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S1. Introduction 
The problem of t he nature of the p rogressing waves over a 

uniformly s loping beach is amp l y discussed in the we ll - known 

book of Stoker on water waves L s toker; '1957J . The problem has 

been considered first by Miehe [ 194~] wbo treated the case of 

two - dimensional waves over bea ches sloping at the angles lt'/2n 

with nan intege r . For slope angles whic h are rational multiples 

of a right ang le of the special form P lC" /2n with p any odd inte 

ger sma ller t han 2n t he problem has been treated independently 

by Lewy [ 1946] . The prob lem has been treated since by a number 

of writers cu l minating in the work of Peters [1952] and Rosea u 

[ 1952] who so l ved the genera l case of t h r eedimensional waves 

over beaches sloping at an arbitrary angle . For fuller technical 

and bibliographical information t he reader is referred to the 

appropriate chapter in Stoker's book . 

In this paper the general problem is solved anew by making 

use of a met hod devised by Van Dantzig [ 1958] in dealing with 

a similar_,_ type of prob l em . In this way t he solutions are obtained 

in a new f c rm which makes t hem perhaps more amenable to a further 
treatment. 

The method rests in princip le on the possibility of re 

presenting the solution as a Fourier integra l (4 . 1) . The boundary 

conditions induce . a functional equation (4 . 7 ) which can be so lved 
explicitly . There are two ' so lutions leading to two types of 

progressing waves whic h are out of phase at infinity . 

The solution of th e general problem is preceded by a dis 

cussion of the special case of the reflection of three - dimensional 

waves against a vertical c liff . In t his case the solution can be 
found in a very simple way . 

g 2 . The problem 

Let t he beach be represented in cylindrica l coordinates 

( r, (fl , z) by r > 0, 0 < q, < t:, <. IT , - co < z < <.~ where <f =0 at the 
bottom and 1 = G at t he undisturbed surface ot the sea . The line 

r=O, - CY.>< z < ~ represents t he shore. Sometimes also Cartesian 
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coordinates will be used with X=r cos ? and y=r sin '? . Our 
notation is t he same as t hat of Stoker wit h some non - essential 

modifications . 
Then we seek a velocity potential <p satisfying 

2 . 1 

for which ~ ::=: 0 at t he bottom q, =0 , 2 , 2 
orp 

and 1 ~ +1 ~ = 0 a t t he surface o/ = 8, 2 . 3 r vcp g u t 2 

where g is the constant of gravit y . 

The velocity potential <p is sought in t he form 

<p = e i (o- t +kz ) f ( r, <f' ) , 2 . 4 

where o- and k are rea l constants with k) O, so that f(r ,<f) 

satisfies the He l mholtz equation 

(6 - k 2 ) f = 0 , 
r ,Cf 

and t he boundary conditions 

where 

1 -;) f 
r "o<p 

2 

d f 0 01 ::=: 

- mf = 0 

for f =0 , 

for <;o =8, 

2 .5 

2 .6 

2 , 7 

m= e5 /g . 
Further at infinity 

wave . A progressive wave 

presented by 

Cp should behave like a progress ive 

(/) satisfying 2 . 1 and 2 . 3 can be re 
, 0 

<p 
O 

= ei(~ t+kz) exp ikr s h lo<.. +i(El-<f )i, 2 . 8 

where ch o', = m/k . 

-= ·,, We shall assume t hat m) k so t hat the existence of a proper 

progressive wave is secured . We note that t hen o<. is real , we 

sha ll supposeo<> O, so that at the surface <jJ = 8 the velocity 
potentia l is oscillatory at infinity . The c rests of the wave are 

at the ang l e (3 to the shore line which is determined by 
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tg r = k/ ✓ m2 
- k

2
. 

= With out loss of generality we ma y t ake k=1 . Th is is 

equivalent to taking k- 1 as t he uni t of length . The pro blem can 

now be reformu l ated as fo llows . 

To find a solution of the Helmholtz equation 

satisfying 

and 

(.6. -1) f =0 . ~,Cf 

= 0 for <& =0 , 
) 

_:l of - fch (,)I.. = 0 for Cf = 0, 
r O<J . 

and for which at t he surfa c e 

f = exp irsh Dc'. + 0 ( 1 ) for r -----+'C/.>. 

2 . 9 

2 . 10 

2 . 11 

2 . 12 

There are two solutions satisfying 2 .9 , 2 .1 0 and 2 . 11 which 

are 11 out of phase 11 at i nfinity . A suitable linear combination 0f 

t hem wi l l lead to a solution having the form of an arbitrary 

progressive wave at infinity . These two so l utions are of t he J
0 

and the Y
0 

type at the surface , i . e . one of them has a logarith

mic singularity a t r=0 wherea s t he other is regular at r=0 . 

~ 3 . A vertical c liff 
If 8 = ly2 the p roblem becomes physical l y t hat of t he 

reflection of prog ressing waves against a vertical c liff . In 

Cartes i a n coordinates the problem can be formula ted as fo ll ows . 

To find a function f(x,y) satisfying for x ) 0 , Y ) 0 the 
Helmholtz equation 

with the boundary conditions 

c) f = 0 
ay for y = 0 , 

and 

c) f + fch o<..= 0 ux for x = o .. 

3 . 1 

3 .2 

3 .3 
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It is c lea r that 

ch w + iy sh w W ( ) d 
/ w w, 3 .4 

- .:.-:, · 

where 'f ( w) is an arbitrary function may represent a so l u tion of 

3 . 1 . The boundary condit ions 3 . 2 and 3 .3 require that 
</,) 

) e - x ch w ( ) sh w y w dw = 0 , 

and ~ J e 1
Y s h w(chw - c h O( )'f (w )dw - P. 

~"'11 

If o( is complex and if either O< Im o< <11 or - 1f< Im o<.< 0 these 
conditions are so lved by 

"'f (w) = ch w 

chw - ch o<. 

Hence we obta in t he solution 
v.:, 

f ( ) 1 J e - x chw+iy shw chw dw x , y = 2Tr i 
chw - cho<. 

-CA 

3 .5 

If Im ot...~ 0 we obtain from 3 . 5 by t a king either ImO( > 0 or I mo<.( O 
en 

f(x , y ) __ 1_f e - xchw+iy shw 
- 21Ti chw dw + c t ho( e- xc~s (yshO(). 

dhw - ch o< 
-C.,~; 3 . 6 

where the integral is a Cauchy integra l with respect t o W=+ ex'.. 

In this way two independent solutions of the p roblem are obtaine d . 

By taking sum and difference we ge t the standa r d solutions 

f 1 (x.iy) = - x ch °'- ( e cos y sh 0<.. ) , 3 . 7 
c:,, 

and 
f 2 (x,y ) , J - x chw +iy sh w chw dw . 3 ,8 = 2 e chw - c'fi,,( 

- (f.) 

In view of ~ 

½ J e - x chw +iy sh w dw = 3 .9 
-c.., 

we may ded uce from 3 . 8 tha t 

3 .10 
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which shows that the second solution has a logarithmic s ingularity 

:: at r=O . 

The behaviour of f 2 (x ,y ) at infinity fo llows from 3 .8 if the right 

hand side is replaced by 
Cl). 

1 J+ic - x chw +iyshw 
2 e 

- C✓.> +ic 
chw dw + ½ \ Res ( W=-c< ) +Res ( W= ol.. ) ] 

chw-chlX 'l. 
where c is real and O < c < '1r • If X=O and y -;.c.o the integra l vanishes 

exponentia lly whe reas the half sum of the residues gives an oscil 

latory contribution. Explicitly 

f 2 ( o,y ) = - 1t' cth 0< sin(y shot. ) + 0(1) for Y-+Y;J . 3 . 11 

Fr om 3 .8 an expression wil l now be derived which is given in 

Stoker's book . We note that 

<> ( xch ol f ( )l ~ xch t'I- d K ( ) 
5x \.e 2 x,y 5 - e d X o r , 

s o tha t by integration (cf. Sto·ker l. c . formula 5 , 3 ,13 ) 

X w ( ) e -xchO(f euch01. \ 2 2 ) f 2 x,y = dK
0

( u +y . 3 . 12 
-c:n 

~ 4 . The gene ral case 

We sha ll now consider the general case 2 .9 , 2 . 10 and 2 . 11. 

According t o Van Dan tzig (1 . c . theorem 1 ) the He lmho ltz equation 2 . 9 

has the general so l ution 
P':) 

f(r,<j> ) = J e - irshw { F1 (w+iq) +F2 (-w+i<;>)l dw, 4.1 
-U) 

whe r e F1 and F2 a re holomorphic functions of their arguments i n t he 

st r ip determined by O<~( 8 . 
The boundary c ondit i on 2 . 10 gives 

<.13 

_J e - irshw chw [ F1 ( w) -F2 ( -w) l dw = O. 4 . 2 

The boundary c ondition 2 .11 g ive s 
V) 

f e - irshw l ( chw+ch O<' )F1 (w+i 9) - (chw-chol )F2(-w+i~)} dw=O . !~ . 3 
-C..,-::, 

Suff icient conditions for 4 . 2 and 4.3 are 

F2 (-w) = F1 (w ) , 4 . 4 

and ( chw - cho( )F2 ( - w+i 9 ) = ( chw +ch.o<'. )F 1 ( w+iEl) . 4 . 5 

I f we put 4 .6 
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then H( w) satisfies the functional equation 

H( w+iB) = chw - chc.( 
H( w- i 0) chw +c ho( 

4 .7 

It wil l be shown in the fo llowing section that for rea 1 o<. t here 

are tw o independen t so l utions H1 and H
2 

wh ich a re free from zeros 

and poles in the s trip - 0 ( Im w <. 0 and which a re bound ed at 

infinity. In pa rticular 

lim H1 ( w) = sgn(Re w) for I Re w \-:,'> Cr.:> 

lim H2 ( w) = 1 for ( Re w \ ----;re.,? 

We have the fo llowing explicit re su l t 
1 

= 22 sh½ V ( w - -f7f ~ ) H ( w ) 

( ch V w+chVOl )2 0 

with V = 'rr/e , and 

exp 

va lid for \rm w\< G . 
0 

sin wt 
t 

cos Ot. t th½1rt -----=-- dt, 
sh 6 t 

4 .8 

4 .9 

4 . 10 

4 . 11 

Both H1 ( w) and H2 (w) are meromorphic functions with simple po l es 

and zeros . Bot h functions have simple po l es at w= - i 8 + O( and 

simpl e zeros a t W=i0 + O(.... 

For f(r ,7) we may wr ite in vie w of 4 .6 
v;, 

r1 , 2 (r,~) ~ j e - frshw { tt1 , 2 (w+i 'f ) +H1 , 2 ( w- 1 t )J dw . 4 .12 

_(r-;) 

From 4.8 it fo llows t hat f 1 (r, ~ ) is continuous a t r=O and that 

f 2(r,~) has a l oga rithmic singularity at r=O . The beha viour at 

infinity of f(r, c.p) is de t ermined by t he residue s of the ' po l es of 

H1 , 2 (w ) at W=- i 8 + c:x. We obtain a t the surface \ 

with two different independent linea r combinat i ons, 

I n the special cas e 9 -t i( we obtain 

4 . 13 
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chw 
J 

shw +ich0<'.. 

By substitut ion of these results in 4 . 12 the formulae 3 , 7 and 3 , 8 

of the previous section can easily be derived . 

~ 5 . Solution of the func tiona 1 equation 

We shall assume that H'( w) /H(w) ca be represented in the 

fo l lowing way as a Fourier transform 
CQ 

H'( w) /H ( w) = J e-iwt-Y,- (t )dt . 5 . 1 

Logarithmic differentia t ion of the functional equa tion 4 . 7 gives 

H I ( w + 10 ) - ~ ( w - 10 ) d ln chw - cho<. 2cho< shw 
= cw chw+ch~ = ch2w- ch~ · H H 

Substitution of 5.1 gives 
Cl:> 

J e - i wt s b et 'f ( t ) d t = ch oc shw 
2 2 ch w-ch C( 

5 . 2 

5 .. 3 

In order to avoid difficulties at W= + ex we shall assume that 0( 

is complex. Until further notice we shall consider the case 

- '(t-< Im o<..< 0 . Then inversion ~ f 5 . 3 gives 

sh B t f( t ) = .1_ j e h1 t chi sh w 2 d w . 5 . 4 
21f ch w- ch ~ 

From the calcu l us of residues it easily fo llows that 

sh G t y (t) = sin(o< +½7ri ) t 
2 ch f rr t 

5.5 

We note that y( t ) is an even function oft so that 5 . 1 becomes 

a c osine transform . Substitution of 5 . 5 gives 
C,':) 

H' ( w) /H(w ). = } cos wt sin(0<+½7Ci ) t dt 5 . 6 
sh EJ t ch½ 7f t 

0 

If we define H(0 )=1 integration of 
en 

5 . 6 glves 

H(w ) J sin wt s in ( C{ +½ m. ) t d t . 5 . 7 = exp t sh $ t ch½1rt 0 
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This expression converges if 

If the expression 5 . 4 is 
\rm w~< 0 - Im 0< . 

substituted straight away into 5.1 
(/,) 

we obtain 
HI ( w) /H ( w) 

C/:> 

1 J d 1 chu - ch vi. du = -- 1ri du n 
chu+cho<. 

j sinut cos wt --- dt. 

0 
sh 6 t 

Since *) Cl) 

J 
0 

coswt sinut dt 
sh $ t 

0 

= 
-\i sh v u 
2 ch -./ w +ch v u 

where v = 11/<, and !Im wj<(G 5 

this expression reduces to 

H'( w) /H(w ) = - 210 1 

so that 

= 
1 

2 e 1 

1 H(w ) = exp 
2 G1 

convergent for \ I m\ w < 0 

(/) 

J 
0 

d ln chu- chcx. = 
chu+chP< 

n ------ ------- u 1 chu - ch~ d l sh V w J d 
chu+ch 4X dw ch ✓ u+ch J w 

ln cht - ch~ __ s_h_J_w __ dt , 
cht +chc:x ch Y t+ch v w 

From 5. 7 it follows that for Re w->- + u:i the asymptotic 

behaviour of H(w ) is 

. ( ) v 'c< 1 .,,.. .) lim H w = exp + 2 \ + 2 ,, i . 

From 5.9 we may derive a result which says a little ~ore 

H(w) = exp.±: ~ (()(.+½ "TT i) + O(exp -\ Rew/ ·. 

5 .8 

5 ,9 

5 . 10 

The ana lytic continuation of H(w) can be fourd by expansion 

of H(w ) into an infinite prod uct as Van Dantzig has demonstrated 
for his E- functions (1. c . Appendix) . In fact H( w\ ~an be easily 

• expressed in these functions . 

We shall use the following Laplace transform 

0 

2 
1- co:at dt = ½ ln (1+ ~) . 

p 

*) Erdelyi et al . Integral transforms I, formula 1.9.53 

5 . 11 
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2 
; ( 1 -- cos wf) l.( 1 -c os w 2t) 

t 
H(w ) = exp 

0 

where w 1 = w+ o<. + i rr . 2 l, 

w 1 = w- o< - ½ lfi 2 

s = ( 2m+1) (j + ( 2nV1 )½ 7t' , 

and where m and n run t h rough the non-neg2tive 

of 5 . 11 gives the formal expansion 2 TC ( 1+ ~sw2 ) ~ ( 1+ ;s2) 
H( w) = C 2 2 

1T w1 If w2 
/ \ 2 ( 1+ 2 ) J'l 1( 1+ ~ ) 

s s 

- Std,_ 
e u' 5 . 12 

integers . Applicatio~ 

5 , 13 

where in /l
1 

n is even and in -TT2 n is odd . This expansion can oc 
made convergent in the usual ~ay by introduction of suitable ex 

ponential factors. The factor C is a constant which can be de ter-· 
mined by the condition H( 0 )=1 . It follows that H(w ) is meromorphic 
with simple poles and zeros. The poles are 

w = - ex + i ( -½ 7t +s ) 

w = t:X + i ( ½ rr +s ) 

for odd n 

for even n . 

The ''nearest" pole and zero are a pole at W=-t8 + o< and a zero at 

W=i e -CX. . 

In t he preceding discus sion we took -Tl< Im o<. < O. If, however, 

we consider t he case O < Im o(.<iC' the only difference is that in 

formula 5 . 7 O<. must be replaced by -cl- • The same remark app l ies to 

5 . 10 and 5 , 13. 
We shal l now t ake ~ real . If 

H+(w) = lim H(w) for· Imw-;,- - 0, 

and H- (w ) = lim H(w) for Imw ......-;l, +O 

then both H+(w ) and H-(w) are solutions of the 
equation . We have from 5.7 

Cl) 

exp } 
0 

sin wt 
t 

sin ( +Ol +½ 7r i )t 
LI 1 dt, 

sh o t ch2 X t 

original f un ctiona 1 

5. 14 
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v a 1 id for \ Im w \ ( 8 . + 
I t fo l lows from 5 . 14 that H- (w ) can be written in t he form 

I t is clear that 
(/) 

H ( ) . J sin, wt c os ex. t th½1d:. dt. w = exp 1 
o 

O 
~ sh 0 t 

F?r G ( w) we find 
C/.) 

G( w) = J sinwt sin~t dt exp t . 
o sl1 8 t 

By htegration of 5 .8 it easily follows that 
1 

l
e v( w+ c;1.,) +1} 2 

G(w ) = v w vo< . 
e + e 

5 . 15 

5 . 16 

5 . 17 

We mig~ a lso start from 5 .9 . If we consider H+(w ) t he argument 

of chu -<h ex is to be ta ken as tr . Then we find 
C/) 

H+ lw' ~ exp+ 'L f; sh -l w dt - exp 
- 2 o ch v t + ch \f\iv 

1 j 1 \ cht-cho(.j 
20 i o n cht+ch~ 

s11 ,? w dt . 
ch Vt t Ch \/ w 

This ~esult gives the same expression 5 . 17 for G(w ) 1 but for H
0

( w) 
a di:"'.:"e;·ent expression is obtained . 

~ 

'tl 0 (w ) =exp 2~ i J ln .f ~~~ ~~~~l 
0 

sh v w dt . 
ch ,lt +chv w 

5 . 18 

The f -w-.ctions H+(w) and H- (w ) are independen t solutions of 
tje functior8 l equation 4 .7 . They may be repla ced by any othe r 

linearly ind€pendent pair . We sha ll t ake linear combinations H1 (w ) 
and H2 ( w) wh~h have the property t hat 

H1 (w' ~ sgn(Re w) + O(exp - / Re wl )_ 

H2 ( w = 1 + 0 ( exp-- I Re w J ) 

a s Re w ~ + 1%> • 

A simple cal;ulation shows that 
l 

(chv' w+ ch \/o{ )2 H
1

(w ) 
1 

(ch \-'w .:- ch Ycx,)2 H2 (w ) 

l 

= 22 sh½ y ( w -J 7i'i ) H ( w ) 
0 

l 

= 22 ch½ V ( w - ½ 7f i ) H
O 

( W ) 

5 . 19 

5 . 20 
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and tha t 

= ch½ V (0(-½ ;rr i ) H+(w ) - ch½ V (o< +½ 7f' i ) H- ( w), l sh y.,_ H
1 

( w) 
5 . 21 

H+ ( w) sh V<A H
2

(w ) = sh ½Y (o<.-½ Jt' i ) 

§ 6 . The surfac e waves 

At the surface of the sea we have 
C;<) 

+ sh½ v ( CJ( +½ 7t i ) H-( w) . 

f 1 , 2 ( r,G) = J e - i rshw {n
1

, 2 ( w+i0 ) + H
1

, 2 ( w- i 8)} dw . 6 . 1 

-c.r:, 

It must be noted that t he integ r and has po l es at W= - OI. a nd a t w=ol. 

so that the integra l has to be interpreted as a Cauchy in t egral 

with respect t o the po in t s w=+ ex'. . 

If w is real, we shall wri te W=u, we have by virtue of 4.7 

H(u +l·G) + H(u - i· G) = 2 chu H( ·B) chu - c1~ - u+i · 6 . 2 

From 5 . 20 it follows that 
1 1 

H1 ( u+iG) = 22 i( chVot. - ch v u )-2 ch ½ v (u -½n- i ) H
0

(u+iG) 6 .3 
1 1 

H2 (u+i f>) = 22 i( ch Vo{ - ch y u )-2 sh ½v ( u -½ ,t' i ) H
0 

( u+iB) . 

Further 5 . 16 gives Cl) w 

1 n H
O 

( u + i 0 ) = i J s 1 n ( ~ +½ l(i ) t 
0 

cos ~ dt + 
ch½ nt 

. J s inut 
l t 

0 

cos 0\ t sh(½rr- G) t 

sh $ t ch½lTt 

The first integral on the right - hand side 

tran sform *) . We find eventua lly w 
is a well known sine 

H ( + . ,.., ) _ (chd,. - chu) ½ · J sinut u l O - h h exp l ' t 
0 C d-, +c U 

cos oi. t sh (½n - 0) t dt . 6 . 4 
sh f) t ch½ll t 

I f this is substi tut e d in 6 .3 we find 

H 1 .s 2 ( u + i & ) = C ~ ½ V ( u -½ " i ) l 2 ( Chu - Ch°' ) } ½ i(D ( u ) , 
s l ( ch 'I) u - ch Yo( ) ( chu+cho<.. ) I 6 . 

5 
,;/) 

where d) (u ) = exp i j sinut 
I t 

0 

3/;) Cf . Erde l yi l . c . 2.9 . 46 

cos e><. t sh (½Jr-O) t 

sh Gt ch½1r t 
d t . 6 . 6 
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The so lution i s now given by 6 .1> 6 . 2, 6 ,5 and 6 .6 . 
Exp l ic itly 

- i rshu 
e 

chu ) 2( chu- cho:) / ½ 
chu- ch o; ( ( ch ✓ u-ch vo< ) ( chu+choc' )) 

h r!- 6 ,7 
· ~ h ½ y ( u -½ i( i )0 ( u ) du . 

I 

We note that in t he s pecial case of the vertica l c liff where 
I 

V = 2 the function (l) equals unity . 
I 

Also in the specia l case G =1f which i s often cal led the 

dock 

Fr om 

problem s implificationsoccur . 

6.6 it fo llows that 
Cl.> 

dJ (u ) = . i J sinut COS O( t dt . exp - t 
1 +ch1ft I 

6 . 8 

In vie w of Er de l yi l . c . formula 1 .9 .6 t his can be transformed in to 
pt +u 

(/) ( u ) = 
I 

exp 2 ~i j 
01-- U 

In this case 6 .7 becomes with 0 =jf 
~ 

t 
s ht d t 

J . h h l l . h 1 1 
21 e - lrS u c u ~12U- lS 2 ~ G)( u )du 

-t./'.) chu-c~ ( chu+chol)2 ' 

h l . hl / e - irshu chu s 2 u - i c 2 u_ (O(u) du. 
chu- c h::i( ( chu+cho< ) 2 I 

6 .9 

6 . 10 

Lack of time has thus far prevented the numerica l computation 

of the surface waves fo r some particular case . 

~ 7. Peters' so lution 

In order to compare our result 4 . 12 to t hat of Peters (cf . 

·, St oke r l . c . 5 . 4 . 25 ) we sha ll also give his so lut ion . Peters 
' 

finds in his not at ion i .e. for t he solut ion of 

2 
~ r ' 1° - k ) f = 0 

in the sec t or -G<Cf ( O (!) and satisfying 
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~= 0 for ~= -8, 
U<f> 

'1 Jf f 0 for ~ = 0 -- - = r (J (» 
J 

( i (n - -i~) the following formula Z=re 1 , Z=re 

whe ce 

and 

J 2 -
f-,, 2 ( r ,<f) = 2; 1 exp(-s z+ i"- ~) 

P (Z:>+ir,,J (-c;+ir2 ) 
p ';, 2 I 

J
o '1/v 

~ log m( \ ) 
h(-c;) = exp 21T i Y _d S , a r g '5 =-Tf ; 

. -V., C.-~ 
- 21G ) - 21G 

(-e;+ir'le ) (t;+ir2e ) 

(c_,- ir 1 ) (~"'"ir 2 ) 
m(-s,) = 

7. '1 

7 . 2 

J 7 .3 

with 

r '1 = ½ ( '1 + V '1 -i(~ ) , r 2 ::;: ½ ( '1 - V '1- k
2 ) 5 ,; = 

17 e . 

The contours P1 and P2 are indica t ed in the fo llowing figure . 

The path P2 differs from P1 only in the direction in whic h the 

part in the upper half-plane is traversed . 

-- ~ I 
I f Pe t e rs 1 result is translated in our notation with the 

dimensionless varia bles of 3 2 we obtain by putting k='1/ch o( , 

~ =w/2cho< ,~=(s/2ch ( , z-;:;, zch o( 

where 

h( w) = 

= .-1_... J exp ½(wz+w - 1z) wh (w) dw, 
2:tn P P ( . o<.)( . -o<.) '1 ' 2 W- le W-le 

7.4 

·O 

v 
exp 27{i J Y - '1 

s 
V y . s - w 

( +. - 2iB +o<.) ( . - 2it1 - <X) 
log s ie _s+ie d 7 h 

r c,. S •• ? 
( s - iecx·) ( s -ie - ) 

- l9 
u., e 
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The result 7.4 with 7 . 5 is s till rather different from our result 
4.12 . The auxiliary function 7 . 5 is clearly re l ated in some way to 

our auxiliary function H(w ) if this is written in the form 5 . 17 . 
A better correspondence is obtained if in 7.4 and 7,5 wands are 

r eplaced by exponentials . 
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