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é 1. Introduction
The problem of the nature of the progressing waves over a

uniformly sloping beach is amply discussed in the well-known
book of Stoker on water waves [lStoker, 195%} . The problem has
been considered first by Miche E19M#] who treated the case of
two-dimensional waves over beaches sloping at the angles 7‘-/21'1
with n an integer. For slope angles which are rational multiples
of a right angle of the specigal form p?f/2n with p any odd inte-
ger smaller than 2n the problem has been treated independently
by Lewy [1946] . The problem has been treated since by a number
of writers culminating in the work of Peters E1952] and Roseau
[1952} who solved the general case of threedimensional waves
over beaches sloping at an arbitrary angle, For fuller technical
and bibliographical information the reader is referred to the
‘appropriate chapter in Stoker's book.

In this paper the general problém is solved anew by making
use of a method devised by Van Dantzig [19531 in dealing with
a similar_ type of problem, In this way the solutions are obtained
in a new ferm which makes them perhaps more amenable to a further
treatment.

The method rests in principle on the possibility of re-
presenting the solution as a Fourier integral (4.1). The boundary
conditions induce a functional equation (4,7) which can be solved
explicitly. There are two solutions leading to two types of
progressing waves which are out of phase at infinity.

The solution of the general problem is preceded by a dis-
cussion of the special case of the reflection of three-dimensional
waves against a vertical cliff, In this case the solution can be
found in a very simple way,.

§2. The problem

Let the beach be represented in cylindrical coordinates
(r,@{z) by r>0, O<p@<IT , -® <2< where $ =0 at the
bottom and ¢ =@ at the undisturbed surface of the sea. The line

r=0, -ec0<z< a9 represents the shore, Sometimes also Cartesian



coordinates will be used with x=r cosg: and y=r sing) - Gnp
notation is the same as that of Stoker with some non-essential
modifications,

Then we seek a velocity potential qb satisfying

2 2 g, 3 %
32+32+D2)¢= O’ 2.’]
Ox Ay a7,
for which %?D-= 0 at the bottmn? =0y 2l
P
2
and b EQ + 1 é—@s = 0 at the surface@ =9, 23

r DSD g Dt;
where g is the constant of gravity.
The velocity potential gb is sought in the form

Q)> _ JHetikz) £(e. ) 5

where @ and k are real constants with k»0, so that f(r,%})
satisfies the Helmholtz equation

%4
(QP,? -k%) £ = 0, 2b
and the boundary conditions
r _ 0 for ¢ =0, 2.6
o
Pag) L

where m= 5‘2/g "

Further at infinity gﬁ should behave like a progressive
wave. A progressive wave 950 satisfying 2.1 and 2.3 can be re-
presented by

¢ o = o1 tikz) exp ikr Sh{o( +1(0-9 )g, 2.8
where ched = m/k.

We shall assume that m >k so that the existence of a proper
progressive wave is secured. We note that thenecx is real, we
shall supposecxX>» O, so that at the Surface<? = O the velocity
potential is oscillatory at infinity. The crests of the wave are
at the angle{3 to the shore line which is determined by
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tg[& = k/ \/mé—kg.

Without loss of generality we may take k=1. This is
equivalent to taking k'1 as the unit of length. The problem can
now be reformulated as follows,

To find a solution of the Helmholtz equation

-1)f= B
(AN? 1)l | 9
satisfying 5
2L _ o for ¢ =0, 2.10
DL? J
and
198 _ fehee = O for @ =6, 2.1
r a?

and for which at the surface

f = exp irshet + 0(1) for r—cn, 2.1e

There are two solutions satisfying 2.9, 2.10 and 2.11 which
are''out of phase" at infinity. A suitable linear combination of
them will lead to a solution having the form of an arbitrary
progressive wave at infinity. These two solutions are of the JO
and the YO type at the surface, 1.e. one of them has a logarith-
mic singularity at r=0 whereas the other is regular at r=0.

% 3. A vertical cliff
If 9 = 772 the problem becomes physically that of the
reflection of progressing waves against a vertical cliff., In

Cartesian coordinates the problem can be formulated as follows.
To find a function f(x,y) satisfying for x50, y> 0 the
Helmholtz equation

e
(= + = - 1) £=0 3.1
dx°  dy
with fthe boundary conditions
af 0 for y = 0, 32
Ay
and
Q£.+ fechek= 0 for x = O, Ja3

X
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It is clear that
br )

fe—x chw+ 1y Shwyl(w)dw, 3.4

-cna
where YW (w) is an arbitrary function may represent a solution of
3.1. The boundary conditions 3.2 and 3.3 require that

w
je'x ChW shy \f/(w)dw = 0,
and 'Uic
¢[ einklw(chw—chO()Y”(w)dw = 0,

~
If &« is complex and if either O Im&(<XT or - U< Imk< 0 these

conditions are solved by

_YJ(W) s chw .
chw-che

Hence we obtain the solution

O
£(x,y) = Egi‘j[ e-xchw+iyshw chw Al s 3.5
chw-ch
~0

If ImeA~—>» O we obtain from 3.5 by taking either Ime > O or ImX<L O
w

f(x,;¥) = st o SRR O e cthO(e-XCg%s(yshuL
= shw-chol = 3.6

-
where the integral is a Cauchy integral with respect to w=+ &,
In this way two independent solutions of the problem are obtained.
By taking sum and difference we get the standard solutions

£,(x,y) = e "% cos(y sha), 3.7
w
and -
-Xchw + I
£ (x,y) = -g-j[e FERMILY BAW S aw: 3.8
-

In view of %

%v[ e-x<ﬂNN+1y shw Gints \o(P) 3.9

-
we may deduce from 3,8 that

fg(x,y) = Ko(r) + 0(1) for r—0, 30
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which shows that the second solution has a logarithmic singularity
at r=0,

The behaviour of fe(x,y) at infinity follows from 3.8 if the right-
hand side is replaced by

wtlc ;
Z j g7 STEITRAN: S B S = {#es(w:—d )+Res(w=°<)}
- wtic chw-chet

where ¢ is real and 0 c<¥ . If x=0 and y-»«w the integral vanishes
exponentially whereas the half sum of the residues gives an oscil-
latory contribution. Explicitly

fg(O,y) = - Wecthe! sin(y shat ) + 0(1) for ypon . 311

From 3.8 an expression will now be derived which is given in
Stoker's book. We note that

é%(_ {exch« fg(x,y)} ¢ excho\ 5’% Ko(r')’

so that by integration (cf. Stoker l.c. formula 5.3.13)

-xchet & uchel 2.2
fg(x,y) = e ‘f e dKO(\}u +y°) . 3.12
)

é 4, The general case

We shall now consider the general case 2.9, 2.10 and 2.11.
According to Van Dantzig (1l.c. theorem 1) the Helmholtz equation 2.9
has the general solution

~-irshw : ’
f(r,q,) £ Jg; élpq(w+1q)+F2(—w+yq)§ dw, 4.1
4 and F2 are HETbmorphic functions of theilr arguments in the
strip determined by O0<¢<(®O .

The boundary condition 2.10 gives
w3

yle_iPShw chw {fq(w)—Fz(-w)% dw = O, 4,2

-
The boundary condition 2.11 gives
w“y

where F

o J{e—lrshw é(chw+ohu’)Fq(w+i9)—(chw~chd)F

Sufficient conditions for 4.2 and 4.3 are
Fg("w) = F/](W)’ l|'.)-|-

2(—w+i9)}dw=o. 4.3

and (chw-ch® )F_(-w+if) = (chwiche )Fq(w+ie). 4.5

of

ik F(w) = H(w) , Fy(w) = H(-w) h.6



L
then H(w) satisfies the functional equation

H(w+iD) _ chw-ch
H(w-18) chw+chet

.7

It will be shown in the following section that for realcX there
are two independent solutions Hq and H2 wnich are free from zeros
and poles in the strip - B8 ¢ Imw £ @ and which are bounded at
infinity. In partlcular

lim Hq(w) = sgn(Re w) for iRe w\we ) e
lim HE(W) = 1 for (Re w‘-9¢° :
We have the following explicit result
1
A LT
Hq(w) S shs V¢ (w 27Fi) Ho(w) 4.9
(ch’wichVer )2
1
2okl e 4
Hy(w) = 22chz  (u—3T0 1) H (W) 4,10
(chV wichvel )2
with ¢ = g , and o
3 4 gk
H (w) = exp ij Siawt cosRE L245-L U T
sh8t

0
valid for XIm w\(@ .
Both Hq(w) and Hg(w) are meromorphic functions with simple poles
and zeros. Both functions have simple poles at w=-i@litx and
simple zeros at w=i9‘iok.
For f(r,?) we may write in view of 4.6
)

-irshw : :
que(rs?) = u[ e~ {;Hﬂ,Q(W+lT )+H1’2(w-1§>{§ aw . k.12

s -
From 4.8 it follows that fq(r,? ) is continuous at r=0 and that

fg(r,qﬁ has a logarithmic singularity at r=0. The behaviour at

{afinity of f(r,qﬁ is determined by the residues of the poles of

H, o(w) at w=-18 + oL, We obtain at the surface \
: s

\

fq’g(r,qﬂu\Aq’gexp lrsh&+ B exp-1irsh « 4,13

12

with two different independent linear combinations.
In the special case & =L7C we obtain



= -

() = () = 2 4,1k
shw+ichet = shw+ichot

By substitution of these results in 4.12 the formulae 3.7 and 3.8
of the previous section can easlly be derived,

éfi. Solution of the functional equation

We shall assume that H'(w)/H(w) can be represented in the
following way as a Fourler trigsform

H'(w)/H(w) = je'l‘“y(t)dt. 5.
-w
Logarithmic differentiation of the functional equation 4.7 gives
i ( H' : d .. chw-ch 2chet shw
= (w+i@) - = (w-i8) = =— 1n = /
H H o chwichel  ch®w-ch®
See
Substltubion of 5.1 glves
[~
u[é-iwc sb Bt W(t)dt = Sﬁgiﬁﬁﬂg_ . 5.3
Aoy ch™w-ch o

In order to avoild difficulties at w= + o we shall assume that o
is complex. Until further notice we shall consider the case
= Tl Im < 0, Then inversionqgf 5.3 gives

sh B W(t) = X j pHR SRR g 5.4
2T ch™w-ch'&
L)
From the calculus of resildues it easily follows that

sin(X+5wi)t 5.5
2 ch 3Tt

sh ©t W(t) =

We note that }U(t) is an even function of t so that 5.1 becomes
a cosine transform. Substitution of 5.5 gives
e

ad 1ot
H'(w)/H(w) = d/cos wt sin(xtzAi)t dt 5.6
sh@t chiTt

o)

If we define H(0)=1 integration of 5.6 gives

Blw) = exp v[ 312 wt sin(®+57)t . 5.7
e sh@ t ch3 e
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-0

This expression converges 1if Imwi< § -Ime
If the expression 5.4 is substituted straight away into 5.1
w

we obtain :
H'(w)/H(w) = _'ﬁl_v[ 1n chu-chot g5, «/'COS wh: SeEE gt
5 chu+chat shgt
¥
Since ) = ¥ iy ‘
Jf coswt SADUL g4 ='§ sthie 5.8
o sh@ ¢t ch ¥ w+chvu

where ¥ = g and |Im w|< 6 ,
this expression reduces to

w
H' (w)/H(w) = - 5o f shv u g an 2EERCOEL .

G chvw+chv u chu+che
V2]
j 1n chu-cha d shvw i1
E , chu+ch0\a— ch Yutchwvw

so that
L f 1y cht-cha sh¥ w at | 5.9
281 - cht+chet ch Yt+chv w

convergent for lIm{w<ie

From 5.7 1t follows that for Re w~»+ ¢ the asymptotic
behaviour of H(w) 1is

lim H(w) = exp +

From 5.9 we may derive a result which says a little nore

H(w) = exp i‘%-¢i+51(i) + O(exp -‘ Re w{ s 5.10

The analytic continuation of H(w) can be fourd by expansion
of H(w) into an infinite product as Van Dantzig has demonstrated
for his E-functions (1l.c. Appendix). In fact H(w' can be easily

" expressed in these functions.

We shall use the following Laplace transform
o

J[e—pt 1—cg§at At

¥) Erdélyi et al. Integral transforms I, formula 1.9.53

Mofr=

2
In (1+ &) . 5,11
D
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+ «+ and

From 5.7 we can derive
w

-cos w)+(1 -cos w
n) = owp J/ (1-cos 1)1f1 ¢ 5t) :E:(-q)n

m,n
0 Y

where W, = Wielt i,

1 w-oX - 3 M1,

(em+1)8 + (2041 )%?T ,

-—
=

w2
Il

e—Stdt, 52

and where m and n run through the non-negetive integers. Application

of 5.11 gives the formal expangion o
e i
H(w) =C i = e gs

2 J

2
T cas g—%)mm 2

~

where in 71; n is even and in ]Ig n is odd.
made convergent in the usual way by introduction of
ponential factors. The factor C 1s a constant which
mined by the condition H(0)=1. It follows that H(w)
with simple poles and zeros. The poles are

W for - odd n

- o4 1(-37C48)

W & + 1(3TC +8) for

even .n.

The "nearest" pole and zero are a pole at w=-t O+ &
w=10 -t

In the preceding discussion we took - T Ima<
we consider the case 0<ImA<T the only difference

5+13

This expansion can bc

suitable ex-
can be deter--
is meromorphic

and a zero at

0. If, however.

is that in

formula 5.7 & must be replaced by - . The same remark applies to

5.10 and 5.93.
We shall now take & real, If

H ()

H (w) = 1im H(w)

lim H(w) for Imw—» -0,

for Imw~> +0

then both H'(w) and H™(w) are solutions of the original functional

equation., We have from 5.7
’ ]

+ s
H (w) = exp‘J[ °12Wt

O

sin(+ot+5 wi)t

at
sh@t chsxt ’

5.14
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valid for 1Im w\(@.
It follows from 5,14 that H™(w) can be written in the form

SOER OISR 5.15
It 1s clear that U: g Eagd
Ho(w) = exp i J”lgw? Cosszhtxét 2T Y 46, 5,16
For G(w) we find a
G(w) = exp JSiEWt :l];réo‘; dt.

By integration of 5.8 it easily follows that

V(w B
G(w) =227(_ff_);&1} : 5.1

e " Le
We migl; also start from 5.9. If we consider H+(w) the argument

of chu-ho is to be ta&cen as T , Then we find
' (o]

HE WY = exp +‘-{2- j.__ih_ﬁ)_"_"__ dt - exp ’\. fln cht-cho
~— © 0 chV¥t+chw 281 § cht+chet]

___sh¥w a5
chvt+chvw

This result gives the same expression 5.17 for G(w), but for Ho(w)

a different expression is obtained.
oW

" % 1 cht-cha shv w :
.-Io(w) = eXp ——— CJ 1n Icht+cho(i dt .. B

21 chvVt +chvw

The furctions HY(w) and H™(w) are independent solutions of
the functioral equation 4.7. They may be replaced by any other
linearly indeépendent pair. We shall take linear combinations H,l(w)
and HQ(W) whirh have the property that

H,](w' = sgn(Re w) + O(exp- { Re wl ). i
Hy(w = : + O(exp- ! Re w“ L
as Re W~=p» 4+t ,
A simple cazzulation shows that
(chv s ohval )2 11, (w) = 22 snb ¥ (w-b T1) H_(w) =
(chVwu+ ch\)oa)% H2(w) = 22 chiV (w-3 1) Ho(w) 2
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and that
sh Ve H, (w) = ch3V (-57ri) HY(w) - ch3V¥ @+371) H (u),
Bl
shva Hy(w) = shiV (-5 W) H'(w) + shtV («+d i) H (),

§ 6. The surface waves
At the surface 8? the sea we have

~(r.0) =je"il"ShW {H,l'g(w+ie)+ Hy o(w-16)}aw. 6.1
-0 i )
It must be noted that the integrand has poles at w=-& and at w=e
so that the integral has to be interpreted as a Cauchy integral
with respect to the points w=+ L.
If w is real, we shall write w=u, we have by virtue of 4.7

H(u+iB) + H(u-16) = S-S0 p(uf). 6.2

From 5.20 it follows that

L s
H,l(u+i@) = 221(chvet -chVu)™ ch 3V (u-$rr 1) H_ (u+i®) 6.3
L _1
Ho(u+i®) = 22i(ch¥a —ch¥ u)™2 sh 3v (u-3¥x1) Ho(u+16).
Further 5.16 gives ., [z
In H_(u+i®) 1f E u% LeDk: ng“g at + i j“’lt“ut cos At shGT-et -
. Sl . shdt chimt

The first integral on the right-hand side is a well known sine

¥)

transform . We find eventually ¢

a

A
2
Ho(u+19) . (cho( —chu) - ij sinut cos &t sh(:N-O)t dt. 6.8

chat tchu T shft chimt

If this is substituted in 6.3 we find

i
Hy p(u+iB) = O 4V (u-} 1) 2(chu-chox ) BT,
1,2 )

2 (ch N u-ch¥el ) (chu+chod ) ] 6.5

. i :

h :
e Cﬁ(u) o o df sinut cos At sh(i-0)t 4 BlE
/ o b sh Bt ch3Tt

¥ Cf. Erdélyi l.c. 2.9.46
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The solution is now given by 6.1, 6.2, 6.5 and 6.6,
Explicitly o '

: L St chu 2(chu-chu)
£ (pﬁe) = 21\5 Pt
1,2 chu-chg (eh ¥ u-chvel ) (chut+che)

b
ch 1 1 . 6'7
R 1y (u-d wea)(D(w)au.

We note that in the special case of the vertical cliff where

Nl

¥ =2 the function equals unity.
Also in the épecial case(ﬁ =W which 1s often called the
dock problem simplificationsoccur.

From 6.6 it follows that
(7]

@(u) - exp -i sigut coseX t dt . 6.8
i 14+chftt
In view of Erdélyi l.c. formula 1.9.6 this can be transformed into
1 e 9%
gé (u) = exp Eﬁg-df —f dt . 6.9
Au
In this case 6.7 becomes with @ =T
w0
: -irshu chu chiu-ishsu
Fied) = 21fe g 2 = {b(u)du
k b chu-chet (op4cnegs 7
w 6.10

Il

’ -irshu chu shiu-ichiu A
219/ ek 2 2 iCD(u)du.
e (chu+cher) 2/

£,(r,0)

-

Lack of time has thus far prevented the numerical computation
of the surface waves for some particular case.

é'?. Peters' solution

In order to compare our result 4.12 to that of Peters (cf.
Stoker l.c. 5.4.25) we shall also give his solution. Peters
finds in his notation i.e. for the solution of

QQP’? 4 B

in the sector-—@((g(O (1) and satisfying



ai-_-o for (@:—9,

oo 4
1 92 -f=0 for 9=0
7 b?

the following formula (z=re ¢ , Z=re ¥)
o s
kK~ z T h
£ olr) =y | ewies K5 BB gl g
P,,,P (ZD+1P1)(%+1P2)

" A
where h(s) = exp 27,1»1 jlog m(%” ) d%, , arg §=-, TP
; -219)
and m(e,) = : - 3 Te3

3 %(1"‘ v /l"‘]rg)s \]=Ty9 .

The contours Pq and P2 are .indicated in the following figure.

The path P2 differs from Pq only in the direction in which the

part in the upper half-plane is traversed.

/

N

— L1

-.-Lr;,\; ,.

2t

If Peters' result 1is translated in our notation with the

dimensionless variables of é 2 we obtain by putting k=1/chetl,
& =w/2ch ,%§ =(s/2ch )v) , Z—>2zchol

1 1 -1= wh(w)
£, (rg) = o vf exp z(wz+w™ 'Z) dw, T.4
L Caigat i (w-1e*)(w-ie~%
where D . "
V-1 . =238+ . —-2ie-d
v T R, o S~ 10 {stie ietls L as. 7.5
= _iesv-wv (s-1e%) (s-1e~H

tne
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The result 7.4 with 7.5 is still rather different from our result
4,12, The auxiliary function 7.5 is clearly related in some way to

our auxiliary function H(w) if this 1s written in the form 5.17.

A better correspondence is obtained if in 7.4 and 7.5 w and s are

replaced by exponentials.
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