
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

P.J.W. TEN HAGEN

THE REVIEW OF GKS VERSION 7.0,
THE FINISHING TOUCH

Preprint

~
MC

IW 210/82 NOVEMBER

kruislaan 413 1098 SJ amsterdam

/1£1.oUvil-'.i.:EK MATHEMATISCH Cf.NT~
AMSTERDJ>.M

PJunted a:t .the Ma.the.ma:tlc.al. CeJ'lbr.e, 413 K/r.LU.6£.aa.n, Am6.tvuf.a.m.

The Mathema..tlc.al. Cen.tlte , 6ou.nded .the 11-.th 06 FebJuUVr.y 1946, .ui a. non­
p11.06.U .&i6.tli.u;Uon a.imlng at .the p11.0mo:Uon 06 pWte ma.thema.:UC-6 and -U6
a.pp.U.c.a.:tlon.6. 1:t .ui .6pon.60ll.ed by :the Ne:thelri.a.nd-6 GoveJLnment :thltough :the
Ne:thellla.nd-6 01tga.ru.za.:Uon 60ll. :the Adva.nc.emen:t 06 PU/Le Re6eaJLc.h (Z.W.O.).

CR Categories and Subject Descriptors:
1.3.4 [Computer Graphics]: Graphics Utilities
- graphics packages; 1.3.6 [Computer Graph­
ics]: Methodology and Techniques - device
independence; interaction techniques

The Review of GKS version 7.0,

The Finishing Touch.

by

P.J.W. ten Hagen

ABSTRACT

The version of GKS that is to become
widely available this month (version 7.2), is
the result of yet another intensive review.
However, this review has definitely been the
final one. As a result, the ISO committee has
now unanimously accepted GKS. Moreover,
all national bodies actively participating in the
development of GKS have decided to adopt
GKS as a national standard. This means, for
instance, that GKS will become a DIN­
standard, an ANSI-standard, a BSI-standard,
etc ..

The functionality of GKS will strongly
influence new graphics hardware and software
design. Over the last two years a number of
new functions have been introduced into GKS.
The nature of the standardisation process is
such that little of this innovation becomes
apparent until it has been accepted by the
committee. The new functions and the under­
lying concepts will be presented in this paper.

Keywords: Computer Graphics, Device
Independence, Basic Software

General Terms: Design, Standardization

This paper is not for review, it will be published in
Computer Graphics Forum Vol. I, No.4, 1982.

1. HISTORICAL NOTES

In the presentation given at EURO­
GRAPHICS 81 [l], a number of new concepts
were mentioned. In doing so, it was antici­
pated that the meeting at Abingdon in
October 1981 of ISO/TC97/SC/5/WG2 (the
working group developing GKS), would accept
these concepts and the associated functionality
in their final form. Many of these concepts
were only introduced at the Melbourne meet­
ing of the same committee earlier that year.

For an overview of the work on GKS
until 1981 the: reader is referred to [2] and [3].

The ISO letter ballot on GKS version
7.0 (see [4]) made many people, especially in
the USA, realize what the impact of GKS
might be. The facilities for achieving device
independence are so effective that hardware
manufacturers see themselves forced into a
new approach. They can no longer offer
firmware that only runs efficiently with appli­
cation programs that know about all the
details of that firmware. Instead, they must be
able to run efficiently under GKS. Moreover
the new microprocessor technology has
brought about a host of enhanced graphics
terminals with all kinds of built-in functions
many of which were formerly emulated in
software. These functions make assumptions
about the global state of the graphics system,
or the terminal, which may not be valid in a
device independent context. Although they
may appear to correspond to GKS functions,
the differences make the device functions
difficult to use when implementing the GKS
functions. To give some examples:

Area fill firmware which fills a closed
contour by specifying a colour and an
interior point. The hardware cannot cope
with self-intersecting polygons or fails to
overwrite elements of the same colour.

Hardware translation and scaling,
without rotation. This would force a
GKS implementation to treat all rota­
tions separately.

Global selection of attributes, e.g.
colour. A GKS implementation can
only invoke such a function' at a very
low level.

In addition, new, fast growing applica­
tions such as business graphics, need to be
able to use GKS to drive raster devices. As a
result, the GKS raster facilities could not be
kept minimal whilst waiting for the raster
graphics area to stabilise.

The final series of changes to G KS, and
the most difficult to achieve concensus about,
must be seen as an attempt to accomodate
these requirements.

Not surprisingly, most of the last round
criticisms were inspired by manufacturers and
software houses with vested interests in alter­
native systems. Their criticisms illustrate the
problems involved in transferring existing
applications to a GKS base. The major issue~
were:

1. Treating all attributes as global and
static as well as (in some cases) bundled
and dynamic.

2. A character alignment facility.

3. A stroke input device.

4. A more general Generalized Drawing
primitive.

5. Additional text attributes moved to the
text bundle.

6. Changes to the minimal requirements
per level.

7. Clarifications to annex C, the language
conformance and binding guidelines.

8. Amplification of annex D, on implemen­
tation dependencies.

These issues were satisfactorily resolved
at the most recent meeting last June at Steen­
sel, The Netherlands. Some of these issues
will be discussed below as part of the discus­
sion of new functionality. The minimal
requirements, language binding and implemen­
tation issues illustrate that there is a lack of
experience with actual implementations for a
variety of languages and operating systems.
Fortunately the guidelines of annex C and D
can be further improved and refined as they

2

are not part of the standard proper.

2. THE WORKSTATION

The workstation concept was already
present in the earliest versions of GKS. It is
of paramount importance to the whole GKS
system. The majority of GKS functions
directly address a workstation to control so­
called workstation dependent aspects. Each
global, workstation independent function is
evaluated in two stages. The second stage is
the realisation of the function on the indivi­
dual active workstations.

The quality of a workstation depends on
the richness of the aspect values the user can
choose from, the speed with which the output,
control and input functions are executed, and
the integration of input and output actions.
Although these quality aspects depend on the
available hardware, many of them depend
equally on the implementation. Together they
determine the extent to which the implementor
has succeeded in exploiting the hardware
under device independent control.

The GKS functions can be divided into
groups corresponding to the major capabilities
the workstation provides.

2.1 Integration of input and output

Only one output device per workstation
is permitted because the range of attribute
values that can be realised depends mainly on
the available output device. Two or more out­
puts would allow only the intersection of the
various ranges to be used. This is true as
much for output attributes as for input attri­
butes.

In addition, it is preferable to have all
input feedback on one and the same (output)
device. This does not restrict the number of
input devices per workstation as long as they
can share the same screen for prompting and
echoing.

The basis for the integration of input
and output devices is provided by the worksta­
tion implementor, who realises the input prim­
itive attributes, such as prompt/ echo type,
echo areas and input value ranges. PLP The

behaviour of individual input devices can also
be controlled by parameters provided via a
data record. This is an extension mechanism
similar to the Generalised Drawing Primitive:
and illustrates the fact that the input facilities
provided by GKS may be expected to develop
further. GKS already offers a number of
input attributes settable by the application
program. This advanced feature will attract
the attention of users and implementors to a
new area of interaction control.

Table I gives an overview of the input
functions a workstation must support. The
input attributes other than the echo on/off
switch and mode are static attributes. They
are specified in one function as a bundle, but
cannot be dynamically modified. The echo
on/off switch and the input mode
(REQUEST. SAMPLE and EVENT) can be
seen as dynamic attributes which can be
changed at any time. One could imagine such
a SET function selecting an input bundle
index as well.

Figure I gives the input modes and tran­
sitions, plus the functions that are allowed in
each state. To indicate the fact that
REQUEST actually consists of two modes an
additional mode called REQUESTED has
been invented.

One might be tempted to conclude that
the input facilities of workstations are antici­
pating future extensions rather than reflecting
current practice. However, the arguments
leading to these facilities all referred to state
of the art input methods. The major difficulty
was to develop a model placing the diversity
of these methods in a common framework [5].

The next step to be taken in interaction
is the integration of input and output at higher
levels. This integration has two sides:

@ The creation of pictures from output
primitives, attributes and segments, as a
direct response to input.

• The description of the visual behaviour
of input devices in terms of output by
predefined segments or resettings of
dynamic attributes as prompt/ echo
types.

3

//0 \VEST (inactive)

77•~t set m~ set m~

0 REQUESTED /0 SAMPLE /0
p,£) prn£)

EVENT (active)

figure I _ input mode transitions

Table I. INPUT FUNCTIONS

INITIALISE XXX - initial value for XXX - pie type - echo area -data record

SET XXX MODE -S/R/E - echo on/off

REQUEST XXX ---> value for XXX
SAMPLEXXX ---> value for XXX
GETXXX ---> value for XXX

AWAIT EVENT
FLUSH XXX EVENTS

IQU XXX STATE

4

The current trend to develop separate
dialogue systems on top of graphics kernel sys­
tems makes extensive use of such facilities.

The rapid development of intelligent
graphics terminals with local interaction sup­
port creates a need for device independence at
that level. The behaviour of these terminals
will be in terms of picture changes on the
GKS functional level.

2.2 Support for dynamic changes.

There are four basic ways to change a
picture dynamically. The workstation imple­
mentor must provide support for each way.
The workstation imple~entor by assigning
resources to each way of change trades them
off against each other.

The four ways are:

I. adding new output primitives to the
display surface

2. manipulating segments

3. changing the dynamic attributes of pic­
ture primitives

4. creating new input causing feedback on
the screen

For each of these manipulations the
workstation may have to assign two kinds of
resources: for updating the picture as fast as
possible and for preparing future changes.

In the case of output primitives the
transmission, followed by the conversion to
display code are the two steps that matter.
Output primitives containing thousands of
vectors or large cell arrays for high resolution
raster displays require fast transmission and
conversion. For these the workstation may
have to support elaborate encoding schemes
and large buffer areas.

Minimising transmissions also is an
argument in favor of clipping as early as pos­
sible. The decision to postpone clipping in
GKS was taken because early clipping prohi­
bits the use of clipping hardware as well as
hindering device independence. An example
of the latter is TEXT which can only be prop­
erly clipped when the workstation has made
the selected FONT available. The application

can avoid sending large amounts of data by
pre-clipping (probably using application­
specific indexes to speed the process).

Clipped primitives in segments can only
be stored by GKS in workstation dependent
segment storage. This would not solve the
transmission problem if the device indepen­
dent segment store is also being used, because
then clipping can only take place at the works­
tation. In addition subsequently changing
attributes may cause strange effects on that
workstation, if they are not accompanied by
retransmissions.

There are many interactive applications
which cause relatively little change in the bulk
of data on the screen. For these, it must be
possible to configure a workstation so that fast
output and conversion gets priority over mani­
pulation. In the extreme case of storage type
devices, changes other than additions must be
buffered to avoid time consuming retransmis­
sions.

The design of G KS has been such that
these devices and applications can still be
accomodated. However, not at the expense of
device independence or the possibility of more
dynamic use. One can tailor a workstation for
a particular application field.

Picture change through segment manipu­
lation can be implemented in two ways: using
the device independent segment facility, or
holding a segment at a workstation. In the
latter case one may use the most efficient cod*
ing scheme for that workstation. The main
reason for letting a workstation have its own
segments is fast feedback during manipulation.
Possible situations where this applies are slow
transmission to remote workstations or high
quality interactive display hardware.

These first two means of picture change
are not new. GKS permits workstations to be
implemented which have different characteris­
tics with respect to change even though the
hardware is the same. Opening a different
workstation type would set different charac­
teristics.

* Space in the host may be another reason.

The workstation description table con­
tains the initial value for the output deferral
mode. This value will indicate the optimal
mode. In figure 2 the values are shown in
increasing order of strength. Choosing a
higher value than the optimal one will usually
not improve performance, but will certainly
guarantee the implied effect.

Figure 2 - Deferral Modes

ASTI (At Some Time)
BNIL (Before Next Input Locally)
BNIG (Before Next Input Globally)
ASAP (As Soon As Possible)

Dynamic changes which require deletion
or changes of appearance may require the
complete picture to be regenerated. Although
many hardware systems can immediately
delete a segment they may well have trouble
changing the colour of picture elements or the
character font of some TEXT primitives. The
latter are examples of dynamic attribute
changes.

Fast implicit regeneration caused by
changing attributes or immediate change of
the displayed picture following an attribute
reset, requires integration of segment and
attribute bundle storage. Such integration will
be able to rebind indexes to new attribute
bundle values on the fly. In workstation
dependent segment store, for instance, it is
possible to implement a bundle index by a
pointer to the bundle itself. Alternatively bun­
dles might keep track of the segments that use
them. To date no implementations exploiting
these possibilities are known to me.

Workstation description tables can indi­
cate the extent to which dynamic attributes
can be given immediate effect. This is not the
case for inprnt attributes. It is more or less
assumed that elaborate prompt/ echo types
need no deferral state or require regeneration.
They must take effect As Soon As Possible
(ASAP). Echoes which need to disappear,
however, cause problems similar to segment
deletion. There are no reasons to exclude
echo types which dynamically change attri­
butes of picture elements (e.g. turn green on
PICK).

5

Further integration of input and output
means that input and feedback data also must
be integrated with the segment store. It seems
that workstation implementors wiV find some
challenging problems here.

2.3 Multiple workstations

The term multiple workstation suggests
that it is a luxury for users who can afford
high powered graphics equipment containing
several output devices. Modern raster technol­
ogy allowing multiple window terminals has
opened the possibility to simulate multiple
workstations on one screen. In each window
on the screen a workstation with different
characteristics may run. Several processes
running in parallel may each use a subset of
the active workstations.

This example suggests that multiple
workstations will become a common feature of
graphics systems running in multiprogram­
ming environments. Implementors will aim at
modest, efficiently driven workstations whose
power will lie in combining them with other,
similar workstations.

Multiple workstations of this kind must
be subject to some kind of resource manage­
ment. This means that the operating system
environment assigns a workstation to a pro­
gram rather than the application program tak­
ing it. True portability should allow for this
and even stronger cases. A user should be
able to start his application program from the
graphics terminal he happens to login on.

A disadvantage of multiple workstations
is the restricted attribute range they enforce
upon each other. As we have seen above
workstations sharing the same output device
do not have that restriction.

3. RASTER FACILITIES

The raster facilities of GKS which have
been kept modest, though not minimal, have
not changed in this year's revision. The typi­
cal raster functions are:

6

FILL AREA
CELL ARRAY
SET FILL AREA INTERIOR STYLE

(PATTERN)
SET PATTERN REPRESENTATION
INQUIRE PIXEL
INQUIRE PIXEL ARRAY

The bridge between raster and non-raster
output is the FILL AREA primitive. Using
the bundle index for fill area representation,
one can switch between say, HATCHED style
for vector displays and PATTERN style for
raster workstations, without further affecting
the application program.

The FILL AREA boundary can be an
arbitrary closed polygon. The PATTERN
attribute and the CELL ARRAY primitive
both initially are rectangular, but may be
rotated by segment transformations. The
PATTERN is r,epeated in all four directions
until it completely overlaps the FILL AREA.
In this way the interior of the area is deter­
mined by the extended pattern.

An intriguing question is how GKS
would deal with the preference for rectangular
shapes of many raster applications. For
instance, rectangular FILL AREAs could be
dealt with much faster by hardware, restricting
segment transformations to translation and
90° rotations would fit bitmap displays using
raster ops.

GKS provides no facilities for restricting
its functionality to special cases, though they
may be provided via GDP and ESCAPE. A
rectangular FILL AREA makes a perfect
GDP. Restricting the transformations would
be more diffi.cullt. A possible solution might
be an ESCAPE function which marks bitmap
segments, but llhis would not be sufficient.
Input to bitmap displays very often is echoed
using rasterops on the displayed image. It will
be more work to incorporate and represent
these changes in the segment-like description
of the screen.

Equally important for future develop­
ments is the fact that bitmap displays seem to
be strictly two-dimensional. Current proposals
for extending G KS to a three-dimensional sys-

tern propose considering 2D as a special case
of 3D. This makes no sense for strictly 2D
workstations. Hence there may have to be 2D
as well as 3D workstations.

4. A TIRIBUTES, BUNDLED 'AND SIN­
GLE

The attribute mechanism of GKS has
probably been discussed most. It is the treat­
ment of attributes that, more than anything
else, decides the extent to which GKS is device
independent. The final functionality was only
agreed upon at the most recent meeting. In
[6] an overview is given of the evolution of the
attribute bundling mechanism.

4.1 Geometric attributes

The appearance of an output primitive is
determined by a number of factors:

Its basic geometrical shape which is
defined as part of the primitive itself
(e.g., the vertices of a POLYLINE as
given in world coordinates)

Shape aspects which give more detailed
shape information relative to the basic
shape. These aspects are subjected to
the same transformations as the basic
shape, and are controlled by so-called
geometrical attributes.

Shape aspects which also refine the
shape definition but whose values are not
transformed. They are also referred to
as geometric attributes. The only exam­
ples are CHARACTER PATH and
TEXT ALIGNMENT. As far as GKS
is concerned they could go in the bundle
for text, certainly in the new version
which allows all bundled attributes to be
used in an unbundled fashion as well.
Currently however, they are strictly glo­
bal.

Non-geometric attributes whose values
are sent to each workstation without
being transformed. These attributes can
all be bundled.

7

Table 2 ATTRIBUTE TABLE
primitive geom! geom2 bundle pick
POLYLINE LINE TYPE PICK

LINE WIDTH
COLOUR

POLYMARKER MARKER TYPE PICK
MARKER SCALE
COLOUR

TEXT CHAR UP PATH FONT & PREC PICK
CHAR HEIGHT ALIGN EXP. FACT

COLOUR
FILL AREA PAT. SIZE INT. STYLE PICK

PAT. REF. PT. COLOUR
PAT/HATCH

CELL ARRAY PICK
GDP PICK

8

The PICK attribute which does not
affect the appearance but is used by the
input facilities as a name for the primi­
tive.

The easiest way to describe the effect of
attributes on primitives is temporarily to
ignore transformations, or equivalently, to
assume unit normalisation, workstation and
segment transformations.

The second step is to collect all relevant
individual attributes of the primitive by taking
their global values and their bundled values
according to the Attribute Selection Flags
(ASF, see 4.2 below).

In the next step the attributes are
applied in a fixed order, which is partially
defined by G KS and can partly be determined
by the implementor. The latter cases are those
where the order has no influence on the result­
ing appearance of the primitive.

Finally the primitive with its shape and
attributes is subjected to the three transforma­
tions and appears on the display surface.

In practice, however, this is not the way
implementations have to do it. It is perfectly
permissible to store transformed (normalised)
primitives and geometric attributes in a seg­
ment. In that case the remaining workstation
dependent attributes can be adjusted by fitting
them to the already transformed geometrical
attributes. The latter thus serve as some kind
of carrier of the transformation information.

For TEXT the CHARACTER HEIGHT
and CHARACTER UP VECTOR serve
together as the carrier. For FILL AREA the
PATTERN SIZE and REFERENCE POINT
have the same function.

In table 2 the attributes are ordered per
primitive in the four groups mentioned above.

In table 3 the attributes are partially
ordered to indicate per primitive in what
sequence they have to be applied. Also it is
indicated where the transformation and clip
must be performed.

So far, it has been assumed that all attri­
butes are bound to the primitive at the works­
tation. In the next section we examine attri-

bute binding.

4.2 Attribute binding

GKS supports two ways of binding attri­
butes to primitives. The first is direct, static
binding. This means that an attribute is
bound to the primitive when it is created, and
that this attribute value remains with the
primitive as long as it exists.

The second way is indirect, dynamic
binding. This means that primitives are
selected from a bundle, via a directly bound
index. This selection takes place only at the
workstation and is therefore often called
delayed binding. The dynamic property is due
to the fact that the contents of the bundle may
be redefined at the workstation, implying that
the primitive will then appear with the new
attributes.

Direct static binding is current practice,
indirect binding results from the attempts to
achieve strong device independence. The
dynamic aspect is a very useful feature, which
is however, difficult to suppress if not wanted.

In GKS the dynamic effects are required
to take place even at the expense of a com­
plete regeneration of the picture from segment
store.

Problems can arise if an application is
forced to use so many bundles that it has to
reuse existing indices, and in doing so must
redefine their contents. This is especially
annoying if the workstation has only a limited
capacity to store bundles. Note that bundles
can be redefined but not thrown away.

Many current applications would be
forced to do frequent regeneration if running
under GKS. This is why the original design
has been relaxed to allow bundleable, dynamic
attributes to be used in an unbundled, static
way as well.

The mechanism which makes this possi­
ble is called the ATTRIBUTE SOURCE
FLAGs, one for each bundle attribute.
Together these flags form a mask. For each of
the attributes a global value is defined to be
used when direct static binding is selected.

9

Table 3 OKS Pipeline

POLYLINE

transform

linewidth

linetype

clip

colour '

pick

POLYMARKER

transform

markertype

markerscale

clip

colour

pick

TEXT

font & prec

char up

char height

exp. fact

path

alignment
-

transform

clip

colour

pick

FILLAREA

int. style

pat. size

pat. refpt

transform

pattern hatch

colour -
clip

pick

CELL ARRAY

transform

clip

pick

GDP

......

transform

......
clip

......
pick

IO

For each primitive created a direct bind­
ing takes place for each appropriate attribute
whose flag in the mask set to INDIVIDUAL.
All the other attributes will be bundled.

This facility is certainly very useful for
those applications which would otherwise use
an unreasonable number of bundles. How­
ever, an application using it sacrifices device
independence. It is therefore important that
workstation implementors design attribute
bundle schemes which provide sufficient bun­
dles.

GKS defines the minimum number of
bundles a workstation must provide. These
figures show that the introduction of static
attributes was not intended as a substitute for
attribute bundles. This compromise will allow
workstation designers gradually to develop
new firmware which accomodates bundling.

On the other hand it will cause
difficulties for workstation designers who had
already built hardware that accommodates
dynamic binding only.

5. SEGMENTS

Since the Abingdon meeting of October
1981, the function of the device independent
segment storage has become much clearer, and
also more useful.

The INSERT SEGMENT function has
been given a narrower context. In addition
two new functions have been added, each of
which addresses a special capability of the
Workstation Independent Segment Store
(WISS). All these functions specify some kind
of transfer of information between worksta­
tions.

The reuse of pictures stored on WISS in
segments can be for one of the following pur­
poses:

1. COPY SEGMENT TO WORKSTATION

Copy a picture onto a display surface in
a way similar to creating pictures outside
segments. The segment administration is
omitted. Only primitives and their attri­
butes as stored in the segment are
copied. This function therefore only
copies the information required for mak-

ing the picture visible. The segment
attributes transformations are ignored.

2. ASSOCIATE SEGMENT TO WORKSTA­
TION

Copy a picture with its segment structure
to the workstation. A segment as a
closed, self contained entity cannot affect
the state of the workstation with respect
to segments already present or subse­
quent output. This function adds pic­
tures to a workstation for subsequent
manipulation.

3. INSERT SEGMENT

Copy the primitives with their attributes
into the open segment. All transforma­
tions are applied as originally defined.
The clipping rectangle is, however,
replaced by the current one. The primi­
tive attributes of the inserted primitives
do not change the current global primi­
tive attribute values. This function
treats the stored segments as predefined
symbols.

It is interesting to see what happens to these
functions in case the workstation the segments
are sent to is a Metafile Output Workstation.

Case one clearly is the plotfile function.

Case 2 is capable of exchanging pictures
between workstation independent segment
stores. This shows that workstation indepen­
dent segment storage together with a metafile
permits pictures to be exchanged between any
two GKS workstations for all purposes.

Case 3 is of no special interest with
respect to external exchange. Note that
INSERT SEGMENT has no workstation
parameter.

One may compare case 2 with the case
of a metafile audit trail function, i.e., the
metafile was open during the whole session.
In both case in principle the same picture,
including structure can be stored. Reading the
audit trail metafile will, however, affect the
global state of the system and may therefore
influence subsequent output. Metafiles used to
exchange pictures should, therefore, be written
using ASSOCIATE SEGMENT.

6. ACKNOWLEDGEMENT
My thanks to David Rosenthal for a

critical review of this paper.

7. REFERENCES

1. P.J.W. ten Hagen, "Graphics Standards _
where are we?", EUROGRAPHICS 81,
North-Holland, Amsterdam 1981.

2. P.J.W. ten Hagen, "The GKS reviewing
process", in J.L. Encama(;'ao and W.
Strasser (eds.), Drittes Darmstfidter Kol­
loquium, Oldenbourg M(inchen 1981.

3. P.R. Bono, J.L. Encama<;'ao, F.R.A.
Hopgood and P.J.W. ten Hagen, "GKS _
The first graphics standard", IEEE Com­
puter Graphics and Applications, Vol. 2,
No. 5, 1982.

4. GKS version 7.0, ISO/DP 7942, January
1982.

5. D.S.H. Rosenthal, J.C. Michener, G.
Pfaff, L.R.A. Kessener and M. Sabin,
"The detailed semantics of graphics
input devices", Proc. SIGGRAPH 82,
Computer Graphics Vol. 16, No. 3, 1982.

6. D.C. Sutcliffe, "Attribute handling in
GKS", Proc. EUROGRAPHICS 82,
North-Holland, Amsterdam, 1982.

11

36464

2 2

