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Abstract. Turbulence at kinetic scales is an unresolved and ubiquitous phenomenon

that characterizes both space and laboratory plasmas. Recently, new theories, in-

situ spacecraft observations and numerical simulations suggest a novel scenario for

turbulence, characterized by a so-called phase space cascade – the formation of fine

structures, both in physical and velocity space. This new concept is here extended by

directly taking into account the role of inter-particle collisions, modeled through the

nonlinear Landau operator or the simplified Dougherty operator. The characteristic

times, associated with inter-particle correlations, are derived in the above cases. The

implications of introducing collisions on the phase space cascade are finally discussed.
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1. Introduction

Hot and dilute plasmas, which are ubiquitous in near-Earth environments and in

astrophysical systems, often exhibit a strongly turbulent and complex dynamics [1, 2, 3].

The fluctuations energy, injected at large scales, is typically transferred to smaller scales,

enabling the energy transfer to particles. This process ultimately ceases by dissipating

the energy and heating the plasma [4]. When the energy of the fluctuations is available to

be transferred to the distribution function of particles, it is possible to recover dynamical
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states which are very far from the thermal equilibrium. As a consequence, the particles

distribution function is strongly deformed and exhibits temperature anisotropies, rings

and beam-like structures as well as velocity space jets and vortices [5, 6, 7, 8, 9, 10, 11].

Even though these systems are usually described by means of collisionless models, the

presence of fine structures (i.e. strong gradients) in velocity space may enhance the role

of collisions [12, 13]. Collisions may therefore result as one of the possible ingredients

contributing to plasma heating [12, 14, 15]. It should be highlighted that collisions have

the intrinsic characteristic of making the system irreversible. Hence, it is possible -

when considering collisional effects - to heat the system in a pure thermodynamic sense,

intimately related to the irreversible degradation of the information.

Extensive efforts have been devoted to understand whether and how the turbulent

cascade, routinely depicted in physical space, evolves also in velocity space. To

better appreciate the presence of phase-space fluctuations, the particle distribution

function is often decomposed in terms of Hermite polynomials for the velocity space

variables, while the usual Fourier decomposition is adopted to describe fluctuations

in physical space. Since the seminal work of Grad [16], numerous results have

invoked the Hermite decomposition of the velocity distribution function. Several

analyses have been focused on the description of the Vlasov-Poisson system in the

collisionless case [17, 18] or by modeling collisions with the Lenard-Bernstein operator

[19, 20, 21, 22, 23, 24, 25, 26]. This system has been also studied extensively from

a numerical viewpoint [27, 28, 29, 30, 31, 32, 33]. Other important studies have been

dedicated to the description of phase-space fluctuations in the framework of gyrokinetics

and drift-wave turbulence [34, 35, 36, 37, 38, 39, 40, 41] as well as, for fusion research,

ion temperature gradient (ITG) driven turbulence [42, 43]. Even for this latter category,

collisions are usually modeled through simplified collisional operators, such as the

Lenard-Bernstein model. Very recently, an extensive characterization of the phase-space

cascade has been proposed by Eyink [44].

Separate studies have instead focused to model collisional effects by means of

collisional integrals, such as the Landau one [45], which can be derived from “first-

principle” arguments. In particular, the Hermite moments of the Landau integral and

its gyrokinetics formulation have been recently discussed [46, 47, 48]. The analysis

has been also extended to the hybrid or full Vlasov-Maxwell system. This has been

done for numerical objectives [49] and also for describing space plasmas [50, 51, 52].

Indeed, complete models are crucial to describe kinetic turbulence in space plasmas,

where complex phenomena - such as, for example, magnetic reconnection, stationary

(zero-frequency) current structures and nonlinear damping - emerge at different spatial

and temporal scales and interact [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67].

The Hermite decomposition of the particle distribution function has been adopted

to characterize the velocity space cascade. This picture indeed resembles a process

of cascade where free energy is injected at large scales (low Hermite coefficients) and

is transferred to large Hermite modes, analogously to the Fourier counterpart for the

physical space cascade of fluids. At small velocity scales, finally, collisions ultimately
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provide the channel for dissipating these fluctuations. For the first time, in Servidio

et al. [50], thanks to the high-resolution measurements of Magnetospheric Multiscale

Mission (MMS) [68], the velocity space cascade has been directly observed in the Earth’s

magnetosheath. A novel collisionless theory, based on the Kolmogorov approach, has

been also developed and theoretical predictions are in accordance with both in-situ

observations [50] and numerical results obtained within the hybrid Vlasov-Maxwell

framework [51, 52].

Here we extend the theory proposed in Ref. [50] by taking into account the role

of inter-particle collisions. Collisions are here modeled through the Landau operator

[45, 69], which can be derived from the Liouville equation, or, alternatively, the

Dougherty operator [70, 71, 72], which is an “ad-hoc” simpler operator, which is

still nonlinear and obeys the H-theorem. The Dougherty operator has been recently

compared to the Landau one [74] and adopted for performing self-consistent Eulerian

simulations [75, 76]. The two operators are here written in the Fourier-Hermite space

and the differences between them are discussed in detail. It is shown that - in the

asymptotic regime - the Landau operator shows two characteristic times, respectively

associated with the diffusive and the drag part of the operator. The fastest characteristic

time related to the Landau operator scales as m−2, being m the Hermite coefficient.

On the other hand, the collisional characteristic time, when collisions are modeled

through the Dougherty operator, is proportional to m−1. For the Landau operator

case, we derive the typical Hermite coefficients m∗, corresponding to the balance of

the collisional characteristic time and the collisionless ones. We apply these results to

typical natural and laboratory plasmas, finding that m∗ is generally large. This implies

that the phenomenological theory described by Servidio et al. [50] holds its validity up

to large Hermite coefficients.

As far as we know, the Fourier-Hermite decomposition of the Landau operator

represents a novel result: previous works have been focused on the Hermite moments

of the Landau operator [46, 47, 48], while here the relevant part of the discussion

concerns the implication of including collisions in the phase space cascade. Moreover,

here we present a compact notation of the collisional Vlasov-Maxwell system in terms

of annihilation and creation operators, widely adopted in the quantum mechanics

framework.

The paper is organized as follows. In Sect. 2, we revisit the Fourier-Hermite

decomposition of the Vlasov-Maxwell system of equations, by ignoring collisions. Then,

in Sect. 3, we include the effect of collisions, modeled through both the Landau operator

or, alternatively, the Dougherty operator. In Sect. 4 we discuss the role of collisions

in terms of velocity space cascade by deriving the collisional characteristic time and

by comparing it to the characteristic times associated with the collisionless part of the

Vlasov equation. Finally, in Sect. 5, a summary of the presented results is given.
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2. Fourier-Hermite decomposition of Vlasov-Maxwell equations

The dynamics of a non-relativistic, quasi-neutral plasma in absence of inter-particle

collisions can be described by means of the Vlasov-Maxwell system of equations, which

in CGS units are:

∂fα
∂t

+ v ·∇fα +
qα
mα

(

E +
v

c
×B

)

·∇vfα = 0 (1)

∇ ·E = 4πρ (2)

∇ ·B = 0 (3)

∇×E = −1

c

∂B

∂t
(4)

∇×B =
1

c

∂E

∂t
+

4π

c
j (5)

where fα(r, v, t) is the distribution function of the α-species, E(r, t) and B(r, t) are

respectively the electric and magnetic fields, qα and mα are the charge and mass of the

α-species and ρ(r, t) =
∑

α qαnα(r, t) and j(r, t) =
∑

α qαnα(r, t)uα(r, t) are the charge

and current density, respectively. In the above definitions, nα(r, t) =
∫

d3vfα(r, v, t)

and uα(r, t) =
∫

d3v vfα(r, v, t)/nα(r, t) are respectively the α-species number density

and bulk speed. For the sake of simplicity, the dependencies on r, v and t of the several

variables in Eq. (1)–(5) are omitted. Note that, at the right hand side of Eq. (1), no

collisional operators are introduced.

In order to decompose Eqs. (1)–(5), we adopt the asymmetrically weighted Hermite

functions, whose three-dimensional orthonormal basis is:
{

Ψm(ζα) = ψmx
(ζα,x)ψmy

(ζα,y)ψmz
(ζα,z)

Ψm(ζα) = ψmx(ζα,x)ψ
my(ζα,y)ψ

mz(ζα,z)
(6)

where ζα = v − uα,0/
√
2vthα,0, while uα,0 and vthα,0 =

√

kBTα,0/mα are the α-species

bulk and thermal speed at t = 0. We also assume that (a) each species is initially at rest

(uα,0 = 0) and (b) the initial equilibrium is homogeneous (Tα,0 and nα,0 are constant).

Clearly, the variable ζα is independent from r and t.

In Eqs. (6), ψm and ψm are respectively the covariant and controvariant one-

dimensional Hermite functions:


















ψm(ζ) =
Hm(ζ)e

−ζ2

√
2mm! π

ψm(ζ) =
Hm(ζ)√
2mm!

(7)

being Hm(ζ) = (−1)meζ
2

dm/dζme−ζ2 the m-th order “physicists” Hermite polynomial.
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The following properties are satisfied for the Hermite functions defined in Eqs. (7):


































∫

dζψm(ζ)ψn(ζ) = δm,n

ζψm(ζ) =

√

m+ 1

2
ψm+1(ζ) +

√

m

2
ψm−1(ζ)

dψm(ζ)

dζ
= −

√

2(m+ 1)ψm+1(ζ)

(8)

The above defined basis is exploited to decompose the variables in Eqs. (1)–(5) as

follows:














fα(r, v, t) =
∑

m,k

f̃α,m,k(t) e
ik·rΨm(ζα)

g(r, t) =
∑

k

g̃k(t) e
ik·r

(9)

being g a generic function which depends only on r and t, such as ρ or any component

of E, B or j.

To obtain the evolution equation for the Fourier-Hermite coefficient f̃α,m,k, Eq. (1)

is multiplied for Ψm(ζα)e
−ik·r d3rd3ζα and, then, the integral on the whole phase space

is evaluated. After some algebra, it is easy to obtain:

∂f̃α,m,k

∂t
+ ivthα,0 k ·

(

â† + â
)

f̃α,m,k −
qα

mαvthα,0
×

×
∑

k2

(

Ẽk−k2
+
vthα,0
c

â† × B̃k−k2

)

· âf̃α,m,k2
= 0

(10)

Since in Eq. (1) the Lorentz-force term is nonlinear in space, the convolution over the

Fourier wavevector k2 is recovered in Eq. (10). It is worth to highlight that, with respect

to the notation adopted in previous papers [28, 49], here - in order to achieve a compact

notation - we make use of the vectorial creation â† and annihilation â operators, defined

as usual as:
{

âj f̃α,m,k =
√
mj f̃α,m−ej ,k

â†j f̃α,m,k =
√

mj + 1 f̃α,m+ej ,k

(11)

being j = x, y, z and ei the i-th Cartesian unit vector. Each time a creation â† or

annihilation â operator is introduced, a factor proportional to
√
m is recovered. Note

also that in Eq. (10) only neighbor couplings of different Hermite modes are recovered.

3. Collisional operators in the Fourier-Hermite space

In the current section we extend the result of Eq. (10) by considering inter-particle

collisions and, hence, evaluating

C̃α,m,k(t) =

∫

d3ζαd
3rΨm(ζα)e

−ik·rCα (12)

where Cα is the collisional operator.
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3.1. Collisions modeled with the Landau operator

When focusing on the Landau operator, it is convenient to use the Landau operator

written in terms of the Rosenbluth-MacDonald-Judd (RMJ) potentials [69]:

CLAN
α =

∑

β

2πq2αq
2
β ln Λ

mα

∂

∂vi
×

×
[

1

2mα

∂

∂vj

(

∂2gβ
∂vi∂vj

fα

)

− 1

µαβ

∂hβ
∂vi

fα

]

(13)

where














gβ(r, v, t) =

∫

d3v′fβ(r, v
′, t) |v − v′|

hβ(r, v, t) =

∫

d3v′
fβ(r, v

′, t)

|v − v′|

(14)

are the RMJ potentials and µαβ = mαmβ/(mα + mβ) is the reduced mass. This

formulation allows to appreciate the Fokker-Planck structure of the Landau collisional

operator.

By inserting Eq. (13) in Eq. (12), one gets:

C̃LAN
α,m,k(t) =

∑

β

2πq2αq
2
β lnΛ

mαv2thα,0

∑

m1,m2,k2

f̃α,m2,k2
×

×
[

(âiâjgβ,m1,k−k2
)Im,m1,m2

2mαv2thα,0
+

−(âihβ,m1,k−k2
)Jm,m1,m2

µαβ

]

(15)

where:

Im,m1,m2
=

∫

d3ζαΨ
m

[

(â†i â
†
jΨm1

)Ψm2
+

+(â†iΨm1
)(â†jΨm2

) + (â†jΨm1
)(â†iΨm2

)+ (16)

+Ψm1
(â†i â

†
jΨm2

)
]

Jm,m1,m2
=

∫

d3ζαΨ
m

[

(â†iΨm1
)Ψm2

+

+Ψm1
(â†iΨm2

)
]

(17)

The last two integrals contain the product of three Hermite functions and they are non-

null in the case of even summation of the three involved Hermite coefficients [73]. In

the asymptotic regime of large m (m ∼ m ± 1), the two integrals have the following

dependence on the Hermite coefficient m: Im,m1,m2
∼ m and Jm,m1,m2

∼ √
m.

By looking at Eq. (15), one easily realizes that nonlinearities of the Landau

operator (i.e. the form of its Fokker-Planck coefficients) explicitly depend on the

velocity coordinates. Therefore, Eq. (15) exhibits the convolutions over the Hermite

coefficients. The Landau operator is hence non-local in the Hermite space: for a given
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Hermite coefficient m, the Landau operator affects also the other Hermite modes.

This represents a peculiar characteristic of the Landau operator, which is lost in other

simplified operators, such as the Lenard-Bernstein or the Dougherty operator. In other

words, the local coupling of Hermite modes, typical of collisionless systems [Eq. (10)],

is drastically modified into a global coupling when introducing the Landau operator.

3.2. Collisions modeled through the Dougherty operator

Here we shift our focus on the case of the Dougherty operator, whose expression is:

CDG
α (r, v, t) =

∑

β

ναβ(r, t)
∂

∂vi

[

kBTαβ(r, t)

mα
×

×∂fα(r, v, t)
∂vi

+ (vi − uαβ,i(r, t)) fα(r, v, t)

]

(18)

The collisional frequency ναβ(r, t), the generalized speed uαβ(r, t) and the generalized

temperature Tαβ(r, t) in Eq. (18) are obtained by adopting a “simple” Fokker-Planck

structure for the Dougherty operator and by expanding the Landau operator around an

equilibrium distribution function f0. Finally, by comparing the energy and momentum

transfer equations obtained for the Landau and the Dougherty operators, it is possible to

set the proper values for the parameters. (See Ref. [71] for a more detailed discussion).
We notice that the Dougherty operator nonlinearities are intrinsically different from

the Landau operator ones, since the Fokker-Planck coefficients of the Dougherty operator
do not explicitly depend on the velocity coordinates. Therefore, contrary to the Landau
operator case, we do not here expect to recover convolutions in the Hermite space.
Indeed, by decomposing the Dougherty operator, one gets:

C̃DG
α,m,k(t) =

∑

β

∑

k2,k3

ν̃αβ,k−k2−k3
×

×
[(

T̃αβ,k3

Tα,0
− δ(k3)

)

(â · â)− (ũαβ,k3
· â)
]

f̃α,m,k2
+

−
∑

β

∑

k2

ν̃αβ,k−k2

(

â† · â
)

f̃α,m,k2

(19)

where ν̃αβ,k, T̃αβ,k and ũαβ,k are the Fourier coefficients of ναβ, uαβ and Tαβ and

the first term in Eq. (19) includes the spatial convolution due to the spatial dependence

of uαβ and Tαβ.

The behavior of the linear Lenard-Bernstein operator is recovered by linearizing the

Dougherty operator. In this case, one has Tαβ = Tα,0, uαβ = uα0 = 0 and ναβ = ναβ,0
and, hence T̃αβ,k = Tα,0 δ(k) and ũαβ,k = 0 and ν̃αβ,k = ναβ,0 δ(k). Therefore, Eq. (19)

reduces to:

C̃DG,lin
α,m,k (t) = −ναβ,0

(

â† · â
)

f̃α,m,k =

= −ναβ,0 (mx +my +mz) f̃α,m,k

(20)

As the Lenard-Bernstein operator, the linearized Dougherty operator is diagonal in

the Fourier-Hermite space, with eigenvalue −ναβ,0(mx + my +mz) [20, 21]. We again

emphasize that, as expected, the Dougherty operator acts locally in the Hermite space.
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4. Implications for velocity space enstrophy cascade

To analyze the effect of collisions in the Fourier-Hermite space, we here obtain the

equation for the Hermite spectrum Eα,m,k = |f̃α,m,k|2 [40] (the definition of the Hermite

spectrum here adopted is slightly different from the one of Ref. [25, 41, 50]). By

manipulating Eq. (10) coupled with Eq. (15) or, alternatively, with Eq. (19), the final

result is:

∂Eα,m,k

∂t
+ ΛA,α

m,k − ΛE,α
m,k − ΛB,α

m,k = Λν,α
m,k (21)

where:






















































ΛA,α
m,k = i vthα,0 k ·

[

f̃∗
α,m,k

(

â† + â
)

f̃α,m,k

]

+ c.c.

ΛE,α
m,k =

qαf̃
∗
α,m,k

mαvthα,0

∑

k2

(

Ẽk−k2
· â
)

f̃α,m,k + c.c.

ΛB,α
m,k =

qαf̃
∗
α,m,k

mαc

∑

k2

(

â† × B̃k−k2

)

· âf̃α,m,k + c.c.

Λν,α
m,k = f̃∗

α,m,kC̃α,m,k + c.c.

(22)

and c.c. indicates the complex conjugate and C̃α,m,k = C̃LAN
α,m,k [Eq. (15)] or

C̃α,m,k = C̃DG
α,m,k [Eq. (19)]. Note that, in the linearized Dougherty operator case,

Λν,α
m,k = −ναβ,0 (mx +my +mz)Eα,m,k.

By manipulating the operators given in Eq. (22) as Λα
m,k ∼ Eα,m,k/τ

α
m,k, one can

obtain the characteristic times ταm,k associated with each process, in the asymptotic

regime of large m. We assume that each direction in both physical and velocity spaces

is equivalent: mx ≃ my ≃ mz ≃ m and kx ≃ ky ≃ kz ≃ k. Since we are interested in

phenomenological scaling with m and k, we neglect the presence of convolutions in both

Fourier and Hermite spaces. We also specialize in the case of a quasi-neutral plasma

composed by protons and electrons with similar temperature (Tp ≃ Te) and we focus

on the proton dynamics (α = p), thus simplifying the collisional operator structure by

taking into account proton-proton collisions. This case is of particular interest for solar

wind and inter-stellar medium applications. Bearing in mind that a factor
√
m occurs

each time an annihilation or creation operator is present, we obtain:






















τA,p
m,k ∼ 1/vthp,0k

√
m

τE,p
m,k ∼ mpvthp,0/eEk

√
m

τB,p
m,k ∼ mpc/eBkm

τLAN,p
m,k ∼ τpp(1/m

2 − 1/m)

(23)

where τA,p
m,k, τ

E,p
m,k, τ

B,p
m,k and τLAN,p

m,k are respectively the characteristic times associated

with advection, electric field, magnetic field and collision terms in Eq. (21) and

τpp = m2
pv

3
thp,0/2πe

4nplnΛ is the collisional time obtained by neglecting local velocity

space effects, i.e. the “global” collisional time. Note that mp is the proton mass and

has not be confused with the Hermite coefficient m.
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The collisionless characteristic times here derived differ from the ones obtained in

Ref. [50], since we do not average on the spatial domain and, hence, characteristic times

also depend on the wavenumber k. The collisional characteristic time τLAN,p
m,k shows two

different scaling with m: the diffusive (drag) term produces the scaling m−2 (m−1). At

large m, the fastest contribution is due to the diffusive term: τLAN,p
m,k ∼ τpp/m

2. When

focusing on the Dougherty operator case, in both linear and nonlinear regimes, the

scaling is instead always m−1.

It is possible to compare the characteristic times reported above to find Hermite

coefficient m∗ (at a given wavenumber k) when the plasma dynamics changes from a

collisionless regime to a collisional one. We remark that, the theory in Ref. [50] is based

on the conservation of enstrophy (or free energy) Ω =
∫

d3vδf 2 and this assumption

breaks when introducing collisions. Indeed, by considering both the Landau or the

Dougherty operators - which hold the H-theorem for the entropy growth - the enstrophy

is not anymore preserved. In other words, m∗ corresponds to the velocity space scale at

which the phenomenological theory described by Servidio et al. [50] breaks its validity:










m∗
A ≃ (vthp,0kτpp)

2/3

m∗
E ≃ (τppeEk/mpvthp,0)

2/3

m∗
B ≃ (τppeBk/mpc)

(24)

where m∗
A, m

∗
E and m∗

B are respectively associated to the advection, electric field and

magnetic field terms in Eq. (21), i.e. are respectively significant if the advection,

electric field or magnetic field terms are dominant in the left-hand side of Eq. (21). In

general, m∗ decreases if the collisional characteristic time τpp decreases (i.e. collisions

are faster), while it increases if the corresponding collisionless dominant term becomes

more important (i.e. Ek, Bk or k larger). To appreciate the role of spatial fluctuations,

we further simplify expressions in Eqs. (24) by assuming a fully-developed turbulent

scenario with a Kolmogorov scaling for both velocity and magnetic field fluctuations:

uk = uc(k/kc)
−1/3 and Bk = Bc(k/kc)

−1/3, being uc = u(kc) and Bc = B(kc) the

fluctuation amplitudes at the correlation scale of the turbulence Lc = 1/kc. The MHD

scaling Ek = ukB0/c is also assumed for the electric field fluctuations where B0 is

the background magnetic field. This choice is motivated by the fact that natural and

laboratory plasmas are often strongly turbulent. Within these assumptions, it is easy

to get:






































m∗
A ≃ (

√

βp Ωcpτpp kdp)
2/3

m∗
E ≃

(

Ωcpτpp
1
√

βp

uc
cA

(

k

kc

)−1/3
)2/3

m∗
B ≃

(

Ωcpτpp
Bc

B0

(

k

kc

)−1/3
)

(25)

where Ωcp = eB0/mpc is the proton cyclotron frequency, dp = cA/Ωcp is the proton

skin depth, cA = B0/
√

4πn0mp is the Alfvén speed, βp = 2v2thp/c
2
A is the proton beta
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Table 1. Physical parameters, necessary to evaluate m∗

A, m∗

E and m∗

B, for the

solar wind (first row), for the inter-stellar medium (center row) and for the hot-ion

collisionless tokamak plasma (bottom row).

Plasmas n0 B0 Tp Lc η k

Slow solar wind 15cm−3 6nT 5× 104K 0.02au 1 d−1

p

Inter-stellar medium 3× 10−3cm−3 10−6G 106K 1kpc 0.5 ρ−1

p

Hot-ion collisionless tokamak 4× 1013cm−3 2T 2× 103keV 0.25m 0.05 ρ−1

p

parameter and n0 is the background density. The Hermite coefficients m∗
A, m

∗
E and

m∗
B depend on (i) the global collisional time normalized to the cyclotron time Ωcpτpp,

(ii) the proton beta βp, (iii) the strength of turbulence η ∼ Bc/B0 ∼ uc/cA and (iv)

the wavenumber k at which fluctuations are evaluated. Both m∗
E and m∗

B decrease as

k ≫ kc: as turbulence produces smaller scale fluctuations the characteristic Hermite

coefficients, relevant for turning on collisions, gets shorter. This last aspect represents,

from a different point of view, the collisionality enhancement due to the presence of fine

velocity scale structures, mainly produced by turbulent fluctuations that perturb the

particle distribution function.

We conclude the paper by calculating m∗
A, m

∗
E and m∗

B for three typical weakly-

collisional plasmas: the slow solar wind, the inter-stellar medium and the hot-ion

collisionless tokamak plasma, which often shows a turbulent dynamics stirred by ion

temperature gradient. Relevant parameters for the calculation are extrapolated by Refs.

[77, 78, 79, 2] for the solar wind; by Ref. [80] for the inter-stellar medium and by Refs.

[81, 82] for the hot-ion collisionless tokamak plasma and are listed in Table 1. In each

case, the wavenumber k is close to the proton inertial scales (being ρp = vthp/Ωcp the

proton gyroradius).

Results are reported in Table 2. In each system, the resulting Hermite coefficients

useful to turn on collisions are quite large. This implies that: (i) the theory developed

in Ref. [50] is valid up to these large Hermite coefficients; (ii) the presence of smaller

scale spatial fluctuations may reduce m∗; (iii) potential failures of the collisionless

assumption, induced by collisionality enhancement due to fine velocity space structures,

occur whether the distribution function exhibits structures such that their associated

Hermite coefficient is m ∼ 200. Recovering distribution function with such highly

structured velocity space perturbations is not nowadays possible due to velocity space

resolution limitations present in both spacecraft instruments and numerical simulations.

5. Conclusions

In this paper, the collisional Vlasov-Maxwell system of equations has been decomposed

in the Fourier-Hermite space. This approach is extremely useful to describe fluctuations

in velocity space and the coupling of turbulent fluctuations in both physical and velocity

space. A compact notation, in terms of annihilation and creation operators, has been
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Table 2. Hermite coefficients m∗

A, m∗

E and m∗

B for the solar wind (first row), for

the inter-stellar medium (center row) and for the hot-ion collisionless plasma (bottom

row).

Plasmas m∗

A m∗

E m∗

B

Slow solar wind 1483 165 1800

Inter-stellar medium 106 325 19000

Hot-ion collisionless tokamak 384 471 960

introduced. By modeling collisions through the Landau and the Dougherty (both

nonlinear and linearized) operators, we have also decomposed the collisional operator in

the Fourier-Hermite space. The features of the operators have been compared in detail.

Finally we have shown that, by obtaining the equation for the Hermite spectrum Eα,m,k,

it is possible to derive the scaling of each term in the collisional Vlasov equation. The

characteristic times associated with each part of the Vlasov-Landau equation have been

derived. These times are local in the Fourier-Hermite space and they can give insights

on how fluctuations in both physical and velocity spaces locally affect the relative

importance of each term in the collisional Vlasov equation. The Hermite coefficients

m∗, corresponding to the balance of the collisional time with the collisionless ones, have

been derived separately for the advection, electric field and magnetic field terms. Under

some assumptions, it has been possible to write simple expressions for m∗, that have

been evaluated for three natural and laboratory plasmas: the slow solar wind, the inter-

stellar medium and the hot-ion collisionless tokamak plasma. The resulting Hermite

coefficients m∗, which correspond to the transition from a collisionless to a collisional

regime in the plasma dynamics, are quite large for the considered systems. It is worth

to note that the introduction of a collisional operator breaks the enstrophy conservation

at small velocity scales, a principle which is analogous to the Kolmogorov cascade of

energy for fluids.
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