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ABSTRACT
Coarse graining of (geophysical) flow problems is a necessity brought
upon us by the wide range of spatial and temporal scales present
in these problems, which cannot be all represented on a numeri-
cal grid without an inordinate amount of computational resources.
Traditionally, the effect of the unresolved eddies is approximated
by deterministic closure models, i.e. so-called parameterizations.
The effect of the unresolved eddy field enters the resolved-scale
equations as a forcing term, denoted as the ’eddy forcing’. Instead
of creating a deterministic parameterization, our goal is to infer a
stochastic, data-driven surrogate model for the eddy forcing from a
(limited) set of reference data, with the goal of accurately capturing
the long-term flow statistics. Our surrogate modelling approach
essentially builds on a resampling strategy, where we create a prob-
ability density function of the reference data that is conditional on
(time-lagged) resolved-scale variables. The choice of resolved-scale
variables, as well as the employed time lag, is essential to the perfor-
mance of the surrogate. We will demonstrate the effect of different
modelling choices on a simplified ocean model of two-dimensional
turbulence in a doubly periodic square domain.

CCS CONCEPTS
•Mathematics of computing→ Stochastic processes; • Com-
putingmethodologies→Multiscale systems; •Applied com-
puting → Environmental sciences.
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1 INTRODUCTION
Numerical simulation of turbulent flow problems is a very com-
putationally expensive enterprise, which introduces the need for
coarse-grained solutions. Thus, one has to cope with processes
which cannot be resolved directly on the numerical grid. The effect
of the unresolved eddy field enters the resolved-scale equations as
a forcing term, denoted as the eddy forcing, which is highly com-
plex, dynamic, and shows intricate spatio-temporal correlations.
Traditionally, the effect of the unresolved processes on the resolved
solution is approximated by deterministic closure models, i.e. so-
called parameterizations. In the context of geophysical flows, such
parameterizations are based on e.g. the work of Gent-McWilliams
[7], or through the inclusion of a tunable (hyper) viscosity term
meant to damp the smallest resolved scales of the model [12].

Such parameterizations constitute a clear improvement with
respect to unparameterized case where the unresolved scales are
simply ignored. Still, it is well known that no parameterization
scheme is perfect, and attempts have been made to improve their
performance. For instance, the authors of [16] analysed the transfer
of energy and enstrophy in spectral space for a number of parame-
terizations, and compared their performance to a reference solution
of a two-dimensional turbulent flow case. They proposed a deter-
ministic ’energy fixer’ scheme, based on adding a weighted vorticity
pattern to the computed vorticity field. Recently, data-driven tech-
niques have been applied as well. For instance the recent work of
[11] used artificial neural networks to learn the eddy forcing from
a set of reference snapshots. A (deterministic) map between local
stencils of resolved variables and the eddy forcing was created,
obtaining a dynamic surrogate model for the latter.

However, a general limitation of any deterministic approach is
their inability to represent the strong non-uniqueness of the unre-
solved scales with respect to the resolved scales [1, 13, 17]. Since
the resolved scales are generally defined as the convolution of the
full-scale solution with some filter, multiple unresolved states can
correspond to the same resolved solution. Thus there is no one-to-
one correspondence between the two scales, and yet deterministic
parameterizations do assume such correspondence.

As a result, stochastic methods for representing the unresolved
scales have received an increasing amount of attention. Early con-
tributions to this topic in the context of ocean modelling includes
the work of [1], where the eddy-forcing is replaced by a space-
time correlated random-forcing process. Other notable examples
include the work of [8, 10, 21]. Probability density functions (pdfs)
of the eddy forcing were constructed using a reference solution,
conditioned on a suitable, resolved-scale variable which showed
high-correlation with respect to the reference eddy forcing.
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Here. we consider a stochastic and purely data-driven method,
in order to extract a dynamic surrogate model of the eddy forcing
from a series of reference snapshots. Thus, by a surrogate we do not
mean a method to propagate uncertainty through the solver with
the goal of obtaining output statistics, as e.g. polynomial chaos or
stochastic collocation methods[6]. Instead, we create a surrogate
to replace an unclosed source term in a dynamical system. Besides
adding stochasticity, our hypothesis is that the use of a reference
solution could lead to (dynamical) improvement upon traditional
parameterizations, considering that the reference data contains the
exact dynamics we aim to capture. However, this will be conditional
on our ability to create a suitable mapping between resolved-scale
variables and the reference data. Our approach essentially builds
on the work of [17, 18], where a resampling strategy of reference
data conditional on (time-lagged) resolved-scale variables was de-
veloped. As a test case, we consider a two-dimensional ocean flow
model, based on the forced, two-dimensional and incompressible
vorticity equations. The purpose of the current article is to examine
the impact of the choice of conditional variables, as well as the
employed time lag, on the performance of the method. As a perfor-
mance indicator we will use the degree by which time-averaged
energy and enstrophy statistics are captured.

The article is organised as follows. In Section 2 we describe the
governing equations and multiscale decomposition, followed by a
section describing the method by which we construct the surrogate
model for the eddy forcing. Initial results are shown in Section 4,
and finally the conclusion and outlook are given in Section 5.

2 GOVERNING EQUATIONS
We study the same model as in [19], i.e. the forced-dissipative
vorticity equations for two-dimensional incompressible flow. The
governing equations read

∂ω

∂t
+ J (Ψ,ω) = ν∇2ω + µ (F − ω) ,

∇2Ψ = ω . (1)

Here, ω is the vertical component of the vorticity, defined from
the curl of the velocity field V as ω := e3 · ∇ × V, where e3 :=
(0, 0, 1)T . The stream function Ψ relates to the horizontal velocity
components by the well-known relations u = −∂Ψ/∂y and v =
∂Ψ/∂x . As in [19], the forcing term is chosen as the single Fourier
mode F = 23/2 cos(5x) cos(5y). The system is fully periodic in x and
y directions over a period of 2πL, where L is a user-specified length
scale, chosen as the earth’s radius (L = 6.371× 106[m]). The inverse
of the earth’s angular velocity Ω−1 is chosen as a time scale, where
Ω = 7.292 × 10−5[s−1]. Thus, a simulation time period of a single
‘day’ can now be expressed as 24 × 602 × Ω ≈ 6.3 non-dimensional
time units. Given these choices, (1) is non-dimensionalized, and
solved using values of ν and µ chosen such that a Fourier mode at
the smallest retained spatial scale is exponentially damped with an
e-folding time scale of 5 and 90 days respectively. We note that our
target statistics (energy and enstrophy), are only conserved in the
case of ν = µ = 0 [19]. For more details on the numerical setup we
refer to [19]. Furthermore, our Python source code can be found in
[3].

Finally, the key term in (1) is the Jacobian, i.e. the nonlinear
advection term defined as

J (Ψ,ω) :=
∂Ψ

∂x

∂ω

∂y
−
∂Ψ

∂y

∂ω

∂x
. (2)

It is this term that leads to the need for a closure model when (1) the
discretized on a relatively coarse grid which lacks the resolution to
capture all turbulent eddies.

2.1 Discretization
We solve (1) by means of a spectral method, where we apply a
truncated Fourier expansion:

ωk(x ,y, t) =
∑
k

ω̂k(t)e
i(k1x+k2y),

Ψk(x ,y, t) =
∑
k

Ψ̂k(t)e
i(k1x+k2y). (3)

The sum is taken over the components k1 and k2 of the wave num-
ber vector k := (k1,k2)T , and −K ′ ≤ ki ≤ K ′, i = 1, 2. These
decompositions are inserted in (1), and solved for the Fourier coeffi-
cients ω̂k, Ψ̂k by means of the real Fast Fourier Transform. To avoid
the aliasing problem in the nonlinear term (2), we use the pseudo
spectral method, such that in practice the maximum resolved wave
number is K , where K ≤ 2K ′/3 [14].

To advance the solution in time we use the second-order accurate
AB/BDI2 scheme, which results in the following discrete system of
equations [14]

3ω̂i+1
k − 4ω̂i

k + ω̂
i−1
k

2∆t
+ 2 Ĵ ik − Ĵ i−1k = −νk2ω̂i+1

k + µ
(
F̂k − ω̂i+1

k

)
−k2Ψ̂i+1

k − ω̂i+1
k = 0.

(4)

Here, ∆t = 0.01 and Ĵ ik is the Fourier coefficient of the Jacobian
at time level i , computed with the pseudo spectral technique, and
k2 := k21 + k

2
2 .

2.2 Multiscale decomposition
As in [19], we apply a spectral filter in order to decompose the full
reference solution into a resolved (R) and an unresolved component
(U), i.e. we use

ω̂R
k = PRω̂k, ω̂U

k = PUω̂k, (5)

where the projection operators PR and PU are depicted in Figure 1.
Note that the full projection operator P := PR + PU also removes
wave numbers due to the use of the pseudo spectral method.

Applying the resolved projection operator to the governing equa-
tions (1) results in the following resolved-scale transport equation

∂ωR

∂t
+ PR J (Ψ,ω) = ν∇2ωR + µ

(
F R − ωR

)
(6)

As mentioned, the key term is the Jacobian (2), since due to its non
linearity, PR J (Ψ, ω) , PR J

(
ΨR , ωR

)
. We therefore write

J (Ψ,ω) − J
(
ΨR , ωR

)
=: r , (7)
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Figure 1: The spectral filter (black=1, white=0) plotted in
wave number space (k1,k2), of the full, resolved and unre-
solved solutions. Due to the fact that we use the real FFT al-
gorithm, only part of the spectrum is computed, as Fourier
coefficients with opposite values of k are complex conju-
gates in order to enforce real ω and Ψ fields [14].

such that r is the exact subgrid-scale term, commonly referred to
as the ‘eddy forcing’ [1]. The resolved-scale equation (6) can now
be written as

∂ωR

∂t
+ PR J

(
ΨR ,ωR

)
= ν∇2ωR + µ

(
F R − ωR

)
− r . (8)

We use the notation r := PRr for the sake of brevity. A snapshot of
the resolved vorticity ωR and corresponding resolved eddy forcing
r is depicted in Figure 2. Notice the fine-grained character of the
eddy forcing compared to the vorticity field. From a multiscale
point of view, we therefore consider the system (8) an interesting
problem, and its spectral approximation is fast enough to allow
for the prototyping of a surrogate for r , which is our main goal.
However, from an oceanographic point of view, (8) is admittedly
rather simple, as it does not contain e.g. bottom friction or the
Coriolis effect. Nonetheless, the problem of parameterizing the
eddy forcing remains relevant in more realistic ocean models.

Equation (8) is still unclosed due to the ω and Ψ dependence of
(7). As noted, our overall goal is to create a surrogate for r .

3 SURROGATE EDDY FORCING
For our present purpose, we define an ideal surrogate for the eddy
forcing as one which satisfies the following set of requirements:

(1) Data-driven: In absence of a single best deterministic pa-
rameterization of r , we opt for a model inferred from a pre-
computed database of reference data. The generation of this
database is described in Section 4.

(2) Stochastic: In general, the resolved scales are defined as a
convolution of the full solution with some (spatial/spectral)
filter. As a result there is no longer just a single unresolved-
scale field that is consistent with the resolved-scale solution.
This ambiguity provides us with the motivation for a sto-
chastic model for the unresolved, small-scale fields.

(3) Correlated in space and time: As demonstrated by Figure
2, the reference eddy forcing shows complex spatial structure.
A surrogate would ideally reflect this as well. That is, despite

Figure 2: A snapshot of the exact, reference vorticity field
ωR and the corresponding eddy forcing.

its stochastic nature we would like to prevent the surrogate
from producing fields which are too noisy, and lack all spatial
correlation.

(4) Conditional on the resolved variables: The resolved and
unresolved scales are in reality two-way coupled. Hence, the
eddy-forcing surrogate should not be independent from the
resolved solution.

(5) Pre-computed & cheap: While the reference database can
be computationally expensive to compute, the resulting data-
driven surrogate must be cheap.

(6) Extrapolates well: To justify the cost of creating the ref-
erence database in the first place, the model must be able
to predict the chosen quantity of interest well, substantially
beyond the time and/or spatial domain of the data.

Ultimately, we will measure the performance of a surrogate
model by its ability to accurately represent the time-averaged flow
statistics. Thus, we do not expect from the model with eddy-forcing
surrogate the ability to produce individual flow fields which are in
absolute lockstep with the reference data, especially considering
the stochastic nature of the surrogate.
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Wewill build on the resampling strategies as developed by [2, 17].
In general, these methods model the unresolved term at time ti+1
by sampling from the conditional probability distribution of the
reference data:

r̃i+1 ∼ r i+1 | Ci , Ci−1 · · · . (9)

Here r̃i+1 denotes the surrogate eddy forcing at time ti+1, whereas
as r i+1 represent actual data from the reference model. The set
of ’conditioning variables’ Ci contains variables that are available
from the resolved model, e.g. they can be (functions of) ωR or r̃i .
Examples of these conditional distributions are r i+1 | r̃i and r i+1 |

r̃i ,ω
R
i . We could assume a Markov property (ri+1 | Ci ), or build in

a larger time history. Note that by design, (9) is already data-driven,
stochastic, correlated in time, and conditioned on resolved variables.
We leave an evaluation of the cost (point 5) of the surrogate for
a later study. Most of the cost will be concentrated in an offline
phase (i.e. precomputing the reference database), when predicting
we just resample reference data. The efficiency gain will grow with
a larger difference in grid resolution. In our current setup, the
number of grid points differs just by a factor of 2 in each spatial
dimension. Moreover, for now we use the same approach as [19],
where we evaluate all models on the reference grid, the resolved
model just has fewer non-zero Fourier coefficients (see Figure 1).
While computationally convenient, this approach complicates a
straightforward cost comparison.

The main challenges with this approach, that must be met before
the remaining goals could be achieved, are twofold. Clearly, the
first challenge concerns the actual formation of the conditional
distribution, i.e. how to map the observed Ci to some plausible sub-
set of r i+1 samples from which r̃i+1 can be drawn randomly. The
second challenge concerns the proper choice of conditioning vari-
ables Ci , which is somewhat reminiscent of the choice of ’features’
in a machine-learning context. The main focus of this paper is to
investigate the effect of these choices, and we show some initial
exploratory results in Section 4.

3.1 Building the distribution
At any given point in space and time during iteration of (8), given
a (local) value of the conditioning variable Ci , we wish to select
a corresponding subset of reference data from which we can sam-
ple randomly. This suggest some discretization approach where
intervals of Ci are coupled to subsets of r . We use the so-called
’binning’ approach of [17], which starts with a snapshot sequence
of the eddy forcing

RS1 = {r1, r2, · · · , rS }, (10)

where i is the time index, and each snapshot r i is an N × N field,
where N is typically 27, 28 or higher. For our initial calculations
we used 27. In addition, we also have snapshots of corresponding
conditioning variables

CS1 = {C1,C2, · · · ,CS }. (11)

Let C be the total number of time-lagged conditioning variables
used in (9). We then proceed by creating C-dimensional disjoint
bins 1, each bin spanning a unique conditioning variable range,
and containing a number of associated scalar r (x ,y) values, i.e. the
1We used equidistant bins, but this is not a hard requirement.

mapping is done pointwise in spatial domain. For any single location(
xi ,yj

)
we allow for resampling of all observed r (x ,y) values from

the entire flow domain, provided that they fall in the bin selected by
the local value of the conditioning variable at

(
xi ,yj

)
. Note that not

all bins may contain samples, especially if two or more conditioning
variables are used. If during prediction an empty bin is sampled, the
data of the nearest bin (in Euclidean sense) is used instead. Once a
bin is selected by Ci , the resulting subset of scalar r values can be
sampled randomly, or one might sample from the local bin average
instead, leading to a deterministic prediction.

3.2 Choice of conditioning variables
Ideally we would like the conditioning variables of (9) to correlate
well with r i+1. If r i+1 correlates well with Ci , the range of plausible
r values in the selected subset is smaller. Consider the two bins
depicted in Figure 3, each with 1 conditioning variable (r i+1 | Ci ).
The binning object of Figure 3(a) shows considerable less correlation
between Ci and ri+1 than its counterpart in Figure 3(b). As a result,
each bin contains a larger spread in possible r values, leading to
more noisy r̃i+1 fields.

One possible choice, given the definition of r in (7), is to use
the resolved Jacobian PR J

(
ΨR ,ωR

)
as conditioning variable. Fur-

thermore, the authors of [10, 21] also constructed a conditional
pdf of the eddy forcing for a quasi-geostrophic double-gyre ocean
model. Using an argument of frame invariance, and constraining
their choice to that of a divergence of a stress, they showed that

∇ · ∇

(
∂ωR

∂t
+ PR J

(
ΨR ,ωR

))
= ∇ · ∇

DωR

Dt
(12)

displayed very good correlation with r .
We will systematically investigate the performance of a large set

of candidate conditioning variables. Let us define a set of operators
L as

L := {1,∇,∇2}, (13)

and the following set of variables ϕ(i), all evaluated at time ti , as

ϕ(i) := {±ωR
i , ±P

R J
(
ΨR
i ,ω

R
i

)
, ±DωR

i /Dt} (14)

Let Li and ϕ
(i)
j be members of the corresponding set. We allow for

conditioning variables Ci , written as the sum of up to two Liϕ
n
j

terms, which gives us a total of 120 candidate conditioning variables.
Clearly, not all conditioning variables will make sense and some just
differ in sign, but (8) is computationally tractable enough for a brute-
force computation using all possible combinations. Specifically, we
will compute the 120 spatial correlation coefficients

ρ
(
r i+1,C

(j)
i

)
=

Cov
[
r i+1,C

(j)
i

]
σ (r i+1)σ

(
C
(j)
i

) , j = 1, · · · , 120, (15)

at a sampling rate of 1 day during a 250 day simulation period. Here,
Cov(·, ·) and σ (·) denote the covariance and the standard deviation.
The results are shown in Figure 4. Roughly speaking, we can dis-
tinguish three different groups of conditioning variables. The vast
majority of Ci yield a correlation coefficient which does not exceed
much beyond ±0.25. The resolved Jacobian is amongst them, with
ρ ≈ 0.14. Taking the Laplacian of the Jacobian raises this value to
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(a) Low correlation.

(b) Higher correlation.

Figure 3: The samples from 2 different binning objects with
1 conditioning variable. The vertical axis contains the r sam-
ples and the horizontal the conditioning variables. Stars de-
note bin means.

0.24. There are some that hover around the ±0.8mark. A representa-
tive example of those is DωR/Dt. Finally, a number of conditioning
variables yield a correlation coefficient of approximately ±0.96. A
common term in all of these high-correlation combinations ofLiϕ

n
j

is in fact (12) from [10].
It is important to note that the correlations of Figure 4 were

computed using the exact r in (8). When r will be replaced by the
surrogate r̃ , these correlations cannot be expected to be maintained.
Discrepancies between the exact eddy forcing and the surrogate
will build up over time, and the model forced by r̃ will develop its
own dynamics. We reiterate here that our goal is to predict the time-
averaged flow statistics, which might still be feasible if we are not
in absolute lockstep with the fields of the full-scale equations. Even
two full-scale simulations with slightly different initial conditions

250 300 350 400 450 500
t [days]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(r i
+

1,
i)

Figure 4: The spatial correlation coefficient (15) between r i+1
and the 120 candidates conditioning variables Ci at 250 time
instances. The exact r was used in (8).

will diverge from each other (due to their turbulent/chaotic nature),
yet can converge in a statistical sense[15].

3.3 Dynamic behaviour of the surrogate
Let us now examine the time evolution of r̃ as a function of the
chosen set of conditioning variables,when r̃ actually replaces r in (8).
We denote this as the predictive phase, as opposed to the training
phase when (8) is forced by r .

First, we create the auto-correlated surrogate r̃i+1 ∼ r i+1 | r i
with 100 bins, i.e. we used the exact eddy forcing at a previous time
step as a conditioning variable. Clearly, this conditioning variable
will not be available outside the training period, and so this sur-
rogate merely serves as a sanity check. Given such a perfect Ci ,
we isolate the error introduced due to the random sampling alone.
Over a simulation period of 250 days, we computed the ωR from
the full-scale reference solution, as well as the ωR obtained with
the surrogate eddy forcing. Figure 5 shows the final two snapshots
of the aforementioned two ωR fields, which virtually look identical.
Since we use the time-lagged exact eddy forcing as conditioning
variable, we are never extrapolating the surrogate more than 1 time
cycle, leading to the matching results of Figure 5. Hence, this is not a
validation of the surrogate, and we view this instead as verification
exercise of our implementation.

We also examined the dynamical behaviour of the r̃i+1 ∼ r i+1 |

∇ ·∇DωR

Dt surrogate. While ∇·∇DωR

Dt showed extremely good corre-
lation with r i+1 in the training phase, when used as a conditioning
variable in the predictive phase it becomes unstable in our problem.
It grows in absolute magnitude, leading to excessive sampling of
the two outer bins. This process is exacerbated over time, leading
to an unstable solution.

Another sure way to construct a surrogate with a built-in high
correlation between the conditioning variable and the reference r
data is by means of auto correlation with respect to the surrogate,
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Figure 5: The final snapshot of the reference ωR (top) and
the ωR field computed using the surrogate r̃i+1 ∼ r i+1 | r i .

i.e.

r̃i+1 ∼ r i+1 | r̃i . (16)

For the surrogate construction we still use r i from the training
phase to construct the conditioning variable bins. Essentially, we
use r̃i+1 ∼ r j+1 | r j with j such that r j is close to (is in the same bin
as) r̃i . Note that (16) leads to a one-way coupled system, without
feedback from the resolved-scale equation (8) back to (16). Whilst
this is in contradiction with the 4-th requirement outlined in Section
3, the one-way coupled attribute does allows us to exactly compute,
per bin, what we denote as jump probabilities of surrogate (16). Any
random sample r̃i+1 will become the conditioning variable in the
next iteration, and thus we can directly determine if the same bin
will be selected, or if a bin to the left or right will be sampled instead.
Doing so for every sample in a given bin allows us to compute the
so-called stay, jump-left and jump-right probabilities, which will
add up to 1 per bin. These are the empirical jump probabilities of
(16). The surrogate r i+1 | r i samples from the same distribution,
which can be computed from all consecutive r i+1, r i data snapshot
pairs. This is shown in Figure 6, which depicts the jump proba-
bilities computed independently per bin and from the snapshot
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Figure 6: The jump left, stay and jump right probabilities
(top, middle, bottom) for r i+1 | r i (circles) and r i+1 | r̃i
(squares), using 10 bins and a time lag of 0.05 day. In the leg-
end, k is an integer with k ≥ 1.

sequence. However, the match does not necessarily mean that (16)
has statistical power, which r i+1 | r i clearly does have (see Figure
5). As mentioned, the latter does not effectively extrapolate and the
use of r i as conditioning variable imposes a spatial structure on
r̃i+1 that is very close to r i+1, which is something that (16) cannot
guarantee.

Plotting the jump probabilities shows the dynamic character of
the surrogate. The time lag employed in Figure 6 is small, namely
0.05 days. As a result, we see that the surrogate has a fairly ‘static’
character, i.e. that the stay probabilities are close to 1. Employing a
larger time lag (see Figure 7), results in a surrogate with a seemingly
more dynamic behaviour, where neighbouring bins are more likely
to be sampled in the next iteration.

This makes clear sense, since a larger time lag implies a greater
difference between consecutive snapshots. It does raise an impor-
tant point however, i.e. that the time step embedded in the surrogate
can differ from the ∆t used to integrate (8) in time [2]. If the r data
is sub sampled, the surrogate time step δt will be larger than ∆t .
When running a simulation, we therefore take care to update the
surrogate every δt , rather than every ∆t in order to ensure dynam-
ical consistency. If multiple conditioning variables with different
time lags are present, the value of δt equals the smallest employed
time lag.

3.3.1 Data reduction. The reason for sub sampling the data is to
reduce the memory requirements of the surrogate technique. If
δt → ∆t , a potentially very large number of data snapshots must
be stored in memory during the entire run of the simulation [18].
Although not actually employed in this article, we briefly discuss
another route of much more significant data reduction. Instead of
savingNi data points in any given bin indexed by i , we can also only
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Figure 7: The jump left, stay and jump right probabilities
(top, middle, bottom) for r i+1 | r i (circles) and r i+1 | r̃i
(squares), using 10 bins and a time lag of 1.0 day.

store certain bin means during the simulation run. Consider again
the jump probabilities of Figures 6-7. In addition to the bin wise
computation of the probabilities, we can also compute the mean of
all r i+1 samples that either stay of leave the current bin in a certain
direction. We could do this directly from the data, and the approach
would not be limited to auto-correlated surrogates only. The local
bin means are then sampled with their associated jump probability.
As an example, consider the results of Figure 8 which shows the
local bins means of the (16) surrogate. For this particular example,
the number of data points which must be carried in memory during
simulation is reduced from 83.2 × 106 to 28. This method requires
further study, but the potential for data reduction is clear. A similar,
yet not the same, method is proposed in [2].

4 INITIAL RESULTS
Here we outline some initial results which were obtained with the
surrogate model described in the preceding section. To generate
the reference database, we run the full-scale and the resolved model
forced by r for a spin-up period of 250 days. Next, data is collected
for another 250 days using a subsampling δt of 0.05 days. For these
particular results, the full- and resolved scales were defined on a
numerical grid with 27 × 27 and 26 × 26 points respectively.

4.1 Short-time prediction
Figure 9 shows a snapshot of the reference vorticity and a cor-
responding snapshot from a model forced by the surrogate (16).
Clearly, compared to the results of Figure 5 (where we had a perfect
conditioning variable), the performance is reduced. As discussed,
the model forced by the surrogate develops its own dynamics and
the ωR fields diverge from the reference solution.

Figure 8: All samples of the autocorrelated surrogate (16) (in
grey) per bin, and the local binmeans associated to the three
jump probabilities (circles). Per bin, the top circles are the
bin means of all samples which jumped right. The middle
and bottom circles represent the stay and jump-left means,
respectively. The reference data (r i+1) is plotted along the
vertical axis, and the conditioning variable along the hori-
zontal (Ci = r̃i ).

When we continue to run the reference model in the background
during the predictive phase, we can compute how fast a surrogate
decorrelates from the exact eddy forcing. For the autocorrelated
surrogate (16) with δt = 0.05 days, the spatial correlation coefficient
ρ (r i+1, r̃i+1) is plotted versus time in Figure 10(a). As expected, we
observe a decrease, and after about 15 days all correlation is lost. The
opposite behaviour is observed when conditioning on the resolved
Jacobian instead, see Figure 10(b). The correlation increases from
0.1 to roughly 0.45 in the predictive phase. Due to the definition of
the eddy forcing (7) (which directly includes the resolved Jacobian),
this increased correlation can be expected to be maintained. This
is an indication (yet no guarantee), that PR J

(
ΨR ,ωR

)
could be

a good conditioning variable to include in the case of a statistical
prediction.

4.2 Statistical prediction
From the initial condition at 250 days, the model forced by the
surrogate is run for 8 years, during which data for the energy
ER and enstropy Z R densities are collected. These quantities are
defined as the integrated square velocity and vorticity, normalised
by the flow domain area, i.e.

ER :=
(
1
2π

)2 1
2

∫ 2π

0

∫ 2π

0
VR · VRdxdy,

Z R :=
(
1
2π

)2 1
2

∫ 2π

0

∫ 2π

0

(
ωR

)2
dxdy, (17)
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Figure 9: The final snapshot of the reference ωR (top) and
the ωR field computed using the surrogate r̃i+1 ∼ r i+1 | r̃i .
The discrepancy between the two snapshots is expected, as
the reference is deterministic and the surrogate is stochastic.

where VR is the two-dimensional vector of the resolved velocity
components in x and y direction, see also [19].

Let us start by showing the results of purely autocorrelated
surrogates in Figure 11. We limit ourselves to one conditioning
variable using 100 bins, and investigate the effect of the employed
time lag, measured in multiples of δt . The reference energy and
enstrophy pdfs, as well as the pdfs from the unparameterized model
(r = 0) are also depicted. The shortest time lag of 1 δt leads to an
energy pdf which is too diffuse. This is improved by increasing the
time lag, but in all cases the pdf of the enstrophy Z R has a bias
with respect to the reference pdf. Thus overall the performance
is quite low, which might be expected since the surrogate acts
independently from the resolved state.

To obtain two-way coupling between the surrogate and the re-
solved state we now condition on the resolved Jacobian. Two sur-
rogates used one conditioning variable, with a time lag of δt and
20δt . To investigate the performance of a surrogate with a larger
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(a) Auto correlated surrogate r̃i+1 ∼ r i+1 | r̃i .
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(b) Surrogate conditioned on the Jacobian r̃i+1 ∼ r i+1 | PR J
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)
Figure 10: The spatial correlation coefficient ρ (r i+1, r̃i+1)
between the exact eddy forcing and two surrogates, con-
structed with 100 bins and δt = 0.05 days. These results were
computed during the predictive phase, the initial transient
behaviour is an initial condition effect, where the state was
initialised using the solution forced by r .

memory, we also constructed a surrogate with two conditioning
variables with a time lag of (5δt , 10δt). In all cases the number of
bins was kept constant at 100. The two single conditioning vari-
able surrogates do not perform very well. Their pdfs of the energy
density are worse than the unparameterized result, and the bias
in Z R is comparable to the autocorrelated results. In contrast, the
use of two conditioning variables yields a ER pdf which is close to
the reference (blue curve). Furthermore, while it does not eliminate
the enstropy bias, it does reduce it to the point where there is now
more significant high-probability overlap between the model and
reference pdf.

We note that these are preliminary results, which point in the di-
rection of two-way coupled surrogates with larger (non-Markovian)
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Figure 11: The pdfs of (17), i.e. of the energy (top) and enstro-
phy (bottom) density, computed over the time integration
period of 8 years, using surrogates of the form r̃i+1 ∼ r i+1 | r̃i .
The surrogates differ via the employed time lag, which are
δt , 10δt , 20δt and 30δt , with δt = 0.05 days.

memory. A more systematic study of different conditioning variable
combinations is currently under way.

5 CONCLUSION & OUTLOOK
We presented a data-driven method to create a stochastic surro-
gate model, conditioned on time-lagged observable variables, of
a set of reference data coming from a dynamical system. In the
current application, we focused on recreating the forcing term
due to unresolved eddies in a two-dimensional ocean model. This
approach is general however, and not restricted to our particular
application. We consider the method as validated when the resolved
model forced by the stochastic surrogate accurately captures time-
averaged statistics of the full-scale simulation, such as integrated
energy densities. To that end, our initial results indicates that the
choice of a proper set of conditioning variables is of paramount im-
portance. Multiple conditioning variables at different time instances,
such that a longer memory is built into the surrogate, outperform
the considered surrogates with a Markovian character.

We are currently conducting a systematic study of a wide range
of conditioning variables, to seek further gains in performance.
Furthermore, as briefly outlined, data-reduction techniques to dras-
tically decrease the computational memory requirements are also
under investigation. Finally, an interesting avenue of future re-
search is the a-priori incorporation of constraints from mathemati-
cal physics. Initial work along these lines showed promising results
[4], with no enstrophy bias. Another option involves rewriting the
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5 t, 10 t
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reference
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Figure 12: The pdfs of (17), i.e. of the energy (top) and enstro-
phy (bottom) density, computed over the time integration
period of 8 years, using surrogates of the form r̃i+1 ∼ r i+1 |

J
(
ΨR
i ,ω

R
i

)
. The time lags of the conditioning variables are

δt and 20δt . For the surrogate with two resolved Jacobians as
conditioning variables we used (5δt , 10δt). Again, δt = 0.05
days.

eddy forcing in tensor format, such that certain constraints on the
tensor shape can be found [20]. Such an approach would no longer
be purely data-driven, and opens up the possibility for efficient,
physics-constrained uncertainty quantification, see e.g. [5] for ex-
amples in steady flow problems or [9] for large-eddy simulations.
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