations by

ℒ(2)
ℎ pℎ =f

(2)
ℎ , (3.27)

ℒ(4)
ℎ pℎ =f

(4)
ℎ , (3.28)

respectively. The elements of ℒ(4)
ℎ are provided in Appendix 3.B. The linear systems (3.27) and

(3.28) are solved by the multigrid methods MG2 and MG4, respectively. Further, the full multigrid
variants of MG2 and MG4 are denoted by FMG2 and FMG4, respectively.

Typically, a multigrid solver for elliptic problems is easy to construct. A large number of e�cient
multigrid algorithms can be found in the literature. For a similar problem, the authors in [54, 55]
have shown that a multigrid method based on a cell-centered grid using �xed transfer operators
that do not depend on matrix coe�cients can provide a decent convergence speed, even for highly
discontinuous coe�cients. They use a second-order FV discretization scheme. In this section we
describe a robust and scalable fourth-order accurate multigrid solver.

There are di�erent ways of constructing a multigrid solver for a fourth-order discretization. One
way is to follow the standard multigrid approach of using an appropriate smoother and transfer
operators. Due to the large size of the fourth-order operatorℒ(4)

ℎ , it becomes di�cult to �nd e�cient
smoothing schemes compared to the second-order operator ℒ(2)

ℎ . Also, transfer operators will be
much more complex, especially, if we are aiming for the independence of coe�cient magnitude.
A second alternative is to solve the linear system in (3.28) via a High-Order Defect Correction
(HODC) scheme. This defect correction scheme employs lower-order schemes to obtain higher-
order accuracy. Also from a programmer’s point of view, it is more convenient to implement
the HODC scheme. In our case, we use a second-order multigrid algorithm (MG2) and HODC
to construct a fourth-order multigrid solver (MG4). We devote the next section discussing the
intricacies.

3.4.1 MG2 cycle

Our MG2 method resembles the cell-centered multigrid (CCMG) algorithm proposed in [54].
Components required to construct a two-grid cycle are discussed below.

Pre- and post-smoothing: There are di�erent possible choices available for the smoothers. In CCMG
the ILU smoother works very well but it is quite involved compared to basic iterative smoothers,
like Jacobi or Gauss-Seidel smoothers. We will use a Gauss-Seidel Red-Black (GS-RB) smoother in
our algorithm.
Defect computation and Restriction: The defect rkℎ = f(2)ℎ −ℒ(2)

ℎ pkℎ is computed and is restricted to
gridD2ℎ using a bilinear restriction operator [R2ℎℎ ] to obtain r

k
2ℎ. The stencil form for this restriction

reads:

[R2ℎℎ ] =
1
16

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 3 2 0

⋆
0 2 3 1
0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2ℎ

ℎ

.

Coarse grid correction: We apply a direct method, e.g. Gaussian elimination, to solve the coarsest
grid problem, ℒ(2)

2ℎ e
k
2ℎ = rk2ℎ in a two-grid setting. The prolongation of ek2ℎ is done using a piece-wise
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constant operator [Pℎ2ℎ] to obtain e
k
ℎ which is added to pℎ. The stencil reads:

Pℎ2ℎ =
⎤
⎥
⎥
⎦

1 1
⋆

1 1

⎡
⎢
⎢
⎣

ℎ

2ℎ

, (3.29)

This process is recursively extended to many grid levels. The transfer operator needs to be modi�ed
appropriately at the boundaries. The coarse grid operator ℒ(2)

2ℎ is obtained via a direct discretization
using an upscaled version of the �ne grid coe�cient �eld. The upscaled procedure is outlined in
Section 3.7. The coarse grid operator can also be obtained algebraically via the Galerkin coarse grid
method where ℒ(2)

2ℎ = R2ℎℎ ℒ
(2)
ℎ Pℎ2ℎ. The Galerkin approach will be discussed in detail in Chapter 4.

3.4.2 MG4 cycle via defect correction

In many scenarios, constructing an iterative solver for lower-order discretizations is comparatively
easy. A defect correction strategy [14, 56, 57] can be used to formulate an “outer iteration” where
only the right-hand-side of the lower-order linear system is modi�ed on the �nest grid using the
higher-order linear system for the same problem. As the left-hand-side of the linear system remains
the same, a lower-order multigrid cycle can be utilized to perform an “inner iteration”. In this
case, we consider the second- and fourth-order linear systems de�ned in (3.27) and (3.28) and the
inner iteration uses the MG2 cycle described in the previous subsection. The j-th defect correction
iteration is given by

ℒ(2)
ℎ pjℎ = f̂ℎ, with f̂ℎ = f(4)ℎ −ℒ(4)

ℎ pj−1ℎ +ℒ(2)
ℎ pj−1ℎ . (3.30)

We regard this iteration as the MG4 cycle. The new approximation pkℎ is obtained by rearranging:

pjℎ = (I − (ℒ(2)
ℎ )−1ℒ(4)

ℎ )pj−1ℎ + (ℒ(2)
ℎ )−1f(4)ℎ . (3.31)

Usually, an initial approximation p0ℎ is provided by a solution obtained from a nested FMG solution
of second-order accuracy. This scheme converges to the solution of the fourth-order discrete problem
if the spectral radius of iteration matrix is strictly less than one, i.e. %(I − (ℒ(2)

ℎ )−1ℒ(4)
ℎ ) < 1. This

criterionwas veri�ed using the Fourier analysis described in [14] for frozen coe�cients (for Poisson’s
equation).

Remark 3.4.1 It is non-trivial to prove the convergence rate of high-order defect correction scheme for
an oscillatory permeability �eld. We rely on the numerical results to demonstrate the robustness of the
solver with respect to covariance parameters �c and �2.

3.4.3 FMG structure

Both MG2 and MG4 cycles can be easily incorporated into the FMG-hierarchy to obtain FMG2 and
FMG4 solvers, respectively.

Typically, the FMG algorithm can be classi�ed as either "�xed" or "accomodative" [15]. In the
former approach, the number of cycles is �xed on all FMG levels beforehand, whereas in the latter
approach, the number of cycles is adaptively decided based on some criterion. The accomodative
algorithm can be highly e�ective in optimizing the number of cycles over the FMG levels, especially,
for problems involving random coe�cient �elds. In practice, the error cannot be computed but
the optimal switching criteria can be based on residual reduction. The switch from grid 2ℎ → ℎ is
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made when a norm of the residual on grid 2ℎ drops below some tolerance "MG . For example, we
can use the constraint

||resj2ℎ||2
||res02ℎ||2

< "MG , (3.32)

where ||res02ℎ||2 and ||resj2ℎ||2 are residuals in the 2-norm, computed from the initial solution
and after j multigrid cycles (MG2 or MG4) at the 2ℎ grid level, respectively. All accommodative
algorithms have the disadvantage that they require some extra work of computing residual norms.
On the other hand, accommodative algorithms are robust. For a coe�cient �eld with large �2
and small �c, the linear systems of equations, (3.27) and (3.28), are highly ill-conditioned. In such
cases, the residual norm computations are inexpensive relative to other calculations. In the next
section, we perform some experiments to study the dependence of the number of cycles required
on di�erent grid levels on the regularity of the PDE solution.

Although the accommodative criterion does not always guarantee a reduction of error to the
truncation level, it typically can optimize the work on each level. For coupling of the FMG solver
with the MLMC estimator, we need to solve the linear system on a sequence of grids. Therefore,
the switch to the next grid level is made only after the solution at the current level has reached the
discretization accuracy. Currently, there are no theoretical proofs to compute apriori the number
of iterations required at FMG levels for problems with random coe�cients. Therefore, we use a
conservative stopping criterion ("MG < 10−6) for residuals on these grids in order to ensure that the
solution has reached the level of truncation error.

Another key component of an FMG algorithm is the FMG-interpolation. Usually, any high-order
scheme gives an accurate solution even on a very coarse grid. Thus, it is important to translate
this accuracy to the next �ner grid level using an appropriate interpolation scheme for the coarse
grid solution. In our algorithm, we use a fourth-order accurate bicubic interpolation (3.33). Due to
non-nested nodes in the cell-centered grid hierarchy, we get a relatively large interpolation stencil.
This interpolation can be seen as a two-step procedure described in Figure 3.4. First, we generate
auxiliary points at the corners and face centers (indicated by the gray circles) of coarse cells using
stencil [Πℎ

2ℎ]
(1) and [Πℎ

2ℎ]
(2), respectively.

[Πℎ
2ℎ]

(1) = 1
32

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 −1
0 9 9 0

⋆
0 9 9 0
−1 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and [Πℎ
2ℎ]

(2) = 1
16

[
−1 9 ⋆ 9 −1

]
. (3.33)

In step two, we use the auxiliary and coarse grid nodes to generate points that are the �ne grid
nodes using the same stencil [Πℎ

2ℎ]
(1). Near boundaries and corners, appropriate modi�cations can

be used.

3.5. Coupling of MLMCwith FMG (FMG-MLMC)
To describe the coupling, we brie�y recall the MLMC estimator from Chapter 2. Expectation of a
quantity of interest, QℎL ∶= QℎL(pℎL), can be expressed as

E[QℎL] = E[Qℎ0] +
L∑

l=1
E[Qℎl − Qℎl−1], (3.34)

and the unbiased MLMC estimator for E[QℎL] can be based on standard MC as

EML
L [QℎL] =

1
N0

N0∑

i=1
Qℎ0(!i) +

L∑

l=1

⎛
⎜
⎝

1
Nl

Nl∑

i=1
(Qℎl(!i) − Qℎl−1(!i))

⎞
⎟
⎠
, (3.35)
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(2)

(1)

Figure 3.4: Schematic representation of FMG-interpolation procedure Left: Generation of auxillary points at corners
and face centers of coarse cells Right: Interpolation at cell centers of �ne grid using coarse grid and auxillary points.

where !i ∈ Ω. The above estimator is based on a hierarchy of cell-centered grids (3.8) with uniform
coarsening such that ℎl = s−1ℎl−1 with s = 2. We assume that the level-dependent variance
Vl = V[Qℎl − Qℎl−1] = O(ℎ�l) with � > 0. The level-dependent samples Nl are determined using
the following formula (see Section 2.3.2):

Nl =
⎛
⎜
⎝
"−2

L∑

k=0

√
VkWk

⎞
⎟
⎠

√
Vl
Wl

, (3.36)

where "2 is the desired MSE and the cost per sample is denoted byWl = O(ℎ−l ), with  ≥ d and d
the spatial dimension. The �nest grid size is given as ℎL = O("1∕�), where � > 0 is the rate of decay
of the discretization bias. More details on the MLMC estimator can be found in Chapter 2.

For every sample Qℎl(!i), an expensive linear system of equations obtained from the discretiza-
tion of the PDE (3.2) needs to be solved. Due to �exibility and ease of use, an optimal "black-box"
multigrid solver e.g. AMG1R5 [58] is often preferred for this purpose. One of the disadvantages of
such solver is that we do not have access to the solutions on the coarser grid levels. For the MLMC
estimator which requires samples at di�erent grid hierarchies, one can bene�t from a geometric full
multigrid (FMG) solver based on the MLMC grid hierarchy. The e�ciency of an FMG solver comes
from using an inexpensive-to-compute solution on a coarser grid as a good initial approximation
for the solution on the next grid level. There are two-fold bene�ts of using an FMG solver for an
MLMCmethod. Firstly, these kinds of solvers are asymptotically optimal and can solve the linear
system in O(ℎ−dl ) operations. Secondly, the solution at each FMG level can be utilized to compute
samples of the quantity of interest.

Here we bene�t from the fact that the permeability �eld is generated using the same random
sample ! on a sequence of meshes {Dℎl∗ }

l
l∗=0, l ∈ {0, 1, ..., L}, and essentially represents the same

�eld, but it is sampled at more nodes as wemove to the �ner grids. Therefore, the FV approximation
of pressure pℎl∗ on the level l∗ can be utilized to accelerate the solve on the next �ner level l∗ + 1
and at the same time can be used to compute Qℎl∗ .

We use the notation FMGl to denote an FMG solver with grid levels {ℎl∗}ll∗=0. We now demon-
strate how to compute a sample of the quantity of interest at all MLMC levels using the FMGL
solver. First the permeability �eld is generated at all levels using the same random sample !i,
i = 1, 2, ..., NL. Using this �eld, we formulate the linear system at each grid level of FMGL, i.e.

ℒℎl(!i)pℎl = fℎl for l ∈ {0, 1, ..., L}. (3.37)
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Ñ0 = N0 −N1

Ñ1 = N1 −N2
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Figure 3.5: Schematic representation of a 4-level FMG-MLMC method. The black dots represent the converged solution
points and the double lines represent the FMG-interpolation Πℎ

2ℎ. FMG solvers are listed on left and the number of
samples to be computed from these solvers is listed on the right.

Webegin by solving the coarsest grid problem,ℒℎ0(!i)pℎ0 = fℎ0 upto the discretization accuracy and
computing the sample Qℎ0(!i). Then, the interpolated version of this solutionΠℎ

2ℎpℎ0 , whereΠ
ℎ
2ℎ is

the FMG-interpolation operator, is utilized as an initial approximation for the problem on the next
level l = 1. Again, after a fewmultigrid cycles we obtain the solution pℎ1 and subsequently compute
Qℎ1(!i). This is done recursively till the �nest level L. This way, based on one FMG solve, we get one
sample of the quantity of interest at each grid level i.e. Qℎ0(!i), (Qℎ1(!i) − Qℎ0(!i)), ..., (Qℎl(!i) −
Qℎl−1(!i)), ..., (QℎL(!i) − QℎL−1(!i)). Repeating this process for NL independent realizations of the
random �eld, we getNL samples at all MLMC levels. Now, for the next coarser MLMC level L−1, we
just need to compute ÑL−1 = (NL−1 −NL) extra samples using the solver FMGL−1. These samples
are computed in similar fashion as above. We note that, for any level 0 ≤ l < L, we already have
Nl+1 samples from higher levels l + 1, ..., L. Therefore, the remaining samples Ñl to be computed
at level l are given by

Ñl = Nl −Nl+1. (3.38)

Note that on the �nest level MLMC level L, we have ÑL = NL. A straightforward computation
using (3.36) shows that for the levels 0 < l < L, the number of samples grows as:

Nl = Nl+1s
(�+)
2 , (3.39)

where s is the grid scaling factor de�ned earlier. From (3.38) and (3.39), we get the reduction in the
number of samples as:

Ñl
Nl

= 1 − s
−
(�+)
2 . (3.40)

This shows that the reduction in the number of samples is more pronounced when the rates � and
 are small. In other words, the “recycling” of the coarse grid samples is more e�ective when Nl
decays slowly with level. Figure 3.5 represents a 4-level FMG-MLMCmethod using a simpli�ed
FMG cycle. The computational cost of the FMG-MLMC estimator is calculated as

∑L
l=0 ÑlWl.

For comparison, the cost of the standard MLMC estimator based on the "black-box" approach
will be N0W0 +

∑L
l=1Nl(Wl +Wl−1). This shows that the FMG approach will result in higher

computational gain.
In practice, the FMG-MLMC algorithm can be implemented by slightly modifying the MLMC

algorithm described in Section 2.3.2, see also [10, 28]. The implementation details are provided in
Algorithm 2.
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Algorithm 2 FMG-MLMC algorithm
1: Start with L′ = 1 and run some initial number of FMG solves at level L′.
2: Estimate the sample variance Vl,l = 0, 1, ..., L′ by using the available number of samples.
3: Using (3.36) compute the optimal number of samples, Nl for all l = 0, 1, ..., L′ and then

compute Ñl = Nl −Nl−1.
4: Evaluate the extra Ñl samples by using the FMGl solver and update Vl for all levels.
5: Test for convergence using the criterion |E[QℎL − QℎL−1]| < (s� − 1) "

√
2
, if converged, set L = L′.

6: If not converged, set L′ = L′ + 1 and go back to step 2.

When using this procedure it is important to ensure that the telescopic identity (3.35) is not
violated. For this, we need to con�rm that the de�nitions of Qℎl when computing E[Qℎl − Qℎl−1]
and E[Qℎl+1 − Qℎl] have the same expectation, i.e.

E[Qℎl]
(coarse) = E[Qℎl]

(fine) for l ∈ {0, 1, ..., L − 1}. (3.41)

The standard FMG approachwhere the coarse grid problem is formulated using Galerkin coarsening
or a direct discretization of the problem with a restricted coe�cient �eld from �ne grid may lead to
some additional bias which may decay at a slower rate than the FV error itself. Therefore, to avoid
this, we recommend generating the coe�cient �eld on coarse grids using the same random vector
!i. We will present one way of doing this in Section 3.7.

The coarsest level in the FMG solver is decided on the basis of certain stability criteria. In
general, the coarsest level should be able to provide a minimum level of resolution to the problem
such that it serves as a meaningful initial guess for the next level in the FMG hierarchy. In particular,
for the groundwater �ow problem the coarsest mesh size should be of the order of the correlation
length, i.e., ℎ0 = O(�c).

Remark 3.5.1 We point out that due to sample reuse in the FMG-MLMC estimator, samples on
di�erent levels are correlated. Therefore, when estimating the sampling error for this estimator, the
covariance between di�erent levels should also be incorporated. Obtaining an analytic bound for the
FMG-MLMC estimator with correlated samples is not straightforward. In [59] the authors proposed a
valid way of estimating sampling error by taking multiple independent estimators. The paper uses
multiple QMC estimators to approximate variance, however, this approach also works for the standard
MC.

3.6. Sampling Gaussian random �elds
Several techniques exist to generate samples of Gaussian random �elds such as the Cholesky
decomposition, the truncated Karhunen-Loéve (KL) expansion [5] or using spectral generators
(circulant embedding techniques) [60–62]. The realization ofZ can be based on theKarhunen-Loéve
(KL) decomposition:

Z(x, !) =
∞∑

j=1

√
�jΨj(x)�j, �j ∼N(0, 1). (3.42)

Here, �j and Ψj are eigenvalues and eigenfunctions of the covariance kernel CΦ(x1, x2), obtained
from the solution of the Fredholm integral,

∫
D
CΦ(x1, x2)Ψ(x1)dx1 = �Ψ(x2). (3.43)

The sum in (3.42) represents an in�nite dimensional uncertain �eld with diminishing contributions
of the eigenmodes. The sum is truncated after a �nite number of terms, MKL, which is usually
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decided by balancing the KL truncation error with other sources of error, such as discretization
or sampling errors. For Gaussian processes with small correlation lengths and large variances,
typically a large number of terms is needed to include all important eigenmodes [5]. The evaluation
of eigenmodes in the KL expansion is expensive as it requires solving the integral equation (3.43)
for each mode.

When using a stationary covariance model, a fast sampling of random �elds can be achieved via
a spectral generator which employs the discrete FFT (Fast Fourier Transform). Contrary to the KL
expansion, spectral generators provide an exact representation of random �elds on the sampling
mesh. There are several ways of constructing a spectral generator, we use the Fast Fourier Transform
moving average (FFT-MA) technique from [60] to decompose the covariancematrixCΦ(r). Although
this sampling method is similar to the Cholesky factorization technique, the key idea is to make the
computational domain periodic. Thus, the resulting covariance operator is also periodic, which
can now be decomposed as a convolutional product. The samples of random �elds are computed
using cheaper vector-vector products compared to the expensive matrix-vector operation required
when using the Cholesky factorization. As a periodic covariance function sampled on a uniform
grid results in a circulant covariance matrix, these methods are sometimes also referred to as the
circulant embedding technique. In the following, we provide a brief description of the FFT-MA
method from [60].

Let us denote by zℎ = Z(xℎ, !) ∈ ℝM the correlated Gaussian random vector sampled on mesh
Dℎ withM = m ×m as the total number of grid points (cf. (3.8)). Using a Cholesky decomposition
of the covariance matrix CℎΦ ∈ ℝM×M , one can obtain zℎ:

CℎΦ = UℎUT
ℎ and use zℎ = Uℎyℎ, (3.44)

where Uℎ ∈ ℝM×M is an upper triangular matrix with positive diagonal entries and yℎ ∈ ℝM is
a vector of i.i.d. samples from the standard normal distribution. The FFT-MA method is based
on a decomposition of the covariance function CΦ(r) (recall (3.7)) as a convolutional product of
some function SΦ(r) and its transpose S′Φ(r) ∶= SΦ(−r). In a discrete setting, we can express this
decomposition as

cℎ = sℎ ∗ s′ℎ, (3.45)
where ∗ denotes the convolution product and the vectors cℎ, sℎ are vectors obtained by evaluating
CΦ(r) and SΦ(r), respectively, at grid points of the mesh Dℎ. A correlated random vector zℎ can
now be synthesized by using the convolution product,

zℎ = sℎ ∗ yℎ. (3.46)

The FFT-MA method performs the above computations in the frequency domain. As the FFT
requires periodicity, �rst the vector cℎ is transformed into a periodic signal, which is also real,
positive and symmetric. More details on the practical aspects of this transformation, see for e.g.
[38, 61, 62]. Also the resulting vector sℎ is real, positive and symmetric and sℎ = s′ℎ. As the
convolution product in the spatial domain is equivalent to the component-wise product in the
frequency domain, we can rewrite (3.45) as

ℱ(cℎ) = ℱ(sℎ) ⋅ℱ(sℎ) ⟹ ℱ(sℎ) =
√
ℱ(cℎ), (3.47)

where ℱ denotes the discrete FFT and ⋅ denotes component-wise multiplication. It is pointed out
that the component-wise square-root operation does not pose any problems as the power spectrum
ℱ(cℎ) is real, positive. Next, we express the convolution product in (3.46) as a vector-vector product
in the frequency domain as

ℱ(zℎ) = ℱ(sℎ ∗ yℎ) = ℱ(sℎ) ⋅ℱ(yℎ). (3.48)
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In the �nal step, an inverse fast Fourier transform ℱ
−1

is applied to obtain the samples for the
Gaussian random �elds

zℎ = ℱ
−1
(ℱ(sℎ) ⋅ℱ(yℎ)). (3.49)

Due to the periodicity in the covariance vector cℎ, the resulting random �eld zℎ is also periodic.
Thus, we only retain the part of the vector that corresponds to the physical domain. We also remark
that it takes two FFT evaluations to obtain one sample of zℎ (ignoring the FFT operation in (3.47)
that is performed just once). Therefore, in terms of the number of �oating point operations, the
sampling cost is signi�cantly smaller compared to one multigrid solve for the mesh sizes considered.

3.7. Upscaling Gaussian random �elds
While estimating the correction termE[Qℎl−Qℎl−1] in the telescopic sum (3.34), the approximations
Qℎl(!i) andQℎl−1(!i) need to be positively correlated such that the variance V[Qℎl −Qℎl−1] is small.
This is typically achieved by �rst sampling the �ne gridGaussian random�eld,Z(xℎl , !i) to compute
Qℎl(!i) and using an upscaled version, Z(xℎl−1 , !i) for Qℎl−1(!i). Many of the upscaling algorithms
based on homogenization techniques in the context of deterministic PDEs, such as [63, 64], cannot
be directly applied to obtain the upscaled permeability. This is because these homogenization
procedures may result in a modi�ed covariance structure on the coarser levels. When using the KL
expansion an upscaled random �eld can be obtained by using the same Gaussian vectors {�j}

MKL
j=1 in

the expansion on both levels as:

Z(xℎl , !) =
MKL∑

j=1

√
�jΨj(xℎl)�j, (3.50)

Z(xℎl−1 , !) =
MKL∑

j=1

√
�jΨj(xℎl−1)�j, (3.51)

When using the spectral generator, the coarse grid random �eld can be obtained by using the
covariance upscaling [32] that employs the spectral generator on two consecutive grids using the
same normally distributed vector yℎl (from Eq. (3.44)). As in the case of the FFT-MA algorithm,
the vector yℎl is associated with respective grid points, a coarser realization zℎl−1 of the �ne grid
Gaussian random �eld zℎl can be obtained by using multi-dimensional averaging of the vector yℎl .
For instance, in two dimensions for the cell-centered mesh,

yi,jℎl−1 =
1
2(y

2i−1,2j−1
ℎl

+ y2i−1,2jℎl
+ y2i,2j−1ℎl

+ y2i,2jℎl
), (3.52)

where (i, j) is the cell index for the mesh Dℎl−1 . The scaling by a factor 2 is needed to obtain a
standard normal distribution for the averaged quantity yi,jℎl−1 . The coarse random �eld can now be
simply assembled as

zℎl−1 = ℱ
−1
(ℱ(sℎl−1) ⋅ℱ(yℎl−1)). (3.53)

This process can be recursively applied to generate upscaled random �elds for all coarser levels of
the FMG solver. As the averaging in (3.52) smooths out high frequencies, the upscaled version zℎl−1
will also be smoother compared to zℎl .

3.8. Numerical results
In this section we examine in detail the performance of various components described in the
preceding sections. We consider PDE (3.2) on domainD ∈ (0, 1)2 with a mixed Dirichlet-Neumann
boundary conditions,
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gD(0, y) = 1, gD(1, y) = 0, and (3.54)
gN(x, 0) = 0, gN(x, 1) = 0, for x, y ∈ (0, 1), (3.55)

respectively. For all tests we consider f = 0 so that the regularity of p only depends on the Matérn
parameters. All numerical schemes are implemented in MATLAB and results are generated on a
common workstation.

3.8.1 Multigrid convergence

Our �rst task is to illustrate the convergence rates of the 2D multigrid solver for the second- and
fourth-order FV discretizations, as described in the preceding sections. A theoretical convergence
analysis for the exponential covariance (�c = 1∕2) has been conducted in [65] for two-level multigrid
alongwith di�erent choices of smoothers. Here, we consider challenging caseswith higher variances
and small correlation lengths. For this we choose 6 di�erent combinations of theMatérn parameters
(cf. Table 3.1) with increasing order of complexity in terms of solvability of the linear system. Also,
we show one random realization of the Gaussian random �eld generated using each of the six
Matérn parameters in Figure 3.6. These examples clearly show that for the considered Matérn
parameters, the simulated permeability �elds can exhibit large �uctuations and a variation of more
that 10 orders of magnitude can be encountered for the cases with �2c = 3.

Table 3.1: Di�erent combinations of the Matérn parametersΦ = (�c, �c, �2c )with increasing complexity from left to right.

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6
(2.5, 0.3, 1) (1.5,0.3,1) (0.5,0.3,1) (2.5,0.1,3) (1.5,0.1,3) (0.5,0.1,3)

For a �xed Φ and ℎ we generate 100 samples of the random �eld. Then, for each sample we
run the multigrid as well as the FMG cycles. The reduction factor of a multigrid cycle for the i-th
realization of the random �eld is de�ned as

�i ∶= {
||res�iℎ ||2
||res0ℎ||2

}
1∕�i

, for i = 1, 2, ..., 100, (3.56)

with ||res0ℎ||2 the 2-norm of the residual from a zero initial guess and ||res�iℎ ||2 the residual after
�i multigrid iterations required to achieve the reduction, ||res�iℎ ||2∕||res0ℎ||2 < 10−6. Finally, the
average reduction factor is computed as

⟨�⟩ = 1
100

100∑

i=1
�i. (3.57)

In all the test cases, we only consider the multigrid V(1,1)-cycle. Further, we �x the coarsest
grid based on the correlation length with ℎ0 = 1∕16 for �c = 0.3, �2c = 1 and ℎ0 = 1∕32 for
�c = 0.1, �2c = 3. First, we consider the multigrid cycle MG2 for a second-order accurate solution
and the corresponding full multigrid cycle FMG2. The reduction rate of a multigrid V-cycle is
governed by the number of multigrid levels as well as by how well the random �eld is resolved at
the multigrid levels. Figure 3.7 (left) presents the average reduction rates, ⟨�⟩, with di�erent mesh
widths. Additionally, Table 3.2 provides the numerical value along with the observed standard
deviation, �, for the MG2 algorithm. For each parameter set, the average reduction factor is roughly
the same for di�erent grid sizes with slight improvement as we move to a �ner grid. We also see
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(a) Φ1 = (2.5, 0.3, 1) (b) Φ2 = (1.5, 0.3, 1) (c) Φ3 = (0.5, 0.3, 1)

(d) Φ4 = (2.5, 0.1, 3) (e) Φ5 = (1.5, 0.1, 3) (f) Φ6 = (0.5, 0.1, 3)

Figure 3.6: Examples of Gaussian random �eld (log k) generated using parameter sets Φ1 − Φ6 . The colour bars
indicate the variation in the order of magnitude.

that the deterioration in the average reduction factor is more pronounced with increasing variance
compared to the decreasing smoothness and correlation length. In order to measure the e�ciency
of the FMG2 cycle, we run a single cycle and check for the residual reduction. If not converged
then extra V-cycles are run which is denoted by �FMG2. Table 3.3 provides the bound for the average
numbers of MG2[FMG2] iterations, ⟨�MG2⟩[⟨�FMG2⟩], required to reduce the residual by a factor of
10−6. Also, note that the FMG2 method improves as we move to the �ner grids for all cases.

Similarly, we investigate the reduction rates of the multigrid cycle MG4 for a fourth-order
accurate solution along with its full multigrid variant FMG4, based on the defect correction strategy.
We follow a similar procedure as above to measure the performance of these solvers. Also, we
use the fourth-order solver only for the cases with �c > 1 as we do not expect any improvement
for the rough cases (Φ3,Φ6) over the second-order discretization. Table 3.4 reports the average
reduction rates to achieve the stopping criteria along with the standard deviations. From Figure
3.7 (right), we observe that the average reduction rate for MG4 cycle stabilizes around 0.45. The
better performance for cases Φ4,Φ5 can be attributed to the use of ℎ0 = 1∕32 compared to Φ1,Φ2
which use ℎ0 = 1∕16. Table 3.5 provides the number of defect correction steps ⟨�MG4⟩ for the MG4
method. Using an initial guess from an FMG2 cycle instead of using a zero initial guess can reduce
the number of iterations. Next, the quantity ⟨�FMG4⟩ shows the dependence of the defect correction
steps combined with the FMG4 solver on the regularity of the solution. As expected, more iterations
are required when the regularity decreases. Interestingly, the FMG4 solver is very e�cient as it
converges to the stopping criterion in one cycle on �ner grids, which is a huge improvement when
compared to the number of MG4 iterations that falls around 20. Note that for �ner grids such as
1∕512, the residual reduction by a factor of 10−6 may not be enough to reach the discretization
accuracy and should be further lowered.

A few remarks are in order. Improvement in the average reduction rate was observed with
the F(1,1)- and W(1,1)-cycles but V(1,1)-cycle was the fastest to reach the stopping criteria. The
combination �2c = 3 and �c = 0.1, using ℎ0 = 1∕16, resulted in a very slow convergence and in
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divergence for some cases. Further, on coarser grids (till 64x64), the performance of the sparse
direct solver in MATLAB is superior in terms of CPU times compared to the MG4/FMG4 solvers.
This is due to the dominating setup cost compared to the MG4 iterations itself.

Figure 3.7: Average reduction factor for MG2- and MG4-cycles for di�erent ℎ.

Table 3.2: Average reduction factor [standard deviation], ⟨�⟩[�], for di�erent grid sizes for MG2 cycles.

Φ ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128 ℎ = 1∕256 ℎ = 1∕512

Φ1 0.134[0.013] 0.130[0.010] 0.126[0.008] 0.122[0.006] 0.118[0.003]
Φ2 0.144[0.031] 0.137[0.017] 0.130[0.010] 0.123[0.005] 0.120[0.007]
Φ3 0.181[0.025] 0.184[0.025] 0.179[0.028] 0.173[0.022] 0.160[0.017]
Φ4 - 0.234[0.078] 0.237[0.130] 0.208[0.106] 0.178[0.075]
Φ5 - 0.248[0.087] 0.266[0.125] 0.270[0.169] 0.223[0.123]
Φ6 - 0.313[0.061] 0.345[0.097] 0.374[0.149] 0.330[0.086]

Table 3.3: Average number of iterations for MG2 [FMG2], ⟨�MG2⟩[⟨�FMG2⟩], for di�erent grid sizes.

Φ ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128 ℎ = 1∕256 ℎ = 1∕512

Φ1 8[3] 8[2] 8[2] 8[1] 7[1]
Φ2 8[4] 8[3] 8[2] 7[2] 8[1]
Φ3 9[5] 9[4] 9[4] 9[3] 8[2]
Φ4 - 11[5] 12[5] 10[2] 9[2]
Φ5 - 11[5] 13[5] 14[5] 11[3]
Φ6 - 13[7] 15[7] 18[8] 14[4]

3.8.2 Convergence of the FMG-MLMCmethod

In this section, we test the convergence of the FMG-MLMC methods outlined in the previous
sections. We denote by FMG2-MLMC and FMG4-MLMC, the multilevel estimators obtained from
second- and fourth-order discretization, respectively. Further, we denote by MC2 and MC4 the
single-level Monte Carlo estimators using the second- and fourth-order discretizations, respectively.

Figure 3.8 shows the average CPU time required to solve the second- and fourth-order linear
systems in 2D using the full multigrid solver for one random sample. The time required to generate
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Table 3.4: Average reduction factor [standard deviation], ⟨�⟩[�], for di�erent grid sizes for MG4 cycles.

Φ ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128 ℎ = 1∕256 ℎ = 1∕512

Φ1 0.496[0.038] 0.483[0.026] 0.468[0.021] 0.456[0.017] 0.443[0.019]
Φ2 0.502[0.041] 0.478[0.030] 0.468[0.025] 0.455[0.021] 0.445[0.021]
Φ4 - 0.520[0.041] 0.457[0.030] 0.437[0.025] 0.427[0.021]
Φ5 - 0.562[0.082] 0.488[0.070] 0.446[0.047] 0.428[0.041]

Table 3.5: Average number of iterations for MG4 [FMG4], ⟨�MG4⟩[⟨�FMG4⟩], for di�erent grid sizes.

Φ ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128 ℎ = 1∕256 ℎ = 1∕512

Φ1 21[2] 20[2] 19[1] 19[1] 18[1]
Φ2 21[3] 20[2] 19[1] 19[1] 18[1]
Φ4 - 23[3] 19[2] 18[1] 18[2]
Φ5 - 26[5] 21[2] 18[2] 17[2]

one random sample by the circulant embedding technique is also provided. We note that the cost
of solving the linear system dominates for the given range of ℎl. Therefore, in all our numerical
results we will assume that the cost to compute one sample grows with the rate  ≈ d = 2. Since
our code is not optimized, we will use a standardized cost model where we set the cost to compute
one sample,Wl = ℎ−dl , in order to compare the costs of di�erent estimators rather than using the
CPU times.

Figure 3.8: Average CPU times (in sec) for the solution of second- and fourth-order discretizations along with the time
to generate one sample of random �eld via the circulant embedding method for 2D problem with Φ = (1.5, 0.1, 1).

We will now compute the expected values of the di�erent quantities of interest using the FMG-
MLMC estimators. We refer readers to [39, 41, 66] for the convergence proofs for di�erent linear
functionals of the solution p of the Darcy �ow equation. The �rst output quantity of interest is the
horizontal �ux at the center of domain x∗ = (1∕2, 1∕2)T, i.e.

Q(p) = −k(x, !)
)p(x, !)
)x

|||||||(x∗)
, (3.58)

where the partial derivative )p(x,!)
)x

is computed using Taylor’s expansion with O(ℎ2) accuracy. In
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Figure 3.9: Parameter � (left) and � (right) observed for horizontal �ux −k )p

)x

|||||(x∗)
where x∗ = (1∕2, 1∕2)T from the

FMG2-MLMC scheme with �c = 0.1 , �2c = 1 for di�erent smoothness parameters �c with the reference grid ℎ∗ = 1∕256.
The integer in the triangles illustrates the convergence rates w.r.t to ℎ.

Figure 3.9, we show the convergence rate of the FMG2-MLMCmethod with �c = 0.1 , �2c = 1 and
smoothness parameter �c ∈ {0.5, 1, 1.5, 2.5}. For each �c, we compute the expectation |E[Qℎl−Qℎ∗]|
and the variance V[Qℎl − Qℎ∗] from 10,000 independent realizations of the random �eld using the
FMG2 solver with the �nest grid ℎ∗ = 1∕256. The purpose here is to show that the approximation
at each FMG level has reached the discretization accuracy and can be used as valid sample for the
MLMC estimator. Also, we see that the rate of convergence � (left) of the expectation, |E[Qℎl−Qℎ∗]|,
improves with increasing smoothness but stalls after �c > 1. The convergence rate � (right) of the
variance, V[Qℎl − Qℎ∗], does however improve with smoothness until � reaches the value 4 which
follows from the inequality V[Q] ≤ E[Q2]. This veri�es the inability of second-order schemes to
capture additional regularity in the solution obtained when �c > 1.

In Figure 3.10, we use the FMG4-MLMC method for the same quantity of interest and compare
with the FMG2-MLMCmethod for �c = 1.5 (top) and �c = 2.5 (bottom). Again, the partial derivative
)p(x, !)∕)x is computed using Taylor’s expansion with O(ℎ4) accuracy. To di�erentiate between
the two methods, we denote the convergence rates by �(2), �(2) and �(4), �(4) for second- and fourth-
order, respectively. The empirical values of these parameters obtained from regression are listed on
the top of each �gure. We observe that �(4) > �(2) and �(4) > �(2) for both smoothness values and
the di�erence is more pronounced with increasing smoothness of the random �eld. Recall that a
higher value of � implies fewer MLMC levels and a higher � corresponds to fewer MLMC samples
on those levels.

In Figure 3.11, we compare the standardized cost to compute the expected values of the hor-
izontal �ux at the center with di�erent tolerances ". We use the coarsest grid ℎ0 = 1∕8 for both
FMG2-MLMC and FMG4-MLMC estimators. These results are produced using Algorithm 2 pro-
vided in Section 3.5. The estimators FMG2-MLMC and FMG4-MLMC converge with the rateO("−2)
consistent with theMLMC theorem (� >  = 2). The cost of the FMG4-MLMC estimator is however
signi�cantly lower than the other estimators which can be attributed to higher � and �. The MC2
method converges with the expected rate O("−3), whereas MC4 converges to O("−2.8) (left) and
improves slightly with O("−2.55) (rigℎt) for the smoother test case. Next, we consider the mean of
the solution p inD,

Q(p) = 1
|D|

∫
D
p(x, !)dx. (3.59)

The above integral is approximated using a fourth-order quadrature rule. In Figure 3.12, we compare
the convergence rates of the two methods for smoothness parameter �c = {1.5, 2.5}. The top two
plots show the convergence rates for the relatively “easier” Matérn parameter set Φ = (2.5, 0.3, 1)
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Figure 3.10: Comparison of parameter � (left) and � (right) observed for horizontal �ux −k )p

)x

|||||(x∗)
where

x∗ = (1∕2, 1∕2)T from FMG2-MLMC/FMG4-MLMC scheme.

with ℎ0 = 1∕4, whereas the middle and the bottom two plots present more challenging parameters
Φ = (1.5, 0.3, 3) and Φ = (2.5, 0.3, 3), respectively, both with ℎ0 = 1∕8. For all these test cases, we
observe similar improvements in the MLMC parameters as the previous quantity of interest from
using the fourth-order discretization. Again, these parameters can be used to predict the asymptotic
cost of di�erent estimators. Here we would like to point out that, the discretization error from the
second-order discretization is already very small (< 10−3) on the coarser grids. For applications
which do not require a very small tolerance, an estimator based on a fourth-order discretization
may be more expensive.

In the presence of strong gradients, the constant term in the discretization error can be large.
This is also observed in the top left plot of Figure 3.12. In these situations, using high-order schemes
can also result in an expensive MLMC estimator. The issue can be tackled using a hybrid MLMC
estimator which utilizes the second-order scheme on coarser levels and the fourth-order scheme on
the �ner levels. The cut-o� level being the coarsest grid where the fourth-order solution becomes
more accurate compared to the second-order solution. This approach is easy to implement and
does not lead to any violation of the telescopic sum.

3.9. Conclusions
We have presented a multilevel estimator based on a fourth-order accurate discretization of the
stochastic Darcy �ow problem with smooth coe�cient �elds. Our goal was to exploit the additional
regularity in the numerical solution of the PDE to achieve faster MLMC convergence. We utilized a
fourth-order FV discretization scheme to approximate the PDE solution. Additionally, we provided
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Figure 3.11: Cost to obtain RMSE less than " in the horizontal �ux for the 2D problem using di�erent estimators. The
covariance parameters are Φ = (1.5, 0.1, 1) (left) and Φ = (2.5, 0.1, 1) (rigℎt).

an e�cient multigrid algorithm to solve the linear system arising from this discretization. A useful
feature of this multigrid algorithm is that it uses a simple second-order multigrid solver combined
with a defect correction strategy to obtain a fourth-order accurate solution. Further, we showed
that this solver is able to handle coe�cient �elds with large variability and small correlation length
scales. Numerical experiments clearly show the bene�ts of using a high-order discretization in
terms of improved MLMC parameters � and �, which dictate the number of MLMC levels and
samples, respectively, for smoothness �c > 1. The fourth-order MLMC estimator reached the
required tolerance at a much lower cost compared to the estimator based on the second-order
discretization. Also, we showed that the fourth-order method leads to an asymptotic gain in case of
the single-level MC estimator.

In this work, we con�ned ourselves to 2D problems and observed that � >  for all quantities of
interest leading to an asymptotic cost O("−2). However, for 3D and unsteady problems for which
 is typically large, using a second-order method might lead to situations where � <  with the
associated MLMC complexity of O("−2−(−�)∕�). In such scenarios, a higher � and � from the
fourth-order scheme will improve this complexity.

Clearly, one of the issues with high-order schemes is that the cost of assembling and solving
the linear system is more expensive compared to lower-order schemes (for same grid size) and
therefore, the computational gains become evident only when the applications require a relatively
small tolerance.

We have also proposed an approach to integrate a full multigrid solver with amultilevel estimator
with the same mesh hierarchy. The algorithm is described in detail and all modi�cations required
in the FMG solver are discussed. This combination results in computational savings which however,
depend on the rate of decay of the MLMC samples with the levels. Although, we con�ned ourselves
to a simpli�ed version of the multigrid solver based on �xed transfer operators, this framework
is easily extendable to more sophisticated solvers. Furthermore, the extension of this approach is
straightforward to other uncertainty quanti�cation problems in physics and engineering where a
multigrid solver is used to solve the sparse linear system.
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Figure 3.12: Comparison of parameter � (left) and � (right) observed for the mean of the solution 1

|D|
∫D pdx from

FMG2-MLMC/FMG4-MLMC scheme.

Appendix

3.A. Approximation of high-order terms
Continuing the analysis from Section 3.3.2, we provide the approximation of the remaining high-
order terms.
Computation of

⟨
FBC

⟩(4)
i+1∕2,j

We now derive relations between face-averaged values and face-center point values. We can rewrite
(3.15) as

⟨
FBC

⟩(4)
= k

)p
)x

|||||||i+1
2
,j
+ ℎ2

24 [
)2k
)y2

)p
)x

+ 2)k
)y

)2p
)y)x

+ k
)3p
)y2)x

]
i+
1
2
,j

+O(ℎ4). (3.60)
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Thus, the face-averaged �ux is expressed in terms of a point-wise value of k and )p
)x

and their
derivatives at the center of the face. As the expansion in (3.15), one can also write

⟨k⟩
i+
1
2
,j
= k

i+
1
2
,j
+ ℎ2

24
)2k
)y2

||||||||i+1
2
,j
+O(ℎ4), (3.61)

⟨)p
)x

⟩

i+
1
2
,j
=
)p
)x

|||||||i+1
2
,j
+ ℎ2

24
)3p
)y2)x

||||||||i+1
2
,j
+O(ℎ4). (3.62)

Hence, if we combine (3.61)-(3.62), we can reduce (3.60) to

⟨
FBC

⟩(4)
i+
1
2
,j
= ⟨k⟩

i+
1
2
,j

⟨)p
)x

⟩

i+
1
2
,j
+ ℎ2

12
)k
)y

)2p
)y)x

||||||||i+1
2
,j
+O(ℎ4). (3.63)

Computation of ⟨k⟩i+1∕2,j and
)k
)y

||||||i+1∕2,j
Assuming that the coe�cient �eld is smooth and is sampled at cell-centered locations, we �rst
interpolate the coe�cient values at face-centered locations using a centered fourth-order �nite
di�erence scheme, i.e.

k
i+
1
2
,j
= 1
16

[
9(ki,j + ki+1,j) − (ki−1,j + ki+2,j)

]
+O(ℎ4), (3.64)

)2k
)y2

||||||||i+1
2
,j
= 1
ℎ2

[k
i+
1
2
,j−1

− 2k
i+
1
2
,j
+ k

i+
1
2
,j+1

] +O(ℎ2). (3.65)

We can compute ⟨k⟩i+1∕2,j using (3.61). The term
)k
)y

||||||i+1∕2,j
from (3.63) only needs to be computed

with O(ℎ2) accuracy as it is multiplied with ℎ2 . Therefore,

)k
)y

|||||||i+1
2
,j
= 1
2ℎ
[k
i+
1
2
,j+1

− k
i+
1
2
,j−1

] +O(ℎ2). (3.66)

3.B. Fourth-order linear operator
Next we describe the elements of the the fourth-order linear operatorℒ(4)

ℎ . For brevity, we use e, w, n
and s to denote the four faces with centers

(
xi+1∕2, yj

)
,
(
xi−1∕2, yj

)
,
(
xi, yj+1∕2

)
and

(
xi, yj−1∕2

)
,

respectively. The fourth-order discrete operator away from the boundary can be represented as

ℒ(4)
ℎ = 1

1152ℎ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 l2,−1 l2,0 l2,1 0

l1,−2 l1,−1 l1,0 l1,1 l1,2
l0,−2 l0,−1 l0,0 l0,1 l0,2
l−1,−2 l−1,−1 l−1,0 l−1,1 l−1,2
0 l−2,−1 l−2,0 l−2,1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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with

l0,0 = 1188
∑

d=e,w,n,s
⟨k⟩d ,

l0,−1 = −44 ⟨k⟩e − 1188 ⟨k⟩w + 27
∑

d=n,s
(2 ⟨k⟩d − ∇dkd),

l0,1 = −44 ⟨k⟩w − 1188 ⟨k⟩e + 27
∑

d=n,s
(2 ⟨k⟩d + ∇dkd),

l−1,0 = −44 ⟨k⟩n − 1188 ⟨k⟩s + 27
∑

d=e,w
(2 ⟨k⟩d − ∇dkd),

l1,0 = −44 ⟨k⟩s − 1188 ⟨k⟩n + 27
∑

d=e,w
(2 ⟨k⟩d + ∇dkd),

l−1,−1 =
∑

d=e,n
(2 ⟨k⟩d − ∇dkd) − 27

∑

d=w,s
(2 ⟨k⟩d − ∇dkd),

l1,1 =
∑

d=w,s
(2 ⟨k⟩d + ∇dkd) − 27

∑

d=e,n
(2 ⟨k⟩d + ∇dkd),

l1,−1 = −27(2 ⟨k⟩w + ∇wkw) − (2 ⟨k⟩s − ∇sks) − (2 ⟨k⟩e + ∇eke) − 27(2 ⟨k⟩n − ∇nkn),
l−1,1 = −(2 ⟨k⟩w − ∇wkw) − 27(2 ⟨k⟩s + ∇sks) − 27(2 ⟨k⟩e − ∇eke) − (2 ⟨k⟩n + ∇nkn),

l0,−2 = 44 ⟨k⟩w , l0,2 = 44 ⟨k⟩e , l−2,0 = 44 ⟨k⟩s , l2,0 = 44 ⟨k⟩n ,

l−2,−1 = 2 ⟨k⟩s − ∇sks, l−2,1 = 2 ⟨k⟩s + ∇sks,
l2,−1 = 2 ⟨k⟩n − ∇nkn, l2,1 = 2 ⟨k⟩n + ∇nkn,
l−1,−2 = 2 ⟨k⟩w − ∇wkw, l−1,2 = 2 ⟨k⟩e − ∇eke,
l1,−2 = 2 ⟨k⟩w + ∇wkw, l1,2 = 2 ⟨k⟩e + ∇eke.

where ∇dkd denote the gradient of k along the face d and is computed using Eq. (3.66).





4
Local Fourier analysis of multigrid

methods for SPDEs

A non-standard Local Fourier Analysis (LFA) variant for accurately predicting the multigrid conver-
gence of problems with random and jumping coe�cients is discussed. This LFA method is based on a
speci�c basis of the Fourier space rather than the commonly used Fourier modes. To show the utility of
this analysis, as an example, a simple cell-centered multigrid method for solving a steady-state single
phase �ow problem in a random porous medium is analyzed. A number of challenging benchmark
problems are considered to demonstrate the prediction capability of the proposed LFA. The information
provided by this analysis can help us to estimate apriori the time needed for solving certain uncertainty
quanti�cation problems by means of a multigrid multilevel Monte Carlo method.

4.1. Introduction
For any sampling-based UQ technique such as Monte Carlo type methods, the availability of a
highly e�cient and robust (w.r.t. the random inputs) iterative solver becomes critical. In general,
the sample-wise computational cost can become highly heterogeneous, depending on the random
inputs. Therefore, if the performance statistics of such solvers were known apriori, one could utilize
this information to optimize and parallelize the MC simulations e�ciently.

In this chapter, we present a non-standard Local Fourier Analysis (LFA) technique to predict
the convergence rate of multigrid solvers for problems involving random and jumping coe�cients.
Standard LFA techniques are typically based on constant coe�cient discretization stencils, whereas
for stochastic PDEs we encounter varying coe�cients throughout the computational domain, due
to the randomness. One of the main contributions of this work is to generalize the LFA towards
problems with random and jumping coe�cients, with the aim of predicting, apriori, the total
time needed to solve UQ problems. Some e�orts have already been done in [67] regarding the
generalization of LFA for jumping coe�cients. The novelty of our approach lies in the choice
of basis functions. Here, we utilize a new basis from the Fourier space rather than the standard
Fourier modes. We benchmark the prediction capability of the proposed LFA technique using a set
of challenging jumping coe�cient problems and a number of spatially correlated random �elds
with varying heterogeneity.

This chapter is based on the article “On local Fourier analysis of multigrid methods for PDEs with jumping and random
coe�cients”, SIAM Journal on Scienti�c Computing, 41(3), A1385-A1413 (2019) [24]

41
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Another highlight of this chapter is the use of the LFA predictions to optimize the multilevel
Monte Carlo computations. Combining MLMCmethods with multigrid seems natural, where the
multigrid method is employed for the numerical solution of a PDE which is based on a sample of
the stochastic quantity on a certain (�ne or coarse) scale (see also the previous chapter). Due to
the stochasticity, however, we deal with PDE problems with jumping coe�cients, where di�erent
jump patterns are encountered each time a new random �eld is generated. The generalization of
the LFA towards these PDEs will provide us insight in the average number of multigrid iterations,
the spread of the convergence factors, amongst other things. This information helps to estimate
the total CPU time needed for the multiple multigrid computations in a multilevel Monte Carlo
setting. We consider it useful to construct a technique to assess the quality of the choice of the
multigrid components in the context of the PDEs with random problems before the actual multigrid
computation has taken place.

In this work, we will employ a basic cell-centered multigrid (CCMG) algorithm for solving
elliptic PDEs with a variable coe�cient �eld. The components of this algorithm include a simple
Gauss-Seidel iteration as the smoother, a piecewise constant prolongation operator and its adjoint
as the restriction and a direct discretization technique to de�ne the discrete operators on the
coarse grids. We show that for this special combination, the coarse grid discretization operators
are equivalent to the ones obtained from commonly used Galerkin operators [16]. We utilize this
CCMGmethod to perform MLMC simulations with di�erent permeability parameters. It may be
surprising that such a basic algorithm converges well in the context of the generated random �elds,
where computation takes place for thousands of di�erent samples. Despite we restrict ourselves
to this basic CCMG to demonstrate the accuracy of the predictions of the novel LFA technique,
we emphasize that this approach can be used for a wider range of problems, discretizations, and
multigrid methods. In fact, we think that the proposed LFA allows us to deal in an easy way with
challenging problems for which a standard LFA is very di�cult to apply or even impracticable.

The chapter is organized as follows. In Section 4.2 we introduce the context of PDEs with
jumping and random coe�cients, together with their discretization by a cell-centered �nite volume
scheme. A discussion on multigrid methods for this type of problems is also included, and the
multigrid components that will be considered in this work are also de�ned. Section 4.3 is devoted
to the generalization of the LFA to deal with jumping coe�cients and problems with random �elds.
In Section 4.4, we present results obtained by this analysis for di�erent benchmark problems with
jumping coe�cients. Section 4.5 presents the LFA results for problems with random coe�cients,
and in Section 4.7 multilevel Monte Carlo computations for PDEs with random coe�cients are
presented. Finally, in Section 4.8 conclusions are drawn.

4.2. Jumping coe�cients, random coe�cients, multigrid

Robust and e�cient iterative solution methods are very relevant for partial di�erential equations
with variable coe�cients. For PDEs with jumping coe�cients, multigrid methods have already
shown to be this type of solvers. When using Monte Carlo methods, in the case of elliptic PDEs with
random coe�cient �elds, many samples of the random �eld are generated and for each �eld, the
numerical solution should be computed. This can take substantial CPU time if very many samples
are required. For a �xed sample of the random �eld, we deal with an elliptic PDE with varying
coe�cients, due to the randomness. Multigrid comes in naturally as a highly e�cient solution
method for the resulting PDEs. In this section, we explain this setting and we brie�y describe an
e�cient multigrid method based on a cell-centered grid and a �nite volume discretization.
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4.2.1 PDEs with jumping and with random coe�cients

We start with classical PDE problems with jumping coe�cients. In particular, we deal with the
following two-dimensional di�usion equation on the square domainD = (0,l)2,

−∇ ⋅ (k(x)∇p(x)) = f(x), x ∈ D, (4.1)
p(x) = g(x), x ∈ )D, (4.2)

where k(x) is a function which may be discontinuous across internal boundaries.
To discretize this problem, we use a cell-centered �nite volume method based on the harmonic

average of the di�usion coe�cient k(x). We consider a uniform gridDℎ with the same step size
ℎ = l∕M,M ∈ ℕ in both directions,

Dℎ = {(xi1 , xi2);xi� = (i� − 1∕2)ℎ, i� = 1,… ,M, � = 1, 2}. (4.3)

This gives, for each interior cell with center (xi1 , xi2), denoted byDi1,i2
ℎ , a �ve-point scheme

cℎi1,i2pi1,i2 + wℎ
i1,i2

pi1−1,i2 + eℎi1,i2pi1+1,i2 + sℎi1,i2pi1,i2−1 + nℎi1,i2pi1,i2+1 = fℎi1,i2 , (4.4)

where

wℎ
i1,i2

= − 2
ℎ2

ki1,i2ki1−1,i2
ki1,i2 + ki1−1,i2

, eℎi1,i2 = − 2
ℎ2

ki1,i2ki1+1,i2
ki1,i2 + ki1+1,i2

,

sℎi1,i2 = − 2
ℎ2

ki1,i2ki1,i2−1
ki1,i2 + ki1,i2−1

, nℎi1,i2 = − 2
ℎ2

ki1,i2ki1,i2+1
ki1,i2 + ki1,i2+1

,

cℎi1,i2 = −(wℎ
i1,i2

+ eℎi1,i2 + nℎi1,i2 + sℎi1,i2),

with, for instance, ki1,i2 the di�usion coe�cient associated with the cellDi1,i2
ℎ . By interior cell we

mean a cell for which none of its edges lies at the boundary of the domain. This scheme is changed
appropriately for the cells close to the boundary.

We also recall the elliptic PDEs with random coe�cient �elds from Chapter 3. The PDE of our
interest describes the steady-state single-phase �ow in a random porous medium. Denoting by ! an
event in the probability space (Ω,F,ℙ), with sample space Ω, �-algebra F and probability measure
ℙ, the permeability in the porous medium is described by k(x, !) ∶ D × Ω→ ℝ+. The PDE is then
given by

− ∇ ⋅ (k(x, !)∇p(x, !)) = f(x), x ∈ D, ! ∈ Ω, (4.5)

with f as a source term. The engineering interest in the solution of (4.5) is typically found in
expected values of linear functionals of the solution p, denoted by Q ∶= Q(p).

To discretize these problems, we use the same cell-centered �nite volume method based on the
harmonic average of the random di�usion coe�cient as previously described for problems with
jumping coe�cients. We make the common assumption that the permeability random �eld is
constant over each cell of the grid.

4.2.2 Multigrid for PDEs with jumping and with random coe�cients

In this work, the multigrid components for the above cell-centered discrete problems are chosen as
follows. We use a lexicographic Gauss-Seidel iteration as the multigrid smoother and we consider
standard coarsening obtained by doubling the mesh size in both directions. Each coarse cell is
the union of four �ne cells, and, since the unknowns are located in the cell-centers, this results
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in a non-nested hierarchy of grids. We consider a simple prolongation operator Pℎ2ℎ, that is, the
piecewise constant interpolation operator. In stencil notation, it is given by

Pℎ2ℎ =
⎤
⎥
⎥
⎦

1 1
⋆

1 1

⎡
⎢
⎢
⎣

ℎ

2ℎ

, (4.6)

where ⋆ denotes the position of a coarse grid unknown. The classical stencil notation shows the
contribution of the coarse grid node to the neighbouring �ne grid nodes. The restriction operator
R2ℎℎ is chosen as the scaled adjoint of the prolongation, given in stencil form by

R2ℎℎ = 1
4

⎡
⎢
⎢
⎣

1 1
⋆

1 1

⎤
⎥
⎥
⎦

2ℎ

ℎ

. (4.7)

The coarse grid operators are constructed by direct discretization de�ning the di�usion coe�cients
at the edges of the coarse cells appropriately, which we will describe in more detail. We assume that
the di�usion coe�cient k(x) is piecewise constant on the �ne grid. The �ux over an edge, dependent
on the solution in the two adjacent cells, is calculated based on the harmonic average. The values of
the di�usion coe�cients at a coarse edge located between two coarse cells, however, are calculated
as the arithmetic average of the corresponding �ne grid coe�cients, see Figure 4.1 for a more de-
tailed description. As it was pointed in [68], this direct discretization procedure is equivalent to the

AM 

h 
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2h 

AM 

4h 

z	

HM 

h 

(a) (b) (c) (d) 

Figure 4.1: Schematic representation of permeability upscaling used in the multigrid hierarchy (h-2h-4h). (a)
Permeability values generated at cell-centers (blue dots). (b) Permeability values at face-centers (red dots) obtained from
the harmonic mean (HM) of permeabilities from two adjacent cell-centers. (c) Permeability at face-centers (bigger red

dots) of 2h-grid is the arithmetic mean (AM) of permeabilities from face-centers of the h-grid. (d) Permeability at
face-centers (biggest red dots) of 4h-grid is the arithmetic mean (AM) of permeabilities from face-centers of the 2h-grid.

often used Galerkin approach, i.e., L2ℎ =
1
2
R2ℎℎ LℎP

ℎ
2ℎ, but computationally more e�cient. The factor

1∕2 in the previous expression is due to the lack of consistency of the operator R2ℎℎ LℎP
ℎ
2ℎ with the

di�erential operator [69]. In the next result, we prove that both discretizations are indeed equivalent.

PROPOSITION 1. Let Lℎ be the �ne-grid operator based on the cell-centered �nite volume dis-
cretization of problem (4.5) on a uniform grid of mesh size ℎ = l∕M withM even. Let Pℎ2ℎ be the
piecewise constant prolongation operator and R2ℎℎ its adjoint. Then, the Galerkin coarse grid operator
L2ℎ =

1
2
R2ℎℎ LℎP

ℎ
2ℎ is equivalent to a direct discretization on the coarse grid based on the arithmetic

average of the corresponding �ne grid coe�cients.
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Proof: We prove the equivalence for a coarse grid cellDi1,i2
2ℎ such that none of its edges lies on

the boundary of the domain. The equivalence for coarse cells close to boundaries with Dirichlet or
Neumann boundary conditions can be proven similarly. By applying the restriction operator R2ℎℎ in
(4.7), the equation associated with the cellDi1,i2

2ℎ by using the Galerkin approach is given by

1
2(R

2ℎ
ℎ LℎP

ℎ
2ℎp)i1,i2 = 1

8((LℎP
ℎ
2ℎp)2i1,2i2 + (LℎPℎ2ℎp)2i1−1,2i2 + (LℎPℎ2ℎp)2i1,2i2−1 +

(LℎPℎ2ℎp)2i1−1,2i2−1). (4.8)

Taking into account that the prolongation operator is piecewise constant, we obtain

(LℎPℎ2ℎp)2i1,2i2 = eℎ2i1,2i2pi1+1,i2 + wℎ
2i1,2i2

pi1,i2 + nℎ2i1,2i2pi1,i2+1 +

sℎ2i1,2i2pi1,i2 + cℎ2i1,2i2pi1,i2 ,

and similar expressions for the other terms in (4.8). By substituting these expressions in (4.8), the
following discretization for the coarse cellDi1,i2

2ℎ is obtained

1
2(R

2ℎ
ℎ LℎP

ℎ
2ℎp)i1,i2 =c

2ℎ
i1,i2

pi1,i2 + w2ℎ
i1,i2

pi1−1,i2 + e2ℎi1,i2pi1+1,i2+

s2ℎi1,i2pi1,i2−1 + n2ℎi1,i2pi1,i2+1, (4.9)

where

w2ℎ
i1,i2

= 1
8

(
wℎ
2i1−1,2i2

+ wℎ
2i1−1,2i2−1

)
, e2ℎi1,i2 =

1
8

(
eℎ2i1,2i2 + eℎ2i1,2i2−1

)
,

s2ℎi1,i2 = 1
8

(
sℎ2i1,2i2−1 + sℎ2i1−1,2i2−1

)
, n2ℎi1,i2 =

1
8

(
nℎ2i1−1,2i2 + nℎ2i1,2i2

)
,

c2ℎi1,i2 = −(w2ℎ
i1,i2

+ e2ℎi1,i2 + n2ℎi1,i2 + s2ℎi1,i2).

We observe that this scheme is equivalent to a direct discretization on the coarse grid where
the di�usion coe�cients on the edges are the arithmetic averages of the corresponding �ne grid
coe�cients.

Remark 4.2.1 In order to achieve a mesh-independent multigrid convergence following the analysis
from [70], the next condition must be satis�ed:

mp +mr > Mpde, (4.10)

where the orders mp and mr are the highest degree plus one of the polynomials that are exactly
interpolated by Pℎ2ℎ and R

2ℎ
ℎ , respectively, andMpde is the order of the PDE to be solved. For PDE (4.5),

we haveMpde = 2 and for the considered operators (4.6) and (4.7), we getmp = mr = 1, which does
not satisfy the inequality (4.10). In [71] it is shown, however, that this condition is not needed to prove
uniform convergence. The idea is to use the power of the theoretical approach provided in [72].

4.2.3 Discussion about other multigrid methods for jumping coe�cients

In the context of algebraic multigridmethods for the numerical solution of partial di�erential equa-
tions, basically, two prevailingmethods have proved their use formultiple engineering problems, i.e.,
algebraic multigrid and aggregation-based multigrid methods, [73–77]. These methods converge
remarkably well, for example, for scalar PDEs with jumping coe�cients. It is not always easily
understood why these methods, and particularly the aggregation-based method, converge so well.

The origin of these algebraic methods may be found already in the early days of multigrid, where
black-box multigrid with operator-dependent transfer operators (restriction and prolongation) and
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Galerkin coarse grid operators for structured vertex-centered Cartesian grids was proposed in [78–
80]. This can be seen as a predecessor of classical AMG, where these components were essentially
enhanced by a �exible coarsening strategy.

The aggregation-basedmultigridmethods, with their origin in thework byMandel [77] (smoothed
aggregation), may be related to the cell-centered multigrid methods as proposed in [54, 81]. In [81],
it was shown that constant, i.e., operator-independent, transfer operators, in combination with
Galerkin coarse grid discretization provided highly e�cient multigrid results for cell-centered
discretizations of elliptic PDEs that included jumping coe�cients. These cell-centered multigrid
components were augmented with robust smoothing, like Incomplete Lower-Upper decomposition
(ILU) relaxation. The individual contributions of the coarse grid correction and the smoothing
parts were di�cult to distinguish. Also, a cell-centered multigrid based on coarsening by a factor of
three together with operator-dependent interpolations was explored in [82].

4.3. Local Fourier Analysis for variable coe�cients
In this section, we describe LFA in a setting which allows us to estimate the multigrid convergence
factors for problems with jumping coe�cients and problems with random �elds. A discrete linear
operator with constant coe�cients, which is formally de�ned on an in�nite grid, is usually assumed
for carrying out a standard local Fourier analysis. As we will show, this assumption can be relaxed
by considering a discrete operator with constant coe�cients in appropriate in�nite subgrids. This
allows us to generalize the analysis to problems for which the discrete operator consists of di�erent
stencils. A key point in this improved analysis is to consider a speci�c basis of the Fourier space,
rather than the standard basis which is based on the Fourier modes. The use of this new basis will
simplify the analysis.

We start from a regular in�nite gridDℎ with grid size ℎ in both directions. Such an in�nite grid
will be split into n × n subgrids in the following way. First of all, a window comprising n × n cells of
the original grid is adequately chosen, and, subsequently, we consider its periodic extension. The
choice of the size of the n × n window is made such that the variability of the discrete operator in
the computational grid can be appropriately represented, as will be explained by means of examples
of di�erent nature. Once n is �xed, the in�nite subgrids are de�ned as follows (see Figure 4.2 for
an example with n = 2),

Dkl
ℎ = {(k, l)ℎ + (nk1, nk2)ℎ | k1, k2 ∈ ℤ} , k, l = 0,… , n − 1. (4.11)

For each low frequency, �00 ∈ �nℎ = (−�∕nℎ, �∕nℎ]2, we introduce the grid-functions:

Figure 4.2: In�nite gridDℎ divided into the corresponding subgrids for n = 2.
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 klℎ (�
00, x) = 'ℎ(�

00, x)�Dkl
ℎ
(x), k, l = 0,… , n − 1, x ∈ Dℎ, (4.12)

where 'ℎ(�
00, x) = e{�

00⋅x is the standard Fourier mode onDℎ corresponding to the frequency �
00.

It is easy to see that the subspace generated by these n2 grid-functions,

ℱn2
ℎ (�

00) = span{ klℎ (�
00, ⋅), k, l = 0,… , n − 1} (4.13)

is the same as the one spanned by the n2 Fourier modes 'ℎ(�
00
kl , ⋅) associated with the frequencies:

�00kl = �00 + (k, l)2�
nℎ

, k, l = 0,… , n − 1. (4.14)

In the case n = 2, the basis { 00ℎ (�
00, ⋅),  11ℎ (�

00, ⋅),  10ℎ (�
00, ⋅),  01ℎ (�

00, ⋅)} is related to the standard
basis of Fourier modes {'ℎ(�

00, ⋅), 'ℎ(�
11, ⋅), 'ℎ(�

10, ⋅), 'ℎ(�
01, ⋅)} in the following way:

⎛
⎜
⎜
⎜
⎝

 00ℎ (�
00, ⋅)

 11ℎ (�
00, ⋅)

 10ℎ (�
00, ⋅)

 01ℎ (�
00, ⋅)

⎞
⎟
⎟
⎟
⎠

=ℳ

⎛
⎜
⎜
⎜
⎝

'ℎ(�
00, ⋅)

'ℎ(�
11, ⋅)

'ℎ(�
10, ⋅)

'ℎ(�
01, ⋅)

⎞
⎟
⎟
⎟
⎠

= 1
4

⎛
⎜
⎜
⎝

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

'ℎ(�
00, ⋅)

'ℎ(�
11, ⋅)

'ℎ(�
10, ⋅)

'ℎ(�
01, ⋅)

⎞
⎟
⎟
⎟
⎠

. (4.15)

It is well-known that Fourier modes are eigenfunctions of any constant coe�cient linear discrete
operator Lℎ, that is, Lℎ'ℎ(�, x) = L̃ℎ(�)'ℎ(�, x). Therefore, the representation of Lℎ with respect to a
basis of n2 Fourier modes is a diagonal matrix with diagonal elements L̃ℎ(�

kl)with k, l = 0,… , n−1.
In general, the Fourier representation with respect to the basis of functions { klℎ }

n−1
k,l=0 is a dense

matrix. We will denote it by L̂ℎ(�
00).

If we consider the �ve-point standard discretization of the Laplace operator on a uniform grid
of mesh size ℎ,

1
ℎ2

⎡
⎢
⎢
⎣

−1
−1 4 −1

−1

⎤
⎥
⎥
⎦

, (4.16)

its Fourier symbol with respect to the standard basis of Fourier modes is a diagonal matrix with
diagonal elements equal to

1
ℎ2
(4 − 2 cos(�klx ) − 2 cos(�kly )),

(see [14], for instance) whereas the Fourier representation with respect to the new basis in the case
n = 2 is given by

L̂ℎ(�
00) = 2

ℎ2

⎛
⎜
⎜
⎜
⎝

2 0 cos(�00x ) cos(�00y )
0 2 cos(�00y ) cos(�00x )

cos(�00x ) cos(�00y ) 2 0
cos(�00y ) cos(�00x ) 0 2

⎞
⎟
⎟
⎟
⎠

, with �00 = (�00x , �00y ). (4.17)

Notice that, for example, the �rst row of the previous symbol is obtained by looking at the decom-
position of the stencil (4.16) into the connections among the unknowns located at the di�erent
subgridsDkl

ℎ de�ned in (4.11). In particular, following the notations in Figure 4.2, the ∙-∙, ∙ −□
and ∙ − ◦ connections are given by the following stencils

1
ℎ2

[4] ,
1
ℎ2

[
−1 ∙ −1

]
, 1

ℎ2

⎡
⎢
⎢
⎣

−1
∙
−1

⎤
⎥
⎥
⎦

,
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giving rise to the symbols
4
ℎ2
, 2

ℎ2
cos(�00x ),

2
ℎ2

cos(�00y ),

which appear in the �rst row of (4.17), whereas there is no ∙ −× connection. The rest of the rows is
analogously computed. The procedure to obtain the Fourier symbol of a smoothing operator Sℎ,
which is based on a splitting of the discrete operator Lℎ = L+ℎ + L

−
ℎ , is analogous with the new basis.

The smoothing iteration is given by

L+ℎwℎ + L−ℎwℎ = fℎ,

with wℎ the approximation of the solution before the smoothing step and wℎ the approximation
after the smoothing step. By computing the symbols of L+ℎ and L−ℎ as before, the Fourier symbol of
the smoothing operator is given by

Ŝℎ(�
00) = −(L̂+ℎ )

−1(�00)L̂−ℎ (�
00). (4.18)

The Fourier symbol corresponding to a lexicographic Gauss-Seidel iteration for the �ve-point
standard discretization of the Laplace operator on a uniform grid of mesh size ℎ, in the case n = 2,
is as in (4.18), where

L̂+ℎ (�
00) = 2

ℎ2

⎛
⎜
⎜
⎝

2 0 0 0
0 2 cos(�00y ) cos(�00x )

cos(�00x ) 0 2 0
cos(�00y ) 0 0 2

⎞
⎟
⎟
⎠

, L̂−ℎ (�
00) = L̂ℎ(�

00) − L̂+ℎ (�
00). (4.19)

Once the Fourier representation of the smoothing operator with respect to the new basis is obtained,
we can de�ne the smoothing factor by using the change of basis matrix. For example, for the case
n = 2, the smoothing factor is obtained by

�(Sℎ) = sup
�00∈�2ℎ

�(QℎℳŜℎ(�
00)ℳ−1),

where Qℎ is the projection operator onto the space of high-frequency components andℳ is the
change of basis matrix given in (4.15).

4.3.1 LFA formulations for cell-centered grids

In Section 4.2, we didn’t distinguish between cell- and vertex-centered grids. The generalized LFA
indeed works well for both types of discretization. By introducing the coarse grids and their relation
with the �ne grids, we need to �x the approach of interest. Since here we will focus on cell-centered
discretizations, from now on the description of the analysis will be given for this case, although it
may be applied to the vertex-centered case in a similar way by de�ning appropriately the coarse
meshes.
According to the location of the coarse-grid points in a regular cell-centered grid, we de�ne for a
�xed n the following in�nite coarse subgrids ofD2ℎ:

Dkl
2ℎ = {(ℎ∕2, ℎ∕2) + (k, l)2ℎ + (nk1, nk2)ℎ | k1, k2 ∈ ℤ} , k, l = 0,… , n∕2 − 1. (4.20)

Due to the relation between the grid-functions of the new Fourier basis given in (4.12) and the
standard Fourier modes, it can be shown that the coarse-grid correction operator Cℎ = Iℎ −
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Pℎ2ℎL
−1
2ℎR

2ℎ
ℎ Lℎ, where P

ℎ
2ℎ and R

2ℎ
ℎ are the prolongation and restriction operators, Lℎ and L2ℎ are the

�ne- and coarse-grid operators and Iℎ is the identity, satis�es the following invariance property:

Cℎ ∶ ℱn2
ℎ (�

00) → ℱn2
ℎ (�

00).

More concretely, for �00 ∈ �2nℎ = (−�∕2nℎ, �∕2nℎ]2, the following properties of the operators in
Cℎ are ful�lled:

1. Lℎ, Iℎ ∶ ℱn2
ℎ (�

00) → ℱn2
ℎ (�

00),

2. L2ℎ ∶ ℱ
n2∕4
2ℎ (2�00) → ℱn2∕4

2ℎ (2�00),

3. R2ℎℎ ∶ ℱn2
ℎ (�

00) → ℱn2∕4
2ℎ (2�00),

4. Pℎ2ℎ ∶ ℱ
n2∕4
2ℎ (2�00) → ℱn2

ℎ (�
00).

From these invariance properties we can compute the Fourier representations of the corresponding
operators. As an example, we will describe next the representation of R2ℎℎ with respect to the
grid-functions { kl2ℎ(2�

00)}n∕2−1k,l=0 and { klℎ (�
00)}n−1k,l=0, for the restriction operators considered in this

work.
We �rst consider the basic restriction operator obtained as the adjoint of the piecewise constant

prolongation operator with stencil form (4.7). Its Fourier representation with respect to the new
Fourier basis is given by

R̂2ℎℎ (�
00) = 1

4

(
e−{(�

00
x +�00y )∕2 e{(�

00
x +�00y )∕2 e{(�

00
x −�00y )∕2 e{(�

00
y −�00x )∕2

)
.

In the case of the cell-centered restriction operator by Wesseling/Khalil [54], that is,

R2ℎℎ = 1
16

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 3 2 0

⋆
0 2 3 1
0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2ℎ

ℎ

, (4.21)

the Fourier representation is given by

R̂2ℎℎ (�
00) = 1

16

⎛
⎜
⎜
⎜
⎝

e−{(�
00
x +�00y )∕2(2 + e2{�

00
y + e2{�00x )

e{(�
00
x +�00y )∕2(2 + e−2{�

00
y + e−2{�00x )

e{(�
00
x −�00y )∕2(3 + e2{(�

00
y −�00x )

e{(�
00
y −�00x )∕2(3 + e2{(�

00
x −�00y )).

⎞
⎟
⎟
⎟
⎠

T

.

As an immediate consequence of these invariance properties and the invariance property of the
smoothing operator, also the two-grid operator K2ℎ

ℎ = CℎS�ℎ, where � denotes the number of
smoothing steps, leaves the subspaces ℱn2

ℎ (�
00) invariant. Its Fourier representation is given by

K̂2ℎ
ℎ (�

00) = Ĉℎ(�
00)Ŝ�ℎ(�

00) = (Îℎ(�
00) − P̂ℎ2ℎ(�

00)L̂−12ℎ (�
00)R̂2ℎℎ (�

00)L̂ℎ(�
00))Ŝ�ℎ(�

00).

Finally, we can compute the asymptotic two-grid convergence factor as the supremum of the spectral
radii of (n2 × n2)−matrices, as follows

�(K2ℎ
ℎ ) = sup

�00∈�̃2nℎ

�(K̂2ℎ
ℎ (�

00)),

where �̃2nℎ is the subset of�2nℎ in which we remove the frequencies �00 such that the determinant
of the Fourier symbol of Lℎ or L2ℎ vanishes.
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4.4. LFA results for PDEs with jumping coe�cients
In this section, we apply the proposed LFA to predict the multigrid convergence factors for a collec-
tion of benchmark problems with jumping coe�cients taken from the literature [63, 78, 83]. The
test cases cover a variety of possible inhomogeneities including jumps that are not aligned with the
coarse grid. In all these problems, equation (4.1) is numerically solved in the domainD = (0, 1)2,
by using a mesh of grid-size ℎ = 1∕128. In particular, the following jumping coe�cient benchmark
problems, characterized by the distribution of the di�usion coe�cient, are considered here:

1. Vertical jump. Function k(x, y) is de�ned in the following way (see also Figure 4.3 (a))

k(x, y) =
⎧

⎨
⎩

1, if x < 1
2
+ ℎ,

103, if x ≥ 1
2
+ ℎ.

2. Four corner problem. The domain is divided into four regions in which the di�usion
coe�cient is varying, see Figure 4.3 (b). In particular,

k(x, y) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

104, if (x, y) ∈
(
0, 1

2
+ ℎ

)2
,

1, if (x, y) ∈
(
0, 1

2
+ ℎ

)
×

( 1
2
+ ℎ, 1

)
,

10−2 if (x, y) ∈
( 1
2
+ ℎ, 1

)
×

( 1
2
+ ℎ, 1

)
,

10−4 otherwise.

3. Square inclusion. In this example we assume a square inhomogeneity in one cell within
the square domain, see Figure 4.3 (c). The di�usion coe�cient is de�ned as

k(x, y) =
⎧

⎨
⎩

k0, if (x, y) ∈
( 1
2
− ℎ, 1

2

)2
,

1, otherwise,

where values k0 = 104 and k0 = 10−4 are considered.

4. Periodic square inclusions. This test is taken from [64]. We consider a structured pattern
of square inclusions of size 2ℎ × 2ℎ as depicted in Figure 4.3 (d). The di�usion parameter is
k(x, y) = 1 inside the dark region and k(x, y) = 1000 inside the white region.

5. Periodic L-shaped inclusions. In the last test case, we consider a structured pattern of
L-shaped inclusions as in Figure 4.3 (e). The di�usion parameter is k(x, y) = 104 inside the
white region and k(x, y) = 1 inside the dark region.
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Figure 4.3: Distribution of the di�usion coe�cients for the �ve considered examples on a unit square domain and
corresponding 8 × 8 window used in the LFA.
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To perform the theoretical analysis, the periodic extension of a window of size 8×8 has been chosen,
where the di�usion coe�cient is prescribed in such a window according to its de�nition, see Figure
4.3 (right side). In all numerical tests a random initial guess is chosen, and the right-hand side and
boundary conditions are set to zero to be able to determine asymptotic convergence factors. In this
way, we avoid round-o� errors permitting us to perform as many iterations as needed. In practice,
we have seen that 50 iterations are su�cient.
Next, we show the excellent correspondence between the theoretical analysis and the experimental
results for these test cases. Two combinations of inter-grid transfer operators are considered. The
�rst combination, denoted here by (CP,CR), is based on the use of piecewise constant prolongation
(4.6) and its adjoint as the restriction (4.7). In the second combination we change to a higher
polynomial order interpolation operator which is the adjoint to the Wesseling/Khalil restriction
(4.21). This choice is denoted by (WP,CR). Moreover, a standard damped Jacobi smoother (damping
with ! = 0.8) is considered as well as the proposed lexicographic Gauss-Seidel smoother.

Pre-, post-smoothing steps
(1, 0) (1, 1) (2, 2)

Vertical jump
GS (CP,CR) 0.42(0.42) 0.18(0.19) 0.04(0.03)

(WP,CR) 0.41(0.37) 0.19(0.16) 0.07(0.11)

Jac. (CP,CR) 0.65(0.65) 0.43(0.42) 0.19(0.19)
(WP,CR) 0.63(0.59) 0.40(0.35) 0.19(0.19)

Four corner problem
GS (CP,CR) 0.42(0.37) 0.15(0.12) 0.04(0.03)

(WP,CR) 0.40(0.39) 0.16(0.16) 0.09(0.09)

Jac. (CP,CR) 0.63(0.61) 0.40(0.39) 0.16(0.16)
(WP,CR) 0.62(0.62) 0.40(0.40) 0.19(0.18)

Sq. inclusion (k = 104)
GS (CP,CR) 0.45(0.44) 0.21(0.19) 0.04(0.04)

(WP,CR) 0.41(0.40) 0.18(0.17) 0.11(0.11)

Jac. (CP,CR) 0.60(0.65) 0.36(0.42) 0.13(0.19)
(WP,CR) 0.60(0.62) 0.38(0.37) 0.22(0.21)

Sq. inclusion (k = 10−4)
GS (CP,CR) 0.46(0.45) 0.21(0.20) 0.05(0.05)

(WP,CR) 0.41(0.40) 0.19(0.19) 0.12(0.12)

Jac. (CP,CR) 0.61(0.65) 0.38(0.42) 0.15(0.19)
(WP,CR) 0.61(0.59) 0.39(0.39) 0.23(0.23)

Periodic Sq. inclusions
GS (CP,CR) 0.64(0.61) 0.43(0.42) 0.41(0.41)

(WP,CR) 0.62(0.61) 0.43(0.41) 0.41(0.40)

Jac. (CP,CR) 0.81(0.78) 0.66(0.65) 0.44(0.46)
(WP,CR) 0.81(0.80) 0.66(0.65) 0.44(0.43)

Periodic L-S. inclusions
GS (CP,CR) 0.50(0.50) 0.32(0.26) 0.21(0.21)

(WP,CR) 0.54(0.53) 0.40(0.40) 0.30(0.30)

Jac. (CP,CR) 0.71(0.63) 0.54(0.48) 0.36(0.35)
(WP,CR) 0.71(0.71) 0.56(0.56) 0.42(0.42)

Table 4.1: Asymptotic two-grid convergence factors predicted by LFA and the corresponding computed average
multigrid convergence factors (in parenthesis) using two-grid cycles and di�erent pre- and post-smoothing steps for the

�ve examples.

In Table 4.1, for di�erent numbers of smoothing steps, for two di�erent smoothers and for the
two combinations of restriction and prolongation operators, we provide the two-grid convergence
factors predicted by the novel LFA for each of the proposed numerical experiments. We also display
in parenthesis the average after 50 iterations of the experimentally computed multigrid convergence
factors by using two-grid cycles. For all these cases, we observe a very accurate match between the
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analysis results and the rates experimentally obtained. Regarding the size of the window to perform
the LFA, we have observed that a window of size 8 × 8 is enough to achieve excellent predictions in
all considered benchmark problems. For example, for the vertical jump test, the two-grid analysis
considering four smoothing steps of the Gauss-Seidel smoother and the combination (CP,CR) of
inter-grid transfer operators provides a factor of 0.11 when a 2 × 2 window is used, a factor of 0.06
for a 4 × 4 window, and a factor of 0.04, which matches perfectly the real convergence, when the
8 × 8 window is considered.

We remark that with the current multigrid approach, the quality of the coarse grid discretization
may not be satisfactory, for example, for chessboard or L-shaped inclusion examples. For such
cases, we either recommend using more powerful smoothers such as the ILU smoother or adapt the
coarsening. Furthermore, for PDEs with strong local variations in the coe�cient �elds, homoge-
nization techniques [63, 78, 83] may also be used to obtain the coarser representation of the �ne
grid problem. Comparing the results of the two combinations of inter-grid transfer operators, we
observe a very similar performance for all �ve test cases studied here. In the rest of the chapter, we,
therefore, choose the strategy (CP,CR) because of its simplicity and low computational cost.

4.5. LFA results for PDEs with random coe�cients
Here, we consider the SPDE (4.5) de�ned on a unit square domainD = (0, 1)2 with homogeneous
Dirichlet boundary conditions. Two di�erent types of di�usion coe�cients based on random jumps
and lognormal random �elds are studied. The randomly jumping coe�cient problem can be seen
as a transition from the deterministic to a stochastic setting.

4.5.1 Randomly jumping coe�cients

To simulate random jumps, the domainD is subdivided into square-blocks of size [1∕8 × 1∕8] and
the value of the coe�cients on each of the blocks is sampled as

k = eU with U ∼ U{−m,m} and m ∈ ℤ. (4.22)

In other words, U is an independent identically distributed (i.i.d.) integer sampled from a discrete
uniform distribution U{−m,m}. Here, the integerm de�nes the order of magnitude of the jumps,
an example form = 5 is shown in Figure 4.4. Notice that for this choice ofm, we may encounter
interfaces with maximum jumps of magnitude equal to e10. For each random realization of the
jumping coe�cient �eld, we compare the LFA two-grid convergence factors with the computed
asymptotic convergence factors of the multigrid method by using W-cycles. To perform the LFA, we
again use a window of size 8 × 8. Furthermore, regarding LFA the randomly jumping coe�cient
problem is similar to the four corner problem in Figure 4.3 (d) with the magnitude of each block
given by (4.22) and the cross-point exactly at the center of the LFA block. Regarding the multigrid
components, a lexicographic Gauss-Seidel iteration is employed as the smoother, and the simplest
combination (CP,CR) of inter-grid transfer operators is chosen. Also, we use a 4 × 4 grid as the
coarsest in themultigrid hierarchy. To determine the asymptotic convergence factors of themultigrid
method, the right-hand side is again set to zero.

The experimental convergence factor of the multigrid method for the i-th realization of the
random �eld is then computed, as follows:

�i = {
||res�i ||∞
||res0||∞

}
1∕�i

, for i = 1, 2, ..., NMG , (4.23)

where ||res0||∞ is the in�nity norm of the residual obtained from an initial solution and ||res�i ||∞
is the residual after �i iterations of the multigrid cycle. We use these quantities to calculate the
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Figure 4.4: An example of random realization of U = ln k withm = 5 on a unit square domain.

average and the standard deviation of the asymptotic convergence factors:

⟨�⟩MG =
1

NMG

NMG∑

i=1
�i, �MG =

√
√√√√ 1

(NMG − 1)

NMG∑

i=1
(�i − ⟨�⟩MG)

2, (4.24)

respectively. These averaged quantities are de�ned similarly for the LFA results (based on LFA
two-grid factors), and are denoted, respectively, by ⟨�⟩LFA and �LFA.

In Figure 4.5, we show the comparison, the mean ± standard deviation, of the LFA prediction
and the multigrid convergence for jump parameterm = 2 (left) andm = 5 (right) computed using
NLFA = NMG = 100. Overall, a good match between the LFA and MG convergence is seen up to
one decimal place. We also observe that for this speci�c jumping coe�cient problem, there is no
further improvement with an increase in the number of smoothing steps after theW(2, 2)−cycle.

Figure 4.5: Comparison of the mean and the standard deviation of the LFA (dashed line) and MG (solid line)
convergence factors for di�erentW−cycling strategies for randomly jumping coe�cients withm = 2 (left) andm = 5

(right).
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4.5.2 Lognormal random �elds

Next, we test the LFA prediction capability for elliptic PDEs with lognormal di�usion coe�cients.
We consider four Matérn reference parameter sets Φ with increasing order of complexity, listed in
Table 4.2. Examples of random �elds generated with these Matérn parameter sets were already
presented in Section 3.2. For a �xed Φ and mesh size ℎ, we generate NMG realizations of the

Table 4.2: Di�erent combinations of the Matérn reference parameters Φ = (�c, �c, �2c ) with increasing complexity from
left to right.

Φ1 Φ2 Φ3 Φ4
(1.5,0.3,1) (0.5,0.3,1) (1.5,0.1,3) (0.5,0.1,3)

permeability �eld. For each of these random �elds, we can compare the LFA two-grid convergence
factors with the computed asymptotic convergence factors of the multigrid method by using the
same components that were utilized for randomly jumping coe�cient �elds. The comparison is
shown in Table 4.3, where di�erent numbers of smoothing steps are considered and the comparison
is done for the four reference parameter sets, described in Table 4.2. For all experiments, we
set ℎ = 1∕64 and NMG = NLFA = 100. In general, we observe a good agreement between the
experimental and the LFA quantities. For the �rst three sets of parameters excellent convergence
factors are obtained already with two pre- and two post-smoothing steps. When the more di�cult
set of parameters is considered, however, more smoothing steps may be necessary to obtain a good
convergence factor. It is also pointed out that the performance of W(1,1)-cycle is well predicted by
LFA for all Φi, i = 1, 4. A slight discrepancy is observed for the W(2,2)- and W(3,3)-cycles in the
case of Φ4.

Φ1 Φ2 Φ3 Φ4
MG LFA MG LFA MG LFA MG LFA

W(1, 1) ⟨�⟩ 0.20 0.20 0.20 0.20 0.19 0.20 0.23 0.21
� 0.004 0.002 0.004 0.005 0.005 0.01 0.04 0.02

W(2, 2) ⟨�⟩ 0.04 0.04 0.04 0.04 0.07 0.06 0.17 0.08
� 0.001 0.001 0.002 0.003 0.03 0.03 0.04 0.03

W(3, 3) ⟨�⟩ 0.01 0.02 0.02 0.02 0.05 0.03 0.13 0.06
� 0.001 0.002 0.002 0.004 0.02 0.02 0.03 0.03

Table 4.3: Comparison of the average and the standard deviation of the LFA and MG convergence factors. Di�erent
numbers of smoothing steps, ℎ = 1∕64, and the four reference parameter sets in Table 4.2 are considered.

4.5.3 Mesh dependency

Next, we wish to study the in�uence of the size of the sampling mesh on the multigrid convergence.
For this purpose, we choose two representative parameter sets describing a smooth and a highly
oscillating random �eld, that are generated by the parameter sets Φ2 and Φ4, respectively. Figure
4.6 shows the average convergence factors for Φ2 (left side) and Φ4 (right side), predicted by LFA
(top) and experimentally observed multigrid convergence (bottom), for di�erent mesh sizes and
di�erent numbers of smoothing steps. For Φ2, the average reduction factor is roughly the same,
independently of the size of the mesh. These predictions coincide well with the experimentally
observed factors. For the results corresponding to parameter set Φ4, we observe robustness of the
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method when the mesh is su�ciently �ne, which is also con�rmed by the multigrid experiments.
In the same �gure, the standard deviation is presented, which decreases when ℎ → 0. The LFA
predictions on the coarser grids are less reliable when compared to the multigrid convergence
rates. We would like to mention that a three-grid LFA [84] is not helpful here. On coarse grids,
boundary conditions have an impact on the method’s convergence, but they are not taken into the
account in the analysis. Moreover, to analyze the robustness of the proposed multigrid method,
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Figure 4.6: Average reduction LFA two-grid factors (top) and asymptotic MG convergence (bottom) along with the
standard deviation for two reference parameter sets Φ2 (left column) and Φ4 (right column); NMG = NLFA = 100.

in the next experiment we �x the �eld’s smoothness parameter as �c = 0.5, and vary the other
parameters �2c ∈ [0.5, 5] and �c ∈ [0.05, 0.5]. In Figure 4.7 we show the average LFA two-grid
convergence factors when two smoothing steps are considered for ℎ = 1∕32 (left) and ℎ = 1∕64
(right). The multigrid convergence is very satisfactory for all combinations of the parameters and
increases slightly when �c tends to be small and �2c becomes large. This case, however, represents a
rather extreme situation in which the jumps in the permeability �eld are of more than 15 orders of
magnitude. Again, we see an improvement in the convergence rate with grid re�nement. Note that
with the considered range of parameters we cover all realistic cases.
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Figure 4.7: Contour of average LFA two-grid convergence factors, ⟨�⟩LFA, with two smoothing steps for di�erent �c and
�2c , and for �xed �c = 0.5 with ℎ = 1∕32 (left) and ℎ = 1∕64 (right).

4.6. Multigrid performance for anisotropic random �elds
We study the performance of the cell-centered multigrid for anisotropic random �elds. To generate
these random �elds, we use a modi�ed version of the Matérn covariance function given by

CΦ̃(x1, x2) = �2c
21−�c
Γ(�c)

(
2
√
�c r̃

)�c
K�c

(
2
√
�c r̃

)
x1, x2 ∈ D, (4.25)

whereCΦ̃ is a stationary covariance function depending on the parameter set Φ̃ = (�c, �cx, �cy, �2c , �).
The distance function r̃ is de�ned as

r̃ =

√
√√√ (x′1 − x′2)

2

�2cx
+
(y′1 − y′2)

2

�2cy
, (4.26)

x′1 = x1 cos � − y1 sin �,
y′1 = x1 sin � + y1 cos �, with x1 = (x1, y1).

Here (x′1, y
′
1) is obtained by rotating (x1, y1) by angle � in counterclockwise direction with respect to

the horizontal axis. The quantities �cx and �cy are correlation lengths along the x- and y-coordinates,
respectively. The covariance function CΦ̃ only di�ers from the isotropic covariance CΦ de�ned in
(3.7) in terms of the distance function r̃. In Figure 4.8, we present realizations of the anisotropic
random �eld (generated using circulant embedding, see Section 3.6) with two di�erent Φ̃ values.
As the two parameter sets only di�er in terms of the rotation parameter �, they exhibit a similar
magnitude of the jumps. Note that the random �elds generated from Φ̃2 are more challenging for
the cell-centered multigrid as the long-range correlations are not aligned with the grid.

In Figure 4.9, we show the mean ± standard deviation of the asymptotic multigrid convergence
for the two parameter sets, Φ̃1 and Φ̃2. Although, we see some deterioration compared to the
isotropic case, the convergence rates improve with grid re�nement. Here, using the x-line smoother
for horizontal layering and the alternating line smoother for the non-aligned random �eld, keeping
the other components same, will further improve the convergence.
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(a) Φ̃1 = (0.5, 0.3, 0.01, 1, 0) (b) Φ̃2 = (0.5, 0.3, 0.01, 1, �∕4)

Figure 4.8: Logarithm of the permeability �eld, log10 k, generated using two reference parameter sets on a unit square
domain.

Figure 4.9: Mean and the standard deviation of the asymptotic MG convergence for two reference parameter sets Φ̃1
(left) and Φ̃2 (right) using NMG = 100.

4.7. MLMC numerical experiments
In this section we analyze the performance of the proposed multigrid MLMC method. We consider
PDE (4.5) on domainD ∈ (0, 1)2 with mixed Dirichlet-Neumann boundary conditions,

p(0, y, !) = 1, p(1, y, !) = 0, and (4.27)

k(x, !)
)p
)x

|||||||y=0
= 0, k(x, !) )p

)x

|||||||y=1
= 0,

respectively. For all tests the source term is set to zero, i.e. f = 0. As the quantity of interest,
the out�ow through the boundary x = 1, y = (0, 1), also referred to as e�ective permeability, is
considered:

Q(p) = −∫
1

0
k(x, !)

)p
)x

(x, !)
|||||||x=1

dy. (4.28)

Our aim is to compute E[Q] using the MLMC estimator outlined in Chapter 2. In Figure 4.10,
we show the convergence of the FV bias, |E[Qℎl − Qℎl−1]|, and the level dependent variance
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Vl = V[Qℎl − Qℎl−1] for the considered quantity of interest (4.28). We observe that the rate of
decay of the FV bias depends on the smoothness parameter �c of the random �elds. In the case of
parameter sets Φ1 and Φ3, we see a second-order convergence whereas a �rst-order convergence is
observed for Φ2 and Φ4. The correlation length �c and variance �2c only a�ect the proportionality
constant. Also, for all four cases, the level dependent variance shows a quadratic decay. Next,

Figure 4.10: (Left) Convergence of �nite volume error, (Right) decay of level dependent variance for the out�ow, Qℎl ,
with mesh re�nement for di�erent Matérn parameters.

we conduct MLMC experiments for Matérn parameter sets Φ2 and Φ4, using W(1,1), W(2,2) and
W(3,3)-cycles. The multigrid components described in Section 4.2.2 are used with stopping criterion
"MG = 10−10. We consider � = 1 and � = 2 for both parameter sets Φ2 and Φ4. For all experiments,
we use the �xed sampling strategy described in Section 2.3.3. This sampling strategy requires the
total number of MLMC levels, the number of �nest level samples NL along with the rate �. We set
NL = 64 within MLMC for both parameter sets resulting in a sample sequence Nl = NL4(L−l).

4.7.1 MLMC results for Φ2

We �rst analyze the error convergence of the expected value and the variance of the quantity of
interest. In Figure 4.11 (left), relative errors with respect to a reference solution computed using
the MLMC estimator with the �nest level ℎ∗ = 1∕512 are shown. We see the error |EML

L [QℎL] −
EML
ref [Qℎ∗]| converges with O(ℎL). Next, we analyze the performance of the MLMC estimator for

di�erent multigrid cycling strategies. In Figure 4.11 (right), we present the CPU-times for the
MLMC simulations with an increasing number of MLMC levels. These CPU-times are derived by
summing up the run-times from the multigrid solves for all samples over all levels. Here, we do not
include the cost of generation of the random �eld and the post-processing costs as they are the same
for di�erent cycles. The cost scales as O(ℎ−2L ) coinciding with the theoretical MLMC complexity
when � = . No substantial di�erence in the CPU-times from the three cycles is observed. We also
show the level-wise CPU-times in Table 4.4 for the three cycles with the same number of MLMC
samples per level. In general, the computational cost improves with levels for all cycles. We observe
that the W(2,2)-cycle slightly outperforms the other two variants.

In Figure 4.12, we also show the distribution of the number of multigrid iterations for the
W(2,2)-cycle on di�erent grid levels along with the number of iterations predicted by the LFA,
�̃l ∶= ⌈log("MG)∕ log(⟨�⟩LFA,l)⌉. The cost is more heterogeneous on coarser levels with larger
variance in the number of iterations and is homogeneous for ℎl = 1∕32 and onwards. A high
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variance in themultigrid convergence rate was also predicted by the LFA experiments in the previous
section. Thus, a sparse direct solver can replace the multigrid solver on these coarser levels. In
this work, the considered multigrid stopping criteria of 10−10 is quite conservative. For many
engineering applications a residual reduction of 10−6 may already be su�cient to reach a converged
solution, therefore, reducing the computational cost roughly by a factor of two.

1 1.5 2 2.5 3
10−3

10−2

10−1

log 10(h−1
L )

∣ ∣ ∣E
M

L
L

[Q
h
L
]
−

E
M

L
r
e
f
[Q

h
∗]
∣ ∣ ∣

Rel. error in mean of Q

slope=-1

1 1.5 2 2.5 3
10−4

10−3

10−2

10−1

log 10(h−1
L )

∣ ∣ ∣V
M

L
L

[Q
h
L
]
−
VM

L
r
e
f
[Q

h
∗]
∣ ∣ ∣

Rel. error in variance of Q

slope=-2

1 1.5 2 2.5 3
100

101

102

103

104

105

106

log 10(h−1
L )

C
P

U
-t

im
e

(s
ec

)

Computational work

W (1, 1)

W (2, 2)

W (3, 3)
slope=2

Figure 4.11: (Left) Convergence of error in EML
L [QℎL ] with increasing number of MLMC levels for parameter Φ2. The

reference solution is based on mesh size ℎ∗ = 1∕512. (Right) Mean CPU-times versus accuracy for di�erent W-cycles.
Computational cost proportional to O(ℎ−2L ) is observed for all cycling strategies.

level-wise CPU-time (sec.)
ℎl Nl W(1,1) W(2,2) W(3,3)
1/8 262144 489 331 323
1/16 65536 528 391 390
1/32 16384 454 362 363
1/64 4096 407 336 348
1/128 1024 376 320 342
1/256 256 357 308 338
1/512 64 350 300 333

Table 4.4: Comparison of the three W-cycles in terms of the level-wise CPU-times for parameter Φ2.

4.7.2 MLMC results for Φ4

Now we describe MLMC results for the challenging parameter set Φ4 for the same quantity of
interest. In Figure 4.13 (left), we display the convergence of the relative error in the expected value
of the quantity of interest using a reference solution obtained with �nest resolution ℎ∗ = 1∕1024.
Due to a large variance �c and a small correlation length �c of the random �eld, the error is larger,
as compared to the results of parameter set Φ2 for same mesh size ℎL and the expected convergence
rates are visible on relatively �ne grids. A similar trend is observed for the computational cost with
scaling as O(ℎ−2L ) in Figure 4.13 (right). Again, in Table 4.5, the level-wise CPU-times for the three
cycles are listed. Similar to the results for set Φ2, the cost improves with levels but the gain from
W(2,2)-cycles is more prominent.
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Figure 4.12: Distribution of the number of multigrid iterations ofW(2, 2)-cycles for di�erent mesh sizes for parameter
Φ2 to reach "MG < 10−10 and the LFA predicted number of iteration �̃l.

Lastly, the distribution of the number of iterations for W(2,2)-cycles is depicted in Figure 4.14.
High variability in the number of multigrid iterations persists until a relatively �ne grid (ℎ = 1∕128).
However, the average number of iterations predicted by LFA coincides very well with the mode
of these distributions. Again, a direct solver can be applied on these coarser levels to get a more
reliable estimate of the cost. Here, we point out that the W(2,2)-cycle takes roughly 7 iterations
similar to parameter Φ2 to reduce the residual by 10−10, indicating robustness with respect to the
Matérn parameter.
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Figure 4.13: (Left) Convergence of error in EML
L [QℎL ] with increasing number of MLMC levels for parameter Φ4. The

reference solution is based on mesh size ℎ∗ = 1∕1024. (Right) Mean CPU-times versus accuracy for di�erent W-cycles.
Computational cost proportional to O(ℎ−2L ) is observed for all cycling strategies.
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level-wise CPU-time (sec.)
ℎl Nl W(1,1) W(2,2) W(3,3)
1/8 1048576 2.23[+3] 2.10[+3] 2.18[+2]
1/16 262144 2.42[+3] 2.52[+3] 2.80[+3]
1/32 65536 1.85[+3] 2.10[+3] 2.45[+3]
1/64 16384 1.56[+3] 1.59[+3] 1.98[+3]
1/128 4096 1.45[+3] 1.33[+3] 1.60[+3]
1/256 1024 1.40[+3] 1.23[+3] 1.40[+3]
1/512 256 1.38[+3] 1.23[+3] 1.34[+3]
1/1024 64 1.36[+3] 1.21[+3] 1.31[+3]

Table 4.5: Comparison of the three W-cycles in terms of the level-wise CPU-times for parameter Φ4.
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Figure 4.14: Distribution of the number of multigrid iterations ofW(2, 2)-cycles for di�erent mesh sizes for parameter
Φ4 to reach "MG < 10−10 and the LFA predicted number of iteration �̃l.

4.8. Conclusions
A novel, generalized Local Fourier Analysis which can be employed for quantitative assessment of
multigrid methods for PDEs involving jumping and random coe�cients has been presented. In
particular, a cell-centered multigrid algorithm for solving a model problem based on a single-phase
�ow problem in a random porous medium has been used to show the accuracy of the proposed
analysis. This technique, however, is appropriate for the prediction of the performance of a wider
class of multigrid methods for solving PDEs with random �elds. The e�ectiveness of the proposed
LFAmethod was also con�rmed numerically using a number of challenging test cases with jumping
and random coe�cients. Further, the novel local Fourier analysis can help us to estimate apriori the
time needed for solving certain uncertainty quanti�cation problems by using a multigrid multilevel
Monte Carlo method.



5
Transport in a coupled Darcy-Stokes

system

In this chapter, we concentrate on the uncertainty quanti�cation of advection-dominated contaminant
transport in a coupled Darcy-Stokes �ow system using the multigrid multilevel Monte Carlo method.
The uncertainty in the �ow arises due to an unknown permeability of the porous media that is modeled
as a lognormal random �eld. Di�erent numerical strategies for the subproblems are explored and
an optimal combination for the MLMC estimator is then suggested. A speci�c monolithic multigrid
algorithm is also presented to e�ciently solve the steady-state Darcy-Stokes �ow with a highly heteroge-
neous di�usion coe�cient. The advection-dominated contaminant transport equation is numerically
solved using the Alternating Direction Implicit (ADI) based time-stepping for the �ux-limited quadratic
upwinding discretization. In the �nal part of the chapter, some numerical experiments illustrating
the multigrid convergence and cost of the MLMC estimator with respect to the smoothness of the
permeability �eld are presented.

5.1. Introduction
Transport in a Darcy-Stokes �ow system can be used to analyze a large number of dynamical
processes. This model is, for example, of importance in the study of accidental discharge of radioac-
tive contaminants or chemical spillage in surface water bodies and the subsequent transport to
the connected aquifers. A coupled Darcy-Stokes system is then used to simulate the interaction
between the surface water and the groundwater �ow. The coupling is achieved by imposing inter-
face conditions based on mass conservation, balancing the normal stress and a special condition,
called the Beavers-Joseph-Sa�man (BJS) interface condition [85, 86] that relates the shear stress
and tangential velocity along the interface. The steady-state velocity �eld derived from this model
is then utilized for the advection of chemical components in a transport model. Many relevant
physical phenomena concerningmass transport such as molecular di�usion, mechanical dispersion,
adsorption, can be conveniently incorporated in this model.

The mathematical theory and analysis of transport in a coupled Darcy-Stokes �ow is well
developed and a number of stable, convergent numerical methods have been proposed. These
include �nite volume (FV), mixed �nite element (MFE) or more advanced, locally conservative
discontinuous Galerkin (DG) schemes, see [87–94] and references therein. These schemes require

This chapter is based on the article “Amultigrid multilevel Monte Carlo method for transport in the Darcy-Stokes system”,
published in Journal of Computational Physics, 371:382-408 (2018) [25].
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the knowledge of physical quantities like �uid viscosity, permeabilities and experimentallymeasured
BJS interface parameters for approximating the Darcy-Stokes �ow. Furthermore, the chemical
transport equation also requires input such as initial and in�ow boundary conditions. In many
cases, complete information of these physical quantities is not available and they may be modeled
in a probabilistic framework. For instance, it is well known that the permeability �eld can be
modeled as a lognormal random �eld [18–20]. Once these uncertainties are incorporated in the
mathematical models, the goal is to obtain the statistics of certain quantities of interest, for example,
the mean spatial concentration of contaminants in an aquifer after a certain interval from the time
of discharge.

The purpose of this chapter is to describe in a systematic manner a numerical strategy to design
an e�cient multilevel Monte Carlo estimator for UQ of stochastic transport in the Darcy-Stokes
system. An e�cient MLMC estimator requires careful consideration of the numerical techniques
for the approximation of the QoI. The chapter is organized in the following way:

• In Section 5.2, we describe the stochastic transport in the Darcy-Stokes �ow. The mixed
formulation of the Darcy equation is used that is coupled with the Stokes �ow using three
interface conditions. The stochastic extension of the problem is obtained by modeling the
permeability as a lognormal random �eld. The spatial covariance of the random �eld is
derived from the parameterized Matérn function de�ned in (3.7).

• In Section 5.3, the Finite Volume (FV) discretization of the Darcy-Stokes �ow on a staggered
grid is described. A special discretization along the interface is proposed taking into account
the Beaver-Joseph-Sa�mann interface condition that depends on the random permeability
along the interface and a speci�c parameter. The optimal choice for the spatio-temporal
discretization of the transport equation is based on the regularity of the Darcy-Stokes solution.
Typically, the error in the FV approximation of the velocity �eld depends on the spatial
regularity of the permeability �eld and also on the smoothness of boundary conditions along
the two domains. Thus, the discretization scheme for the transport equation should be
related to the accuracy of the velocity approximation. Using higher-order schemes for low
regularity problems may lead to an expensive MLMC estimator without any improvement in
the numerical accuracy. We also show that, for advection-dominated transport with sharp
gradients and discontinuities, low-order schemes are very di�usive and are less suited for
MLMC applications.

• Amonolithic multigrid solver for the Darcy-Stokes problem based on an Uzawa smoother [95]
is proposed in Section 5.4. This smoother employs an equation-wise decoupled relaxation for
the pressure and velocity unknowns. For the velocity, a symmetric Gauss-Seidel iteration is
employed whereas for the pressure a Richardson iteration is applied. The Richardson iteration
takes into account local �uctuations in the permeability �eld to derive the optimal relaxation
parameter. The multigrid algorithm is based on cell-centered permeability coe�cients and
direct coarse-grid discretization based on cell-centered averaging. The proposed solver is
robust and also works well on very coarse grids. We generalize this multigrid method to multi-
block problems by the grid partitioning technique [14]. To incorporate the coarse time-step
in the MLMC hierarchy, an implicit time stepping is desired for the contaminant transport
equation. We consider an Alternating Direction Implicit (ADI) based solver for the discrete
transport equation which breaks the problem into two 1D problems, greatly reducing the cost
of time-stepping.

• Section 5.5 is devoted to numerical experiments performed on two test problems: a 2-block
problem with no-slip interface condition and a more realistic 4-block case with the BJS
interface condition. We thoroughly test the multigrid method with respect to di�erent Matérn
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parameters to identify the optimal cycling strategy. Finally, we combine these components to
obtain the solution of the stochastic transport problem using MLMC estimator and compare
the asymptotic cost with the standard Monte Carlo method.

5.2. Stochastic transport in Darcy-Stokes system
We consider the transport equation de�ned in the bounded domainD ⊂ ℝ2, with boundary )D and
in a �nite time intervalT = (0, T], for T <∞. The transport equation coupled with the steady-state
Darcy-Stokes �ow onD, is subdivided into a porous mediumDd ⊂ ℝ2, where the �ow is described
by Darcy’s law and the free-�ow regionDs ⊂ ℝ2, governed by the Stokes equations with boundaries
)Dd and )Ds, respectively. The internal interface is de�ned as Γds = )Dd ⋂

)Ds. Furthermore, we
denote by ! an event in the probability space (Ω,F,ℙ), where Ω is the sample space with �-�eld
F and probability measure ℙ. Our description of the stochastic �ow model follows from [96–98]
where the deterministic counterpart of this problem is considered.

Γds

D

Ds

Dd
?n?ns

6nd
-�

Figure 5.1: Geometry of the Darcy-Stokes problem coupled with the transport equation. Subdivision of the domainD
into a free-�ow subregionDs and a porous medium subdomainDd, by an internal interface Γds.

Porous medium description. The steady-state single-phase �ow in a porous medium can be
modeled by Darcy’s law and the incompressibility condition

�k−1ud + ∇pd = 0 in Dd × Ω, (5.1)
∇ ⋅ ud = fd in Dd × Ω. (5.2)

The �uid pressure is represented by pd and the velocity vector ud = (ud, vd) denotes the
horizontal and vertical components. The �uid viscosity is denoted by the positive constant � and k
is the spatially variable random permeability modeled as a lognormal random �eld, see Section
3.2. The known source (sink) term is indicated by fd ∈ L2(Dd), where L2(Dd) is the space of
square-integrable functions inDd.

We divide the boundary )Dd∖Γds into two disjoint sets, )Dd
D and )Dd

N , where deterministic
Dirichlet and Neumann boundary conditions are prescribed,

pd = gdD on )Dd
D, (5.3)

ud ⋅ n = gdN on )Dd
N , (5.4)

respectively, with n the outward normal to the boundary )Dd
N and gdD ∈ L2()Dd

D), g
d
N ∈ L2()Dd

N).
Wewill operate under the assumption that the solid framework is rigid and there is no interaction

between the �uid and the solid matrix of the porous medium.
Free-�ow description. We consider a creeping, steady-state �ow connected to the porous

�ow regime. We assume a viscous, incompressible Newtonian �uid �ow which can be modeled by
the Stokes equations, consisting of the momentum and continuity equations

− ∇ ⋅ �s = f s in Ds × Ω, (5.5)
∇ ⋅ us = 0 in Ds × Ω, (5.6)
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respectively, with us = (us, vs) as the �uid velocity components and f s = (fs1, f
s
2) ∈ L2(Ds)2 is the

force. The �uid stress tensor �s is de�ned by

�s = −psI + 2�R(us), (5.7)

R ∶= 1
2(∇u

s + (∇us)T), (5.8)

where ps denotes the �uid pressure and R is the strain tensor. In 2D, the components of the stress
tensor (5.7) are given by

�s ∶= [
�sxx �sxy
�syx �syy

] , (5.9)

and they are related to the primitive variables via

�sxx = −ps + 2�)u
s

)x
, (5.10)

�sxy = �syx = � ()u
s

)y
+ )vs

)x
) , (5.11)

�syy = −ps + 2�)v
s

)y
. (5.12)

The exterior boundary )Ds∖Γds is partitioned into two disjoint sets, )Ds
D and )Ds

N , and the
free-�ow model is completed by imposing the following boundary conditions

us = gsD on )Ds
D, (5.13)

�s ⋅ n = gsN on )Ds
N , (5.14)

where n is the outward normal to the boundary )Ds
N and gsD ∈ L2()Ds

D)
2, gsN ∈ L2()Ds

N)
2.

Interface conditions. The coupling between the two problems is attained by imposing three
interface conditions for mass conservation, normal stress balance and the third condition relating
the slip velocity to the shear stress along Γds

us ⋅ ns = ud ⋅ ns on Γds × Ω, (5.15)
−ns ⋅ �s ⋅ ns = pd on Γds × Ω, (5.16)

us ⋅ � + (

√
k

�BJ
) � ⋅ �s ⋅ ns = 0 on Γds × Ω, (5.17)

respectively. We denote by � and ns the unit tangential and normal vectors to the interface Γds,
respectively. The third interface condition (5.17) was originally derived by Beaver and Joseph [85]
on the basis of experimentation and dimensional analysis, and has been mathematically proven by
Sa�mann [86]. It is often referred to as the Beaver-Joseph-Sa�mann (BJS) condition. The literature
on BJS is growing rapidly as it is well able to represent the physics along the interface of viscous
�uid �ow and a porous media, for more details see [92, 99, 100]. Note that friction constant

√
k∕�BJ

depends on the permeability along the interface and is thus here a random variable. Parameter
�BJ > 0 is a dimensionless quantity measured experimentally and can also be prone to uncertainty.

Alternatively, one obtains a no-slip interface condition by neglecting the second term from (5.17)

us ⋅ � = 0 on Γds × Ω. (5.18)

Transport model. The generic single-component transport equation with random initial data
gives us the following equation:

�)c
)t

+ ∇ ⋅ (cu − D∇c) = �ft in D ×T × Ω, (5.19)

c = c0 in D × Ω, t = 0. (5.20)



5.3. Finite volume discretization 67

where c denotes the concentration of the chemical component, typically expressed in terms of
moles per unit volume; � ∈ (0, 1] is the known porosity of the medium while ft ∈ L2(D) is a
net volumetric source for c. The initial concentration c0 ∶= c0(x, !) ∈ L2(D) corresponds to a
random �eld. The steady-state velocity �eld u = us ∪ ud is derived from the solution of the coupled
Darcy-Stokes problem. In the Darcy domain, the hydrodynamical dispersion is represented by
the tensor �eld D accounting for the molecular di�usion and mechanical dispersion. Molecular
di�usion, which takes place due to a concentration gradient, is more signi�cant compared to the
mechanical dispersion resulting from micro-scale variations in the velocity �eld. In this chapter,
we consider a di�usion tensor as de�ned in [101, 102] for an isotropic porous media with tensor
components :

Dxx = DL
u2

|u|
+ DT

v2

|u|
+ D∗, (5.21)

Dyy = DL
v2

|u|
+ DT

u2

|u|
+ D∗, (5.22)

Dxy = Dyx = (DL − DT)
uv
|u|

. (5.23)

where DL, DT > 0 are longitudinal and transverse dispersivity, respectively, and D∗ > 0 is the
e�ective molecular di�usion. In the Stokes domain, the dispersion tensor is usually taken to be
isotropic, i.e. D = DI.

The transport model is completed by applying a Cauchy boundary condition at the in�ow
boundary and a non-dispersive mass �ux condition at out�ow boundaries, formally expressed as

(cu − D∇c) ⋅ n = (cinu) ⋅ n )Din ×T, (5.24)
D∇c ⋅ n = 0 )Dout ×T, (5.25)

respectively. The in�ow boundary is de�ned as )Din ∶= {x ∈ )D ∶ u ⋅ n < 0} and the out�ow
boundary as )Dout ∶= )D∖)Din.

For ease of presentation, we consider a simpli�ed chemical transport model ignoring the
adsorption phenomena and also assume that the injection of the chemical components does not
have any e�ect on the steady-state Darcy-Stokes �ow �eld.

5.3. Finite volume discretization
For the spatial discretizations, we employ the �nite volume scheme on a staggered grid for the
Darcy-Stokes system. The domain is subdivided into square blocks of size ℎ×ℎ conforming with )D
and Γds. The locations and indexing of unknowns u, v and p, c along with their respective control
volumesD1

ℎ,D
2
ℎ andD

3
ℎ are shown in �gures 5.2 - 5.3.

As the same variables describe di�erent physics in the two subdomains, discretization along
the interface becomes involved. A large numerical error or even a reduction in the order of grid
convergence may be encountered if interface conditions are not handled properly. A staggered
arrangement of the unknowns greatly simpli�es the discretization along the interface and has been
proven to be e�ective in reducing numerical error along the interface [98]. Moreover, a staggered
grid is also a convenient way of avoiding spurious oscillations in the numerical solution [103] and
obtaining conservation of mass throughout the system, also on a relatively coarse grid.

To make this chapter self-contained, we brie�y discuss the spatio-temporal discretization of the
coupled problem. For the Darcy-Stokes approximation, we will closely follow the description from
[98].
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Figure 5.2: Staggered grid location of unknown and corresponding control volumes.
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Figure 5.3: Control volumesD1
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ℎ(i, j + 1∕2) (middle) andD3
ℎ(i, j) (right) for the primary unknowns

u , v and p, c respectively, together with the corresponding indexing for each variable.

5.3.1 Discretization of Darcy-Stokes �ow

Discretization of Darcy equation

The discrete equations for velocities and pressure in the mixed formulation are easy to determine.
The discretization for the horizontal velocity is obtained by integrating the Darcy equation (5.1) in
the control volumeD1

ℎ(i + 1∕2, j)

�k−1
i+ 1

2
,j
ud
i+ 1

2
,j
+
pdi+1,j − pdi,j

ℎ
= 0. (5.26)

Similarly, the discrete equations for the vertical velocities are obtained by integrating the Darcy
equation in the control volumeD2

ℎ(i, j+1∕2). For the pressure, we integrate the continuity equation
(5.2) in the volumeD3

ℎ(i, j)

ud
i+ 1

2
,j
− ud

i− 1
2
,j

ℎ
+
vd
i,j+ 1

2

− vd
i,j− 1

2

ℎ
= fdi,j. (5.27)

For boundaries where the pressure is prescribed see Eq. (5.3), we integrate the Darcy equation over
half volumes. At boundaries for which the velocities are known, (5.4) is directly applied.
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Discretization of Stokes equation
Integrating the �rst component of the momentum equation (5.5) in the control volumesD2

ℎ(i, j +
1∕2), gives

−
⎛
⎜
⎝

(�xx)i+1,j − (�xx)i,j
ℎ

+
(�xy)i+ 1

2
,j+ 1

2
− (�xy)i+ 1

2
,j− 1

2

ℎ
⎞
⎟
⎠
= (fs1)i+ 1

2
,j. (5.28)

The components in the above equation are approximated using (5.10) as

(�xx)i+1,j = −psi+1,j + 2�
us
i+ 3

2
,j
− us

i+ 1
2
,j

ℎ
, (5.29)

(�xx)i,j = −psi,j + 2�
us
i+ 1

2
,j
− us

i− 1
2
,j

ℎ
, (5.30)

(�xy)i+ 1
2
,j+ 1

2
= �

⎛
⎜
⎜
⎝

us
i+ 1

2
,j+1

− us
i+ 1

2
,j

ℎ
+
vs
i+1,j+ 1

2

− vs
i,j+ 1

2

ℎ

⎞
⎟
⎟
⎠

, (5.31)

(�xy)i+ 1
2
,j− 1

2
= �

⎛
⎜
⎜
⎝

us
i+ 1

2
,j
− us

i+ 1
2
,j−1

ℎ
+
vs
i+1,j− 1

2

− vs
i,j− 1

2

ℎ

⎞
⎟
⎟
⎠

. (5.32)

Using these approximations in (5.28), we �nally get

−
2�
ℎ2
(us

i+ 3
2
,j
− 2us

i+ 1
2
,j
+ us

i− 1
2
,j
) −

�
ℎ2
(us

i+ 1
2
,j+1

− 2us
i+ 1

2
,j
+ us

i+ 1
2
,j−1

)

−
�
ℎ2
(vs
i+1,j+ 1

2

− vs
i,j+ 1

2

− vs
i+1,j− 1

2

+ vs
i,j− 1

2

) + 1
ℎ
(psi+1,j − psi,j) = (fs1)i+ 1

2
,j. (5.33)

Similarly, the second component of the momentum equation is integrated in the volumeD2
ℎ(i, j +

1∕2). The continuity equation (5.6) is as given in (5.37) over the volumeD3
ℎ(i, j).

The Dirichlet boundary condition (5.13) can be directly utilized for the approximation of the
stress component in (5.29). If the stress components are prescribed along the boundary (5.14) then
the Stokes equations are integrated over half volumes along that boundary.

Discretization of interface equations
An appropriate interface discretization is crucial for achieving a strong numerical coupling between
two sub-solutions. As the vertical velocities lie along the interface, we integrate the Stokes equation
for vs over the half volume indicated in red in Figure 5.4,

−
⎛
⎜
⎝

(�xy)i+ 1
2
,j+ 1

2
− (�xy)i− 1

2
,j+ 1

2

ℎ
+
(�yy)i,j+1 − (�yy)i,j+ 1

2

ℎ∕2

⎞
⎟
⎠
= (fs2)i,j+ 1

2
. (5.34)

Now, we describe the computation of the stress components in the above equation. To approximate
these terms, we will utilize the interface conditions (5.15)-(5.17).

For the normal stress component (�yy)i,j+1, we use

(�yy)i,j+1 = −psi,j+1 + 2�
vs
i,j+ 3

2

− vs
i,j+ 1

2

ℎ
. (5.35)
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Next, the normal stress (�yy)i,j+1∕2 at the interface is derived by equilibrating the normal stress with
the pressure at the interface

(�yy)i,j+ 1
2
= pd

i,j+ 1
2

. (5.36)

Pressure pd
i,j+1∕2

at the interface is not known and is obtained by integrating the Darcy equation over
the half volume indicated by the gray box in Figure 5.4, as

�k−1
i,j+ 1

2

vd
i,j+ 1

2

+
pd
i,j+ 1

2

− pdi,j

ℎ∕2
= 0. (5.37)

Equation (5.36) can then be rewritten as

(�yy)i,j+ 1
2
= −pdi,j +

�ℎ
2ki,j+ 1

2

vd
i,j+ 1

2

. (5.38)

The stress component (�xy)i+ 1
2
,j+ 1

2
is approximated as

(�xy)i+ 1
2
,j+ 1

2
= �

⎛
⎜
⎜
⎝

us
i+ 1

2
,j+1

− us
i+ 1

2
,j+ 1

2

ℎ∕2
+
vs
i+1,j+ 1

2

− vs
i,j− 1

2

ℎ

⎞
⎟
⎟
⎠

. (5.39)

Here, the horizontal component of the velocity at the interface usi+1∕2,j+1∕2 is derived using the BJS
condition (5.17). Therefore,

⎛
⎜
⎜
⎝

√
ki,j+ 1

2

�BJ

⎞
⎟
⎟
⎠

−1

us
i+ 1

2
,j+ 1

2

− �
⎛
⎜
⎜
⎝

us
i+ 1

2
,j+1

− us
i+ 1

2
,j+ 1

2

ℎ∕2
+
vs
i+1,j+ 1

2

− vs
i,j+ 1

2

ℎ

⎞
⎟
⎟
⎠

= 0. (5.40)

Using (5.39) and (5.40), one obtains:

(�xy)i+ 1
2
,j+ 1

2
=
2�m̃i,j+ 1

2

ℎ
us
i+ 1

2
,j+1

+ �m̃i,j+ 1
2

vs
i+1,j+ 1

2

− vs
i,j+ 1

2

ℎ
, (5.41)

where

m̃i,j+ 1
2
=

⎛
⎜
⎜
⎝

1 −
2�

√
ki,j+ 1

2

ℎ�BJ + 2�
√
ki,j+ 1

2

⎞
⎟
⎟
⎠

.

The �nal component (�xy)i− 1
2
,j+ 1

2
is computed in a similar manner. Using all stress components

derived above, we rewrite (5.34) as

−
2�m̃i,j+ 1

2

ℎ2
(us

i+ 1
2
,j+1

− us
i− 1

2
,j+1

) −
�m̃i,j+ 1

2

ℎ2
(vs
i+1,j+ 1

2

− 2vs
i,j+ 1

2

+ vs
i−1,j+ 1

2

)

+ 2
ℎ
(psi,j+1 − pdi,j) −

4�
ℎ2
(vs
i,j+ 3

2

− vs
i,j+ 1

2

) +
vs
i,j+ 1

2

ki,j+ 1
2

= (fs2)i,j+ 1
2
. (5.42)
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Figure 5.4: Locations of unknowns required for discretization along the interface.

5.3.2 Discretization of transport equation

Thenumerical scheme to approximate the advection-di�usion part of the transport equation depends
on the type of problem. In the case of contaminant transport in the Darcy-Stokes system, convection
is the dominant cause for the �ow movement [101, 102]. An important requirement for designing
an e�cient MLMC estimator is using numerical schemes that are stable on coarse meshes. For
example, for time-stepping an implicit method is favourable due to unconditional stability with
respect to time-step size. Similarly, an upwind based discretization can give stable solutions on
relatively coarse grids compared to the central di�erencing based methods. We brie�y discuss the
implementation details of the spatio-temporal discretization of the transport equation.

In each of the control volumesD3
ℎ(i, j) (see Figure 5.3), the integral formulation of (5.19) takes

the form
)
)t

∫

D3
ℎ(i,j)

�cdx + ∫

D3
ℎ(i,j)

∇ ⋅ (cu − D∇c)dx = ∫

D3
ℎ(i,j)

�ftdx. (5.43)

The velocity �eld u is assumed to be exact but for the current problem this is derived from the
solution of coupled Darcy-Stokes system. Also, for simplicity, we will assume Dxy = Dyx = 0
resulting in a diagonal dispersion tensor D.

5.3.3 Spatial discretization

Using the Gauss divergence theorem, the second integral in (5.43) is reformulated as a boundary
integral for the boundary )D3

ℎ(i, j) =
⋃4

�=1 )D
3
ℎ(i, j, �), such that

∫

D3
ℎ(i,j)

∇ ⋅ (cu − D∇c)dx =
4∑

�=1
∫

)D3
ℎ(i,j,�)

(cu − D∇c) ⋅ n�dS�, (5.44)

where n� denotes the unit normal vector to the corresponding face. Flow in the Stokes domain
is well-behaved and the central di�erencing scheme to evaluate the �uxes in (5.44) will result
in a second-order accurate solution locally on very �ne grids. However, in the Darcy domain, a
permeability �eld with very small correlation lengths may exhibit a highly �uctuating �ow and may
give rise to non-physical oscillations in the solution even on �ner meshes. The quality of solution
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will depend on the cell Péclet number which is de�ned as

Peℎ(i, j) ∶= min
⎧

⎨
⎩

|||||||
u
Dxx

|||||||i−1
2
,j
,
|||||||
u
Dxx

|||||||i+1
2
,j
,
||||||||

v
Dyy

||||||||i,j−1
2

,
||||||||

v
Dyy

||||||||i,j+1
2

⎫

⎬
⎭

ℎ. (5.45)

To avoid oscillations it is desired to have Peℎ(i, j) ≤ 2 in each cell. For the current problem, the
velocities uℎ, vℎ are random variables and it is di�cult to bound the cell Péclet number, especially
on coarser grids. A �rst-order Upwind Di�erencing Scheme (UDS) for the approximation of the
convective �uxes seems a convenient choice. The main disadvantage of the �rst-order upwind
scheme is however excessive numerical di�usion that smears out sharp features in the solution.
Therefore, to prevent this we use a Quadratic Upwind Interpolation for Convective Kinematics
(QUICK) [104] scheme for the approximation of the convective �uxes. For the di�usion part we
will use the central di�erencing scheme. This scheme is less di�usive compared to the �rst-order
solves and is also highly stable. Furthermore, the QUICK scheme is formally third-order accurate
in space thus can capture the additional smoothness in the Stokes region. The QUICK scheme is
however, not monotone, which means that �ux limiters will be employed for problems with sharp
gradients. Many versions of the �ux-limited QUICK method exist in the literature [105, 106] mostly
based on the deferred correction (or sometimes referred to as defect correction) framework where
the �rst-order scheme is improved using a higher-order correction. In this work, we consider the
implicit version for the same. The �ux for the face “BC” (see Figure 5.5) is de�ned as follows

⟨F
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2
,j
⟩UDS) , (5.46)

where ⟨Fi+1∕2,j⟩UDS and ⟨Fi+1∕2,j⟩QUICK are face-averaged convective �uxes computed using the
UDS and QUICK scheme, respectively, and are computed as
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and
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The limiter function is Ψ(ri+1∕2,j), where ri+1∕2,j is the measure of the local smoothness. This is
computed by taking the ratio of successive gradients along the stream-wise direction to decide the
weights for the �rst-order and QUICK schemes, where
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Figure 5.5: Stencil for the QUICK scheme for purely convection problem.

The inverse of r̃ is used to �nd large denominators in (5.49). The choice of the limiter function Ψ
is somewhat arbitrary. We have numerically tested a number of classical TVD-limiter functions
(for e.g., see [107]) and they performed reasonably well. In the current application, where we will
encounter discontinuous boundary and initial conditions, the Koren limiter [108] with Ψ(r) ∶=
max[0,min(2r, (2 + r)∕3, 2)] was able to reconstruct the propagating sharp fronts. The gradients
can be computed using the solution from the previous time-step and then we modify the �uxes
using (5.46) to obtain the improved solution. Note that the staggered arrangement of variables for
the Darcy-Stokes �ow is very well suited here as the velocities at the cell faces are directly obtained
from the solution of discrete Darcy-Stokes �ow. The in�ow and out�ow boundary conditions
(5.24)-(5.25) are utilized to compute �uxes for control volumes that lie along the domain boundary.

5.3.4 Temporal discretization

For the temporal discretizations, many well-established methods are available in the literature.
In our application, �exibility in the time-step size is needed and therefore we prefer an implicit
time-stepping scheme. We can formally rewrite the transport equation (5.19) in a semi-discrete
form as

)cℎ
)t

+ℒℎcℎ = fℎ in Dℎ ×T × Ω, (5.50)

with ℒℎ denoting the spatial discretization operator. For ease of presentation, we have omitted
the porosity �(x) term in (5.50) by scaling ℒℎ by �i,j. With the time-step size ∆t > 0 and for any
given integer m ≥ 1, we de�ne the temporal grid points as tm ∶= m∆t and will denote by cmℎ
the approximation of c(⋅, tm). To solve (5.50), we propose to use an Alternating Direction Implicit
based solution method that decomposes the semi-discrete form (5.50) into two linear systems each
requiring inversion of a tridiagonal matrix for UDS or a pentadiagonal matrix for QUICK scheme.
The ADI solver uses two half time-steps. First, an intermediate quantity cm−1∕2 is generated by
performing an implicit Euler time-stepping along the x-coordinate and an explicit Euler along y-
direction. Using this intermediate quantity, the reverse is performed for the next half step. Motivated
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by the classical Peaceman-Rachford approach [109], one can express the ADI method as
(
Iℎ +

∆t
2
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ℎ

)
cm−1∕2ℎ = ∆t

2
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)
cm−1ℎ , (5.51)
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ℎ

)
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2
fmℎ +

(
Iℎ −

∆t
2
ℒx
ℎ

)
cm−1∕2ℎ , (5.52)

where Iℎ is an identity matrix, ℒy
ℎ and ℒ

x
ℎ are tridiagonal (pentadiagonal) matrices derived from

discretizations along x- and y-coordinate, respectively. There are many standard algorithms avail-
able for inverting tridiagonal or pentadiagonal matrices, for example, the Thomas algorithm can
e�ciently invert a tridiagonal matrix with only 8 �oating point operations per unknown. Further-
more, this ADI scheme is second-order accurate in time which can be easily veri�ed using Taylor’s
expansion.

5.4. Multigrid for Darcy-Stokes problem with lognormal di�usion
Multigrid methods are generally recognized as fast e�cient solution methods for a large class of
linear and nonlinear problems. We propose amonolithic multigrid algorithm to solve the coupled
Darcy-Stokes system with a heterogeneous stochastic permeability �eld. This multigrid algorithm
stems from the work done in [98], where a �xed permeability value was used throughout the Darcy
domain. We extend the method to the cases with highly heterogeneous permeability �elds. Solving
the Darcy �ow with highly �uctuating and discontinuous di�usion parameters is quite challenging.
In the context of geometric multigrid methods, basically two approaches exist, based on either the
cell-centered or the vertex-centered location of unknowns, see [14, 23, 54] and references therein.
The vertex-centered approach requires transfer operators that are dependent on the di�usion
parameter. Such multigrid implementations may be expensive as these transfer operators need to
be modi�ed on all grid levels. Due to this, the cell-centered version is somewhat more bene�cial as
it is possible to achieve a decent multigrid convergence using constant transfer operators [23, 54].
We will demonstrate that the cell-centered approach can be extended to the coupled Darcy-Stokes
system.

We would also like to point out that another common alternative for solving the linear systems
derived from a coupled model is the Domain Decomposition Method (DDM). In a DDM, one
splits the main boundary value problem into smaller boundary value subproblems. Typically, the
boundary information between subproblems is exchanged during every iteration until the converged
solution is reached. Contrary to this, monolithic solution approaches treat the coupled system as a
single problem. An important aspect of this approach is that the coupling variables between the
subproblems are treated simultaneously, thus after every iteration, the three �elds (u, v, p)Tare
updated throughout the domain. The monolithic approach has proven to be very e�cient when the
subproblems are strongly coupled [110, 111].

5.4.1 Uzawa smoother for saddle-point system

Discretization of each subproblem, the mixed form of Darcy �ow and the Stokes equations, yields a
saddle-point system. This saddle-point structure can be maintained for the coupled Darcy-Stokes
system by ordering the velocity unknowns together for both subproblems followed by the pressure
unknowns. This results in the following linear system

[
Aℎ ℬT

ℎ
ℬℎ 0 ] [

uℎ
pℎ

] = [
gℎ
fℎ

] , (5.53)

where uℎ = (udℎ,u
s
ℎ)
T, pℎ = (pdℎ , p

s
ℎ)
T, gℎ = (0, f sℎ)

T and fℎ = (fd, 0)T. For both subproblems, ℬT
ℎ

and ℬℎ represent the discrete gradient and minus discrete divergence operators, respectively, and



5.4. Multigrid for Darcy-Stokes problem with lognormal di�usion 75

Aℎ is the discrete representation of either the Laplacian operator −�∆ for the Stokes equations, or
�k−1ℎ Iℎ for the Darcy equation.

The multigrid method proposed here uses a special class of relaxation methods called the Uzawa
smoothers [95]. The Uzawa smoother is basically an equation-wise, decoupled smoother where the
velocity components in the Darcy and Stokes domains are �rst updated, after which the pressure
�eld is updated. In the following, we provide the details of this smoother.

Consider a splitting of the matrix coe�cients of the saddle point system (5.53) as

[
Aℎ ℬT

ℎ
ℬℎ 0 ] = [

ℳℎ 0
ℬℎ −�−1ℎ Iℎ

] − [
ℳℎ −Aℎ −ℬT

ℎ
0 −�−1ℎ Iℎ

] , (5.54)

whereℳℎ is a smoother for the operatorAℎ and �ℎ is a positive parameter. For a given approximation
of the solution (uk−1ℎ , pk−1ℎ )T, the relaxed approximation (ukℎ, p

k
ℎ)
T, can be de�ned in the following

way:

[
ℳℎ 0
ℬℎ −�−1ℎ Iℎ

] [
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pkℎ

] = [
ℳℎ −Aℎ −ℬT

ℎ
0 −�−1ℎ Iℎ

] [
uk−1ℎ
pk−1ℎ

] + [
gℎ
fℎ

] . (5.55)

In terms of velocity and pressure variables, the relaxation step can be written down as:

ukℎ = uk−1ℎ +ℳ−1
ℎ

(
gℎ −Aℎuk−1ℎ −ℬT

ℎp
k−1
ℎ

)
, (5.56)

pkℎ = pk−1ℎ + �ℎ(ℬℎukℎ − fℎ), (5.57)

respectively. In [97, 98], the choice ofℳℎ was based on a symmetric Gauss-Seidel iteration for
(5.56) that gives

ℳℎ = (Λℎ + Lℎ)Λ−1ℎ (Λℎ +Uℎ), (5.58)

where Λℎ,Lℎ and Uℎ are the diagonal, strictly lower and strictly upper parts ofAℎ, respectively. A
symmetric Gauss-Seidel iteration comprises a forward and a backward sweep for velocity in the
entire domain.

Next, for smoothing of the pressure variable, a Richardson iteration (5.57) with appropriate
relaxation parameters is applied. For any control volumeD3

ℎ(i, j), we use the following relaxation
parameters

�ℎ(i, j) =
⎧

⎨
⎩

� in Ds,
�ℎ2

5kℎ(i, j)
in Dd, (5.59)

where � is the �uid viscosity and kℎ(i, j) is derived by local averaging using a half-weighting (HW)
operator

kℎ(i, j) =
1
8[4ki,j + ki−1,j + ki+1,j + ki,j−1 + ki,j+1] (5.60)

This is a generalization of the optimal relaxation parameters that were derived using a Local Fourier
Analysis (LFA) in [97, 98]. Usually, an LFA is performed on the multigrid components obtained
by freezing the coe�cient �eld. In the case of a variable coe�cient �eld, �ℎ needs to be modi�ed
locally. In our experience, using the weighted average (5.60) resulted in a robust convergence rate
that we will later demonstrate numerically.

Remark 5.4.1 We would like to mention that obtaining an analytic bound on the smoothing factor of
the Uzawa smoother for the stochastic Darcy-Stokes �ow is rather involved.
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5.4.2 Multigrid algorithmwith grid partitioning

To cover realistic problems, we propose a multi-block multigrid method which is based on the grid
partitioning technique [14]. A multi-block algorithm requires communication between the Stokes
and Darcy domains during the multigrid iteration. In our case, the stencils do not use variables
located more than one cell away from the current control volume, therefore padding the Stokes
block with one extra row to store the variables from the Darcy block is su�cient to achieve the data
exchange.

The multigrid hierarchy is based on uniform coarsening, i.e. the cell-width is doubled in each
coarsening step. A two-block two-grid method with variable permeability �eld can be described by
the following steps:
1. Fine grid pre-smoothing. Relax the velocities in two blocks using the symmetric Gauss-Seidel
smoother. The vertical velocity from the Stokes block along the interface is transferred to the
Darcy block after which the pressure is updated by performing Richardson iterations with optimal
relaxation parameters given by (5.59). The updated Darcy pressure unknowns are then transferred
to the Stokes overlap control volumes.
2. Defect computation and restriction. The defect (residual) is computed for each variable.
Next, the residuals from the Darcy block are transferred to the Stokes overlap region. We use �xed
restriction operators to transfer residuals to the coarse grid. For the velocities, we use a six-point
stencil whereas for pressures a four-point restriction is applied. These stencils are denoted by
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, (5.61)

respectively.
3. Coarse grid relaxation. The coarse grid defect equation is solved exactly by a directmethod, e.g.,
Gaussian elimination. Alternatively, one can perform multiple smoothing iterations as described in
step 1 to get an approximate solution on the coarse grid. We use direct discretization to obtain the
discrete system on the coarse grids and the coarse grid representation of permeability k2ℎ is also
obtained by using the restriction operator [R2ℎℎ ]

p given in (5.61). Finally, vertical Stokes velocity
unknowns at the interface are transferred to the Darcy block.
4. Coarse grid correction. The error is interpolated to the �ne grid, where it is used to correct the
�ne grid solution. The prolongation operators are chosen as the adjoint of the restriction operators.
5. Fine grid post-smoothing. The interpolation process introduces new errors in the solution
that need to be eliminated. For this, several post-smoothing steps are performed with the same
procedure as used in pre-smoothing given in step 1.

Although the above multi-block algorithm resembles the domain decomposition method, the
main di�erence is that the communication between the two domains is performed on all multigrid
levels and not just on the �nest and coarsest grids. This makes the multi-block method typically
more e�cient than the traditional DDM.

The two-block method can be easily extended to more than two blocks that may have more
interfaces without any deterioration of the multigrid convergence rate. Furthermore, this two-
grid routine is easily extended to V- and W-cycling strategies. Numerical tests showed that for
this problem, the W(2,2)-cycle exhibits a fast convergence rate regardless of the roughness of the
coe�cient �elds.

5.5. Numerical experiments
We present numerical experiments for the multigrid solver and the MLMC method separately.
First, we study the accuracy of the FV scheme and the convergence and robustness of the solver
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with respect to the Matérn parameters using two test problems: 1) A 2-block case with the no-slip
interface condition and simple boundary conditions for the Stokes and the Darcy subproblems,
and 2) A realistic 4-block problem with the BJS interface condition and discontinuous boundary
conditions. Here, we will also consider a non-isotropic covariance model to generate randomly
layered permeability �elds. Secondly, we will compute the statistical solution of the transport in
Darcy-Stokes �ow using the MLMCmethod. Furthermore, we compare the cost and accuracy of
the standard MC method with the MLMCmethod.

5.5.1 Multigrid convergence

No-slip interface condition on 2-blocks
For the �rst test case, the computational domain is taken to be D ∪ )D = [0, 1] × [0, 2], where
Dd = (0, 1) × (0, 1) andDs = (0, 1) × (1, 2) and the interface Γds = [0, 1] × {1}. For simplicity, we
consider the source terms in both domains to be zero. Figure 5.6 explains the geometry of this
problem along with the boundary conditions. The in�ow in the Stokes domain is described by a
parabolic function gsD = (y − 1)(2 − y) and tangential �ow at the top and the right boundary is
applied. In the Darcy region, we set tangential �ow at the left and right boundaries and set p = 0 at
the bottom boundary to mimic the e�ect of a gravity force. With this con�guration of boundary
conditions, we will have out�ow only through the bottom Darcy boundary, i.e., ΓdD ∈ [0, 1] × {0}.

0

1

2

1

us = vs = 0

Γds

ud = 0 ud = 0
vd = 0

us = 0
vs = 0

� = 10−6

us = gsD(y)
vs = 0
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y

x

Dd

k(⋅, !)

Ds

Figure 5.6: Geometry of the 2-block problem with no-slip interface condition. Subdivision of the domain into a
free-�ow domainDs and a porous �ow domainDd, by the interface Γds.

The lognormal random �eld k is generated on a cell-centered grid and the permeability values
at the face-centers are obtained using the harmonic mean of the two adjacent cell-centers, see [24]
for details.

In Table 5.1, four di�erent Matérn parameters of increasing order of complexity in terms of
solvability of the linear system are presented, see also Chapter 3. Examples of random �elds
generated with these Matérn parameter sets were already presented in Figure 3.6. Note that for the
"hardest" parameter set Φ4, jumps up to 10 order of magnitude can be encountered.

As the performance of multigrid will depend on the particular realization of the random perme-
ability �eld, we take a statistical approach to study the convergence and robustness of the multigrid
algorithm. For a �xed Matérn parameter set Φ and ℎ, we generateNMG samples of the random �eld
and record the multigrid convergence factors {�i}

NMG
i=1 for each solve. The samples of convergence
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Table 5.1: Di�erent combinations of the Matérn reference parameters Φ = (�c, �c, �2c ) with increasing complexity from
left to right.

Φ1 Φ2 Φ3 Φ4
(1.5,0.3,1) (0.5,0.3,1) (1.5,0.1,3) (0.5,0.1,3)

factor �i for the i-th realization of the random �eld are de�ned as

�i ∶= {
||res�i ||∞
||res0||∞

}

1
�i , for i = 1, 2, ..., NMG , (5.62)

where ||res0||∞ is the in�nity-norm of the residual from an initial solution and ||res�i ||∞ is the
residual after �i iterations of the multigrid cycle. We use these to compute the mean multigrid
convergence as

⟨�⟩ = 1
NMG

NMG∑

i=1
�i. (5.63)

We compute the mean and variance of the convergence factors for the V- andW-cycles with di�erent
combinations of the number of pre- and post-smoothing steps. Similarly, the average number of
multigrid iterations ⟨�⟩ is computed. We choose random numbers as the initial solution, and the
stopping criterion is reached when the �i-th iteration satis�es

||res�i ||∞
||res0||∞

≤ "MG , (5.64)

with the tolerance "MG set to 10−10. The relaxation parameters for the Richardson iteration � are
taken as described in (5.59). In the Stokes domain �ℎ = � = 10−6 and in the Darcy domain, we take
spatially varying �ℎ(i, j) = �ℎ2∕5kℎ(i, j), where i, j are cell indices.

In tables 5.2 - 5.5, we list the average number of multigrid iterations ⟨�⟩ (rounded up to the
nearest integer) for di�erent combinations of W-cycles required to achieve the stopping criterion
on di�erent grids for NMG = 100. The V-cycle variants performed poorly for all Matérn parameters
and also divergence was observed in case of Φ4, hence they are not included in the tables. Also, we
omit results with other values of the �uid viscosity as it did not in�uence the convergence factors of
these cycles.

As expected, we see an increase in the number of iterations with respect to the complexity of
the random �eld. For all Φ, we see an improvement in the convergence rate with respect to the size
of the grid, stabilizing after a certain ℎ. The stabilization is encountered on a relatively coarse grid
(1∕ℎ = 32) for Φ1 and on a relatively �ne grid (1∕ℎ = 128) for Φ4. This happens because �ner grids
are better able to resolve the small-scale correlation structures in the permeability �eld.

We use the four-point restriction operator [R2ℎℎ ]
p from (5.61) to get the coarse grid representation

of the permeability �eld by which we derive the discretization operator. For a random �eld with
small correlation length �c and large variance �2c that produces highly �uctuating �elds, the coarse
grid representation may be very di�erent from the �nest grid version. This discrepancy further
increases as we go to more coarser levels. Therefore, it makes more sense to use a W-cycle which
by de�nition performs more smoothing steps on coarse and intermediate grids where multigrid
convergence may not be optimal.
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Table 5.2: Average multigrid iterations ⟨�⟩ for Φ1

ℎ W(1,1) W(1,2) W(2,2)

1/8 36 21 16
1/16 34 20 15
1/32 35 20 15
1/64 34 19 14
1/128 33 19 14
1/256 33 19 14

Table 5.3: Average multigrid iterations ⟨�⟩ for Φ2

ℎ W(1,1) W(1,2) W(2,2)

1/8 35 23 17
1/16 34 21 16
1/32 35 21 16
1/64 35 21 15
1/128 35 20 15
1/256 35 20 15

Table 5.4: Average multigrid iterations ⟨�⟩ for Φ3

ℎ W(1,1) W(1,2) W(2,2)

1/8 60 41 32
1/16 66 43 34
1/32 53 34 27
1/64 42 25 20
1/128 40 22 16
1/256 37 21 16

Table 5.5: Average multigrid iterations ⟨�⟩ for Φ4

ℎ W(1,1) W(1,2) W(2,2)

1/8 59 41 33
1/16 66 42 32
1/32 57 37 28
1/64 46 30 23
1/128 40 25 18
1/256 39 23 17

It is worthwhile to mention that forΦ1 andΦ2, we are able to achieve the same e�ciency as was
observed for constant permeability in [98], which required around 14 iterations to reduce residual
by 10 orders of magnitude independent of the mesh size. This is typically regarded as ℎ-independent
convergence of a multigrid algorithm. For Φ3 and Φ4, this e�ciency is achieved on relatively �ner
grids.
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Figure 5.7: Mean convergence rate ⟨q⟩ along with the standard deviation for W(2,2)-cycle when k is sampled on a
cell-centered grid (left) and staggered grid (right).

We wish to emphasize that the choice of sampling mesh for permeability �eld has a signi�cant
in�uence on the multigrid convergence. To study this, we also generate a permeability �eld on a
staggered mesh such that the cell faces have di�erent values from the cell-centers. This introduces
more variability within a control volume and slows down the multigrid convergence. The mean
convergence rate ⟨�⟩ alongwith the standard deviation forW(2,2)-cycles is presented in Figure 5.7 for
cell-centered (left) and staggered (right) grid-based sampling, respectively. Multigrid convergence
for a cell-centered based sampling performs well on very coarse grids and the average convergence
factors on �ner grids are in the range 0.1 − 0.2. Whereas for the staggered grid-based sampling,
we see a deterioration in the multigrid convergence, especially on coarser grids for parameters Φ3
and Φ4. As the MLMC estimator requires a relatively large number of samples on coarser grids,
a cell-centered based sampling grid for k may give rise to a signi�cant gain over the staggered
sampling approach. We also remark that the FV error convergence rate does not deteriorate when a
cell-centered approach is adopted which will be demonstrated later.

The most e�cient variant of the W-cycle is determined on the basis of the average CPU times
required to reach the stopping criterion. In Figure 5.8 we plot the CPU times for di�erent W-cycles
versus the grid size for the “hardest” parameter set Φ4. The W(2,2)-cycle was the fastest to achieve
the stopping criterion. A similar trend is also observed for the other Matérn parameters. We would
like to point out that the average CPU time for oneW(2,2)-cycle is about 0.65 seconds for a 256×512
grid. Formany engineering applications, however, residual reduction of about 3 orders of magnitude
may be su�cient and can be achieved in less than 8 iterations using the W(2,2)-cycle. Also, we
observe the O(ℎ−2) scaling of the computational cost from ℎ = 1∕128 onwards for all the three
variants of W-cycles. As the cost is proportional to the number of unknowns, we can conclude that
we have an optimalmultigrid solver for the coupled Darcy-Stokes problem, on staggeredmeshes. We
will use theW(2,2)-cycle to solve the Darcy-Stokes system for theMC samples. Next, we numerically
demonstrate the FV error convergence in the mean for the coupled Darcy-Stokes approximation.
In Figures 5.9, the relative errors in the horizontal and vertical components of the velocity for
Ds,Dd andD, respectively, are listed. These relative errors are computed using the Monte Carlo
method with a su�cient number of samples such that the sampling error is less than the FV bias.
In the Stokes region, a convergence close to second-order is observed for the horizontal velocity
component, however, for the vertical velocity component, we see a dependence on the smoothness
parameter of the Matérn function �c. This is due to the fact that for the no-slip boundary condition
us = 0 is imposed along the interface without any in�uence of the permeability �eld. On the other
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Figure 5.8: Comparison of average CPU time for W-cycle variants for Φ4. A similar trend is observed for other Matérn
parameters.

hand, the vertical velocity component at the interface is based on the discretization of the Darcy �ow
(5.26), thus the error in vs depends on the smoothness of the random permeability �eld. For the
BJS interface condition, the convergence of us will again depend on the smoothness of permeability
�eld, due to (5.40).

For the Darcy domain, the FV error decays with a rate equal to �c for both velocity components.
The global error also shows a similar trend as the dominating error is due to the approximation of
the Darcy subproblem. In general, the FV error increases with an increase in the variance parameter
�2c .

Beaver-Joseph-Sa�man interface condition on 4-blocks

Next, we test our method for a 4-block geometry with the BJS boundary condition at the Darcy-
Stokes interface. This type of geometry is sometimes utilized to model a cross-�ow �ltration process
[112]. The geometry and boundary constraints are depicted in Figure 5.10. Here, Ds represents
a channel divided into 3-blocks andDd represents a porous media forming an interface with the
second Stokes blockDs

2. We impose a constant in�ow velocity us = 0.1 at the left inlet boundary of
the channel. On the right, there is an exit of length 1∕6 with zero normal stress �xx = �xy = 0.

We also analyze the performance of the multigrid algorithm with grid partitioning (see Section
5.4.2) when extended to more than two blocks. For the 4-block test case, the algorithm can be
described in the following way. Given an initial approximation, we �rst update all variables on the
�rst subgridDs

1. Next, the updated boundary data fromDs
1 is communicated to the second block

Ds
2 and then all the interior points are updated. Similarly, the variables in blocksDs

3 andD
d are

updated. For each block, it is common to extend the computational mesh by one cell length along
the boundary between the two neighbouring blocks in order to store the updated data. Note that this
grid partitioning based multigrid is also highly parallelizable as all the blocks can be simultaneously
relaxed on separate processors.

To simulate layered porous media, we use a simpli�ed version of the Matérn model described
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Figure 5.9: Mean error convergence of horizontal (left column) and vertical (right column) velocity components for
parameter sets Φ1 − Φ4 in Stokes domainDs (top row), Darcy domainDd (middle row) and whole domainD (bottom

row).
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Figure 5.10: Geometry of the 4-block problem with BJS interface condition. Subdivision of the domainD into a
free-�ow subregionDs and a porous subdomainDd by an internal interface Γds.

(a) �cx = 2, �cy = 0.02 (b) �cx = 0.06, �cy = 0.33

Figure 5.11: Examples of Gaussian random �elds (log k) with (a) horizontal layers and (b) vertical layers. For both cases
�c = 0.5 and variance �2c = 1.

in (4.25):

⎧
⎪

⎨
⎪
⎩

CΦ(x1, x2) = �2c
21−�c
Γ(�c)

(
2
√
�c r̃

)�c k�c
(
2
√
�c r̃

)
,

r̃ =

√
√√√ (x1 − x2)2

�2cx
+
(y1 − y2)2

�2cy
with x1 = (x1, y1), x2 = (x2, y2).

(5.65)

Here the parameters have similar de�nitions as in (4.25). It is pointed out that the above Matérn
model di�ers from the anisotropicmodel (4.25) only by the rotation parameter. In these experiments,
we use horizontally and vertically layered Gaussian �elds, see Figure 5.11. We also present the
streamlines and magnitude (

√
u2 + v2) of the velocity �elds generated from the horizontally (Figure

5.12a) and vertically (Figure 5.12b) layered permeabilities. These solutions are based on a staggered
mesh with ℎ = 1∕384 such that the number of cells on di�erent blocks areDs

1 = 192 × 256,Ds
2 =

384×256,Ds
3 = 192×256 andDd = 384×128. The e�ect of layered permeability is clearly visible in

both �gures resulting in randomly layered high and low mobility zones. The �ow intensity through
the right exit depends on the particular realization of the random �elds. In Figure 5.13, we show the
mean ± standard deviation multigrid convergence for three parameter sets: isotropic, small vertical
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(a) �cx = 2, �cy = 0.02

(b) �cx = 0.06, �cy = 0.33

Figure 5.12: Flow �eld generated for (a) horizontally and (b) vertically layered porous media. These �ows are computed
on a staggered mesh with ℎ = 1∕384.
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Figure 5.13: Mean multigrid convergence ⟨q⟩ along with the standard deviation forW(2, 2)-cycle.

and small horizontal correlations. For all these cases, the smoothness is taken as �c = 0.5 and
variance �2c = 1. For the isotropic case with �cx = 0.1, �cy = 0.1, a similar convergence behaviour
as observed for the no-slip interface condition test case is seen. For the vertically layered case
with �cx = 0.06, �cy = 0.33, fast convergence rates are achieved. A deterioration in the multigrid
convergence for horizontally layered permeability for �cx = 2, �cy = 0.02 is also observed. This is
due to very high contrast between x-y correlation lengths (�cx∕�cy = 100). The mean convergence
rates improves with grid re�nement for all these hyper-parameters. Multigrid with semi-coarsening
or line-wise smoothers may further improve the convergence [14].

5.5.2 MLMC convergence

So far, we have benchmarked the performance of the multigrid solver and accuracy of the FV
scheme for the random Darcy-Stokes �ow. Now, we use the MLMC estimator to compute moments
of the stochastic transport in the Darcy-Stokes system. Note that one can also apply the MLMC
estimator together with the multigrid solver to e�ciently compute the statistical moments of the
random �ow �eld. The implementation details of the plain and multilevel Monte Carlo methods
can be found in Sections 2.2 and 2.3, respectively.

We consider the transport in the same 2-block problem with the no-slip condition (Section
5.5.1). The source term is taken to be zero, i.e., ft ≡ 0. To investigate the convergence of the
proposed spatio-temporal discretization for the fully coupled system, we use two deterministic
in�ow boundary conditions, based on a Gaussian plume (GP) and a discontinuous square-wave
(SW), de�ned as

cin(0, y, t) = exp
(
− |y−1.5|

�2

)
, for � = 0.1, y ∈ [1, 2], t ≥ 0, (5.66)

cin(0, y, t) = 1, for |y − 1.5| ≤ 1∕8, t ≥ 0. (5.67)

respectively. The initial concentration c0 is obtained from cin at t = 0. Uncertainty in the in�ow
condition or initial concentration can be easily incorporated within this test case. The dispersion
parameter in the Stokes region is taken as D = 10−6 and for the Darcy region parameters in (5.21)
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Figure 5.14: The convergence of the FV bias and the level-dependent variance for di�erent combinations of Matérn
parameter and in�ow boundary conditions.

are DL = DT = 10−5 with D∗ = 0 resulting in a diagonal dispersion tensor. We consider the porosity
� = 1 for the Stokes region and � = 0.4 for the porous medium.

In Figure 5.14, we show the convergence of the FV bias (left) along with the decay of the level
dependent variance (right) for four combinations of Matérn parameters and in�ow conditions.
For the Gaussian plume model (5.66) the bias decays with the rate of O(ℎ�c) depending on the
smoothness parameter of the permeability �eld as the dominant error comes from the discretization
of the Darcy-Stokes velocity. As the proposed scheme is second-order accurate, we get O(ℎ2) for
�c ≥ 2. For the discontinuous square-wave function, we observe a rate of O(ℎ0.5) regardless of the
smoothness parameter. Further, we observe that the variance decays at twice the rate of the FV
bias. The empirical values of the MLMC parameters � and � can be derived from these plots. It
is pointed out that for the easiest parameter set Φ1(GP), we can get a cubic decay of samples with
increasing level and for the hardest case Φ4 (SW), we can achieve a linear decay only.

To illustrate the behaviour of the contaminant transport problem in the random �ow �eld and
compare the �rst-order UDS and the �ux-limited QUICK scheme, we present two examples with the
concentration distribution after t = 6.00 in Figure 5.15 where the velocity �elds are generated using
the Matérn parameter set Φ3 (top) and Φ4 (bottom), respectively with the discontinuous in�ow
(5.67). The contaminant plume remains compact as long as it remains in the free-�ow region but as
soon as it reaches the interface, it starts to spread out due to the heterogeneity of the porous medium.
The QUICK method is clearly less di�usive than the UDS and the �ux limiter is able to remove
oscillations near sharp discontinuities. Also, the velocity pro�le and concentration distribution
from Φ3 are visibly more smooth compared to Φ4.

To demonstrate the convergence of the MLMC method we will consider the most di�cult case
Φ4 (SW). To measure the accuracy of the MLMC and MC estimators, we use the following L2-based
relative error measure

"rel ∶=
||Eref[c(⋅, tm)] − E[cmℎ ]||L2(Dℎ)

||Eref[c(⋅, tm)]||L2(Dℎ)
, (5.68)

where E can be replaced with either EML
ℎL

(MLMC) or EMC
N (MC). The reference solution is computed

on a relatively �ne grid. For the current test problem, the reference solution is presented in Figure
5.16, showing the mean and variance of the spatial concentration distribution at t = 6.00. The
samples required for the MLMC estimator were computed using the multigrid solver withW(2, 2)-
cycle to obtain the velocity �eld and the ADI time-stepping was applied to solve the transport
equation. We observe that the plume remains compact in the free-�ow regionwith very insigni�cant
variance. In the Darcy region, the spatial mean and variance are symmetrically distributed. The
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Figure 5.15: Transport solution at t = 6.00 from UDS (middle) and �ux-limited QUICK (right) scheme for same velocity
�eld (left) with ℎ = ∆t = 1∕128. The permeability �eld is generated using Φ3 (top) and Φ4 (bottom).
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(a)Mean of c(x, y, t = 6.00) (b) Variance of c(x, y, t = 6.00)

Figure 5.16: Statistical solution of uncertain transport problem with parameter Φ4 at t = 6.00 computed using the
MLMC estimator. High variance is observed in the Darcy region. Sharp gradients are preserved in the Stokes domain

with very insigni�cant variance.

reference solution is computed using a six level MLMC estimator (L = 6) with the coarsest level
ℎ0 = ∆t0 = 1∕16 and the �nest level ℎL = ∆tL = 1∕512. We use the �xed sampling strategy
discussed in Section 2.3.3 withNL = 8 and the number of samples on coarser levels is derived using
relation Nl = ⌈NL2�(L−l)⌉. For case Φ4 (SW), we get � ≈ 0.5 and � ≈ 2� ≈ 1 (see Figure 5.14)
resulting in a sample sequence Nl = NL2(L−l). Recall that with these rates, we end up with  > �
resulting in an optimal MLMC estimator, see Eq. (2.27) from Chapter 2. For comparison, we also
implement the standard MC estimator where the number of samples is derived by balancing the
sampling error with FV error, i.e. N = O(ℎ−2�) = O(ℎ−1). We chose N = 8 for grid ℎ = 1∕16 and
double the number of samples with subsequent re�nements, when using the plain MC method.

In Figure 5.17 (left), we compare the accuracy of the MLMC and the standard MC estimators.
For each ℎ, we repeated the experiment eight times and the average relative error denoted by "rel is
plotted. As expected, both the MLMC and MC estimators were able to achieve a similar accuracy
converging as O(ℎ0.5). Also, in Figure 5.17 (right), we show the cost scaling for both estimators.
The CPU time for the MLMC estimator grows with a slower rate than the standard MC estimator
and we observe a speed-up of more than an order of magnitude for ℎ = 1∕256. For reference, we
also indicate the theoretical cost (dotted grey lines) for the MC estimator (W−1∕8) and the MLMC
estimator (W−1∕6), when using an optimal solver (or  = 3). Here, we have only presented the
results corresponding to the most di�cult test case Φ4 (SW). In general, the asymptotic cost of the
MLMC method further improves with the smoothness of the random �eld as well as with smooth
in�ow conditions. For example, it is possible to obtain a complexity of aboutW−1∕2 (ignoring the
logarithmic term) for case Φ1 (GP) as � ≈  ≈ 3.

We also remark that the proposed multigrid MLMCmethod can be extended to parallel archi-
tectures. Speci�cally, one can achieve three degrees of parallelization over samples, levels and
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Figure 5.17: Comparison of relative error convergence "rel with grid size (left) and computational workW versus
accuracy (right) for MLMC and MC estimators.

the multigrid solver, see [31, 113, 114] for recent advances. Out of these, the most challenging
part is the parallelization over the solver that should be considered only on �ner levels when the
communication overhead becomes negligible. Moreover, the grid partitioning method explored in
this chapter can be very e�ective as each partitioned block can be relaxed on separate processors.
We have already demonstrated that it is possible to obtain a satisfactory multigrid convergence
using the 4-block example earlier.

5.6. Conclusions
In this chapter, we described an MLMC algorithm for uncertainty quanti�cation of advection-
dominated transport in a coupled Darcy-Stokes system with uncertain permeability. An important
contribution of this work is the robust multigrid solver that can solve the coupled Darcy-Stokes
�ow with highly heterogeneous permeability �eld very e�ciently. The new monolithic multigrid
method achieves textbookmultigrid convergence for a wide range of Matérn parameters, thus making
it a highly suitable solver for MLMC applications. We combined a �ux-limited QUICK scheme with
an ADI time-stepping resulting in a second-order accurate spatio-temporal discretization of the
stochastic transport equation that can be solved optimally. This implicit version also resulted in
a scheme that is stable on very coarse grids and greatly helped in reducing the cost of the MLMC
method. Lastly, we showed that for very rough problems, we can attain an asymptotically optimal
MLMC estimator that has the same computational complexity as its deterministic counterpart.





6
Variably saturated �ow in a porous media

This chapter1 presents a multilevel Monte Carlo (MLMC) method for the uncertainty quanti�cation of
variably saturated porous media �ow that are modeled using the Richards’ equation. We propose a
stochastic extension for the empiricalmodels that are typically employed to close the Richards’ equations.
This is achieved by treating the soil parameters in these models as spatially correlated random �elds
with appropriately de�ned marginal distributions. As some of these parameters can only take values
in a speci�c range, non-Gaussian models are utilized. The randomness in these parameters may
result in path-wise highly nonlinear systems so that a robust solver with respect to the random input is
required. For this purpose, a solution method based on a combination of the modi�ed Picard iteration
and a cell-centered multigrid method for heterogeneous di�usion coe�cients is utilized. Moreover, we
propose a non-standard MLMC estimator to solve the resulting high-dimensional stochastic Richards’
equation. The improved e�ciency of this multilevel estimator is achieved by parametric continuation
that allows us to incorporate simpler nonlinear problems on coarser levels for variance reduction and
the original strongly nonlinear problem is solved only on the �nest level. Several numerical experiments
are presented showing computational savings obtained by the new estimator compared to the standard
MLMC estimator.

6.1. Introduction
Mass transport through a variably saturated porous medium can be accurately predicted using the
Richards’ equation [21]. This modeling approach is of critical importance for several physics and
engineering problems, for instance, when studying aquifer recharge via rainfall in�ltration, or for
understanding the environmental impact of mining operations. When reliable measurements of
the hydraulic properties are available, numerical solutions originating from the Richards’ equation
have been reasonably successful for transport prediction in a broad range of soil types.

Di�erent formulations for the Richards’ equation are available in the literature, along with
well established mathematical theory, such as the pressure head, the water content or a mixed
formulation, see e.g. [115–120]. The aforementioned formulations contain nonlinearities due to a
parametric dependence of the pressure head on the saturation and the relative hydraulic conductivity.
Depending on the soil parameters, these nonlinearities range from mild to strong. The extreme
1Note that the notations in this chapter are slightly di�erent from the previous chapters, as we follow the notations
commonly used in the literature related to variably saturated �ow.
This chapter is based on the article “A parametric acceleration of multilevel Monte Carlo convergence for nonlinear
variably saturated �ow.”, Preprint arXiv:1903.08741, (2019) [26]. (Submitted for publication)
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sensitivity of the soil parameters on the output necessitates accurate measurements of the hydraulic
properties. For many realistic problems, complete information of these quantities is however not
available. In such scenarios, these parameters may be modeled in a probabilistic framework and
the solution output may be expressed by means of a prediction interval (with mean and variance),
rather than as a single value. Such approaches are nowadays common in the case of saturated
groundwater �ow, where uncertainties are included when modeling the hydraulic conductivity as a
spatially correlated lognormal random �eld [18–20]. The purpose of the present work is to develop
and analyze a stochastic extension of the Richards’ equation, along with an e�cient numerical
method to solve the resulting nonlinear partial di�erential equation with random coe�cients.

Previous work on the uncertainty quanti�cation (UQ) of unsaturated �ows was often based
on an uncertain hydraulic conductivity [121–124]. In addition to that, in the present work, we
introduce stochasticity in the so-called van Genuchten and Mualem model [125, 126], which is
typically utilized to close the Richards’ equation. This model provides a closed-form analytic
expression for the unsaturated hydraulic conductivity based on a sigmoid type function for the
soil-water retention curve. This curve is de�ned by four independent parameters that are estimated
by curve-�tting, based on �eld measurements. Typically, these parameters are �xed throughout
the domain during numerical simulations, assuming the soil to be homogeneous. Realistic models
should however also incorporate the intrinsic heterogeneity in the soil. Therefore, we model these
soil parameters as random variables with a certain, speci�ed probability distribution and spatial
correlations. To assure the well-posedness of the Richards’ equation, these parameters should be
within a certain range. Thus, the probability distributions for these parameters are chosen such
that the random samples will be in the domain of validity for these parameters. A practical choice
is to employ non-Gaussian random �elds with marginal distributions from expert knowledge or
from �eld measurements.

With the stochastic Richards’ equation formulated, an appropriate UQ technique is required to
compute the statistical moments of the desired quantities of interest (QoIs). This choice primarily
depends on the number of uncertainty dimensions. Other practical factors, such as ease of imple-
mentation and availability of an iterative solver which is robust with respect to the random input,
also play a role in the selection of a suitable UQ technique. The proposed stochastic extension of
the Richards’ equation results in a very high-dimensional problem, and the use of deterministic
sampling approaches such as polynomial chaos expansion, stochastic collocation or stochastic
Galerkin is therefore limited. For these UQ methods, the cost grows exponentially with the number
of random inputs. Furthermore, a deterministic sampling approach may not adequately represent
those regions in the stochastic space where strong nonlinearity may be encountered. In previous
works of Zhang [123, 127], the moments method was applied for the uncertainty quanti�cation of
solutions of the Richards’ equation. The main disadvantage of a moment-based method is that it
can only be reliably employed when the e�ect of uncertain inputs is mild and largely linear. For the
proposed stochastic formulation of the Richards’ equation, MC based sampling approaches are the
methods of choice, due to their dimension independent convergence. Moreover, MC-type methods
due to the randomness enables better exploration of the stochastic space − a quality which is not
usually shared by the deterministic approaches.

The plain MC method can be highly expensive for the stochastic Richards’ equation as cost per
sample is very high. The original, grid-basedMLMC estimator may be utilized to solve the stochastic
Richards’ equation, however, this approach may not be the most e�cient, especially not when
strongly nonlinear problems need to be solved. Such problems require a very �ne spatio-temporal
mesh thereby restricting the use of coarse grids to improve the e�ciency of the MLMC estimator.
In this work, we utilize a non-standard MLMC estimator based on the parametric continuation
technique. Continuation methods for solving nonlinear PDEs are very popular in engineering
applications [128–133]. Within continuation methods, a nonlinearity dictating parameter Θ is
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introduced in the interval Θ0 ≤ Θ ≤ Θ∗ where the solution p(Θ0) corresponds to a linear (or mildly
nonlinear) problem and p(Θ∗) to the target strongly nonlinear. The key idea is to march from p(Θ0)
to p(Θ∗) in small steps of size �Θ, where at each step we use the solution from the previous step as an
initial guess. Usually,Θ is some physical parameter, for e.g. the Reynolds number, theMach number,
etc. In the current work, we use parametric continuation to obtain variance reduction within the
multilevel Monte Carlo framework. This is achieved by solving simpler nonlinear problems on
coarser levels and the target strongly nonlinear problem is only solved on the �nest level. This
new estimator allows us to incorporate comparatively coarser spatio-temporal grids in the MLMC
hierarchy and, as such, the computational cost of each estimator in the telescopic sum is greatly
reduced.

We furthermore propose a solution method for Richards’ equation based on a combination
of the modi�ed Picard method [115] and a cell-centered multigrid, as proposed in [24] (also see
Chapter 4). We benchmark the performance of this combined solver in a probabilistic framework.
A number of tests for a wide range of soil parameters and for hydraulic conductivities with di�erent
heterogeneity levels are performed.

The rest of the chapter is organized as follows. In Section 6.2, we brie�y discuss the deterministic
Richards’ equation along with the van Genuchten-Mualem parameterization. Section 6.3 describes
the stochastic Richards’ equation as well as the modeling of various uncertain soil parameters. The
description of the modi�ed Picard method in combination with the cell-centered multigrid method
is provided in Section 6.4. Also, in this section, we present some numerical experiments to assess
the performance of the combined solver for an in�ltration problem. The non-standard MLMC
estimator is explained in Section 6.5 and its performance is analysed in Section 6.6. Finally, some
conclusions are drawn in Section 6.7.

6.2. Deterministic Richards’ equation
We begin by describing the deterministic version of the problem. The governing equations are
de�ned in a bounded domain D ⊂ ℝn, with the boundary )D and a �nite time interval T =
(0, Tfinal], with Tfinal < ∞. The classical Richards’ equation is a result of coupling the mass
conservation equation of the water-phase and the Darcian �ow, i.e.,

�
)Sw
)t

+ ∇ ⋅ q = f in D ×T, (6.1)

q = −KsKrw(∇p + z) in D ×T, (6.2)

respectively, subject to boundary and initial conditions:

p = p0 in D, t = 0, (6.3)
p = gD in ΓD ×T, (6.4)

q ⋅ n = gN in ΓN ×T, (6.5)

where �[L3∕L3] is the porosity; Sw[L3∕L3] is the water-phase saturation; q is the Darcy �ux, which
depends on the pressure head, p[L], and the depth z[L] in the vertical direction; Ks[L∕T] represents
the saturated hydraulic conductivity �eld at saturation; Krw is the relative conductivity of the water
phase with respect to air and f is the source/sink term. The initial pressure head value is given by
p0. The quantities gD and gN denote, respectively, the Dirichlet and Neumann boundary conditions
that are imposed at the boundaries ΓD and ΓN , respectively, with n the unit normal vector to ΓN .

The coupling of (6.1) and (6.2) may result in di�erent variants of the Richards’ equation, such
as the pressure head, the moisture content and the mixed formulation. The mixed formulation of
the Richards’ equation is given by:

)�(p)
)t

− ∇ ⋅ (KsKrw(∇p + z)) = f in D ×T. (6.6)
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It is obtained by substituting the moisture content, i.e., � = �Sw(p). By using

)�(p)
)t

= C(p)
)p
)t
,

the above PDE can be reformulated into the pressure head formulation:

C(p)
)p
)t

− ∇ ⋅ (KsKrw(∇p + z)) = f in D ×T, (6.7)

where C(p) = )�
)p

is the speci�c moisture capacity. It is well-known that numerical solutions
originating from the pressure head formulation may give rise to a signi�cant mass balance error,
resulting in an inaccurate prediction of the in�ltration depth.

Numerical methods based on the mixed form (using �nite di�erences or mass-lumped �nite
elements) are popular as they result in mass conservation schemes [115]. Therefore, we will work
with the mixed form (6.6) of the Richards’ equation.

6.2.1 Van Genuchten-Mualemmodel

To complete the PDE formulations, (6.6) or (6.7), closure models for approximating Krw and � are
required. A number of models have been presented in the literature and the most popular ones are
by Brooks-Corey [134] and van Genuchten-Mualem [125, 126]. These twomodels employ nonlinear
constitutive relations forKrw and p, and for � and p, respectively. We consider the parameterization
introduced by van Genuchten and Mualem here. For the saturation, van Genuchten [125] proposed
the following analytic formula:

Sw(p) =
�(p) − �r
�s − �r

= {
(1 + (|�p|)n)−m, p < 0,
1, p ≥ 0,

(6.8)

where �s and �r are the saturated and residual water contents, respectively, and �[L−1], n and
m = 1 − n−1 are obtained by �tting data characterizing the statistics of the soil. Speci�cally, the
parameter � provides a measure of the average pore-size in the soil matrix and n is related to the
pore-size distribution of the soil [135].

We may derive the speci�c moisture content, C(p), analytically from (6.8), as

C(p) = {
(�s − �r)�mn(1 + |�p|n)−(m+1)|�p|n−1, p < 0,
0, p ≥ 0.

(6.9)

In previous work, Mualem [126] derived a closed-form expression for Krw, which is given by:

Krw = S1∕2w [∫
Sw

0
dSw∕p

/

∫
1

0
dSw∕p]

2

. (6.10)

Using (6.8), the above integral equation reduces to the following analytic expression:

Krw(p) =
⎧

⎨
⎩

Sw(p)1∕2(1 −
(
1 − Sw(p)1∕m

)m
)
2

, p < 0,

1, p ≥ 0.
(6.11)

The complexity of the numerical solution of the Richards’ equation depends on the values of the
parameters n and �. For n ∈ (1, 2) and p → 0, the relative hydraulic conductivity Krw(p) is not



6.3. Stochastic Richards’ model 95

Lipschitz continuous and the derivative K′
rw(p) becomes in�nite as p approaches zero [135, 136].

Moreover, for small values of n, a sharp Krw vs. p pro�le is encountered. Similarly, for large values
of the parameter �, the pressure head exhibits a transition behaviour with a steep gradient from the
saturated to the unsaturated region. In general, for a small n or for large � strong nonlinearities
are encountered, thus implying convergence issues for nonlinear iterative techniques such as the
Newton or Picard methods.

6.3. Stochastic Richards’ model
Here, we describe a stochastic extension of the van Genuchtenmodel. We assume that the unknown
soil parameters belong to the probability space (Ω,F,ℙ), where Ω is the sample space with �-�eld
F ⊂ 2Ω as a set of events and the probability measure ℙ ∶ F→ [0, 1].

The stochastic extension is based onmodeling the soil parameters as spatially correlated random
�elds in order to incorporate spatial heterogeneity. For the saturated hydraulic conductivity, Ks, it
is standard practice to model it as a lognormal random �eld, as follows,

Ks(x, !) = K(bl)
s (x) exp(Z(x, !)), x ∈ D, ! ∈ Ω, (6.12)

where K(bl)
s (x) is the baseline hydraulic conductivity and Z(x, !) is a zero mean Gaussian random

�eld with a speci�ed covariance kernel. So,

E[Z(x, ⋅)] = 0, (6.13)
Cov(Z(x1, ⋅), Z(x2, ⋅)) = E[Z(x1, ⋅)Z(x2, ⋅)], x1, x2 ∈ D. (6.14)

We consider an anisotropic Matérn covariance function (see also Chapter 5) , CΦ, de�ned as

⎧
⎪

⎨
⎪
⎩

CΦ(x1, x2) = �2c
21−�c
Γ(�c)

(
2
√
�c r̃

)�c K�c
(
2
√
�c r̃

)
,

r̃ =

√
(x1 − x2)2

�2cx
+
(z1 − z2)2

�2cz
, with x1 = (x1, z1), x2 = (x2, z2).

(6.15)

Here, we denote the gamma function by Γ and by K�c the modi�ed Bessel function of the second
kind. The Matérn function is characterized by the parameter set Φ = {�c, �cx, �cz, �2c } where �c is
the smoothness, �cx and �cz are correlation lengths along x- and z-directions, respectively, and �2c is
the marginal variance. The sampling procedure for Gaussian random �elds is provided in Section
3.6.

6.3.1 Sampling of non-Gaussian random �elds

For sampling the van Genuchten parameters, �(x, !), n(x, !), �s(x, !), �r(x, !) in Section 6.2.1, we
employ random �elds with non-Gaussian marginal distributions. This choice of distributions is
practical as these parameters can only take values in a certain range, see e.g. [136]. We introduce
stochasticity in the parameters via an additive noise,

�(x, !) = �(bl)(x) + "�(x, !), (6.16)

where �(bl)(x) is the deterministic baseline value and "�(x, !) is a random �eld with a non-Gaussian
marginal distribution and covariance CΦ. Notations are analogously for the other three van
Genuchten parameters. Next, we describe a technique proposed in [137] for the point-wise transfor-
mation of a standard Gaussian random �eld to a non-Gaussian random �eld.

Non-Gaussian random �elds are di�cult to simulate as they are not uniquely determined by
their mean and variance. There are however di�erent techniques available for simulating non-
Gaussian �elds, see e.g. [137, 138]. In this work, we will follow a basic approach based on a
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generalized Polynomial Chaos expansion [137], which approximates the non-Gaussian �eld in
terms of a weighted combination of Hermite orthogonal polynomials of the standard Gaussian �eld,

Y(x, !) ≈
NPC∑

j=0
wjℋj(Z(x, !)), (6.17)

where Y(x, !) is the non-Gaussian random �eld (with a marginal distribution, e.g. the uniform
distribution, gamma distribution, truncated normal, etc). ℋj(Z) is the Hermite polynomial in
Z of order j with weight wj and NPC is the order of the expansion. Hermite polynomials can be
expressed as:

ℋ0(Z) = 1, ℋj(Z) = (−1)j exp(Z2∕2) d
j

dxj
exp(Z2∕2), j ∈ ℕ. (6.18)

As Hermite polynomials are orthogonal with respect to the Gaussian measure, the weights can be
evaluated using

wj =
E[Yℋj(Z)]
E[ℋj(Z)2]

. (6.19)

Here, the denominator is basically an expectation of a polynomial of the Gaussian random variable,
which has an analytic expression. As the dependence between Y and Z is unknown, the expectation
in the numerator is not explicit. Since the cumulative distribution for Y, de�ned as FY(y) =
ℙrob(Y ≤ y), is however known, one can utilize the relation Y = F−1Y (FZ(Z)) to reformulate (6.19)
as

wj =
1

E[ℋj(Z)2]
∫

IZ
F−1Y [FZ(z)]ℋj(z)dFZ(z), (6.20)

where IZ is the support of Z in the range (−∞,∞) and F−1Y representing the inverse of the distri-
bution FY . Similarly, FZ(z) = ℙrob(Z ≤ z) is the cumulative distribution for standard Gaussian
random variable Z. The one-dimensional integral (6.20) can be numerically computed using any
conventional integration technique. For simplicity, we will use the Monte Carlo quadrature to
approximate the above integral in our numerical experiments. These weights only need to be com-
puted once, so that the cost of sampling a non-Gaussian random �eld with a stationary covariance
function is of the same order as that of a Gaussian random �eld.

Wewill experiment here with both isotropic and anisotropicMatérn covariancemodels. In Table
6.1, the two Matérn parameters sets are listed, Φ1 corresponding to an isotropic model and Φ2 to an
anisotropic model. In Figure 6.1, we present some samples of the random �elds with a Gaussian
and a uniform marginal distribution, for the two Matérn parameters. We use NPC = 6 in (6.17) for
generating the random �elds with uniform marginal distribution. Due to a small correlation length
and low spatial regularity, the numerical solutions of the PDE with random coe�cients based on
Φ2 are comparatively more expensive to compute than those obtained with Φ1. A comprehensive
study on the computational cost of solving elliptic PDEs with di�erent Matérn parameters can be
found in [24] and Chapter 4. We will study the e�ect of covariance functions on the performance of
the solver for the Richards’ equation.

Φ1 Φ2
(1.0,0.2,0.2,1) (0.5, 0.1, 0.01, 1)

Table 6.1: Two combinations of Matérn parameters Φ = (�c, �cx , �cz, �2c ) corresponding to isotropic (Φ1) and anisotropic
(Φ2) random �elds.
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(a)N(0, CΦ1 ) (b) U(2.7, 3.3, CΦ1 )

(c)N(0, CΦ2 ) (d) U(2.7, 3.3, CΦ2 )

Figure 6.1: Samples of random �elds generated using the isotropic Matérn parameter Φ1 (top row) and the anisotropic
parameter Φ2 (bottom row); and standard normal marginal distribution (left column) and uniform marginal distribution
(right column). The notation U(2.7, 3.3, CΦ) represents a random �eld with uniform marginal distribution, U[2.7, 3.3],

with spatial correlation de�ned by CΦ.

6.4. Modi�edPicard iterationcombinedwith the cell-centeredmulti-
grid method

Algorithms based on the modi�ed Picard iteration from Celia et al. [115] are often employed
as e�cient iterative solution methods for the Richards’ equation. These methods are relatively
easy to implement, as they do not require the computation of Jacobians and they also have low
storage requirements. Within each modi�ed Picard iteration, a di�usion equation with variable
coe�cients needs to be solved. For this, we propose to utilize the cell-centered multigrid (CCMG) for
heterogeneous di�usion coe�cients, as proposed in [24, 68, 81] (also see Section 4.2.2). The CCMG
algorithm is e�cient as it is constructed with a simple set of transfer operators and it has been
demonstrated to perform well for a large class of highly heterogeneous and also jumping di�usion
coe�cients [24].

6.4.1 Modi�ed Picard iteration

We brie�y recall the fully-implicit Picard iteration for the mixed formulation of the Richards’
equation from [115]. With ∆t the time-step and for any integer J > 1, we de�ne a uniform temporal
grid by {tj = j∆t, j = 0,… , J}. The iteration number within a time-step is denoted by an integer
k > 0. For simplicity, we use a simpli�ed notation for �j,k = �(pj,k) and Kj,k = KsKrw(pj,k). The
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backward Euler approximation of (6.6) is then written as

�j+1,k+1 − �j

∆t − ∇ ⋅ Kj+1,k∇pj+1,k+1 − )K
)z

j+1,k
= fj+1. (6.21)

The key idea of the modi�ed Picard iteration is the use of a Taylor expansion for �j+1,k+1 with
respect to p, i.e.

�j+1,k+1 = �j+1,k + )�
)p

j+1,k

(pj+1,k+1 − pj+1,k) +O
(
�p2

)
, (6.22)

where the derivative )�(p)
)p

= C(p) is analytically computed by using (6.9). By neglecting the
higher-order terms in (6.22) and substitution in (6.21), we get

C(pj+1,k)
�pj+1,k

∆t + �j+1,k − �j

∆t − ∇ ⋅ Kj+1,k∇pj+1,k+1 − )K
)z

j+1,k
= fj+1, (6.23)

with �pj+1,k = pj+1,k+1 − pj+1,k. The above equation can be expressed in the form:

C(pj+1,k)
�pj+1,k

∆t −∇ ⋅Kj+1,k∇�pj+1,k = ∇ ⋅Kj+1,k∇pj+1,k+ )K
)z

j+1,k
+fj+1− �j+1,k − �j

∆t . (6.24)

The next pressure head iterate is obtained by the update pj+1,k+1 = pj+1,k + �pj+1,k. Notice
that the left-hand side of the above equation is the residual associated with the Picard iteration,
which should be equal to zero for a converged solution. Therefore, one may use ||�pj+1,k||∞ < "PI
as a stopping criterion with "PI > 0 as the tolerance for Picard iteration. The pressure head at time
tj+1 is then given by pj+1 = pj+1,k+1, with k the total number of Picard iterations to converge to "PI .
The iterative scheme (6.24) is a general mixed-formulation Picard iteration, which results in perfect
mass balance.

6.4.2 Cell-centered multigrid

Focussing on the k-th Picard iteration (6.24) at time tj+1, the following elliptic PDE with variable
coe�cients is obtained, using simpli�ed notation,

C̃
∆t �p̃ − ∇ ⋅

(
K̃∇�p̃

)
= f̃ in D, (6.25)

�p̃ = 0 in ΓD ∪ ΓN ,

with the known quantities

C̃ = C(pj+1,k), K̃ = Kj+1,k and f̃ = ∇ ⋅ Kj+1,k∇pj+1,k + )K
)z

j+1,k
+ fj+1 − �j+1,k − �j

∆t ,

and the unknown �p̃ = �pj+1,k. To discretize the above problem, we use a cell-centered �nite
volume scheme for which the hydraulic conductivity at the cell-face is based on the harmonic
averaging of the hydraulic conductivities from the adjacent cells, derived by the continuity of �uxes
[68, 81].

For the discretization of (6.25), a uniform gridDℎ on a unit square domain with the same mesh
width ℎ = 1∕M,M ∈ ℕ in both directions,

Dℎ = {(xi1 , zi2);xi1 = (i1 −
1
2)ℎ, zi2 = (i2 −

1
2)ℎ, i1, i2 = 1,… ,M} , (6.26)
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is considered. For each interior cell (edges do not lie on a boundary) with center (xi1 , zi2), denoted
byDi1,i2

ℎ , we obtain a �ve-point scheme,

cℎi1,i2�p̃i1,i2 + wℎ
i1,i2

�p̃i1−1,i2 + eℎi1,i2�p̃i1+1,i2 + sℎi1,i2�p̃i1,i2−1 + nℎi1,i2�p̃i1,i2+1 = f̃ℎi1,i2 , (6.27)

with

wℎ
i1,i2

= − 2
ℎ2

K̃i1,i2K̃i1−1,i2
K̃i1,i2 + K̃i1−1,i2

, eℎi1,i2 = − 2
ℎ2

K̃i1,i2K̃i1+1,i2
K̃i1,i2 + K̃i1+1,i2

,

sℎi1,i2 = − 2
ℎ2

K̃i1,i2K̃i1,i2−1
K̃i1,i2 + K̃i1,i2−1

, nℎi1,i2 = − 2
ℎ2

K̃i1,i2K̃i1,i2+1
K̃i1,i2 + K̃i1,i2+1

,

cℎi1,i2 = −(wℎ
i1,i2

+ eℎi1,i2 + nℎi1,i2 + sℎi1,i2) +
C̃i1,i2
∆t ,

where, for instance, K̃i1,i2 is the di�usion coe�cient associated with cellDi1,i2
ℎ and the source term

f̃ℎi1,i2 is an approximation of f̃ in that cell. This scheme is modi�ed appropriately for cells close to
the boundary.

Next, we describe the multigrid method for solving the linear system arising from the above
discretization. The multigrid hierarchy is based on uniform grid coarsening, i.e. the cell-width is
doubled in each coarsening step in each direction. As the smoothing method, we use the lexico-
graphic Gauss-Seidel iteration, and as the transfer operators between the �ne and coarse grids a
simple piece-wise constant prolongation operator, Pℎ2ℎ, is applied and its scaled adjoint is used as
the restriction operator R2ℎℎ on the cell-centered grid. In classical stencil notation, these are written
as,

Pℎ2ℎ =
⎤
⎥
⎥
⎦

1 1
⋆

1 1

⎡
⎢
⎢
⎣

ℎ

2ℎ

, R2ℎℎ = 1
4

⎡
⎢
⎢
⎣

1 1
⋆

1 1

⎤
⎥
⎥
⎦

2ℎ

ℎ

, (6.28)

respectively, where ⋆ denotes the position of the cell center. The coarse grid operator is obtained
via a direct discretization of the PDE operator on the coarse grid. For this discretization on a
coarser grid, we need to appropriately de�ne the di�usion coe�cients on the coarse cell edges. The
technique to de�ne the suitable di�usion coe�cient on a coarse cell edge is graphically described
in Figure 4.1 and its caption. In [24], theW(2, 2)-cycle was found to be a very robust and e�cient
multigrid cycling strategy, and, therefore, we also employ this cycle in our experiments. The number
of multigrid iterations is based on the stopping criterion, ||ℒℎ�p̃ℎ− f̃ℎ||∞ < "MG , whereℒℎ denotes
the linear operator after the discretization of Equation (6.25) and "MG > 0.

We consider the modi�ed Picard method in this work as it is widely adopted, although many
modi�cations have been proposed to improve its robustness. For instance, the authors in [139]
studied a spatio-temporal adaptive solution method to improve the numerical stability of the
modi�ed Picard iteration. Another interesting improvement was proposed in [140], where an
Anderson acceleration was applied to improve the robustness and computational cost for the
standard Picard iteration scheme. These improvements can easily be extended to the modi�ed
Picard-CCMG solver studied here. Also, there are a number of e�ective solution approaches based
on Newton’s method, see for e.g. [141–143]. These methods exhibit a quadratic convergence rate
but are very sensitive to initial solution approximations.

6.4.3 Performance of the modi�ed Picard-CCMG solver

We study the performance of the modi�ed Picard-CCMG solver for a range of values of the parame-
ters �, n and the e�ect of the heterogeneity of the hydraulic conductivity on the performance of the
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solver. For this we consider an in�ltration problem [143, 144] on a two-dimensional computational
domainD = (0, 1)2. The initial and boundary conditions are prescribed as follows:

p(x, z, 0) = −0.4(1 − exp(−80z)), p(x, 1, t) = −0.4, (6.29)

p(x, 0, t) = 0.1,
)p
)x

|||||||x=0,1
= 0.

The right-hand side is assumed to be zero, and we consider a �nal time Tfinal = 0.1 [h] (in hours).
In Table 6.2, we provide a list of 20 values for � and n, used in the experiments. In total, we test
400 pairings of � and n. Parameters �s = 0.50 and �r = 0.05 are �xed, as they do not pose any
problems for the convergence rate of the solver. The samples of hydraulic conductivity are generated
according to (6.12), with K(bl)

s = 0.2 [m/h] (in metres/hour) and the covariance is based on the two
Matérn parameters from Table 6.1.

� n
0.2 0.4 0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5
1.2 1.4 1.6 1.8 2.0 1.6 1.7 1.8 1.9 2.0
2.2 2.4 2.6 2.8 3.0 2.2 2.4 2.6 2.8 3.0
3.2 3.4 3.6 3.8 4.0 3.2 3.4 3.6 3.8 4.0

Table 6.2: Set of �, n values used for benchmarking the modi�ed Picard-CCMG solver.

A similar test was performed in [140] for a deterministic steady-state �ow governed by the
Richards’ equation. We perform our experiments in a probabilistic framework. For a given pair �, n,
we generate 64 random hydraulic conductivity �elds and solve Richards’ equation with conditions
given in (6.29) for each sample. This is done as the number of multigrid iterations varies depending
on the random realization of the hydraulic conductivity �eld. The cost of solving one instance of
stochastic Richards’ equation is expressed in terms of the total number of multigridW(2, 2)−cycles
needed to solve the time-dependent problem. Here, by total number ofW(2, 2)− cycles means
the sum of multigrid iterations needed to reach Tfinal. For all experiments, we set the tolerances
"PI , "MG = 10−5. The solution method was terminated with failure when the maximum number of
nonlinear iterations (set to 50) was exceeded at any time-step.

In �gures 6.2-6.3, we show the average cost (average of 64 random realizations of the hydraulic
conductivity) for solving the stochastic Richards’ equation for four di�erent combinations of spatial
and temporal grid sizes and for two Matérn parameter sets, Φ1 and Φ2, listed in Table 6.1. The
region in red in the �gures denotes the (�, n) values for which the modi�ed Picard-CCMG solver
failed to converge at least once out of the 64 samples.

Based on numerical experiments, the performance of the modi�ed Picard-CCMG solver for the
stochastic Richards’ equation can be summarized as follows:

• In general, the cost increases by decreasing n and increasing �. The cost of the solver rises
steeply for n < 1.5 and � > 3.0, and the cost increment with respect to the decrease in the
value of n is more pronounced compared to the increase in �.

• While a spatio-temporal mesh re�nement improves the robustness with respect to � and n,
the improvement is less pronounced for n and may require a very �ne mesh as n → 1.

• For a given spatio-temporal mesh, the modi�ed Picard-CCMG solver is less robust and more
expensive for anisotropic hydraulic conductivity compared to the isotropic case. A similar
(�, n)-robustness can be achieved for anisotropic cases by using a su�ciently re�ned mesh.
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(a) ℎ = 1∕32,∆t = 1∕64 (b) ℎ = 1∕32,∆t = 1∕128

(c) ℎ = 1∕64,∆t = 1∕64 (d) ℎ = 1∕64,∆t = 1∕128

Figure 6.2: Contour plots of the average number of multigrid iterations needed to solve the in�ltration problem using
the modi�ed Picard-CCMG solver for isotropic hydraulic conductivity �elds generated using Φ1.

The standard deviation contours for the cost show a similar behavior as the average cost contour
and we observe a large standard deviation for the cost when n < 1.5 and � > 3.0. In Figure 6.4, we
present the number of samples (out of 64 samples), for which the solver did not converge for Φ1
and Φ2. For almost all samples convergence failed with � close to 4.0 and n close to 1.1.

A few remarks are in order. We point out that the (�, n)-costmapmay vary depending on the type
of boundary and initial conditions as well as on Tfinal. For instance, in the above experiments, an
initially wet pro�le for the porousmedia was considered. We expect the performance of themodi�ed
Picard-CCMG solver to vary for problems in which in�ltration takes place into an initially dry media
and the convergence rates may depend on the values of �r and �s (see e.g. [145]). Furthermore, the
robustness of the solver will also depend on the properties of the hydraulic conductivity �eld such
as on the degree of heterogeneity and anisotropy.

6.5. Multilevel Monte Carlo with parametric continuation
We have observed in the preceding section that the total number of multigrid iterations increases
rapidly with a decrease in the value of parameter n and an increase in �. We also noticed that the
solver is less robust on a coarse spatio-temporal mesh. Therefore, when using the original MLMC
estimator for a “di�cult” (�, n) pair, a relatively �ne spatio-temporal mesh will be required (and
employed), even on the coarsest level of the MLMC hierarchy, resulting in an expensive estimator.
To deal with this drawback, we propose an MLMC estimator based on the parametric continuation
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(a) ℎ = 1∕32,∆t = 1∕64 (b) ℎ = 1∕32,∆t = 1∕128

(c) ℎ = 1∕64,∆t = 1∕64 (d) ℎ = 1∕64,∆t = 1∕128

Figure 6.3: Contour plots of the average number of multigrid iterations needed to solve (6.29) using the modi�ed
Picard-CCMG solver for anisotropic hydraulic conductivity �elds generated using Φ2.

(a) ℎ = 1∕64,∆t = 1∕128,Φ1 (b) ℎ = 1∕64,∆t = 1∕128,Φ2

Figure 6.4: Counting the number of samples (out of 64), for which the modi�ed Picard-CCMG solver does not converge.
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technique. In this approach, we solve the original problem only on the �nest level of the MLMC
hierarchy and simplify the parameter settings dictating the nonlinearities as we work on coarser
levels. This allows us to include a comparatively coarser spatio-temporal mesh compared to the
original MLMC estimator as simpler problems are solved on coarser levels.

This idea is motivated by continuation based multigrid solvers for nonlinear boundary value
problems [128–130]. In the context of multigrid solvers, the continuation is commonly applied in
the FMG-FAS (Full MultiGrid- Full Approximation Scheme) algorithm. In these algorithms, the
continuation process is integrated with the FMG hierarchy, where the coarse grid solves the simplest
problem and is used as a good �rst approximation for the next grid with a slightly more complicated
problem. This process is repeated until the �nest grid is reached where the target problem is solved.
Although the continuation strategy works well for a large class of nonlinear problems, there is
no guarantee that the simpler problem is close enough to the next di�cult problem. One can use
bifurcation diagrams to understand the solution dependence on nonlinearity dictating parameters.
These diagrams can also reveal multiple branches and bifurcation points, where the solution di�ers
greatly even if there is a slight perturbation in the parameter value. In such cases, an arclength
procedure [131] can be applied to determine the appropriate perturbation size.

6.5.1 MLMC estimator

To explain the MLMC estimator, we consider the pressure head �eld at some �nal time Tfinal as
the QoI. Further, we de�ne a spatio-temporal hierarchy of grid levels {Dl,Tl}Ll=0 using

ℎl = ∆tl = O(s−lℎ0), (6.30)

where ℎ0 is the cell-width on the coarsest meshD0 and s > 0 represents a grid re�nement factor. We
further de�ne a hierarchy of parameter sets, {�l}Ll=0, where �L is the parameter set corresponding
to the target (strongly nonlinear) problem to be solved. For instance, we can de�ne a parametric
hierarchy using the set of van Genuchten parameters, e.g. �l = {�(bl)l , n(bl)l }. The approximation of
the pressure head on the level l at Tfinal is denoted by pℎl,�l . Using the linearity of the expectation
operator, one can de�ne the expected value of the pressure head on the �nest level, L, with the
original parameter set, �L, by the following telescopic sum:

E[pℎL ,�L
] = E[pℎ0,�0

] +
L∑

l=1
E[pℎl,�l − pℎl−1,�l−1]. (6.31)

Note that for �0 = �1 = ... = �L, we have the standard MLMC estimator which solves the same
problem on all levels. In terms of computational e�ort, it is cheaper to approximate E[pℎ0,�0

] by a
standard Monte Carlo estimator, as the samples are computed on a coarse spatio-temporal mesh
based on an “easy nonlinear parameter set �0”. Furthermore, the correction term, E[pℎl,�l −
pℎl−1,�l−1], can be accurately determined using only a few samples as the level-dependent variance,
Vl ∶= V[pℎl,�l − pℎl−1,�l−1], is typically small, since the random variables pℎl,�l and pℎl−1,�l−1 are
positively correlated. Note that the correlation will depend on the grid parameters ℎl and ℎl−1 as
well as on the di�erence between the nonlinear parameters �l and �l−1. We will elaborate on this
later on.

Each of the expectations in the MLMC estimator (6.31) can be independently computed using
the standard MC simulation. We de�ne a multilevel estimator, EML

L [pℎL ,�L
], constructed using a

sum of L + 1MC estimators:

E[pℎL ,�L
] ≈ EML

L [pℎL ,�L
] ∶=

L∑

l=0
EMC
Nl

[pℎl,�l − pℎl−1,�l−1], (6.32)
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where EMC
Nl

[pℎl,�l−pℎl−1,�l−1] is the standardMC estimator obtained by averagingNl independent,
identically distributed (i.i.d.) samples as

EMC
Nl

[pℎl,�l − pℎl−1,�l−1] ∶=
⎛
⎜
⎝

1
Nl

Nl∑

i=1
(pℎl,�l(!i) − pℎl−1,�l−1(!i))

⎞
⎟
⎠
. (6.33)

with !i denoting an event in the stochastic domain Ω and pℎ−1,�−1
= 0. It is expected that the

number of MLMC samples Nl ∈ ℕ forms a decreasing sequence for increasing l. In order to keep
the variance of the correction terms small, the MC samples, pℎl,�l(!i) − pℎl−1,�l−1(!i), should be
based on the same random input !i for the simulation on two consecutive levels l and l − 1.

Similarly, a multilevel estimator for the variance of the pressure head, V[pℎL ,�L
], can be de�ned

as

V[pℎL ,�L
] ≈ VML

L [pℎL ,�L
] ∶=

L∑

l=0
VMC
Nl

[pℎl,�l] − VMC
Nl

[pℎl−1,�l−1], (6.34)

where the variance VMC
Nl

[pℎl,�l] is computed as

VMC
Nl

[pℎl,�l] ≈
1

Nl − 1

Nl∑

i=1

(
pℎl,�l(!i) − EMC

Nl
[pℎl,�l]

)2
. (6.35)

Again, the computational savings for the variance estimator (6.34) are obtained by computing
individual variances VMC

Nl
[pℎl,�l] and V

MC
Nl

[pℎl−1,�l−1] using the same random inputs {!i}
Nl
i=1. The

above variance estimator can be seen as an extension of the standard multilevel variance estimator
proposed in [146].

For the multilevel estimators, an appropriate spatial interpolation procedure is required to
combine expectations from all levels. Typically, the polynomial order of the interpolation scheme
should be equal to or higher than the order of the discretization to avoid any additional dominant
source of error. In some more detail, when using the estimator (6.32) to compute EML

L [pℎL ,�L
], we

begin by computing EMC
N0

[pℎ0,�0
] on the coarsest gridD0. This quantity is then interpolated to the

next �ner gridD1 and is added to the correction term EMC
N1

[pℎ1,�1
− pℎ0,�0

] resulting in a two-level
estimate EML

1 [pℎ1,�1
]. This is again interpolated to the next grid level D2 and added to the next

correction term EMC
N2

[pℎ2,�2
− pℎ1,�1

]. This process is repeated until the �nal level is reached.

6.5.2 Accuracy of MLMC estimator

Throughout this chapter, we use the L2− based norm for the error analysis of the multilevel Monte
Carlo estimator. We assume that the pressure head considered belongs to the functional space
L2(Ω,D) corresponding to the space of square-integrable measurable functions p ∶ Ω→ L2(D) for
a previously de�ned probability space (Ω,F,ℙ). These spaces are equipped with the norm

||||||p(x, T, !)||||||L2(Ω,D) ∶= E
[||||||p(x, T, !)||||||

2
L2(D)

] 1
2 = (∫

Ω

||||||p(x, T, !)||||||
2
L2(D) dℙ)

1
2
. (6.36)

Similar to Section 2.3.1, the mean square error (MSE) in EML
L [pℎL ,�L

] can then be expressed as the
sum of the discretization and the sampling errors as

||||
||||E[p�L

] − EML
L [pℎL ,�L

]||||
||||
2

L2(Ω,D)
≤ ||||

||||E[p�L
] − E[pℎL ,�L

]||||
||||
2

L2(D)
+ ||||

||||E[pℎL ,�L
] − EML

L [pℎL ,�L
]||||
||||
2

L2(Ω,D)
.

(6.37)
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Both errors in the MLMC estimator can be dealt with separately. The discretization error can be
quanti�ed as:

||||
||||E[p�L

] − E[pℎL ,�L
]||||
||||L2(D) ≤ c0ℎaL , a > 0, (6.38)

where c0 is a constant independent of ℎL but depending on the parameter set�L. The rate a typically
depends on the regularity of the PDE and the accuracy of the discretization. The next task is to
bound the sampling errors. As the MLMC estimator EML

L [pℎL ,�L
] is composed of L+ 1 independent

MC estimators, the sampling error in the MLMC estimator is just the sum of sampling errors from
the individual MC estimators. Therefore,

||||
||||E[pℎL ,�L

] − EML
L [pℎL ,�L

]||||
||||
2

L2(Ω,D)
=

L∑

l=0

||||||Vl||||||L2(D)
Nl

, (6.39)

see [30, 147] for a proof. Obtaining a bound on the level-variance ||||||Vl||||||L2(D) is more involved due to
its dependence on the grid size ℎl as well as on the nonlinearity parameter set �l. We numerically
estimate it by

||||||Vl||||||L2(D) = ||||
||||V[pℎl,�l − pℎl−1,�l−1]

||||
||||L2(D)

≈ 1
Nl − 1

Nl∑

i=1
∫

D
(EMC

Nl
[pℎl,�l − pℎl−1,�l−1] − (pℎl,�l(!i) − pℎl−1,�l−1(!i)))

2

.(6.40)

Recall from Section 2.3.1, to achieve a tolerance of ", one needs to ensure that

||||
||||E[p�L

] − EML
L [pℎL ,�L

]||||
||||
2

L2(Ω,D)
≤ (c0ℎaL)

2 +
L∑

l=0

||||||Vl||||||L2(D)
Nl

< "2. (6.41)

The total cost of theMLMCestimator can be expressed asWML
L =

∑L
l=0NlWl, whereWl = O(ℎ−l )

corresponds to the cost of computing one sample on level l. For time-dependent problems, the
rate  ≥ d + 1, with d the number of spatial dimensions. As proposed in [10, 28], the number of
samples at di�erent levels is typically derived by minimizing the total cost such that the sampling
error of the MLMC estimator reduces below "2, i.e.,

min
⎛
⎜
⎝

L∑

l=0
NlWl

⎞
⎟
⎠

s.t
L∑

l=0

||||||Vl||||||L2(D)
Nl

= "2. (6.42)

Using the standard Lagrange multiplier approach [10], gives us

Nl = "−2
⎛
⎜
⎝

L∑

k=0

√
||||||Vk||||||L2(D)Wk

⎞
⎟
⎠

√||||||Vl||||||L2(D)
Wl

, (6.43)

and hence the total cost to obtain a tolerance of " is given by

WML
L (") =

L∑

l=0
NlWl = "−2

⎛
⎜
⎝

L∑

l=0

√
||||||Vl||||||L2(D)Wl

⎞
⎟
⎠

2

. (6.44)

In the above formula, the product ||||||Vl||||||L2(D)Wl determines the cost contribution from any level l.
For instance, if the product decays with increasing l, the dominant cost comes from the coarsest
level whereas if the product grows with l, the dominant contribution comes from the �nest level.
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Remark 6.5.1 The optimal number of samples given in (6.43) is based on a pre-de�ned hierarchy
of parameters {�l}Ll=0. A more general approach is to �ndNl along with the parameter set {�l}Ll=0
for which the total cost of the MLMC estimator is minimum. Solving such optimization problem
analytically is non-trivial. Furthermore, numerically obtaining the best values for �l can also be
highly expensive. In the numerical experiments section, we will discuss some heuristics that can be
applied to �nd�l. We further point out that the multi-index Monte Carlo (MIMC) estimator [34] is
also highly suited for this problem. For MIMC estimator, a two-dimensional hierarchy of indices based
on ℎl and�l can be constructed to achieve more e�ective variance reduction.

MLMC algorithmwith parametric continuation
To compute the estimator EML

L [pℎL ,�L
], the standard MLMC algorithm from [10, 28] cannot be

directly employed as it requires solving the same problem on all grid levels. Here, we describe a
modi�ed version of the standardMLMC technique to compute EML

L [pℎL ,�L
]. This algorithm assumes

that the total number of levels in theMLMC hierarchy and the values of the nonlinearity parameters
�l for all levels are known in advance. The algorithm can be described by the following steps:

Algorithm 3 PC_MLMC algorithm
1: Fix the tolerance ",Dl,Tl,�l and warm-up samples N∗

l for l = 0, 1, 2, ..., L.
2: Compute quantities EMC

Nl
[pℎl,�l − pℎl−1,�l−1] and

||||||Vl||||||L2(D) using samples Nl = N∗
l for all

levels.
3: Update Nl using the formula (6.43) for all levels.
4: Compute additional samples and update EMC

Nl
[pℎl,�l − pℎl−1,�l−1] and

||||||Vl||||||L2(D) for all levels.
5: Perform steps 3-4 until no additional samples are needed on any level.

In the above algorithm, the value of N∗
l should not be set too high, especially not on the �nest

level, in order to avoid oversampling. Further, the cost per sample Wl can also be estimated
“on-the-�y” by averaging the CPU times from the computation of warm-up samples.

6.6. Numerical experiments
We evaluate the performance of the newMLMC estimator and study the improvements with respect
to the standard MLMC estimator. For all the experiments, we use the in�ltration problem with
conditions given in (6.29), however, with Tfinal = 0.2 [h] and the twoMatérn covariance parameters
from Table 6.1. We employ a geometric hierarchy of spatio-temporal grids with re�nement factor
s = 2 in (6.30) and we use ℎl = ∆tl. For all experiments, the following baseline values are
prescribed, K(bl)

s = 0.2 [m/h], �(bl)s = 0.5 and �(bl)r = 0.05; di�erent baseline values for �(bl) and n(bl)
are studied. The uncertainty in the soil parameters is de�ned according to the values presented in
Table 6.3. The sampling and upscaling procedure for a Gaussian random �eld is already described
in Chapter 3. The sampling of random �elds with uniform marginal is described in Section 6.3.

Quantity Uncertainty
Z(x, !) N(0, CΦ)
"�s(x, !) U(−0.05, 0.05, CΦ)
"�r(x, !) U(−0.005, 0.005, CΦ)
"�(x, !) U(−0.2, 0.2, CΦ)
"n(x, !) U(−0.05, 0.05, CΦ)

Table 6.3: Description of uncertainty for di�erent soil parameters.
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Note that the above stochastic model is extremely high-dimensional as it comprises �ve inde-
pendent random �elds. For each random �eld the degree of freedom is equal to the number of grid
points in the sampling mesh. The dimensionality can be reduced using the KL expansion method,
however as we use random �elds with small correlation lengths, we will still need to use a very
large number of KL modes for an accurate representation of these random �elds.

6.6.1 Convergence of discretization bias

We begin by analyzing the reduction of the discretization error ||pℎl − pℎl−1||L2(Ω,D) with respect to
mesh re�nement for di�erent baseline values of �(bl) and n(bl). The relative error is used to bound
the exact discretization bias as

||p − pℎl||L2(Ω,D) ≤
||pℎl − pℎl−1||L2(Ω,D)

sa − 1 , (6.45)

where a is the convergence rate de�ned in (6.38). The relative errors for, Φ1 and Φ2 are presented
in the left and right pictures in Figure 6.5, respectively. For both cases a convergence rate close to
�rst-order is observed, i.e. a ≈ 1. The convergence rate typically depends on the order of the spatio-
temporal discretization scheme aswell as on the smoothness parameter �c in the covariance function.
In fact, the dominant error comes from the �rst-order accurate backward Euler time discretization.
The magnitude of the error grows with increasing �(bl) and reduces with increasing n(bl) values.
Note that for the most di�cult cases, n(bl) = 1.45, �(bl) = 3.0 for Φ1 and n(bl) = 1.55, �(bl) = 2.8 for
Φ2, the convergent solutions are obtained from ℎl = 1∕64 onwards.

(a) Φ1 (b) Φ2

Figure 6.5: Convergence of discretization bias with mesh re�nement for di�erent baseline values of �(bl) and n(bl).

6.6.2 MLMC simulation

Here, we describe the algorithm to compute the multilevel estimator EML
L [pℎL ,�L

]. We perform the
MLMC simulations for two test cases based on Φ1 and Φ2, respectively. The original problem for Φ1
uses �L = {�(bl)L , n(bl)L } = {3.0, 1.45} and for Φ2 the original problem is based on �L = {2.8, 1.55}.

We �rst investigate the correlations for the pressure head pro�les when the baseline values for
�(bl) and n(bl) are varied however employing the same random �elds. In Figure 6.6, we compare
three pressure head solutions with di�erent baseline values, and with the same random �elds,
Z(x, !), "�s(x, !), "�r(x, !), "�(x, !) and "n(x, !) (see Section 6.3). Clearly, the pressure head pro�le
becomesmore di�usivewhen “easier” parameters are prescribed. We also compare the cross sections
of the pressure head pro�les at x = 0.5 in Figure 6.7. For reference, we use the solution on the
�ne grid ℎ = ∆t = 1∕128 (black solid line) and compare it with di�erent pairs of n(bl) and �(bl)
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(a) n(bl) = 1.45, �(bl) = 3.0 (b) n(bl) = 1.65, �(bl) = 2.6 (c) n(bl) = 1.85, �(bl) = 2.2

Figure 6.6: Comparison of pressure head �elds at Tfinal = 0.2 [h] for di�erent baselines values of the parameters,
(n(bl), �(bl)) but with the same random �elds Z, "�s , "�r , "� , "n. Solutions are based on ℎ = ∆t = 1∕64 and the Matérn

parameter set Φ1.

Figure 6.7: Comparison of cross sections of the pressure heads from Figure 6.6 at x = 0.5.

values on the next coarse grid ℎ = ∆t = 1∕64. The pro�les with the same (n(bl), �(bl))-values are
very close and the deviation increases as the two parameters are set to “easier” values. Thus, we can
conclude that the correlation decays as the di�erence between the baseline values of the nonlinear
parameters widens.

Next, we study the behavior of the level-dependent variance ||||||Vl||||||L2(D) when using the para-
metric continuation approach. For this we de�ne the so-called parametric continuation variables,
∇� = �l − �l−1 and∇n = nl−1 − nl, with the purpose to reduce the nonlinearity when processing
coarse grids. In Figure 6.8, we plot ||||||Vl||||||L2(D) computed using (6.40) for di�erent (∇�, ∇n) pairs
for the two Matérn parameter sets. The original problem is solved with ℎL = 1∕256. The parameter
sets �L and �l, for l = L − 1, L − 2, ..., 0, are obtained by employing ∇� and ∇n. The black
line represents the variance when the same problem is solved on all levels, i.e. ∇� = ∇n = 0,
corresponding to the original MLMC estimator. Using the original approach, we can only process
three levels in the MLMC hierarchy. The red and blue lines in the �gure correspond to the variance
which is computed using ∇� = 0.05,∇n = 0.1 and ∇� = 0.1,∇n = 0.2, respectively. For these two
cases, we can incorporate a larger number of coarse levels, up to ℎ0 = 1∕16, as milder nonlinear
problems are solved on these coarse levels. Furthermore, for levels l < L the variance is smaller,
compared to the case without continuation (where ∇� = ∇n = 0) which will result in a lower
number of samples on these levels. Here, we wish to highlight the fact that choosing optimal values
for ∇� and ∇n is important. For example, when � = 0.1,∇n = 0.2, the variance on the �nest level
increases as compared to the variance found with the original MLMC approach. Due to this, an
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(a) ℎL = 1∕256,Φ1, �
(bl)
L = 3.0, n(bl)L = 1.45 (b) ℎL = 1∕256,Φ2, �

(bl)
L = 2.8, n(bl)L = 1.55

Figure 6.8: Comparison of level-dependent variances using di�erent pairs of ∇�,∇n for the two Matérn parameters.

increasing number of samples will be needed on the �nest level, compared to the original MLMC
estimator, which is undesirable as it may result in an expensive estimator. On the other hand, for
a smaller perturbation ∇� = 0.05,∇n = 0.1, the magnitude of the variance on the �nest level is
similar to that of the original MLMC estimator. Therefore, the number of samples on the �nest
level will be more-or-less similar to the original MLMC estimator.

Alternatively, one can avoid high variance on the �nest level by using zero perturbations on the
two �nest levels, i.e. ∇�L = ∇�L−1 = 0 and∇nL = ∇nL−1 = 0 and choosing non-zero perturbations
on next coarser levels from L−2 onwards. This way, we solve the original problem on the two �nest
levels.

Now we apply the parametric continuation based MLMC estimator denoted by PC_MLMC,
to compute the mean and variance of the pressure head �eld and also perform comparisons with
respect to the standard MLMC estimator which is denoted by Std_MLMC. For this, we use the two
previously discussed test cases: isotropic covariance Φ1 with baseline values n(bl) = 1.45, �(bl) = 3.0
and anisotropic covariance Φ2 with baseline values n(bl) = 1.55, �(bl) = 2.8. For simplicity, we
use the continuation variables ∇� = 0.05,∇n = 0.1 for both the isotropic and anisotropic cases.
We compare the number of samples needed on di�erent grids for three values of the tolerances.
For the Std_MLMC estimator, the coarsest possible level is ℎ0 = ∆t0 = 1∕64, whereas for the
PC_MLMC, we use ℎ0 = ∆t0 = 1∕16. As the discretization error shows a �rst-order decay (see
Figure 6.5), we set the tolerance " = O(ℎL). We use Algorithm 3 to reduce the sampling error
to ". In Table 6.4, the two estimators for the isotropic Matérn parameter Φ1 are compared. Due
to the sample optimization strategy (6.43), a large number of samples is shifted to coarser grids
when using the PC_MLMC estimator. Furthermore, a fewer number of samples are required for
the PC_MLMC estimator compared to the Std_MLMC, even on the �nest level. This is due the
fact that the sum

∑L
l=0

√
||||||Vl||||||L2(D)Wl for the PC_MLMC estimator is slightly smaller than for

Std_MLMC. Moreover, a large computational gain is induced by the reduction in the number of
samples on grid ℎl = 1∕64, for instance, for " = 0.005, the number of samples reduced from 438 to
35 when using the parametric continuation. In Figure 6.9 (a) the CPU times for the two estimators
are also compared. We observe a speed-up of about a factor of three for " = 0.005.

A similar test is performed for the anisotropic problem. The number of samples for di�erent
tolerances are provided in Table 6.5 and the CPU times in Figure 6.9 (b). Again some improvement
in computation times is observed, although the gain is not as pronounced as for the �rst problem.
This is due to the fact that the second case uses simpler baseline values n(bl) = 1.55, �(bl) = 2.8
and the cost reduction with parameter simpli�cation is not very rapid. For the isotropic case
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(a) Φ1, �
(bl)
L = 3.0, n(bl)L = 1.45 (b) Φ2, �

(bl)
L = 2.8, n(bl)L = 1.55

Figure 6.9: Comparison of CPU timesWML
L (sec) for two di�erent estimators.

with n(bl) = 1.45, �(bl) = 3.0, the cost decay is more rapid with parameter simpli�cation. This is
more evident from the cost map in Figure 6.3, where we see more dense contour lines around
n(bl) = 1.45. Therefore, the parametric continuation approach is very e�ective when a strongly
nonlinear stochastic problem needs to be solved.

We also wish to highlight the fact that both MLMC estimators are optimal since the cost scales
as O("−3), which is similar to the computational complexity of solving one deterministic problem
on the �nest grid, i.e. O(ℎ−3L ) and ℎL = O(").

ℎl
Nl(ℎL = 1∕64, " = 0.02) Nl(ℎL = 1∕128, " = 0.01) Nl(ℎL = 1∕256, " = 0.005)
Std_MLMC PC_MLMC Std_MLMC PC_MLMC Std_MLMC PC_MLMC

1/16 − 115 − 459 − 1833
1/32 − 11 − 44 − 176
1/64 28 3 110 9 438 35
1/128 − − 5 2 18 8
1/256 − − − − 4 3

Table 6.4: Comparison of number of samples needed to achieve tolerances " using the standard MLMC (Std_MLMC)
and parametric continuation MLMC (PC_MLMC) estimators for Φ1, n

(bl)
L = 1.45, �(bl)L = 3.0. Entries with symbol (−)

indicate zero samples needed for that grid.

ℎl
Nl(ℎL = 1∕64, " = 0.0184) Nl(ℎL = 1∕128, " = 0.0092) Nl(ℎL = 1∕256, " = 0.0046)
Std_MLMC PC_MLMC Std_MLMC PC_MLMC Std_MLMC PC_MLMC

1/16 − 96 − 427 − 1659
1/32 − 18 − 77 − 301
1/64 9 4 36 16 140 60
1/128 − − 4 4 15 12
1/256 − − − − 3 3

Table 6.5: Comparison of number of samples needed to achieve tolerances " using the standard MLMC (Std_MLMC)
and parametric continuation MLMC (PC_MLMC) estimators for Φ2, n(bl) = 1.55, �(bl) = 2.8.

In the last part of this section, we validate the stochastic moments computed using the proposed
estimator. It is expected that the mean pressure �eld computed using the two MLMC estimators
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should converge to a similar solution for a given tolerance. In Figure 6.10, the mean pressure head
pro�le for the isotropic case is shown. It is computed using the number of samples from Table 6.4,
with " = 0.005. For a closer inspection, we also compare the mean pressure head pro�les at x = 0.5.
Similarly, the mean pro�le for the anisotropic case is presented in Figure 6.11, using the number
of samples from Table 6.5 with " = 0.0046. We see good agreement between the mean pro�les
computed from the two estimators. The isotropic case exhibits a seemingly smoother transition
from the saturated to the unsaturated zone compared to the anisotropic problem. In Figure 6.12 we
also present the variance �eld for the isotropic test case, computed using the multilevel variance
estimator VML

L [pℎL ,�L
] given in (6.34). The two variance �elds are very similar, although some

discrepancy in the magnitude is observed. This is due to the fact that the two variance �elds are
computed using the samples based on the error analysis of EML

L [pℎL ,�L
] (from Table 6.4) and not on

the error analysis of VML
L [pℎL ,�L

]. Thus, the two variance estimates may have di�erent tolerances
resulting in this slight mismatch. Readers are referred to [146] for detailed error analysis of the
multilevel variance estimator.

The results from the two estimators also showed good agreement with the plain Monte Carlo
solutions performed on the grid ℎL = 1∕128. This is done in order to verify that a proper upscaling
of the random �elds on coarser levels is carried out while using the MLMC estimator. These results
are omitted for the sake of brevity.

(a) Std_MLMC (b) PC_MLMC (c)Mean pressure head pro�le at x = 0.5.

Figure 6.10: Comparison of mean pressure head �eld for Φ1, �
(bl)
L = 3.0, n(bl)L = 1.45, Tfinal = 0.2 [h] computed using

the two MLMC estimators with �nest level ℎL = ∆tL = 1∕256 and " = 0.005.

(a) Std_MLMC (b) PC_MLMC (c)Mean pressure head pro�le at x = 0.5.

Figure 6.11: Comparison of mean pressure head �eld for Φ2, �
(bl)
L = 2.8, n(bl)L = 1.55, Tfinal = 0.2 [h] computed using

the two MLMC estimators with �nest level ℎL = ∆tL = 1∕256 and " = 0.0046.

6.7. Conclusions
In this work, an e�cient uncertainty propagation method for a high-dimensional stochastic exten-
sion of Richards’ equation was proposed. All the soil parameters were treated as unknown and
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(a) Std_MLMC (b) PC_MLMC
(c) Variance of pressure head pro�le at

x = 0.5.

Figure 6.12: Comparison of the variance of the pressure head �eld for Φ1, �
(bl)
L = 3.0, n(bl)L = 1.45, Tfinal = 0.2 [h]

computed using the two MLMC variance estimators with �nest level ℎL = ∆tL = 1∕256.

modeled as random �elds with appropriate marginal distributions. We also studied a modi�ed
Picard iteration and cell-centered multigrid method for solving the nonlinear systems with hetero-
geneous coe�cients. We found that the combined solver is robust for a wide parameter range and
the performance further improves with spatio-temporal re�nements. This combination of solvers is
general, therefore, its robustness can be further improved by incorporating adaptive time stepping
or by combining with other advanced techniques, for instance, using the Anderson acceleration
proposed in [140].

For computing the statistical moments of the solution of Richards’ equation, a parametric
continuation technique based multilevel Monte Carlo estimator was proposed. This estimator is
very practical for this problem, as it requires solving the strongly nonlinear problem only on the
�nest level, where the solver is robust and uses simpler nonlinear problems on the coarse grid
levels for a variance reduction. For the stochastic Richards’ equation, the proposed estimator is
more prominent regarding the computational gains compared to the standard MLMCmethod if
the problem is strongly nonlinear. In general, this estimator is also applicable to other parameter
dependent nonlinear PDEs. One of the research problems that need to be addressed is �nding a
computationally viable way of obtaining optimal step sizes for the nonlinear parameters used in
continuation.



7
Stochastic turbulence modeling

This chapter1 presents a multilevel Monte Carlo method for quantifying model-form uncertainties
associated with the Reynolds-Averaged Navier-Stokes (RANS) simulations. Two, high-dimensional,
stochastic extensions of the RANS equations are considered to demonstrate the applicability of the
MLMC method. The �rst approach is based on global perturbation of the baseline eddy viscosity
�eld using a lognormal random �eld. A more general second extension is considered where the entire
Reynolds Stress Tensor is perturbed while maintaining realizability. The MLMC experiments are
performed for two fundamental �ows along with comparisons in terms of cost and accuracy with plain
Monte Carlo. We also discuss possibilities when an optimal multilevel estimator can be attained for
which the cost scales with the same order as a single CFD solve on the �nest grid level.

7.1. Introduction
The Reynolds-Averaged Navier-Stokes (RANS) equations combined with turbulence closuremodels
are widely utilized in engineering to predict �ows with high Reynolds numbers. These turbulence
closure models are used to obtain an approximate Reynolds stress tensor that is responsible for
coupling the mean �ow with turbulence. Although many turbulence models exist in the literature,
there is no single model that generalizes well to all classes of turbulent �ows [148, 149]. Speci�cally,
the performance depends on the modeling assumptions and the type of �ow used to calibrate the
so-called closure coe�cients that are needed as inputs to a turbulence model.

Since the dominant source of error in the �ow prediction comes from the turbulence modeling,
a number of approaches have already been developed for the model-form uncertainty quanti�cation
(UQ) of RANS simulations, see e.g. [150, 151] for recent reviews. The majority of these approaches
is based on the perturbation of baseline RANS models. One way to achieve this is by injecting
uncertainties in the closure coe�cients [22, 152–154] of the turbulence models. Another more
general physics-based approaches exist, which typically introduces randomness directly into the
modeled Reynolds Stress Tensor (RST), either by perturbing its eigenvalues [2, 155, 156], tensor
invariants [3, 157] or the entire RST �eld [4]. One can also classify these stochastic models in terms
of global and local perturbation (in space). For global approaches, such as in [22, 152, 153, 155],
the magnitude of the perturbations in the closure coe�cients, eigenvalues of RST, etc. is the
1Note that the notations in this chapter are slightly di�erent from the previous chapters, as we follow the notations
commonly used in the turbulence modeling literature.
This chapter is based on the article “Stochastic turbulence modeling in RANS simulations via Multilevel Monte Carlo
method”, Preprint arXiv:1803.08864, (2018) [27]. (Submitted for publication)
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same throughout the �ow domain. This translates to a low-dimensional UQ problem which can
be e�ciently handled by deterministic sampling techniques like stochastic collocation or just by
simulating �ows for limiting states to obtain a prediction interval. Since the error in closure models
is not the same everywhere, global methods fail to capture the truth in general. On the other hand,
local perturbation approaches may be e�ective due to high-dimensional parameterizations of the
uncertainties. Some local methods already exist, such as the spatially varying marker functions
proposed in [2, 158] or Gaussian random �elds [4, 157, 159] as a measure of the local variation of
the uncertainty. The main bottleneck hampering the development of these local models is the large
cost of a forward uncertainty propagation stage.

The prime objective of this work is to provide a framework for developing a new class of high-
dimensional stochastic RANS closures, that was until recently not viable (due to the cost of the
propagation), but will be if the work required is within a constant, small factor of the cost of the
�ne-grid solution procedure. We achieve this using the multilevel Monte Carlo (MLMC) method
[10, 29]. In previous works, the potential of the MLMCmethod has already been demonstrated in
the context of the inviscid compressible �ow in [160] for propagating lower-dimensional geometric
and operational uncertainties. In the current work, we use two local stochastic models based on a
random eddy viscosity and a random Reynolds stress tensor. The random eddy viscosity is obtained
by perturbing the baseline eddy viscosity using Gaussian random �elds with some prescribed spatial
covariance. This stochastic model is applicable for the quanti�cation of uncertainties arising due
to imperfect closure constants. Similarly, the random RST is derived by perturbing the baseline
RST. We utilize the algorithm proposed in [4] where the random RST is modeled by means of
spatially correlated positive-de�nite randommatrices. This approach is attractive as the random
matrix is drawn from a set of positive-de�nite matrices which automatically guarantees realizable
Reynolds stresses. Since the two stochastic extensions considered are high-dimensional in their
random inputs, MC type methods are favorable owing to their dimension-independent convergence.
For many UQ problems in �uid dynamics, the computational time and resources required to
perform plain MC simulation are prohibitive. Standard MC methods may require thousands of
CFD simulations on a �ne computational mesh, before the statistical moments of the QoIs converge
to some prescribed tolerance. The cost of the forward propagation can be drastically reduced by
using the multilevel Monte Carlo method. In this work, we describe a standard MLMC method
for e�cient forward propagation of the uncertainty which is based on a hierarchy of pre-de�ned
grids. For the proposed MLMC estimator, we show that the asymptotic cost does not deteriorate
with an increase in the uncertain dimension and is controlled by the mesh convergence properties
that further depend on the quality of the mesh and the discretization scheme used. For problems
with a su�ciently fast decay of the numerical error, we demonstrate a cost scaling of O("−2) to
achieve an error tolerance of ". On the other hand, for problems with a slower error decay rate,
we can attain an optimal MLMC estimator, in the sense that the cost grows at the same rate as
the deterministic counterpart of the problem. The other motivation of this work is to show that
the considered stochastic models can serve as an accurate Bayesian prior for calibration and data-
assimilation involving turbulence models. Using numerical experiments, we show that the two
models are su�ciently general and can reliably bound the possible �ow behavior. Furthermore,
the probability distribution of the random Reynolds stresses also satis�es the maximum entropy
principle, a desirable property for a good prior.

The chapter is organized as follows. In Section 7.2 we brie�y introduce the deterministic RANS
equations and two standard deterministic turbulence models. Stochastic RANS models based on
the random eddy viscosity and the random Reynolds stress are discussed in Section 7.3. In Section
7.4, numerical experiments are reported based on the �ow over a periodic hill and fully developed
turbulent �ow in a square duct.
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7.2. Deterministic RANSmodels
Direct numerical simulation of turbulent �ow is highly expensive due to a large range of scales.
Most engineering applications do not require details of these �ne spatio-temporal features but only
the e�ect of turbulence on the mean �ow. A system of mean �ow equations can be derived by
Reynolds averaging, which consists of decomposing the �ow into mean components, de�ned as an
average over a large time period T, and �uctuations,

ui ∶= lim
T→∞

1
T ∫

T

0
uidt, (7.1)

u′i ∶=ui − ui, (7.2)

respectively. The quantities ui and u′i are the mean and the �uctuating components of the instanta-
neous velocity ui, respectively. Substituting (7.2) into the incompressible Navier-Stokes equation
and averaging, results in the mean �ow equation,

�(u ⋅∇)ui = −
)p
)xi

+ )
)xj

(
Rij + Rij

)
, i, j = 1, 2, 3. (7.3)

The mean velocity vector is represented by u = (u1, u2, u3), p is the time-averaged pressure �eld
and � is the (constant) density. Here Rij =

1
2
��

(
)ui∕)xj + )uj∕)xi

)
denotes the mean stresses

(tangential and normal) associated with the molecular viscosity �. The mean �ow is coupled to the
turbulence by Reynolds stresses Rij = �u′iu

′
j. The Reynolds stress components Rij appearing in (7.3)

are unknown and are modeled using turbulence closure models that can be broadly categorized
into Reynolds stress transport models and eddy viscosity models. The former models rely on an
approximate set of stress transport equations to compute the Reynolds stress components. Although
physically more stringent, stress transport models are not very popular in engineering practice as the
discretizations of the coupled set of stress transport equations results in a numerically sti� system
that is expensive to solve. On the other hand, linear eddy viscosity models are popular as they
are signi�cantly cheaper and perform reasonably well for a broad range of �ows [148]. However,
they are challenged by industrially relevant �ows exhibiting separation, impinging, curvature, etc.
These models are based on the Boussinesq approximation, which states that the Reynolds stresses
are linearly related to the mean rate-of-strain as

− u′iu
′
j ≈ �t (

)ui
)xj

+
)uj
)xi

) −
2
3�ijk, (7.4)

where k ∶= 1
2
u′iu

′
i is the turbulent kinetic energy, �ij is the Kronecker delta and �t is the eddy

viscosity. On dimensional grounds the eddy-viscosity is a function of the turbulent velocity and
length scale [161]. These quantities are commonly computed using two-equation turbulencemodels,
such as k − � or k − !, that are based on transport equations for k and for the turbulence-energy
dissipation � or the speci�c-dissipation !. We use two popular turbulence models, the Launder-
Sharma k− � and a k−!model. For both models, a generic k transport equation can be formulated
with appropriate terms, listed in Table 7.1, as

)k
)t

+ )
)xj

[kuj − (� +
�t
�k

) )k
)xj

] = P − D, and P = Rij
)ui
)xj

. (7.5)

The Launder-Sharma k − � model is typically employed as a low-Reynolds number model.
These kinds of models resolve the viscous part of the boundary layer with an appropriately re�ned
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Term Launder-Sharma k − � k − !

D � + 2� (
)
√
k

)xj
)
2

C�!k

�t C�f�
k2

�
k
!

�k 1 2
C� 0.09 0.09

Table 7.1: Terms and coe�cients in the k transport equation for two turbulence models.

mesh instead of utilizing wall functions [162]. Correct near wall behavior is achieved by damping
functions for the eddy viscosity f� and the dissipation f2 close to a wall. The equation for the
dissipation � reads

)�
)t

+ )
)xj

[�uj − (� +
�t
��

) )�
)xj

] =
(
C�1P − C�2f2�

) �
k
+ 2��t

⎛
⎜
⎝

)2ui
)x2j

⎞
⎟
⎠

2

, with (7.6)

f� = exp
⎡
⎢
⎢
⎢
⎣

−3.4
(
1 + k2

50��

)2

⎤
⎥
⎥
⎥
⎦

, f2 = 1 − 0.3 exp
⎡
⎢
⎣
−min

⎛
⎜
⎝
(
k2

��)
2

, 50
⎞
⎟
⎠

⎤
⎥
⎦
, (7.7)

with �� = 1.3, C�1 = 1.44, C�2 = 1.92. The other model is the k − ! model [163], which uses a
speci�c dissipation !,

)!
)t

+ )
)xj

[!uj − (� +
�t
�!

) )�
)xj

] = !
k
P − �!2, (7.8)

with �! = 2,  = 0.52 and � = 0.072.
These two models form our baseline, to be perturbed in order to obtain stochastic RANS

equations. However, the method proposed in this chapter is also applicable to other eddy viscosity
models.

7.3. Stochastic RANSmodels
We now describe in detail the two stochastic models based on a perturbation of the baseline eddy
viscosity �eld and the baseline Reynolds stress tensor �eld [4] originating from a deterministic
eddy viscosity model. The former model is mathematically simple and is suitable for quantifying
uncertainties that are introduced from a poor choice of RANS closure parameters to compute the
eddy viscosity. The latter model is more advanced and is applicable to �ows where the assumption
of linear stress-strain relation is insu�cient. When these models are combined with the RANS
equations (7.3), we obtain so-called stochastic partial di�erential equations (SPDEs) that are solved
using the MLMCmethod.

Before we describe the stochastic models, we clarify our setting. The RANS equations are
de�ned in a bounded domainD ⊂ ℝd (d = 1, 2, 3). The complete probability space is denoted by
(Ω,F,ℙ), where Ω is the sample space with �-�eld F and probability measure ℙ. Furthermore,
the zero-mean Gaussian random �eld will be denoted by Z(x, !), x ∈ D, ! ∈ Ω with a speci�ed
positive-de�nite covariance kernel. We will work with a stationary anisotropic squared exponential
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covariance model, given by

cov(Z(x1, ⋅), Z(x2, ⋅)) = C(x1, x2) ∶= �2c exp (−
(x1 − x2)2

l2x
−
(y1 − y2)2

l2y
−
(z1 − z2)2

l2z
) , (7.9)

where C ∶ ℝd → ℝ+ with parameters �2c the marginal variance; lx, ly and lz correlation lengths
along the x, y and z directions, respectively. The algorithm for sampling Z(x, !) was described
earlier in Section 3.6.

7.3.1 Random Eddy Viscosity (REV) model

RANS turbulence models rely on transport equations and a set of closure coe�cients that are ob-
tained from a calibration against DNS or experimental data. For a given turbulence model, a closure
coe�cient take di�erent values when calibrated against di�erent types of �ow [148]. Since the
model prediction is strongly in�uenced by the value of the closure coe�cients, a common practice is
to propagate a joint probability distribution of these closure parameters to obtain uncertainty bounds
of the QoIs, see for e.g., [22, 152, 154]. These approaches indirectly lead to a globally perturbed eddy
viscosity �eld. Here, one must take into account the fact that the Boussinesq assumption (7.4) is in
the general case only locally imperfect. Therefore, methods that allow direct local perturbations of
the baseline eddy viscosity �elds can be e�ective. A convenient way to achieve this local perturba-
tion is by the means of Gaussian random �elds with some prescribed covariance model. Depending
on the problem, a covariance model can be designed which induces a high-variability locally in �t;
around regions where eddy viscosity models are expected to perform poorly. The samples of the
random eddy viscosity �eld �t(x, !) can be obtained by perturbing the baseline eddy viscosity �eld
which we now denote by �(bl)t (x) with the Gaussian random �eld,

log �t(x, !) = log �(bl)t (x) + Z(x, !), (7.10)

where ! denotes the random event in the stochastic domain Ω. The mean �eld �(bl)t is obtained
from a converged deterministic RANS simulation and is based on a baseline turbulence model, or
from an average of eddy viscosities obtained from di�erent turbulent models. The above relation
is the simplest multiplicative model, �t(x, !) = �(bl)t (x)eZ(x,!), that is able to impose positivity of
random eddy viscosity samples and values close to zero near the wall region. We point out that Dow
and Wang [159, 164] also explored Gaussian random �elds to obtain uncertainty bounds in the
mean �ow. In their approach the variability of the Gaussian process was based on the discrepancy
between eddy viscosities obtained from the DNS data (known as the "true" eddy viscosity) and those
predicted by any turbulence model.

With the random eddy viscosity, we obtain the following SPDE:

�(u ⋅∇)ui = −
)p

∗

)xi
+ )
)xj

[(� + �t(!)) (
)ui
)xj

+
)uj
)xi

)] , (7.11)

where p∗ ∶= p − 2
3
k. Recall that the above SPDE can be used for quantifying uncertainties due to

inconsistencies in the closure parameters of the baseline model and also provide a way to account
for the e�ect of local variations of these parameters in the �ow, unlike [22, 152, 154]. However,
this stochastic model still inherits drawbacks from the Boussinesq hypothesis and is inadequate
for quantifying uncertainties associated with turbulence anisotropy. For instance, the occurrence
of secondary �ows as a result of normal stress imbalance (e.g. in a square duct) will remain
undetected. Therefore, a more generic stochastic model is also discussed, that involves the injection
of uncertainties directly into the baseline Reynolds stress tensor.
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7.3.2 Random Reynolds Stress Tensor (RRST) model

The RRST model stems from the work by Soize in [165–168] who developed non-parametric prob-
abilistic approaches based on random matrix theory to quantify modeling uncertainties in com-
putational mechanics problems. Soize derived the maximum entropy probability distribution for
symmetric positive-de�nite (SPD) real matrices with a given mean and variance (also known as
the dispersion parameter, �) along with a Monte Carlo sampling method. These results with slight
modi�cations can be utilized for the sampling of random Reynolds stress tensors (as physically
realizable RSTs are symmetric positive semi-de�nite matrices). Xiao and coworkers in [4] further
extended this approach to incorporate spatial correlation in the Reynolds stress components by the
means of Gaussian random �elds with a prescribed covariance function. We now brie�y outline
sampling algorithms for a random SPD matrix that will be utilized later to describe the sampling of
the random Reynolds stress tensor �elds. We closely follow the description from the original papers
[4, 168, 169].

Sampling random SPDmatrices
We denote byM+0

d (ℝ) andM+
d (ℝ) the set of all d×d symmetric positive semi-de�nite and symmetric

positive-de�nite matrices with real entries, respectively. Given a baseline matrix R(bl) ∈ M+
d (ℝ),

we wish to sample random matrices R ∈ M+
d (ℝ), such that E[R] = R(bl). The sampling of R can be

achieved using a normalized random SPDmatrixG ∈ M+
d (ℝ)withmean Id (identity), i.e. E[G] = Id

and the variance parameterized with a dispersion parameter � > 0 de�ned as

� =
√

1
d
E
[
||G − Id||2F

]
, (7.12)

where || ⋅ ||F is the Frobenius norm. A �rst step is to utilize the Cholesky decomposition G = UTU,
where U is an upper-triangular matrix with positive diagonal entries. Now, the assembly of the
random matrix G boils down to sampling the six entries ofU. The non-diagonal entries ofU are
sampled by means of

Uij =
�

√
d + 1

�ij, for i > j, �ij ∼N(0, 1). (7.13)

The diagonal entries are sampled as

Uii =
�

√
d + 1

√
2yi, for i = 1, 2, 3, (7.14)

where yi > 0 is a sample from the gamma distribution �(�i, 1) with shape parameter �i and scaling
parameter 1, i.e.

yi ∼ �(�i, 1) with �i =
d + 1
2�2

+ 1 − i
2 . (7.15)

The gamma probability density function fY is given by:

fY(yi) =
y�i−1i exp(−yi)

Γ(�i)
with �i =

d + 1
2�2

+ 1 − i
2 , (7.16)

where Γ(⋅) is the standard gamma function. For di�erent diagonal terms, yi(x, ⋅) will have di�erent
marginal PDFs depending on the shape parameter �i. Using G, one can obtain the random matrix
R with mean R(bl) as:

R = UT
(bl)GU(bl), (7.17)
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whereU(bl) is an upper-triangular matrix with positive diagonal entries obtained via the Cholesky
factorization of the baseline RST R(bl) = UT

(bl)U(bl). Assuming R(bl) to be positive-de�nite, the
factorization yields a unique matrix U(bl). Note that in practice R(bl) is symmetric positive semi-
de�nite, belonging to M+0

d (ℝ). The RSTs with zero eigenvalues i.e. R(bl) ∈ M+0
d (ℝ)∖M+

d (ℝ) are
only encountered when det(R(bl)) = 0, corresponding to the 2-component turbulence limit [148].
However, adding an arbitrarily small number to the diagonal will make this tensor symmetric
positive-de�nite. We also point out that, to maintain positive-de�niteness of G, the dispersion
parameter � should be chosen such that 0 < � <

√
(d + 1)(d + 5)−1, see [167] for details. Thus, for

d = 3, we �nd the constraint 0 < � < 1∕
√
2.

Sampling the random tensor �eld
The sampling algorithm for SPD matrices can be extended to sample spatially correlated tensor
�elds. We follow a similar procedure as described in the preceding section but now the entries
of the upper-triangular matrixU are correlated in space. We describe the necessary algorithmic
modi�cations needed to sample these random RST �elds.

Let the randomRST at any point be denoted byR(x, !) = R, the deterministic baseline Reynolds
stress tensor �eld by R(bl)(x) = R(bl) and a spatially varying dispersion �eld by �(x). Furthermore,
the entries of the random upper-triangular matrix,U(x, !) = U, are spatially correlated as:

cov{Uij(x1, ⋅), Uij(x2, ⋅)} = C(x1, x2), i > j, (7.18)
cov{U2

ii(x1, ⋅), U
2
ii(x2, ⋅)} = C(x1, x2), i = j. (7.19)

As suggested in [4], we also consider a squared-exponential covariance function for both o�-diagonal
and for the square of the diagonal terms. Other covariance models, for instance, a periodic or an
exponential covariance can also be utilized. For the sake of simplicity, we use C(x1, x2) de�ned in
(7.9) but with �2c = 1. Now, the random tensor �eld R is assembled using six independent random
�elds: U11(x, !), U12(x, !), U13(x, !), U22(x, !), U23(x, !) and U33(x, !). The o�-diagonal �elds
are computed as:

Uij(x, !) =
�(x)

√
d + 1

Zij(x, !), for i > j, Zij ∼N(0, C). (7.20)

The Gaussian random �elds Zij can be generated using KL expansion, as described in (3.42). Similar
to (7.14), the diagonal elements are obtained as:

Uii(x, !) =
�(x)

√
d + 1

√
2yi(x, !), for i = 1, 2, 3, (7.21)

where yi(x, !) > 0 denotes a random �eld with gamma marginal distribution �(�i(x), 1) and
covariance de�ned in (7.19). Now, the marginal gamma PDF in (7.16) is modi�ed to incorporate
spatial dependence by �(x) as

fY(yi(x, ⋅)) =
yi(x, ⋅)(�i(x)−1) exp (−yi(x, ⋅))

Γ(�i(x))
, with �i(x) =

(d + 1)
2�(x)2

+
(1 − i)
2 . (7.22)

We use the same technique as in Section 6.3.1 to sample non-Gaussian random �eld. The method
relies on a generalised Polynomial Chaos (gPC) expansion to approximate non-Gaussian �eld in
terms of a weighted combination of Hermite orthogonal polynomials of a standard Gaussian �eld
i.e.

Y ≈
NPC∑

n=1
wnℋn(Z), (7.23)
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where Y represents a spatially correlated gamma random �eld, NPC is the order of the expansion
andℋn(Z) is the Hermite polynomial in Z of order n with weight wn. Given the orthogonality of
Hermite polynomials with respect to the Gaussian measure, we can evaluate the weights as:

wn =
E[Yℋn(Z)]
E[ℋn(Z)2]

. (7.24)

Here the expectation in the denominator has an analytic expression but the expectation in the nu-
merator is not well-de�ned as the dependence between Y and Z is unknown. Since the distribution
of Y is available, one can exploit the fact that Y = F−1Y (FZ(Z)) and reformulate the numerator in
(7.24) as

E[Yℋn(Z)] =∫
∞

−∞
F−1Y [FZ(z)]ℋn(z)dFZ(z), (7.25)

where FY(y) = ℙrob(Y ≤ y) is the cumulative distribution for a gamma random variable Y and
F−1Y represents its inverse. Similarly, FZ(z) = ℙrob(Z ≤ z) is the cumulative distribution for a
standard Gaussian random variable Z. Now, the integral (7.25) can be numerically computed
using any conventional integration technique. With the above weights, the gPC expansion in (7.23)
converges to Y in weak sense (convergence in probability distribution) [7, 170]. Note that FY should
be appropriately modi�ed according to (7.22) to incorporate the spatial dependence in the marginal
gamma PDF. It is also pointed out that for a spatially varying dispersion �(x) the weights will di�er
at di�erent spatial locations.

A few remarks are in order. The mean RST �eldR(bl) can be directly obtained from the baseline
RANS simulation. Also, the value of the dispersion �eld can be based on expert knowledge and
can be set to a large value at locations with high uncertainty. However, to obtain a positive-
de�nite Reynolds stress tensor at each point the dispersion should again be chosen such that
0 < �(x) <

√
(d + 1)(d + 5)−1.

Using the random Reynolds stress tensor, we can de�ne the stochastic mean �ow equation, as
follows:

�(u ⋅∇)ui = −
)p
)xi

+ )
)xj

(
Rij + Rij(!)

)
, (7.26)

where Rij represents mean stress, as de�ned for the PDE (7.3) and Rij(!) represents components of
the random tensor �eldR. In this stochastic model the isotropic eddy viscosity (Boussinesq) assump-
tion is clearly avoided. Furthermore, this model allows us to accommodate di�erent covariance
structures for di�erent Reynolds stress components, and thus can represent strongly anisotropic
turbulence. We would like to emphasize that the above SPDE is more general than in (7.11) as
the above formulation allows us to incorporate at most six random �elds for each Reynolds stress
component and may result in an extremely high-dimensional UQ problem.

7.3.3 MLMC-RANS implementation

The MLMC-RANS framework is developed in MATLAB and interacts with the OpenFOAM (Open
source Field Operation And Manipulation) CFD package [171]. MATLAB based programs are
responsible for the generation of random inputs (eddy viscosity �elds and Reynolds stress tensors),
invoking OpenFOAM with random inputs, the collection of samples of the QoI and post-processing.
Within OpenFOAM, schemes for the computation of the gradients and divergence are based on
second-order �nite volume (FV) approximations. The baseline solution of the turbulence models is
obtained using the simpleFoam solver [172] available in OpenFOAM, and to propagate the random
eddy viscosity and random Reynolds stresses di�erent solvers were implemented for the stochastic
momentum equations (7.11) and (7.26), respectively.
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While the propagation of random eddy viscosity is straightforward and doesn’t require modi�-
cation of the solver in general, the propagation of random Reynolds stresses is numerically more
challenging. To achieve a numerically stable performance of the solver, we adopt a blending of the
random Reynolds stress, which we wish to propagate, and a contribution based on the Boussinesq
assumption [173]. While the latter alters the propagated e�ective Reynolds stress, it promotes
numerical convergence of the solver. The momentum equation (7.26) is modi�ed accordingly,

�(u ⋅∇)ui = −
)p
)xi

+ )
)xj

(
Rij + (1 − �)R(bl)ij + �Rij(!)

)
, (7.27)

in which the linear eddy viscosity contribution R(bl)ij is given in (7.4). The production of turbulent
kinetic energy is modi�ed accordingly. The blending parameter � ∈ [0, 1] quanti�es the amount
of R(bl)ij to increase numerical stability. For � = 1, we achieve the full propagation of the random
tensor �eld. This is possible in case of simpler �ows, for e.g., �ow in a square duct. Also, the value
of � is linearly increased with the number of iterations (ramping) to a constant value. Note that a
value of � < 1 indirectly corresponds to lower variance, than speci�ed for a given dispersion �.

To facilitate the analysis, our implementation of the MLMCmethod is based on a pre-de�ned
geometric hierarchy of meshes such that the largest cell width follows ℎl−1 ≈ 2ℎl. In general,
an MLMC estimator can be constructed with any hierarchy for which the accuracy and cost in-
crease with the levels. The quality of the mesh at any given MLMC level l is assessed using the
dimensionless wall distance, de�ned as y+1l = ℎccl u

∗
l∕� where ℎccl denotes the distance of the

cell-centers adjacent to the wall, u∗l is the friction velocity de�ned as u∗l =
√
�wl ∕� and the wall

shear stress �wl = �()u∕)y)y=0. The standard notation � and � is used for kinematic and dynamic
viscosities, respectively. For resolving the viscous sublayer, the y+1l value should be less than one,
however, this criterion can be relaxed for coarser levels in the MLMC hierarchy provided that the
RANS solution results in a meaningful �ow �eld. Furthermore, we check that the level-dependent
variance should be strictly less than the pure sample variance of the quantity of interest, i.e.,
||||||V[ul − ul−1]||||||L2(D) <

||||||V[ul]||||||L2(D). Violation of this condition may result in an MLMC estimator
which is more expensive than a standard MC estimator.

As this work involves stationary covariance models, we use a spectral generator for the fast
sampling of the Gaussian random �elds, see Section 3.6 for details. It is pointed out that with this
algorithm the computational cost of sampling a random �eld is of the order O(Ml logMl), where
Ml is the number of mesh points on any level l and is negligible compared to the cost of one CFD
solve at that level. Additionally, the random �elds generated using spectral methods are exact on
the sampling mesh. In the case of the KL expansion based sampling, one needs to quantify the
error incurred due to the truncation of the eigenmodes.

7.4. Numerical experiments
We use two test problems, a fully developed turbulent �ow in a square duct and a �ow over a
periodic hill, to study the performance of the MLMC method. A bulk Reynolds number Re = 1100
is considered for the square duct �ow with benchmark data available from Huser et al. (1993)
[174]. This problem has become a standard test case to demonstrate the inability of linear eddy
viscosity models to predict the secondary �ows that arise from the normal stress imbalance. Linear
eddy viscosity models assume equal normal stresses and completely fail to predict secondary �ow
features, resulting in parallel �ow. We only employ the random Reynolds stress model for this test
case as the random eddy viscosity model su�ers from the same drawback as the deterministic linear
eddy viscosity model and fails to produce any secondary �ows. For the periodic hill problem, we
use Re = 2800 with the DNS data from Breuer et al. (2009) [175]. This is a complex benchmarking
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Figure 7.1: Schematic representation of time-averaged �ow in a square duct (left) showing the 8-vortex pattern with
each quadrant exhibiting vortices of alternating sign. (Right) Nested meshes l = 0 (light blue) and l = 1 (dark blue)

used to simulate the �ow in the top-right quadrant, grading near the walls.

test problem, o�ering a number of �ow features such as anisotropy, strong streamline curvature, a
recirculating zone and free shear layer, that are challenging for RANS turbulence models. Both
stochastic models are analyzed for the periodic hill �ow.

7.4.1 Flow in a square duct

A schematic representation of the square duct �ow is presented in Figure 7.1 (left) showing the
eight-vortex pattern with counter-rotating vortices in each quadrant. Due to symmetry, we choose to
simulate the �ow only for the top-right quadrant on a domain of size [0, H] × [0, H], whereH = 1 is
the half-height of the square duct. We use a separate grid hierarchy for the OpenFOAM simulations
and for sampling the random �elds, denoted by OF and RF meshes, respectively, with speci�cations
listed in Table 7.2. For the OF meshes, each grid level is graded with �ner cells along the top and
right walls to resolve boundary layers, see Figure 7.1 (right). In the case of RF meshes, the random
�elds are �rst sampled on a uniform Cartesian mesh in the domain [0, 1]2 and are then interpolated
to the cell-centers of the RANS simulation mesh. The cell-width of the RF mesh is �ner than the
largest cell-width of the OFmesh, ℎl. Further, a second-order accurate interpolation scheme is used
to ensure that the interpolation error is su�ciently smaller than the discretization bias. The CPU
times on a serial machine required to obtain one sample on each level is also provided in Table 7.2.
For the considered combination of numerical schemes, the CPU times scale roughly as O(ℎ−3l ) (in
other words,  ≈ 3). This is due to the fact that the convergence rate of the solver deteriorates with
grid re�nement, therefore, the number of iterations required to reach a �xed residual tolerance also
grows with levels. Additionally, the residual tolerance also needs to be reduced with grid re�nement
in order to obtain a converged solution up to the discretization accuracy, and on the �nest levels,
one sample takes about eight CPU hours to obtain a residual reduction of O(10−8).

MLMCwith RRSTmodel
We begin by analyzing the statistics of the random Reynolds stress tensors for two sets of parameters
(Case 1 and Case 2) as speci�ed in Table 7.3. Here, we can regard Case 1 as an “easy” parameter
set, with a low dispersion and large correlation lengths and Case 2 as “more complex” with a large
dispersion and small correlation lengths. For both cases a 5th order gPC expansion is used such
that errors in approximating the random �eld are negligible compared to the discretization and
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Level (l) OF mesh ℎl RF mesh CPU time (sec)

0 16 × 16 0.16 8 × 8 0.24 × 102
1 32 × 32 0.08 16 × 16 0.68 × 102
2 64 × 64 0.04 32 × 32 4.20 × 102
3 128 × 128 0.02 64 × 64 2.86 × 103
4 256 × 256 0.01 128 × 128 2.93 × 104

Table 7.2: Speci�cations of the MLMC grid hierarchy for the square duct test case. “OF mesh” denotes the simulation
mesh in OpenFOAM and “RF mesh” the grid used for the generation of the random Reynolds stress tensor. CPU time is

the total time for one sample.

sampling errors. In this work, we will only consider cases with a constant dispersion, but a more
general approach can be based on a spatially varying dispersion based on available data and expert
knowledge as in [4, 157]. For both cases, a full propagation of the random Reynolds stress (i.e.
� = 1) is considered.

In Figure 7.2, we present examples of the �rst three Reynolds stress components, R11, R12, R13,
generated using the two parameter sets along with the baseline Reynolds stress tensorsR(bl) (derived
from the k − !model). Firstly, we verify the constraint E[R] = R(bl) by computing the empirical
probability distribution using around 1.6 × 104 samples on the coarsest 16 × 16 grid level. The
empirical PDFs for the �rst three components of the Reynolds stress at a location inside one of the
vortices (y∕H, z∕H) = (0.52, 0.21) are presented in Figure 7.3 for the two cases. The PDFs of other
components of the Reynolds stress tensor exhibit similar behaviour, and are omitted. We observe
that the sample mean is very close to the baseline value and for Case 2, due to a larger �, a slight
deviation (∼ 5 × 10−4) from the baseline is observed, consistent with the sampling error. The state
of the anisotropy resulting from the samples of the random Reynolds stresses is visualized using
the barycentric triangle [176] in Figure 7.4. Again the probability density contours are based on
1.6 × 104 samples at location (y∕H, z∕H) = (0.52, 0.21) for each case. The procedure to construct
these contours is explained in Appendix 7.A. We observe that the distance between the state of
anisotropy obtained from the baseline simulation and the sample mean is sensitive to the dispersion
parameter. For a larger dispersion, many samples fall away from the baseline state but due to the
positive-de�nite constraint they are restricted until the edges of the barycentric triangle. Thus, the
sample mean is located far from the baseline anisotropy state, see [4] for details. The e�ect of this
constraint is mild for a smaller dispersion and the mean anisotropy state is very close to the baseline.

Parameter Description Case 1 Case 2

ly∕H, lz∕H Correlation length along y∕z-direction 2 1
�2c Variance of log-normal random �eld 1 1
�(x) Dispersion parameter 0.1 0.4
NPC Order of polynomial chaos expansion 5 5
� Blending factor 1 1

Table 7.3: Parameter sets to generate the random Reynolds stress tensor for the square duct �ow.

We begin by studying the FV error convergence for Case 1 and Case 2. We will only consider the
u and v components of the velocity as w has similar characteristics as v. In Figure 7.5, we show the
relative error ||ul−ul−1||L2(Ω,D) along with the FV errors from the deterministic RANS simulations
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Figure 7.2: Reynolds stress components, R11, R12, R13, obtained from the baseline k − !model (top row) and an example
of perturbed random Reynolds stresses generated from Case 1 (middle row) and Case 2 (bottom row).

(based on the k − ! model) plotted against the maximum cell width ℎl. The relative error for v
is also presented in Figure 7.5 (right). As the deterministic RANS simulation predicts v = 0, we
again use the deterministic error in u for comparison of the FV convergence rates. These relative
errors are computed with a su�cient number of samples such that sampling errors on each level are
less than the FV bias. We observe a convergence of O(ℎ1.5l ) (rounded to one decimal place) for the
deterministic simulations and further note that the stochastic version of the FV error also decays at a
similar rate. Here, we remark that although we use second-order accurate schemes, a slightly slower
error convergence is obtained, most likely due to the non-uniformity of the meshes used. Also, for
the deterministic simulations on the �nest 256 × 256 grid, OpenFOAM has convergence issues.
Interestingly, this is not observed for the stochastic simulations. Further, due to a higher value
of the dispersion parameter � for Case 2, compared to Case 1, we see a larger absolute numerical
error, but it decays at a similar rate. These plots are important in order to determine the number of
levels that should be included in the MLMC hierarchy to reduce the RMSE to a given tolerance of ".
For the standard Monte Carlo simulation, the error associated with a particular mesh is utilized to
determine the number of samples needed on that mesh, to equilibrate the sampling error with the
discretization error.

The convergence of the level-dependent variance ||||||V[⋅]||||||L2(D) is shown in Figure 7.6. For refer-
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(a) R11 (b) R12 (c) R13

Figure 7.3: Empirical PDF of the Reynolds stress components at location (y∕H, z.H) = (0.52, 0.21) for Case 1 (� = 0.1)
and Case 2 (� = 0.4). For the diagonal component R11, a gamma marginal distribution is obtained and for the

o�-diagonal components R12, R13, Gaussian distributions are observed.

(a) Case 1, � = 0.1 (b) Case 2, � = 0.4

Figure 7.4: Probability density contours for random Reynolds stresses at location (y∕H, z∕H) = (0.52, 0.21) projected to
the barycentric triangle based on 1.6 × 104 samples on l = 0.

ence, an O(ℎ3l) convergence line is plotted to emphasize � ≈ 2�. The signi�cance of these plots
is that they can be used to assess the sampling variance at di�erent levels and extract the rate �
used to determine the MLMC sample sequence in the formula (2.29). We observe a higher variance
for larger dispersion from Case 2 compared to Case 1, as expected. We point out that the above
convergence study can be quite expensive, as many samples over all the levels are needed to obtain
accurate estimates of the MLMC rates �, �. The purpose of the above analysis is to (i) demonstrate
that the FV error decay rate extracted from the deterministic solves can be an accurate estimate
of the rate � and (ii) verify that the assumption � = 2� holds. With a �xed �, we can obtain the
number of samples on all MLMC levels in advance and can e�ciently distribute the work on a
computing cluster. Alternatively, one can also implement the standard MLMC algorithm [10, 28]
which adaptively computes and re�nes these parameters along with the number of samples on each
level until a prescribed tolerance is achieved. Note that for such algorithms, optimal load balancing
is non-trivial as the number of samples predicted on the di�erent levels after every re�nement stage
varies.

Next, we compare the accuracy and computational cost of the MLMC and MC estimators to
compute the mean and variance. For this analysis the in-plane velocity v is chosen as the quantity
of interest. To measure the accuracy, we rely on the following relative error measure [30, 32]:

"rel ∶=
||Eref[v] − EML

L [vL]||L2(DL)

||Eref[v]||L2(DL)
. (7.28)

Here, EML
L [vL] can be replaced by the standard MC estimator EMC

N [vℎ]. Analogously, the relative
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Figure 7.5: Convergence of the FV error with levels along with the error in baseline solution of u. The dotted line
denotes the empirical convergence rate of baseline RANS simulations.

Figure 7.6: Convergence of the level-dependent variance with grid re�nement. The dotted line depicts an O(ℎ3l)
convergence.

errors in the variance estimators VMC
N and VML

L are also computed. For the MLMC estimator, we
compute the mean and variance for di�erent ℎL (or ℎ for the standard MC). These experiments are
conducted 16 times to eliminate statistical �uctuations and the mean relative error "rel is reported.
The reference solutions for the expected value Eref[v] and the variance Vref[v] are computed using
the 5-level MLMC estimator. Reference solutions will be discussed in detail later on.

Based on the deterministic FV error convergence study, we �x � = 1.5 and � = 2� = 3 and
 = 3 (see Table 7.2). Thus, for the MLMC estimator, we get a sample sequence Nl = NL23(L−l)
based on the formula (2.29). Note that we have � ≈  and therefore we can obtain an MLMC
estimator for which all levels contribute equally in terms of the cost, see (2.27). As mentioned
earlier, the number of samples on the �nest levelNL is a free parameter and should be set to a small
value. For all experiments, we useNL = 8. In Table 7.4, we list the number of level-wise samples for
the MLMC estimators with di�erent L. For the standard (or single-level) MC estimator, the number
of samples is decided according to (2.12) resulting in N = O(ℎ−3). This means that the number of
MC samples should be increased by a factor of eight with each grid re�nement. The standard MC
simulation was conducted on three grids: 16 × 16, 32 × 32 and 64 × 64 with samples 8, 64 and 512,
respectively. The standard MC was not performed on the grid 128 × 128 due to prohibitively large
computational cost, as we would need to compute about 4096 samples on this grid.

In Figure 7.7 (left), we show the mean relative errors in the expected value of v computed
using the MC and MLMC estimators for Case 1. We observe that the plain MC estimator is slightly
more accurate than the MLMC estimator for same �nest grid ℎL. The computational cost versus
the accuracy for both methods is also shown in Figure 7.7 (right) and we observe that the MLMC
estimator achieves the same accuracy for a lower computational cost compared to the MC estimator.
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For reference, the predicted asymptotic cost of the MC and MLMC estimators for the considered
�, � and  are also presented. Similarly, the error and runtime from the two variance estimators
are compared in Figure 7.8. Ideally, the cost of the MLMC estimator is expected to grow at half the
rate of the MC estimator but this is not clearly visible for the multilevel estimator for the mean.
This may very well be a pre-asymptotic e�ect. Nevertheless, the gains are more pronounced for the
multilevel variance estimator and we clearly observe the cost scaling close to the predicted rate.

Level-wise samples Nl
No. of levels (L + 1) N0 N1 N2 N3 N4

1 8 - - - -
2 64 8 - - -
3 512 64 8 - -
4 4096 512 64 8 -

5 (ref) 32768 4096 512 64 8

Table 7.4: Number of samples used for the MLMC estimators with di�erent L for the square duct �ow. The 5-level
MLMC estimator was utilized as the reference solution.

Figure 7.7: (Left) Comparison of the mean relative error "rel in the expected value of v for di�erent meshes for Case 1.
(Right) Computational work versus accuracy for the MC and MLMC estimators. Dotted lines show the predicted

asymptotic cost for the MC (blue) and MLMC (red) estimators.

We now compare the stochastic solutions (mean and variance) for the RRST model computed
using the 5-level estimator for Case 1 and 2 with the DNS data. The goal in this setting is to establish
that the stochastic model is su�ciently general to (reliably) envelope DNS data at high probability
as required for a good prior.

For the MLMC estimator, an appropriate spatial interpolation method is required to combine
all expectations from the telescopic sum. To interpolate scalar �elds from grid Dl−1 to Dl, a
second-order spatial interpolation is employed. For instance, when using the multilevel estimator
to compute EML

L [vL], we proceed as follows. We begin by computing EMC
N0

[v0] on the coarsest
grid D0. This is then interpolated to the next �ner grid D1 and is added to the correction term
EMC
N1

[v1 − v0] resulting in a two-level estimate (a scalar �eld) EML
1 [v1]. Similarly, this scalar �eld

is further interpolated to the next grid and summed with the next correction term EMC
N2

[v2 − v1].
This process is repeated until the �nest level is reached. Another possibility is to interpolate all
expectations to the �nest level and then add them together. Based on our experience, this may lead
to interpolation artifacts in the �nal outcome.

In Figure 7.9 streamlines and magnitude of the in-plane velocities from the two cases are
compared with the DNS data. We have observed that the size and the number of vortices are
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Figure 7.8: (Left) Comparison of the mean relative error "rel in the variance of v for di�erent meshes for Case 1. (Right)
Computational work versus accuracy for the MC and MLMC estimators.

sensitive to the correlation length; shorter lengths leading to more vortices. The secondary motions
are entirely driven by the RRST model with magnitude of the velocities dependent on the value of
the dispersion parameter. The mean ± standard deviation for the v velocity component at three
locations is shown in Figure 7.10. We see that the two standard deviations envelopes the entire DNS
velocity well. It is also pointed out that for Case 2, an even larger enveloping region is obtained. As
mentioned earlier, we do not take into the account any available data and the hyper-parameters
considered to generate the random Reynolds stresses were chosen arbitrarily. This high sensitivity
of mean velocities with respect to change in Reynolds stresses is also demonstrated in [177] where
an error of 1% in Reynolds stresses resulted in about 30% error in the mean velocity pro�le for the
plain channel �ow.

(a) Case 1 (b) Case 2 (c) DNS

Figure 7.9: Comparison between the 5-level MLMC solution and the benchmark DNS data of the in-plane velocities v
and w. Streamlines are constructed using EML

L [vL] and EML
L [wL] (L = 4) and the contour indicates the magnitude of the

in-plane velocity vector (EML
L [vL],EML

L [wL]). Notice that with increase in dispersion � an increase in the magnitude is
observed.

We have propagated the uncertainty with about 105 degrees of freedom on the �nest level due
to six Reynolds stress components each sampled on a 128 × 128 grid. Note that there is a negligible
change in the computational cost with an increase in dimensionality. Although, the uncertain
dimension can be reduced by using the KL expansion one might still have to deal with a relatively
large number of uncertainties rendering deterministic sampling methods such as the stochastic
collocation method, generalized polynomial chaos, etc., impractical. However, multilevel variant
of the Quasi-Monte Carlo (QMC) method, also based on deterministic sampling, can be highly
e�cient for this problem. QMCmethods can in principle have dimension-independent convergence
better than the plain MC, see [13, 33] for details.
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(a) y∕H = 0.25 (b) y∕H = 0.50 (c) y∕H = 0.75

Figure 7.10: Mean EML
L [vL] and variance VML

L [vL] of the v-component of the velocity computed using the 5-level
estimator for Case 1 at three spanwise locations y∕H = 0.25, 0.50 and 0.75 with comparison to the baseline and DNS

data.

7.4.2 Flow over periodic hills

The speci�cation of the periodic hill geometry is adopted from [175]. The time-averaged �ow from
the DNS data is shown in Figure 7.11a. The size of the computational domain is Dx = 9H and
Dy = 3.036H along the streamwise and wall-normal direction, respectively, withH = 1 denoting
the hill height. The hill crest is situated at (x∕H, y∕H) = (0, 1). Periodic boundary conditions are
applied along the inlet and outlet boundaries and a solid stationary wall at the top and the bottom.
The Reynolds number of the �ow is given by Re = ubH∕� = 2800, where ub is the average velocity
above the hill crest and � is the molecular viscosity. The numerical solutions are obtained on a
curvilinear block-structured grid with two blocks of size [0, 9] × [0, 2] and [0, 9] × [2, 3.036], and
re�nement near the lower and upper walls.

Similar to the square duct case here also we use a pre-de�ned hierarchy of nested grids Dl
such that we have ℎl ≈ 0.5ℎl−1. In Figure 7.11b, the two coarsest meshes are plotted. Also, the
distribution of the y+1l values (from the Launder-Sharma k − � model) along the lower wall for the
�ve grids levels is depicted in Figure 7.12. All grid levels except the coarsest satisfy the criterion
y+1 < 1. A separate grid hierarchy is used for the generation of the random �elds. For a given
grid level, these random �elds are �rst sampled on a uniform rectangular mesh in a domain-sized
[0, 9]×[0, 3] and are then interpolated to the cell-centers of the RANS simulationmesh. In Table 7.5,
we list the speci�cation for the di�erent levels and the CPU times needed to obtain one sample on
each level. For the considered combination of numerical schemes, we again observe a cost scaling
roughly as O(ℎ−3l ) or  = 3.

Level (l) OF mesh ℎl RF mesh CPU time (sec)

0 16 × 24 0.5625 24 × 8 0.26 × 102
1 32 × 48 0.2812 48 × 16 0.69 × 102
2 64 × 96 0.1406 96 × 32 6.82 × 102
3 128 × 192 0.0703 192 × 64 5.01 × 103
4 256 × 384 0.0352 384 × 128 4.70 × 104

Table 7.5: Speci�cation of the MLMC grid hierarchy for the periodic hill case with Re = 2800. “OF mesh” denotes the
simulation mesh in OpenFOAM and “RF mesh” denotes the grid used for the generation of the random eddy viscosity

�eld. CPU time is the total time for one sample.
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(a) (b)

Figure 7.11: (a) Time-averaged �ow on a periodic hill with Re = 2800 obtained from DNS data (Breuer et al. 2009) and
(b) Nested curvilinear grids, the light blue lines depict 16x24 grid corresponding to l = 0 and dark blue lines depict

32x48 grid corresponding to l = 1.

Figure 7.12: The y+1l values along the lower wall computed from the baseline simulations.

MLMCwith the REVmodel
We now analyze the performance of the MLMC method for the periodic hill �ow using the random
eddy viscosity (REV) stochastic model. To generate the samples of the random eddy viscosity two
sets of parameters are utilized, denoted by Case 1 and Case 2, see Table 7.6. The two cases di�er only
in terms of the correlation length along the x- and y-directions. In Figure 7.13, we show an example
of a REV �eld for each case along with the baseline �eld �(bl)t (x) obtained from the converged
solution from a k − � model at the �nest level D4 with 256 × 384 cells. Due to small correlation
lengths for Case 2, we observe more peaks in the random eddy viscosity �eld with a relatively large
magnitude. Here, for the sake of generality, we do not consider a periodic random eddy viscosity
�eld, however, this could be easily implemented as the circulant embeddingmethod naturally yields
a periodic random �eld.

Parameter Description Case 1 Case 2

lx∕H Correlation length along x-direction 1.5 0.6
ly∕H Correlation length along y-direction 0.5 0.2
�2c Marginal variance of the random �eld 0.5 0.5

Table 7.6: Parameter sets to generate random eddy viscosity �eld for the periodic hill �ow.

We perform a similar analysis as the square duct �ow to obtain the MLMC parameters. We
begin by comparing the FV error in the deterministic and stochastic versions of the problem for
the streamwise velocity u and the wall shear stress �w in Figure 7.14. The error in the baseline
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Figure 7.13: Baseline EV �eld from the Launder-Sharma k − � model (left) and typical realizations of REV �elds
generated using the parameter sets from Case 1 (middle) and Case 2 (right).

converges as O(ℎl) for both quantities of interest. The error in the random variables also decays at
roughly the same rate. Here too, the slower convergence rate can be primarily attributed to complex
curvilinear meshes. Also, note that the relative errors in Case 1 and 2 are very close, indicating
that they result in similar mean solutions. The sampling variance on di�erent levels is depicted in
Figure 7.15. As expected the variance decays at a rate twice the discretization error coinciding with
observations made in case of the square duct �ow.

Figure 7.14: Convergence of the FV error with levels along with the error in the baseline solution. The dotted line
denotes the empirical convergence rate of the baseline RANS simulations.

Figure 7.15: Convergence of the level-dependent variance for di�erent grids. The dotted line depicts an O(ℎ2l)
convergence.

From the above study, we again illustrate that the rate from the baseline solution can provide a
good estimate for the MLMC simulation parameters. Next, we analyze the relative errors in the MC
and MLMC estimators for the streamwise velocity u in a similar fashion as for the square duct �ow.
As the quantity of interest we consider the streamwise velocity u and set � = 1 and � = 2� = 2
and  = 3. Recall that, with these rates we end up in the third scenario  > � in (2.27), resulting
in an asymptotically optimal MLMC estimator. The level-wise samples for the MLMC estimator
are given by Nl = NL22(L−l) with NL = 8. The number of samples for the MLMC estimator with
di�erent L is given in Table 7.7. The reference solutions for the mean and variance Eref[u] and
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Vref[u], respectively, are again based on the 5-level estimator. In case of the standard MC estimator,
we follow N = O(ℎ−2), thus the number of MC samples is increased by a factor of four with grid
re�nements. The standard MC simulation is conducted on four grids: 16 × 24, 32 × 48, 64 × 96 and
128 × 192 with samples 8, 32,128 and 512, respectively.

Level-wise samples Nl
No. of levels (L + 1) N0 N1 N2 N3 N4

1 8 - - - -
2 32 8 - - -
3 128 32 8 - -
4 512 128 32 8 -

5 (ref) 2048 512 128 32 8

Table 7.7: Number of samples used for the MLMC estimators with di�erent L for the �ow over periodic hills. The
5-level MLMC estimator was utilized as the reference solution.

Themean relative error in the expectation of u approximated using theMC andMLMCmethods
is shown in Figure 7.16. The random eddy viscosity is based on Case 1. Both estimators are able
to achieve similar accuracies, of order O(ℎL). Also, the cost for both estimators scales similarly
to the theoretical predictions. For L = 3, we see a speedup of up to 30 times using the MLMC
estimator. In the case of the variance estimator in Figure 7.17, we observe slightly slower rates and
the MLMC method appears to be a bit more accurate for the same grid. In terms of computational
cost, similar gains are observed as for the expected value of u. We point out that for the MLMC
estimator, the dominant cost comes from the �nest level and as the number of samples NL is a
constant, we obtain a computational complexity of O(ℎ−3L ). This is, up to a constant term, the same
as solving one deterministic problem on the �nest level, thus the MLMC estimator for this problem
can be regarded as optimal.

Figure 7.16: (Left) Comparison of the mean relative error "rel in the expected value of u for di�erent meshes for Case 1.
(Right) Computational work versus accuracy for the MC and MLMC estimators. Dotted lines show the predicted

asymptotic cost for the MC (blue) and MLMC (red) estimators.

Next, we compare the reference solutions computed using the 5-level MLMC estimator with
the REV model and DNS data. The main motivation of using the REV model was to obtain an
uncertainty bound of the QoIs due to uncertainties arising from either the transport equations or
the closure parameters. Therefore, we are interested in the computations of the variance �eld using
the MLMCmethod. In Figure 7.18, the variance �eld for the streamwise velocity u for the two cases
based on the 5-level estimator is shown. A relatively high variance is observed near boundary layers
and near the recirculation zone around 0.5 < x∕H < 4.5. Case 1 is visibly able to generate a larger
variance than Case 2 indicating larger length scales can produce larger variation. The mean ±
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Figure 7.17: (Left) Comparison of the mean relative error "rel in the variance of u for di�erent meshes for Case 1.
(Right) Computational work versus accuracy for the MC and MLMC estimators.

(a) Case 1 (b) Case 2

Figure 7.18: Variance �eld VML
L [uL] for the streamwise velocity u computed using the 5-level estimator. Variance is

large near top and bottom boundary layers.

standard deviation is compared with the DNS data at various locations in Figure 7.19. It can be seen
that the MLMC velocity pro�les are very close to the baseline RANS solution for both cases. Further,
we observe that this stochastic model is less sensitive in the free shear layer as it fails to capture
the DNS data very well. However, we have tested that a combination of larger marginal variance
�2c and length scales lx∕H, ly∕H can result in a larger uncertainty bound around the free shear
layer. Despite randomly chosen turbulence models, interesting regions such as �ow separation
and reattachment can be detected from the variance �eld. Lastly, the mean and standard deviation
obtained for the wall shear stress �w are also compared with the DNS data in Figure 7.20. Largest
variances appear near the baseline reattachment point x(bl)re near x∕H ≈ 4 for both the cases. For
comparison, the DNS data is also plotted which falls within the ± one standard deviation bound of
�w for both cases.

The reference solution presented above is based on 5 × 104 degrees of freedom because the
random eddy viscosity �eld on the �nest mesh was sampled on a 384 × 128 grid. Here too, the KL
expansion based dimension reduction can be employed and may still result in a large number of
random inputs, especially when the size of the domain is much larger than the correlation lengths.

MLMCwith the RRSTmodel
In the �nal numerical experiment, we test the performance of the MLMCmethod with the RRST
model applied to the periodic hill test case. We use the same 5-grid hierarchy as was considered for
the random eddy viscosity experiments to study the convergence of the bias and sampling error
with respect to the levels. Also, the same number of OpenFOAM iterations was used to propagate
the random stress tensor as was used to propagate the random eddy viscosity, thus, we have same
the CPU time per sample as was given in Table 7.5 (neglecting the cost for sampling a single random
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(a) Case 1

(b) Case 2

Figure 7.19: Mean and variance of the streamwise velocity computed using the 5-level estimator and comparison with
DNS data at locations x∕H = 1, 2, 3, ..., 8. Velocities are scaled by a factor of two to facilitate visualization.
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(a) Case 1

(b) Case 2

Figure 7.20: Mean and variance of the wall shear stress �w computed using the 5-level estimator and comparison with
DNS data.

tensor �eld). The two parameter sets for generating the random tensor �elds are listed in Table 7.8.
For a fair comparison, we �x the blending parameter to � = 0.6 for both cases, although a higher
blending is possible for the easier Case 1. Sample pro�les of R12 for the two cases are compared
in Figure 7.21 along with the baseline pro�le R(bl)12 (from the k − � model). The e�ect of a larger
dispersion and small correlation lengths is clearly visible for Case 2. We begin by analyzing the

Parameter Description Case 1 Case 2

lx∕H Correlation length along x-direction 1.5 0.6
ly∕H Correlation length along y-direction 0.5 0.2
�2c Variance of log-normal random �eld 1 1
�(x) Dispersion parameter 0.2 0.4
NPC Order of polynomial chaos expansion 5 5
� Blending factor 0.6 0.6

Table 7.8: Parameter sets to generate random Reynolds stress tensor for the �ow over periodic hills.

convergence of the FV bias with grid re�nements in Figure 7.22 for the streamwise velocity (left)
and the wall shear stress (right). A �rst-order convergence is seen for the �rst four levels, similar to
the REV model. However, for both cases the error is not reduced up to the discretization accuracy
on the �nest 256 × 384 grid. Similar behaviour is observed for the level-dependent variance in
Figure 7.23, where the �fth level exhibits a larger variance compared to the fourth level. As we have
similar rates as for the �, �,  as the REV model, we use the same number of MLMC samples, from
Table 7.7. Similarly, for the plain MCmethod 8, 32, 128 samples are used for the 16× 24,32× 48 and
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(a) Case 1

(b) Case 2

Figure 7.21: Comparison of sample pro�les of R12 at di�erent locations along with baseline values.

Figure 7.22: Convergence of the FV error with levels for the RRST model along with the error in baseline solution. The
dotted line depicts O(ℎl) convergence.
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Figure 7.23: Convergence of the level-dependent variance for the RRST model. The dotted line depicts an O(ℎ2l)
convergence.

Figure 7.24: (Left) Comparison of the mean relative error "rel in the expected value of u for di�erent meshes for Case 1.
(Right) Computational work versus accuracy for the MC and MLMC estimators. Dotted lines show the predicted

asymptotic cost for the MC (blue) and MLMC (red) estimators.

64 × 96 grids, respectively. The reference solutions for the mean and variance, Eref[u] and Vref[u],
are based on a 4-level Monte Carlo estimator as the �fth level does not provide any improvement in
the accuracy (for the considered solver). In �gures 7.24 and 7.25, we show the mean relative errors
and cost scaling for the mean and variance for Case 1. The speed-up is similar to the REV model
and close to the theoretically predicted rates. The variance �elds computed using the 4-level Monte
Carlo for the two cases are presented in Figure 7.26. Larger variances are observed at locations
where the e�ect of the turbulence is high, for example, near boundary layers and around locations
where the �ow starts to separate. The mean ± standard deviation of u at di�erent locations is
compared with the baseline and DNS data in Figure 7.27. As expected, a larger enveloping region
is obtained for larger dispersion �. The mean ± two standard deviations for the wall shear stress
is also plotted in Figure 7.28. Again, a high variation is observed near the reattachment points
obtained from the RANS simulation. We see that the DNS data falls within 2 standard deviations
for both cases. We remind readers that the standard deviations observed are underestimated as the
random tensor only contributes 60% of the propagated Reynolds stress tensor. For both quantities
of interest, the observed means are very close to the baseline RANS solution, possibly indicating
approximately linear dependence of u on the randomized RST.

7.5. Conclusions
In this work, we undertook the �rst steps towards solving high-dimensional stochastic formulations
of RANS turbulence models using the multilevel Monte Carlo method. We demonstrated the
e�ciency of the MLMCmethod using two stochastic models based on a perturbation of the baseline
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Figure 7.25: (Left) Comparison of the mean relative error "rel in the variance of u for di�erent meshes for Case 1.
(Right) Computational work versus accuracy for the MC and MLMC estimators.

(a) Case 1 (b) Case 2

Figure 7.26: Variance �eld VML
L [uL] for the streamwise velocity u computed using the 4-level estimator.

eddy viscosity �eld and the baseline Reynolds stress tensor �eld. The MLMC estimator proposed is
only slightly more involved than the plain MC estimator but results in a large speed-up. The savings
a�orded by employing coarser levels allowed us to incorporate �ner meshes thereby enabling
the computation of the mean and variance with higher accuracy. We demonstrated that for QoIs
for which the level-dependent variance decays slower than the growth rate of the computational
cost with level (i.e.  > �), an optimal MLMC estimator can be achieved. For two benchmarking
problems, we utilized a nested and geometric hierarchy of grids. This is not a necessary criterion and
a valid MLMC estimator can be constructed on any hierarchy that consists of levels with increasing
cost and accuracy. A more sophisticated approach to obtain �ner levels in the MLMC hierarchy
can be based on adaptively re�ning the mesh in regions where a large numerical error is observed.
We would like to point out that there is a negligible di�erence in terms of the computational
cost between, the REV and RRST models, but the implementation of the latter model is more
involved. Especially, obtaining a robust solver with respect to random Reynolds stress tensors is
challenging. The continuation solver utilized in this chapter is moderately successful but su�ers
from convergence issues on very �ne grids as well as when the random tensors are sampled from
high-variance parameter sets.

This chapter presented the MLMC method as an e�cient uncertainty propagation tool without
taking into account any available data. A natural extension would be the development of multilevel
variants of the Markov Chain Monte Carlo (MCMC) method to obtain a data-informed prediction
[178]. For such algorithms, the random matrix approach can act as a better prior than the random
eddy viscosity model as it circumvents the Boussinesq approximation. Currently, to the authors’
knowledge, no data-based approach exists that takes into account the uncertainty in the full Reynolds
tensor �eld.
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(a) Case 1

(b) Case 2

Figure 7.27: Mean and variance of the streamwise velocity computed using the 4-level estimator and comparison with
DNS data at locations x∕H = 1, 2, 3, ..., 8. Velocities are scaled by a factor of two to facilitate visualization.
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(a) Case 1

(b) Case 2

Figure 7.28: Mean and variance of the wall shear stress �w computed using the 4-level estimator and comparison with
DNS data.
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Appendix
7.A. Projection of Reynolds Stresses on a Barycentric triangle
Reynolds stresses can be divided into an isotropic part 2

3
k�ij and an normalized anisotropic compo-

nent given by

Aij ∶=
Rij
2k

−
�ij
3 , (7.29)

⇒ Aij ∈ {
[−1∕3, 2∕3] for i = j,
[−1∕2, 1∕2] for i ≠ j,

(7.30)

forming the entries of a symmetric and deviatoric anisotropy tensor A. Utilizing the eigenvalue
decomposition, the anisotropy tensor A, can be expressed as

A = V�VT, (7.31)

where V = [v1, v2, v3] with three mutually orthonormal eigenvectors vi and the corresponding
eigenvalue matrix � = diag[�1, �2, �3] with �1 + �2 + �3 = 0 and ordering such that �1 > �2 > �3.

In physical terms, quantities k,V and � represent the magnitude, shape and orientation of
the Reynolds stress, respectively. The state of the turbulence anisotropy can be visualized using a
barycentric triangle [176]. This requires mapping the eigenvalues to the barycentric coordinates,
C1c, C2c, C3c, using linear relations:

C1c = �1 − �2, C2c = 2(�2 − �3), C3c = 3�3 + 1, ⇒ C1c + C2c + C3c = 1. (7.32)

Reynolds stress anisotropy is said to attain a limiting state when one of these components equals
1. Therefore, C1c = 1 represents 1-component turbulence, C2c = 1 represents 2-component
turbulence and C3c = 1 represents 3-component turbulence. One can express the anisotropy
states in Cartesian coordinates using a barycentric triangle with the vertices (x1c, y1c), (x2c, y2c) and
(x3c, y3c), corresponding to the three limiting states. Now, any anisotropy tensor can be projected
into barycentric triangle via the convex combination of the three limiting states:

x = x1cC1c + x2cC2c + x3cC3c, (7.33)
y = y1cC1c + y2cC2c + y3cC3c. (7.34)

This transformation enables us to analyse the states of the Reynolds stresses generated using the
random matrix approach. These perturbed Reynolds stresses should lie on, or within, this triangle
to be physically realizable. The contours in Figure 7.4 are generated by making bins of equal size
inside the barycentric triangle and plotting the normalized frequency for each bin.





8
Conclusion and outlook

In this thesis, we studymultilevel UQ techniques to e�ciently solve a number of stochastic �uid �ow
problems. The priority has been on establishing e�cient numerical schemes for the propagation of
uncertainties. We have shown that for some problems, the multilevel approach is a highly feasible
way to compute stochastic moments as the cost can be brought down to a small constant factor of
one deterministic solve. Next, we draw some conclusions based on each research question addressed
in this work.

8.1. General conclusion
8.1.1 High-order schemes for MLMC

The MLMC estimator is most expensive when the decay rate of level-dependent variance is slower
than the growth rate of the computational cost per sample, i.e. � < . High-order discretization
schemes can increase the value of � and we may end up with � > , resulting in the best possible
MLMC complexity of O("−2) where " is the speci�ed tolerance of the MLMC estimator. However,
for many problems, a high-order discretization scheme may result in a rather dense linear system
which is comparatively more expensive to solve than the lower-order schemes (on the same grid)
resulting in a larger . Due to this, we may not get any improvement in the asymptotic cost of the
MLMC estimator. Therefore, it is also important to develop a fast solution method for high-order
schemes in the MLMC setting. In Chapter 3, we investigated this research question in detail for the
Darcy �ow problem. We used a fourth-order discretization scheme instead of the conventionally
used second-order scheme resulting in an increased value of �. For solving the linear system arising
from the fourth-order discretization, we employed a defect correction strategy to a multigrid solver
based on second-order discretization. As the defect correction step is inexpensive, we managed to
keep the value of  for fourth-order discretization the same as for the second-order; leading to a
signi�cant speedup in the MLMC simulations [23].

8.1.2 Local Fourier Analysis for Stochastic PDEs

The asymptotic convergence factors of multigrid solvers can be accurately predicted using LFA.
Conventional LFA techniques are typically based on constant coe�cient discretization, whereas
for stochastic PDEs, we encounter variable coe�cient �elds due to randomness. In Chapter 4,
we proposed a generalized LFA technique that is suitable for PDEs with variable and jumping
coe�cients. The generalization was achieved by employing new basis functions from the Fourier
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space rather than using the standard Fourier modes. The prediction capability of the proposed LFA
technique was demonstrated for a variety of challenging jumping coe�cient problems as well as for
highly heterogeneous random �elds. We also showed that the aforementioned LFA method can be
employed to compute the expected computational cost of the MLMC simulation [24].

8.1.3 MLMC for transport in the Darcy-Stokes �ow

A multigrid MLMC method was described for solving the stochastic transport in a coupled Darcy-
Stokes system in Chapter 5. Based on experience from previous chapters, we developed an e�cient
monolithic multigrid solver for the coupled Darcy-Stokes �ow with heterogeneous permeability
�elds. The key ingredient of this solver was the Uzawa smoother that employs an equation-wise
decoupled relaxation for the pressure and velocity unknowns. For the velocity, a symmetric Gauss-
Seidel iteration is employed whereas, for the pressure, a Richardson iteration is applied. The choice
of relaxation parameter for the Richardson iteration took into account the local �uctuations in the
permeability �eld. Using numerical experiments, we showed the proposed monolithic multigrid
solver is able to achieve the same e�ciency for highly heterogeneous permeability �elds as observed
for the constant permeability case. A fast time-stepping of the advection-dominated transport
equation was achieved using an Alternating Direction Implicit solver. This solver is highly suited for
the MLMC method as it is a second-order accurate implicit scheme which allows us to incorporate
very coarse temporal grids in the MLMC hierarchy [25].

8.1.4 MLMC for variably saturated �ows

A stochastic extension for variably saturated �ows was studied in Chapter 6. The stochastic formu-
lation was derived by modeling the soil parameters as spatially correlated non-Gaussian random
�elds. A combination of the modi�ed Picard iteration with a cell-centered multigrid was developed
to solve the discrete Richards’ equation. The performance of this solver was studied for a range
of values of soil parameters and a cost map was derived for the considered range. For computing
the statistical moments of the solution of Richards’ equation, a parametric continuation multilevel
Monte Carlo estimator was proposed. This estimator is highly practical for this problem, as it
requires solving the strongly nonlinear problem target problems only on the �nest level, where
the solver is robust and solves simpler nonlinear problems on the coarse grid levels for a variance
reduction [26].

8.1.5 MLMC for stochastic turbulence modeling

The MLMC method was utilized for solving high-dimensional stochastic formulations of RANS
turbulence models in Chapter 7. Two stochastic RANS models based on a local perturbation of
the baseline eddy viscosity �eld and the baseline Reynolds stress tensor �eld were considered.
We showed that the random eddy viscosity model is suitable for quantifying uncertainties due to
unknown closure coe�cients for the turbulence models. The random Reynolds stress tensor model
is more general and is applicable to �ows where the assumption of linear stress-strain relation is
insu�cient. These models were tested on a selection of two relevant geometries and the uncertainty
interval obtained was compared with the reference LES and DNS data. It was observed that the two
models are su�ciently general and can reliably bound the possible �ow behavior [27].

8.2. Extensions, outlook
There are a number of open research questions that were not addressed in this work. In this section,
we outline some of these questions and recommend possible extensions of the work done in this
thesis.
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8.2.1 LFA for di�erent types of PDEs and discretization schemes

In Chapter 4, we restricted ourselves to a basic cell-centered multigrid for elliptic PDEs to demon-
strate the accuracy of the predictions of the novel LFA technique. We emphasize that this approach
can also be used for a wider range of problems, discretizations, and multigrid methods. The pro-
posed LFA technique allows us to deal with several challenging problems for which it is not easily
possible to apply the classical LFA. For instance, this approach can be extended to higher-order
cell-centered and vertex-centered discretizations and corresponding multigrid methods, or even to
multigrid methods for staggered grid discretizations of coupled PDE systems, such as the Darcy-
Stokes problem, see [25, 98]. Moreover, it should also be possible to apply it to triangular grids and
�nite element discretizations [179, 180].

8.2.2 Multilevel solvers for coupled PDEs

Using the insights from the monolithic multigrid solver developed for the stochastic Darcy-Stokes
�ow, we can develop an e�cient monolithic solver for the coupled Stokes �ow and deformable
porous medium with highly heterogeneous permeability. A monolithic multigrid for this problem
was already proposed in [181] but with constant permeability �eld. Our approach of using local
�uctuations in the permeability to obtain optimal relaxation parameters can prove to be very
e�ective in this case as well. Another interesting system that should be studied in the stochastic
setting is the coupling of the Richards’ equation with the Stokes �ow. An e�cient solver for this
problem can be derived by combining the modi�ed Picard iteration with the monolithic multigrid
solver for the Darcy-Stokes �ow.

8.2.3 Theoretical foundations of parametric continuation MLMCmethod

There are a number of research questions that need to be investigated in detail for the paramet-
ric continuation MLMC estimator. The �rst question concerns the perturbation strategy for the
nonlinearity dictating parameters. In Chapter 6, we used a pre-de�ned hierarchy of parameters to
compute the number of MLMC samples. This may not result in the maximum possible e�ciency
of the parametric continuation approach when applied in the MLMC setting. A more general
approach needs to be formulated in order to �nd the optimal number of MLMC samples along with
the parameter set for which the total cost of the MLMC estimator is minimum.

A second research question concerns the applicability of parametric continuation to other
nonlinear problems that may exhibit bifurcation - where a small change in the perturbation of any
parameter leads to a large di�erence in the solution pro�les (for example, the Bratu problem). For
such problems, the application of the parametric continuationMLMCmethod is not straightforward
as the random samples on two levels p�l,ℎl(!) and p�l−1,ℎl−1(!) may not be correlated at all,
therefore, it may not result in variance reduction. To deal with such issues, the arclength based
continuation method [131] must be explored in a stochastic setting.

8.2.4 Bayesian calibration variants of MLMC for turbulence modeling

We showed that the two stochastic turbulence models in Chapter 7 were quite general and can serve
as an accurate Bayesian prior for calibration and data-assimilation involving turbulence models.
The next step would be the application of Bayesian calibration variants of MLMC methods, for
example, Multilevel Markov-Chain Monte-Carlo (MLMCMC) [178], to this problem. For such
algorithms, the randommatrix approach [4] can act as a better prior than the random eddy viscosity
model, as it circumvents the Boussinesq approximation.

All the previous methods were restricted by the accuracy of RANS computations: while the
model error may be estimated, the absolute accuracy will not reach the level of LES "experiments".
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Another important extension would be to develop techniques for uncertainty quanti�cation of the
LES model while limiting the number of LES computations to only a few or even to one. This
may be achieved with a multi-�delity approach, with RANS models on the coarse levels, using
(for example) the control-variate approach of [182]. However, this would still require many LES
computations. Another possibility would be to create an enriched coarse model using a RANS
model and the Reynolds stress tensor information from a single LES model. The aim is to do this in
such a way that the enriched RANS model at nominal conditions would reproduce the LES result
(in the quantity of interest or the mean-�ow).

All in all, there are plenty of open and interesting research questions left.
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