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Abstract

In this paper, we investigate well-definedness and observational equivalence for
programs of mixed inductive and coinductive types. The programs we consider are
terms of a variation on the copattern language introduced by Abel et al. These
notions are defined by means of tests formulas which combine structural congruence
for inductive types and modal logic for coinductive types. Tests also correspond to
certain evaluation contexts. We define a program to be well-defined if it is strongly
normalising under all tests, and two programs are observationally equivalent if they
satisfy the same tests.

We show that observational equivalence is strong enough to ensure that least
and greatest fixed point types are initial algebras and final coalgebras, respectively.
This yields inductive and coinductive proof principles for reasoning about program
behaviour. On the other hand, we argue that observational equivalence does not
identify too many terms, by showing that tests induce a topology that coincides with
the widely accepted topology used to define computable functions on coinductive
types as continuous functions.

As one would expect, observational equivalence is, in general, undecidable, but in
order to develop some practically useful heuristics we provide coinductive techniques
for establishing observational normalisation and observational equivalence, along with
up-to techniques for enhancing these methods.

“Everything that is observed in the whole of nature must be able to be deduced
from it.”

— B. Spinoza, Principles of Cartesian Philosophy

1 Introduction

There is a growing interest in programming with mixed inductive-coinductive types [2, 3,
14, 16, 17, 20, 21, 33, 34], especially in combination with specifications of programs by
means of (co)recursive equations in the style of behavioural differential equations [43]. We
address two fundamental questions about such programs: First, when is a program well-
defined, i.e., when does it have a well-defined semantics? Second, when are two programs
considered behaviourally equivalent? Both questions are particularly important in type-
based theorem provers, as well-definedness ensures logical consistency [31], and a strong
program equivalence eases reasoning [6].

For programs specified by systems of (co)recursive equations, well-definedness amounts
to existence and uniqueness of solutions. For purely corecursive equations well-definedness
is often referred to as productivity, and it is usually ensured by requiring that the equations
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are of a certain syntactic shape. Examples include the (abstract) GSOS format of [46]
and the guardedness condition of [5]. Such syntactic conditions are easy to check, and are
therefore used in theorem provers like Coq, cf. [17]. The problem, as argued in e.g. [1], is
that they are very restrictive and not easy to extend in a compositional manner.

Equivalences of terms in (lazy) functional languages have been considered in e.g. [4, 6,
19, 23, 24, 32, 35, 37]. We discuss their relation to the present work in more detail below.
The main difference to mention now is that coinductive types are not considered there.
The only work we are aware of on equivalences in type systems with mixed inductive and
coinductive types is by Plotkin & Abadi [36] and Hasegawa [22] which uses encoding of
fixed point types in the polymorphic λ-calculus. We contribute to this line of research
by investigating program equivalence in type systems in which inductive and coinductive
types are first-class citizens. To the best of our knowledge, this has not been done before.

In this paper, we define notions of productivity and behavioural equivalence in a sim-
ply typed, lazy language with least and greatest fixed point types. This language is a
variation of the one in [3] where copatterns are introduced to program on infinite data.
A copattern equation is essentially a behavioural differential equations which also allows
pattern matching.

Our perspective is coalgebraic [42], that is, based on the notion of observable be-
haviour and bisimilarity. Informally, two programs are behaviourally equivalent if they
cannot be distinguished by any observation, and a term is productive if every observation
terminates with a well-defined result. We formalise this by defining test formulae that
capture sequences of observations on programs. These tests correspond to certain evalu-
ation contexts, and are defined in a manner similar to the testing logic of [44, Sec. 6.2]
and the coalgebraic modal logics for Kripke-polynomial functors in [40, 26]. For terms
of inductive type, tests inspect terms by matching on constructors and testing subterms.
On coinductive types, tests are essentially modal formulas. We call a program observa-
tionally normalising (or productive) if it is strongly normalising under all tests, and two
programs are observationally equivalent if they satisfy the same tests. For terms of func-
tion type this amounts to requiring that on observationally normalising input, the outputs
are observationally equivalent.

We argue for the suitability of observational equivalence by showing that identifying
observationally equivalent functions yields coinduction and induction principles for rea-
soning about programs. More precisely, we construct a category T↓ that has types as
objects and terms of function type modulo observational equivalence as arrows. On this
category we define functors from types such that least and greatest fixed point types are
initial algebras and final coalgebras, respectively (Thm. 4.11). Thus observationally equiv-
alence is sufficiently strong to capture the relevant coalgebraic and algebraic notions of
equivalence. On the other hand, we argue that observational equivalence does not identify
too many terms by showing that tests induce a topology (Prop. 4.16) that coincides with
the widely accepted topology used to define computable functions on coinductive types
as continuous functions. This, together with the categorical properties, provides evidence
that observational equivalence is a good semantical notion.

As one would expect, observational equivalence is, in general, undecidable which we
prove by reduction to the Post correspondence problem. An immediate question is whether
it becomes decidable over a restricted part of the language, which we answer positively
by showing that observational equivalence is decidable over the “data fragment” (i.e.,
function-free fragment). In order to develop some practically useful heuristics for the full
language, we provide coinductive techniques for establishing observational normalisation
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and observational equivalence. These techniques are obtained by defining a transition
system of terms on which observational equivalence coincides with bisimilarity, and ob-
servational normalisation is a coinductive predicate. An advantage of these coalgebraic
characterisations is, moreover, that they facilitate the use of up-to techniques that lead to
a significant simplification of proofs and are compositional. Specifically, we provide up-to
convertibility and up-to evaluation techniques, and we demonstrate with an example how
up-to techniques can be derived for program definitions in a format that generalises the
simple SOS format [29].

Related Work. The idea of categorical data types and unique mapping properties has
previously been proposed by, e.g., Hagino [20] and Jacobs [25, Sec. 2.3]. These approaches
are centred around postulating the equations that ensure the unique mapping properties.
The hard part is to decide term equality induced by these equations. This can be achieved,
e.g., by casting the equations into a strongly normalising and confluent rewriting system
cf. Ghani [15] and Curien & Cosmo [11]. In contrast, we get unique mapping properties by
taking observational equivalence as equality, and we obtain (co)inducive proof principles
for reasoning about term equivalence.

Type systems with inductive and coinductive types have been studied via encoding into
the (impredicative) polymorphic λ-calculus, see e.g. Geuvers [14]. Using this approach,
Plotkin & Abadi [36] and Hasegawa [22] have shown that parametricity schemes induce an
equivalence which yields initial algebras and final coalgebras. We avoid such an encoding
into an impredicative language, and reason in the “native” language.

Program equivalence in a dependent type theory is formalised in Altenkirch et al. [6]
via a propositional equality type called observational equality. This equality type is defined
inductively over types in a manner similar to ours, but they do not need to require (an
analogue of) observational normalisation as their term language contains only restricted
forms of λ-abstraction and recursion which ensures that all terms are strongly normalising.
In particular, their system has no coinductive types. We, on the other hand, have a more
flexible term language which allows definitions via systems of copattern equations.

Our notion of observational equivalence is similar to the contextual equivalence of
Plotkin [37] and Milner [32], since test formulae can be interpreted as certain program con-
texts. Similar in spirit is also Zeilbergers’s observational equivalence [47], as he considers
programs to be equivalent if they yield the same result in all environments. Interestingly,
he starts by considering only the result that programs diverge, and then observes that, in
order to get a useful equivalence, he needs to have a second possible result. This is similar
to the fact that our test language has two basic tests, namely the everywhere true and the
everywhere false test. Without these, we would get a trivial equivalence as well.

The observational congruence of Pitts [35] characterises contextual equivalence for an
extension of PCF as the greatest relation with certain properties. One of these properties
(called compatibility) is an inductive predicate on relations, hence observational congruence
is different from our coinductive notion of equivalence. We can show that observational
equivalence is contained in Pitts’ observational congruence when suitably adopted to our
setting.

For inductive types and abstractions, observational equivalence is also closely related
to the notion of applicative bisimilarity in the lazy λ-calculus by Abramsky [4], which
compares terms by reducing to a weak head normal form (with a λ in head position)
and comparing the results of function application. It is possible to extend applicative
bisimilarity in a natural way to all our terms, but the resulting notion will differ from
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observational equivalence. In particular, applicative bisimilarity is weaker on diverging
terms, as also discussed in [19].

Our work is closest in spirit to the work by Howe [23, 24] and Gordon [19]. Howe [23, 24]
studies coinductive proof princples for reasoning about equivalence in a general class of
lazy languages with binding, and discusses applications in intuitistic type theory and the
Nuprl theorem prover. Unique mapping properties are not considered. Gordon [19] gives a
bisimulation characterisation of contextual equivalence in the language FPC, and studies
up-to techniques. Again, coinductive types are not part of FPC, and unique mapping
properties are not investigated.

Outline. The rest of the paper is structured as follows. In Section 2, we introduce types,
terms and a reduction relation. We show moreover that this reduction relation is con-
fluent, which allows us to define convertibility of terms. In Section 3, we define tests,
observational normalisation and observational equivalence, and prove some basic prop-
erties. In Section 4, we define the term category T↓, and show that least and greatest
fixed point types are initial algebras and final coalgebras, respectively, for functors defined
from types, thus obtaining induction and coinduction principles for programs. We also
study the properties of the topology associated with observational equivalence. In Sec-
tion 5, we define the coalgebra of terms on which observational equivalence is bisimilarity
and observational normalisation is a coinductive predicate, and we establish various up-to
techniques that enhance these coinductive proof principles to become practical and useful.
In Section 6, we prove the undecidability of observational equivalence, and decidability
over the function-free fragment. We finish with concluding remarks and discuss directions
for future research in Section 7.

2 Types and Terms

In this section we introduce our type system, the terms inhabiting these types, and a
reduction relation on terms. In Abel et al. [3], a functional language was defined in which
copatterns are used to specify coinductive data. Our language is based hereon with one
modification: We split fixed point types from sum and product types, which eases the
categorical reasoning.

2.1 Type Syntax

We assume given a countable set of type variables X,Y, . . . . Types are defined relative to
a type context Ξ which is a finite sequence of type variables that contains all free variables.
More precisely, the type syntax is defined by the following rules together with the usual
weakening, contraction and exchange rules.

Ξ, X  X
Ξ  A Ξ  B

Ξ  A+B
Ξ  A Ξ  B

Ξ  A×B

 A Ξ  B
Ξ  A→ B

Ξ, X  A
Ξ  µX.A

Ξ, X  A
Ξ  νX.A

A type is said to be closed if it is defined in an empty context, and we will simply write A
instead of  A. The set of all closed types is denoted by Ty, and unless stated otherwise,
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types are assumed to be closed, which will be the case in the most part of the paper. The
exception is in Sec. 4 where we need to make the context explicit.

We refer to sum and least fixed point types as inductive types, and to product, function
and greatest fixed point types as coinductive types. Typical examples are the one type 1 :=
νX.X, natural numbers Nat := µX.1 +X; streams over A given by StrA := νX.A×X;
and “left fair streams” LFairAB := νX.µY.(A×X+B×Y ), which are infinite sequences
over A interleaved by finite lists over B.

Note that we can only construct strictly positive types by these rules, that is, types
where type variables never occur left of an →. There are two reasons for restricting
ourselves to strictly positive types. The first is that we can only guarantee the correctness
of Def. 3.1 for strictly positive types, not for positive or let alone arbitrary types. The
second is that we otherwise could form the type µX.X → X, allowing us to type any
λ-term (see [7, Sec. 9.3]). This would cause fixed points to coincide, preventing an
interpretation over categories like Set or, more generally, over algebraically non-compact
categories.

We consider types to be equal up to α-equivalence, i.e., renaming of bound variables.
See [7, Sec. 7] for a discussion of stronger notions of type equality.

2.2 Terms and Type Judgment

Next, we define the syntax and typing of terms, patterns and copatterns. Formal typing
judgments are provided in Def. 2.1 below, but we first give an informal description and
introduce terminology.

The term language has constructors for inductive types and destructors for coinductive
types. For example, κ1, κ2 (to be seen as coprojections) are constructors for the coproduct,
and dually, π1, π2 (projections) are destructors of the product. The constructor α should
be thought of as the initial algebra α : A[µX.A/X] → µX.A. For example, considering
the type Nat, for a term n : Nat, α(κ2 n) : Nat represents the successor n+ 1. Dually, we
see the destructor ξ as the structure map of the final coalgebra ξ : νX.A→ A[νX.A/X].
For example, if s : StrA then ξ s : A × StrA represents the pair consisting of the head
and tail of s. A variable context Γ consists of a sequence of variable declarations x : A.
A declaration block Σ consists of a sequence of declarations of the form f : A = D which
expresses that the symbol f has type A and its behaviour is defined by the declaration
body D where D consists of a sequence of copattern equations q 7→ t. Copatterns q are
described below. An rlet-expression rlet Σ in t allows us to use declarations from Σ inside
the term t. The name “rlet” should be read as “recursive let”, emphasising that the
declarations are mutually recursive within one binding block. Finally, our term language
contains a generalised form of λ-abstraction λD. What usually would be written as λx.t
is expressed in our language as λ{·x 7→ t}.

As usual, patterns are used to define functions on inductive types by pattern match-
ing on the arguments, e.g., as in Haskell. Copatterns, on the other hand, are used to
define results of applying destructors. Syntactically, copatterns are certain contexts (i.e.,
terms with a hole ·). Note that inside a copattern q, we can use patterns p to match on
function arguments. The typing judgment Γ c̀op q : A ⇒ B of copatterns means that
a context that expects a term of type A and matches q, results in a term of type B.
The definition of a symbol by a mutually recursive set D of copattern equations is closely
related to Behavioural Differential Equations [43] which are used to specify elements of
final coalgebras. For example, the rule (Ty-D) is used to assign type StrA to the term
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λ{hd · 7→ t1; tl · 7→ t2} for terms t1 : A and t2 : StrA, using that c̀op hd · : StrA ⇒ A
and c̀op tl · : StrA ⇒ StrA, where hd = π1 ξ and tl = π2 ξ. Another example is given
by the canonical term of type 1 which we define as 〈〉 := rlet f : 1 = {ξ · 7→ f} in f which
represents a single state with a self-loop. Yet another example, using λ-abstraction, is
given by λ{π1 · 7→ t1;π2 · 7→ t2} which defines the pair (t1, t2).

Definition 2.1. Let Var and Sig be countable sets of term variables and signature symbols.
We write

• Γ; Σ ` t : A if t is well-formed term of type A in the variable context Γ using the
declarations in Σ;

• Γ; Σ b̀dy D : A if D is a well-formed declaration body of type A in the variable
context Γ using the declarations in Σ;

• Σ1 d̀ec Σ2 if the declaration block Σ2 is well-formed using Σ1;

• Γ p̀at p : A if p is a well-formed pattern on the type A that binds variables in Γ;

• Γ c̀op q : A⇒ B if q is a well-formed copattern that binds variables in Γ such that
if a context e matches q and applying e to a term of type A results in a term of type
B.

Well-formed, well-typed terms, and declaration bodies and declaration blocks are given
by the rules in Fig. 1 together with the usual weakening, contraction and exchange rules.
Well-formed and well-typed (co)patterns are given in Fig. 2.

x ∈ Var
Γ, x : A; Σ ` x : A

f ∈ Sig

Γ; Σ, (f : A = D) ` f : A

Γ; Σ ` t : Ai
(i = 1, 2)

Γ; Σ ` κi t : A1 +A2

Γ; Σ ` t : A[µX.A/X]

Γ; Σ ` α t : µX.A

Γ; Σ ` t : A1 ×A2
(i = 1, 2)

Γ; Σ ` πi t : Ai

Γ; Σ ` t : νX.A

Γ; Σ ` ξ t : A[νX.A/X]

Γ; Σ ` t1 : A→ B Γ; Σ ` t2 : A

Γ; Σ ` t1 t2 : B

Γ; Σ b̀dy D : A

Γ; Σ ` λD : A

Γi c̀op qi : B ⇒ Ai Γ,Γi; Σ ` ti : Ai 1 ≤ i ≤ n
(Ty-D)

Γ; Σ b̀dy {q1 7→ t1; . . . ; qn 7→ tn} : B

∅; Σ1,Σ2 b̀dy D : A all (f : A = D) ∈ Σ2

Σ1 d̀ec Σ2

Σ1 d̀ec Σ2 Γ; Σ1,Σ2 ` t : A

Γ; Σ1 ` rlet Σ2 in t : A

Figure 1: Well-formed terms and declaration blocks

Often, we will simplify the notation and write definitions in a Haskell-like style, in
that we separate type declaration from the declaration body, and replace the hole · by the
symbol we define.
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x : A p̀at x : A

Γ p̀at p : Ai

Γ p̀at κi p : A1 +A2

Γ p̀at p : A[µX.A/X]

Γ p̀at αp : µX.A

∅ c̀op · : A⇒ A

Γ1 c̀op q : A⇒ (B → C) Γ2 p̀at p : B

Γ1,Γ2 c̀op q p : A⇒ C

Γ c̀op q : A⇒ A1 ×A2

Γ c̀op πi q : A⇒ Ai

Γ c̀op q : A⇒ νX.B

Γ c̀op ξ q : A⇒ B[νX.B/X]

Figure 2: Well-formed patterns and copatterns

Notation 2.2. We will use the following abbreviations:

Types

0 := µX.X

1 := νX.X

Bool := 1 + 1

Terms

〈〉 := rlet f : 1 = {ξ · 7→ f} in f

tt := κ1 〈〉 ff := κ2 〈〉

0 := α(κ1 〈〉) n+ 1 := α(κ2 n)

hd t := π1(ξ t)) tl t := π2(ξ t))

λx.t := λ{·x 7→ t}

(Co)Patterns

0 := α(κ1 ) n+ 1 := α(κ2 n)

hd q := π1(ξ q)) tl q := π2(ξ q))

Example 2.3. We start with a very simple example. The stream ones = (1, 1, 1, . . . .) is
defined as the unique solution to the following stream differential equation [43]:

hd(x) = 1, tl(x) = x.

We define the stream ones as the following term:

rlet f : Str Nat = { hd · 7→ 1; tl · 7→ f } in f

Example 2.4. As an example of a mixed inductive-coinductive definition, we define a
function H of type A with A = Str Nat → Str Nat → Str Nat that maps streams s and t
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to a stream r with r(n) = s (
∑n
i=0 t(i)). The formal definition of H is,

H := rlet

g : A = {· s t 7→ f (π1(ξ t)) s t }
f : Nat→ A = {
π1(ξ(· α(κ1 x) s t)) 7→ (π1(ξ s))

π2(ξ(· α(κ1 x) s t)) 7→ g s (π2(ξ t))

(· α(κ2 n) s t) 7→ f n (π2(ξ s)) t }
in g

In the Haskell-like notation, the example becomes

H : A

H s t = f (hd t) s t

f : Nat→ A

hd(f 0 s t) = hd s

tl(f 0 s t) = H s (tl t)

f (n+ 1) s t = f n (tl s) t

The combination of patterns and copatterns is demonstrated in the declaration of f which
uses pattern matching on the first argument, followed by specifying 〈hd, tl〉 (f 0 s t).

2.3 Reduction Relation

As in [2, 3], the operational semantics of a program is obtained by applying its defining
equations D as rewrite rules. More precisely, we define a reduction relation based on
contraction of terms in context.

Definition 2.5. Evaluation contexts e are defined by the following grammar:

e ::= · | e t | πi e | ξ e

For a term r we write e[r] for plugging r into the hole · of e, yielding a term. If e[r] is
typeable for any r of type A, we say that e is a context on type A.

These evaluation contexts allow us to define when a rewrite rule can fire. Given a
copattern q and a substitution σ, we can obtain an evaluation context q[σ] by substituting
σ(x) for a free variable x with unique occurrence in q. We say that a copattern q matches
an evaluation context e, if there is a substitution σ with q[σ] = e. We use matching to
define contraction of terms.

Definition 2.6. Given a term t : A and an evaluation context e, we say that the term
e[t] contracts to a term t′ using declarations in Σ, if e[t] �Σ t′ can be derived using the
following rules:

qi[σ] = e some qi 7→ ti ∈ D
e[λD] �Σ ti[σ]

e[λD] �Σ t′ f : A = D ∈ Σ

e[f ] �Σ t′
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Note that contraction only happens at the top-level of a term, and that Σ is only
necessary in the second rule, where a symbol is contracted.

Example 2.7. Let Σ = {g : A1 = D1, f : A2 = D2} be the declaration block used to define
H in Ex. 2.4, and for u, v : Str Nat let e1 = ·u v 0 and e2 = hd e1 be evaluation contexts
applicable to H. Observe that e1 neither asks for the head nor for the tail of f u v 0. This
is where the laziness of the reduction relation lies: e1[f ] does not reduce since e1[λD2]
does not. On the other hand, we have hd(· s t 0)[u/s, v/t] = e2 and hd · s t 0 7→ hd s ∈ D2,
thus e2[λD2] �Σ hd u and e2[f ] �Σ hd u.

Using contraction, we define a reduction relation −→Σ for each Σ, as the union of
reduction relations −→k

Σ, k ∈ N, where −→k
Σ is a relation on terms of rlet-nesting depth

k. More precisely, as in [2, 3], −→k
Σ is the compatible closure of �kΣ outside of declaration

blocks, �0
Σ =�Σ, and �k+1

Σ is defined inductively by

t −→k
Σ1,Σ2

t′

rlet Σ2 in t �k+1
Σ1

rlet Σ2 in t′

rlet Σ2 in (α t) �k+1
Σ1

α(rlet Σ2 in t) rlet Σ2 in (κit) �k+1
Σ1

κi(rlet Σ2 in t)

ξ(rlet Σ2 in t) �k+1
Σ1

rlet Σ2 in (ξ t) πi(rlet Σ2 in t) �k+1
Σ1

rlet Σ2 in (πit)

(rlet Σ2 in t) s �k+1
Σ1

rlet Σ2 in (t s)

Terms of the form rlet Σ in t without further declarations in t can be translated into
the language of [3] in a way that preserves the reduction relation, we therefore inherit
that −→0

Σ preserves types. Moreover, we get that a reduction step is always possible on
non-normalised terms, if they are well-covering, a notion we briefly describe now.

A sequence Q of copatterns covers a type A, written A C| Q, if the copatterns in Q
are exhaustive and non-overlapping, that is, if for every (large enough) evaluation context
e there is exactly one copattern in Q that matches e. For example, the three copatterns
in Ex. 2.4 cover the type Str Nat. Non-example are the sequence (hd · ; tl · ; hd ·), as
these copatterns are overlapping, and (hd(· 0) ; tl(· 0)), as this sequence is not exhaustive.
The covering relation is formally introduced in Appendix A, and is based on that in [3,
Sec. 5.2].

We call a term t or a declaration block Σ well-covering, if for every declaration body
{q1 7→ t1; . . . ; qn 7→ tn} of type A in t or Σ, we have A C| (qi)i=1,...,n.

Definition 2.8. For a declaration block Σ and a type A, we denote by ΛΣ(A) the set of
all closed, well-covering terms t such that ∅; Σ ` t : A. We denote by ΛΣ the union of all
ΛΣ(A) for A ∈ Ty. If Σ is empty, we omit Σ and simply write Λ(A) and Λ.

Using the notion of well-covering, we can ensure confluence, even in the presence of
(co)pattern matching. We prove this using the work by Cirstea and Faure [10] which
provides conditions on pattern matching algorithms that ensure confluence. Their last
condition, called H2, is the content of following lemma, which we state here as we will
need it later in the proof of Prop. 5.12.
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Lemma 2.9. Let A be a type, Q a set of typed copattern with A C| Q and e an evaluation
context on A. If there is a q ∈ Q and a σ with q[σ] = e and e −→ e′, then there is a σ′ with
q[σ′] = e and σ −→ σ′, where the reduction relation is lifted to substitutions point-wise.

Theorem 2.10. On ΛΣ(A), −→Σ is confluent for any well-covering Σ and, in particular,
−→ is confluent on Λ(A).

Proof. See Appendix A.

We finish this section with some basic facts about convertibility and strong normalisa-
tion. We define convertibility of terms, as usual, by

t1 ≡ t2 iff ∃t3.t1 t3 t2.

We note that confluence ensures that ≡ is transitive, hence an equivalence relation. A term
t is strongly normalising, denoted t ↓, if there is no infinite reduction sequence starting
at t. The set of all strongly normalising terms is denoted by SN. Well-covering terms
of inductive type in SN enjoy the crucial property that they can be reduced to (weak)
head normal form (WHNF), i.e., to a form with a constructor in head position, see [3].
Concretely, for t ∈ Λ(A) there is a t′ with t ≡ κi t

′ if A = B1 + B2, and t ≡ α t′ if
A = µX.B.

3 Observational Equivalence and Observational Nor-
malisation

In this section, we define formally a notion of observational equivalence between terms
using test formulae. Test formulae are typed and defined inductively in a manner closely
related to the testing logic considered in [44, Sec. 6.2], and the many-sorted coalgebraic
modal logics for polynomial functors studied, e.g., in [26] and [30, Sec. 2.1.2]. Just as
predicates on a set X can be seen as functions X → 2, tests on type A are given an
interpretation as terms of type A → Bool. Tests on inductive types inspect terms by
matching on the (weak) head normal form, whereas tests on coinductive types can be
thought of as modal formulae. In particular, tests on a function type amount to feeding
an argument to a function and testing the result. Here, in order to guarantee that tests
always yield a result, we must require that the function arguments are strongly normalising
in every evaluation context, a property we call observational normalisation, and which can
be understood as a formal definition of productivity in our language.

Definition 3.1 (Observational normalisation and tests). Let A ∈ Ty, i.e., A is a closed,
strictly positive type. We simultaneously define tests on A, their interpretation as terms
of type A→ Bool, and the set of observationally normalising terms ONA of type A.

For a type A, we say that ϕ is a test (formula) on A if we can derive ϕ : A with the
rules given below. The set of all test formulae on A is denoted by TestsA.

> : A ⊥ : A

ϕ1 : A1 ϕ2 : A2

[ϕ1, ϕ2] : A1 +A2

ϕ : A[µX.A/X]

α−1 ϕ : µX.A

ϕ : A[νX.A/X]

[ξ]ϕ : νX.A

ϕ : Ai
[πi]ϕ : A1 ×A2

ϕ : B v ∈ ONA

[v]ϕ : A→ B
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The interpretation of tests on a type A as terms is given by the map J−KA : TestsA →
Λ(A→ Bool) which is defined inductively as follows.

J>KA = λx.tt for all A ∈ Ty

J⊥KA = λx.ff for all A ∈ Ty

J[ϕ1, ϕ2]KA1+A2
= λ{κ1 x 7→ Jϕ1KA1

(x) ; κ2 x 7→ Jϕ2KA2
(x)}

Jα−1 ϕKµX.A = λ(αx).JϕKA[µX.A/X](x)

J[ξ]ϕKνX.A = λx.JϕKA[νX.A/X](ξ x)

J[πi]ϕKA1×A2
= λx.JϕKAi

(πix)

J[v]ϕKA→B = λf.JϕKB(f v)

Finally, we define the set ONA of observationally normalising terms of type A by

ONA = {t : A | ∀ϕ : A. (JϕK t) ∈ SN}.

We illustrate with an example how observational normalisation should be seen as a
formal definition of productivity.

Example 3.2. Let x and even be given by

x : Str Nat

hdx = 1

tlx = evenx

even : Str Nat→ Str Nat

hd (even s) = hd s

tl (even s) = even (tl (tl s))

It is known that x is not productive. To see that x is not observationally normalising, we
apply the evaluation context e = hd(tl(tl ·)) to x and find that

e[x] −→ hd (tl(evenx)) −→ hd (even (tl(tlx))) −→ hd (tl(tlx)) = e[x].

Hence there is a diverging reduction sequence starting at e[x], thus x 6∈ ON.

Due to the mutual dependency between tests and observationally normalising terms,
it is perhaps not immediately clear that their definitions are correct. In order to convince
the reader, we show that the induction in the definition of tests in Def. 3.1 is well-founded.
We define the order ord(A) of a type A inductively as follows.

ord(X) = 0

ord(A1 �A2) = max
i=1,2

ord(Ai), � ∈ {+,×}

ord(ρX.A) = ord(A), ρ ∈ {µ, ν}
ord(A→ B) = max{ord(A) + 1, ord(B)}

The key property of strictly positive types is that the order of a fixed point type does not
increase when unfolding.

Lemma 3.3. Let A be a type with a free type variable X that occurs only in strictly
positive position. We have:

ord(A[ρX.A/X]) ≤ ord(ρX.A), ρ ∈ {µ, ν}.

Proof. Let ord(A) = n, and B be a type such that X occurs only strictly positively and
ord(B) ≤ n. We prove by induction in B that ord(B[ρX.A/X]) ≤ n.
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In the base case B = Y , we get ord(B[ρX.A/X]) = ord(ρX.A) = n if Y = X and
ord(B[ρX.A/X]) = ord(B) = 0 ≤ n if Y 6= X.

For the induction step:

• If B = B1 � B2, then ord(Bi) ≤ maxi=1,2 ord(Bi) = ord(B) ≤ n and the induc-
tion hypothesis applies. Thus ord(Bi[ρX.A/X]) ≤ n, hence ord(B[ρX.A/X]) =
maxi=1,2 ord(Bi[ρX.A/X]) ≤ n.

• If B = ρY.C for ρ ∈ {µ, ν}, then ord(B[ρX.A/X]) = ord(C[ρX.A/X]) ≤ n, since
ord(C) = ord(B) ≤ n and the induction hypothesis applies again.

• The interesting case is B = C → D. Since X occurs only strictly positively, we have
that C[ρX.A/X] = C, thus ord(C[ρX.A/X]) = ord(C) ≤ ord(B)−1. By induction,
we have that ord(D[ρX.A/X]) = k ≤ n as in the other cases and, by combining
these arguments, we find ord(B[ρX.A/X]) = max{ord(C) + 1, k} ≤ n.

Thus, by induction, we have ord(B[ρX.A/X]) ≤ n for any B with ord(B) ≤ n = ord(A)
and X occurring only in strictly positive position. Using B = A, we get the desired
result.

The order of types allows us to stratify the inductive definition in Def. 3.1. By definition
of ord and Lem. 3.3, we have that tests used in the premises of the rules in Def. 3.1 are
on types of order less or equal to that of types used in the conclusion. In particular, for
tests on function types A→ B, we have that ord(A) < ord(A→ B), allowing us to define
tests on A → B since TestsA and ONA are fully defined already. Thus, the induction in
Def. 3.1 is well-founded.

To ease readibility, we use the notation ON =
⋃
A∈Ty ONA. Note that ON ⊆ SN by

definition, and so all terms in ON have a WHNF.

Remark 3.4. We could have called terms in ON persistently strongly normalising, in
analogy to the similar notion of typed λ-calculus [7, Sec. 17.2], but we favour the name
observationally normalising since it fits our setting better.

Definition 3.5 (Test satisfaction, observational equivalence). Let t ∈ Λ(A). We say that
t satisfies a test ϕ : A, if t �A ϕ holds, given as follows.

t �A > always holds

t �A ⊥ never holds

t �A1+A2 [ϕ1, ϕ2] iff ∃t′. t ≡ κi t′ and t′ �Ai ϕi

t �µX.B α−1 ϕ iff ∃t′. t ≡ α t′ and

t′ �B[µX.B/X] ϕ

t �νX.B [ξ]ϕ iff ξ t �B[νX.B/X] ϕ

t �A1×A2
[πi]ϕ iff πi t �Ai

ϕ

t �B→C [v]ϕ iff t v �C ϕ.

Two terms t1, t2 ∈ Λ(A) are observationally equivalent, written t1 ≡Aobs t2, if they satisfy
the same tests:

t1 ≡Aobs t2 iff ∀ϕ : A. t1 �A ϕ⇔ t2 �A ϕ.

If ti = rlet Σ in ti for some Σ, then we define

Σ ` t1 ≡Aobs t2 iff t1 ≡Aobs t2.
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For a context Γ, we say that a substitution σ is ON-Γ-closing, if dom(Γ) ⊆ dom(σ)
and for every x ∈ dom(Γ), σ(x) : Γ(x) is a closed ON-term. We denote by Subst(Γ) the
set of all ON-Γ-closing substitutions. We say that two open terms t1, t2 with Γ ` t1, t2 : A
are observationally equivalent, if for all ON-Γ-closing σ we have that t1[σ] ≡Aobs t2[σ] and

denote this by Γ ` t1 ≡Aobs t2. Analogously, we define ON Γ
A to be the set of all terms t

such that t[σ] ∈ ONA for any ON-Γ-closing substitution σ.

In what follows, we will frequently omit the type sub- and superscripts and simply
write �, J−K and ≡obs when the typing can be inferred from the context.

Remark 3.6. We have given an interpretation of tests on A as terms of type A → Bool,
this is similar to the notion of observation from λ-calculus [7, 3.5], but there observations
are any terms of function type, whereas we restrict to special terms in order to identify
more terms. Moreover, we can restrict to Boolean-valued observations, since one can show
that allowing any type B as observation output yields the same notion of observational
equivalence. This connection with λ-calculus is one reason for the name “observational
equivalence”, another is that our notion is an instance of the coalgebraic notion of observ-
able behaviour, as we will see in Sec. 5.

The requirement in Def. 3.1 that arguments to functions are closed and observationally
normalising is crucial, since without it we can distinguish terms that should be equated.
For example, let f = λx. α x and g = λ{αx 7→ x} : µX.A → A[µX.A/X], and let Ω be
the divergent term Ω = rletω : µX.A = {· 7→ ω} inω (of type µX.A). This term does not
have a WHNF, hence f(gΩ) ≡ α(gΩ) 6≡ Ω ≡ id Ω. This means that, if we would allow
Ω as function argument, the test [Ω]> would distinguish f ◦ g and id, thus f ◦ g 6≡obs id.
However, we want that f : A[µX.A/X] → µX.A is an initial algebra and so f has to be
the inverse of g modulo observational equivalence. Hence we cannot allow terms like Ω as
arguments.

A pair of terms that is, rightfully, distinguished by observational equivalence is H const0

and H const1, where consta is the stream everywhere equal to a. For example, the formula
[const0] [hd]ϕ=1, where ϕ=1 : Nat tests for equality to 1, distinguishes them. On the other
hand, proving that two terms are observationally equivalent is typically done by induction
on tests.

The following lemma shows that the definition of observational equivalence of open
terms makes sense.

Lemma 3.7. For all x : A ` ti : B with i = 1, 2, we have

x : A ` t1 ≡Bobs t2 ⇔ λx.t1 ≡A→Bobs λx.t2 (1)

The next lemma states a number of fundamental properties that we need for showing
that types and terms indeed form a category in the next section.

Lemma 3.8. Observational equivalence ≡obs has the following properties.

(i) Substitutivity: if Σ ` t1 ≡Aobs t2 and Σ;x : A ` r : B with t1, t2 ∈ ONA and

r ∈ ON x:A
B , then Σ ` r[t1/x] ≡Bobs r[t2/x].

(ii) ≡obs is an equivalence relation.

(iii) ≡obs is a congruence on closed terms in ON.

(iv) If t1 ≡Aobs t2, then for all f with ` f : A→ B we have f t1 ≡Bobs f t2.
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(v) ≡obs strictly contains convertibility (i.e., ≡ ⊂ ≡obs).

(vi) ≡obs implies extensionality for terms of function type: if t1, t2 : A→ B and t1 v ≡obs

t2 v for all v : A in ON, then t1 ≡obs t2.

(vii) ≡obs contains η-equivalence: λx.tx ≡obs t, x 6∈ fv(t).

Most of these properties are straightforward to prove, only substitutivity (i) requires
a bit more work. The proof uses the rather technical Lem. 3.9 below, which is formulated
more generally than needed in the proof of Lem. 3.8, because its proof then becomes
easier and we can reuse it later in Sec. 4.2. To ease the formulation of the lemma, we use
conjunctions of tests. Given tests ϕ1, ϕ2 : A, their conjunction ϕ1 ∧ϕ2 is satisfied by t : A
if t � ϕi for both i = 1 and i = 2.

Lemma 3.9. Let f ∈ ON Γ
A and let τ ∈ Subst(Γ). For all tests ϕ : A with f [τ ] � ϕ there

are conjunctive tests {ψx}x∈dom(Γ) such that

(i) τ(x) � ψx for all x ∈ dom(Γ) and

(ii) for all σ ∈ Subst(Γ), if σ(x) � ψx for all x ∈ dom(Γ), then f [σ] � ϕ.

Proof. We only sketch the proof. Since f is in ON Γ
A, JϕK(f [τ ]) is strongly normalising,

thus there is a finite reduction sequence JϕK(f [τ ]) N to a normal form. We obtain the
family {ψx} by induction in this reduction sequence. In this induction, two cases have to
be distinguished: either τ(x) is contracted within an evaluation context e, in which case
ψx is extendend by the modalities given by e, or τ(x) is used as a function argument in a
contraction. In the latter case, we reduce the corresponding function to λD or a symbol
g, and extend ψx by the pattern of D or g that matched τ(x). Note that λD and g are
similar to what Abramsky [4] calls principal weak head normal forms.

Proof of Lemma 3.8. (i) To show that r[t1/x] ≡obs r[t2/x], we show that both terms
simultaneously satisfy any test ϕ : B.

First, assume that r[t1/x] � ϕ. Lemma 3.9 gives us that for τ = [t1/x] there is
a test ψ : A, using the context Γ = x : A, such that t1 � ψ and if t2 � ψ, then
r[t2/x] � ϕ. Since t1 ≡obs t2, both terms simultaneously satisfy and thus t2 satisfies
ψ and r[t2/x] � ϕ.

Vice versa, r[t2/x] � ϕ implies, in the same way, that r[t1/x] � ϕ. Summarising, the
terms r[t1/x] and r[t2/x] satisfy the same tests, hence are observationally equivalent.

(ii) This follows immediately from ≡ being an equivalence.

(iii) Since we are only interested in closed terms, a context is just a term with a free
variable, hence (i) and (ii) apply.

(iv) This is just the combination of (i) and Lem. 3.7.

(v) The inclusion is proved by induction in tests and (ii). It is strict by, e.g., item (vi).

(vi) Trivially by the shape of tests on A→ B.

(vii) Let t : A→ B be a term with x 6∈ fv(t). For every v ∈ ONA, we have (λx.(t x)) v ≡
t v and hence by (v) and (vi) the equivalence λx.(t x) ≡obs t tollows.
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Finally, we note that ≡obs is not trivial, that is, the equational theory ≡obs is consistent
according to [8, Def. 2.1.30].

Proposition 3.10. The equational theory ≡obs is consistent.

Proof. The terms tt,ff : Bool are not observationally equivalent, as they are distinguish-
able by the test [>,⊥]. Hence ≡obs is consistent.

4 Semantic Properties of Observational Equivalence

We now investigate the semantic implications of taking observational equivalence as equal-
ity on terms.

In the first part, we show that by identifying observationally equivalent function terms,
we obtain (co)inductive proof principles for reasoning about programs. These proof prin-
ciples are organised in a category T↓ in which the objects are types and the arrows are
(well-formed), observationally normalising terms of type A → B modulo observational
equivalence. We show that this category has coproducts, is Cartesian closed, and that
µ-types are initial algebras and ν-types are final coalgebras. The proof principles are thus
given by the unique mapping properties of the corresponding structures. In the last part,
we show that tests induce a topology on T↓ which makes functions continuous, and in the
the case of streams we recover the standardly used prefix topology.

4.1 Category of Observationally Equivalent Terms

We start by briefly recalling the basic definitions of (co)algebras and the unique mapping
properties of initial algebras and final coalgebras. For more details, we refer to [42, 27, 14].
Let C be a category, and F : C → C an endofunctor. An F -algebra is a C-arrow a :
FA → A in C. A homomorphism of F -algebras from a : FA → A to a′ : FA′ → A′ is
a C-arrow f : A → A′ such that a′ ◦ F (f) = f ◦ a. An initial F -algebra is an F -algebra
β : F (µF )→ µF with the property that for every F -algebra a : FA→ A there is a unique
homomorphism a from β to a. We call a the inductive extension of a.

Dually, an F -coalgebra is a C-arrow c : X → FX, and a homomophism of F -coalgebras
from c : X → FX to c′ : X ′ → FX ′ is a C-arrow f : X → X ′ such that f ◦ c = c′ ◦ T (f).
A final F -coalgebra ω : νF → F (νF ) is such that for any F -coalgebra c : C → F (C), there
is a unique homomorphism c̃ from c into ω, called the coinductive extension of c.

These unique mapping properties give rise to proof principles. For initial algebras, we
get the familiar induction principle. Dually, the coinduction principle can be used to show
that two functions h1, h2, whose codomain is the carrier of a final coalgebra, are equal by
showing that they are homomorphisms, as illustrated in the diagram on the right.

X νF

FX F (νF )

c

h1

h2

ω
F (h1)

F (h2)

The coalgebra c can be seen as a system of corecursive equa-
tions, and the diagram then states that h1 and h2 are both
solutions to these equations. In our setting, h1 and h2 are pro-
grams that define some computation. For example, h1 could
be an abstract description and h2 a concrete implementation.
In our category, equality will be observational equivalence, and
hence we can use the coinduction principle to show that the implementation is observa-
tionally equivalent to the specification.
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We first note that it is possible to define a basic category with types as objects and
function terms modulo observational equivalence as arrows. However, this category will
not have the desired properties. In order to ensure the existence of coproducts and initial
algebras, we must restrict arrows to observationally normalising terms. This restriction
is possible since one can easily check that observationally normalising function terms are
closed under composition. Moreover, in order to obtain an initial object, we must extend
our notion of well-covering to include so-called trivial types, as we explain now.

A good candidate for the initial object is 0 = µX.X with the term λ{} : µX.X → A
(abstraction without cases) as the unique map for any object A. However, the term λ{}
is not well-covering by the definition of the covering relation in Def. A.1. The reason is
that, if we would allow the term λ{} : A → B for arbitrary types A, then, given a term
t : A, the application (λ{}) t cannot be reduced to a WHNF and the computation would
get stuck. However, if we can ensure that there are not closed terms of type A, then this
is not a problem, as the application (λ{}) t could never occur. This is captured by the
following definition of trivial types.

Definition 4.1. A type A is called trivial, if A = µX.X or, for trivial types A1, A2, C, if
A = A1 ×A2, A = A1 +A2, A = B → C or A = µY.C.

The notion of a trivial type is known from domain theoretic models for λ-calculus
with fixed point types, where the denotation of trivial types is isomorphic to that of 1 [7,
Sec. 10.3]. This is reflected by Lem. 4.2.(i).

Lemma 4.2. Let A be a trivial type, then

(i) |Λ(A)/≡obs| = 1, and (ii) Λ(A) ∩ON = ∅.

The second part of this lemma gives us that there are no observationally normalising
terms of trivial type. Hence, since we restrict ourselves in the following to terms in ON,
we can safely allow the term λ{} without losing the existence of WHNFs, and thus extend
the covering relation from Sec. 2 such that A C| ∅ whenever A is a trivial type. With this
definition, λ{} : µX.X → A is well-covering.

We can now finally define our category of interest.

Definition 4.3. Let Λ(A) denote the set of all closed terms of type A that are well-
covering with respect to the extended covering relation. For A ∈ Ty, we let

T (A) = (Λ(A) ∩ON)/≡obs.

We define T↓ to be the category in which objects are types from Ty and arrows are given by
HomT↓(A,B) = T (A→ B). The identity arrows are the equivalence classes of idA = λx.x
and composition is given by composition of representatives: g ◦ f = λx.g(fx).

Note that we can find a WHNF for terms in Λ(A)∩ON, since, by Lem. 4.2.(ii), there
is no term in ON to which λ{} can be applied. Also, note that composition is well-defined
due to Lem. 3.7.

Notation 4.4. In what follows, we will implicitly pick representatives for the observational
equivalence classes in T (A). For example, when we say that a term t : C → D is an arrow
in T↓, we mean the observational equivalence class of which t is a representative.

In the rest of the section we show that T↓ has the desired properties.
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Theorem 4.5. The category T↓ has all finite coproducts and is Cartesian closed.

Proof. The final object in T↓ is given by the type 1 = νX.X and for any type A, the
final arrow !A : A → 1 is !A = λx.〈〉. Uniqueness is ensured as all terms of type 1 are
observationally equivalent to 〈〉.

The binary product of types A1, A2 is the type A1 ×A2 together with the projections
πi : A1 × A2 → Ai, i = 1, 2. If we are given arrows fi : B → Ai for i = 1, 2 we define the
product arrow 〈f1, f2〉 : B → A1 ×A2 to be

〈f1, f2〉 = λx.λ{π1 · 7→ f1 x ; π2 · 7→ f2 x}.

This arrow clearly fulfils πi ◦ 〈f1, f2〉 ≡ λx.πi(〈f1, f2〉x) ≡ λx.(fi x) ≡obs fi. Moreover, it
is unique with this property modulo observational equivalence, i.e., if f : B → A1 ×A2 is
such that πi ◦ f ≡obs fi then f ≡obs 〈f1, f2〉:

f ≡obs λx.f x

≡obs λx.λ{π1 · 7→ π1(f x) ; π2 · 7→ π2(f x)}
≡obs λx.λ{π1 · 7→ (π1 ◦ f)x ; π2 · 7→ (π2 ◦ f)x}
≡obs λx.λ{π1 · 7→ f1 x ; π2 · 7→ f2 x}
= 〈f1, f2〉

We take 0 = µX.X as initial object for any type A, the initial arrow !A : 0 → A is
!A = λ{}. Since there are no observationally normalising terms of type 0 (by Lem. 4.2.ii),
the only tests on 0→ A are > and ⊥, hence all terms of type 0→ A are observationally
equivalent, and thus !A is unique.

Next, the binary coproduct of A1, A2 is given by A1 + A2 with inclusions κi : Ai →
A1 + A2, i = 1, 2. For terms fi : Ai → B we can form the case distinction [f1, f2] : A1 +
A2 → B by [f1, f2] = λ{κ1 x 7→ f1 x ; κ2 x 7→ f2 x} which factors through the inclusions:
[f1, f2] ◦ κi ≡obs fi. By normalisation we find that [f1, f2] is again unique with this
property. To this end, let O ∈ Obs(A1 +A2 → B) be any observation, then

O f ≡ O′(f u) O′ ∈ Obs(B), u : A1 +A2 closed, u ∈ ON

≡ O′(f(κiu
′)) u′ : Ai by normalisation

≡ O′((f ◦ κi)u′) λx.O′(xu′) ∈ Obs(Ai → B)

≡ O′(fi u′)
≡ O′(([f1, f2] ◦ κi)u′)
≡ O′([f1, f2] u)

≡ O [f1, f2]

So f ≡obs [f1, f2] and hence A1 +A2 is the coproduct of A1, A2.
Finally, we show that T↓ is Cartesian closed. The exponential functor (−)B : T↓ → T↓

is, as expected, given by CB = B → C and tB = λf.f ◦t. We need to show (−)×B a (−)B ,

which we do by giving a natural isomorphism ρ : Hom((−)×B, (−))
∼=−→ Hom((−), (−)B).

We define ρA,C : Hom(A × B,C) → Hom(A,CB) to be ρA,C(f) = λa.λb.f (a, b), and its
inverse to be ρ−1

A,C(g) = λx.g (π1 x) (π2 x).
These are well-defined mappings in the sense that f ≡obs f

′ implies that ρA,C(f) ≡obs

ρA,C(f ′) and the same for ρ−1, hence these maps respect equivalence classes.
Naturality of ρ is given as follows. Let t1 : A′ → A and t2 : C → C ′, we need to

show that Hom(t1 ×B, t2)(ρA,C(f)) = ρA′,C′(Hom(t1, t
B
2 )(f)) for all f : A×B → C. By



18 Observational Equivalence for Inductive-Coinductive Programs

definition, we get

Hom(t1 ×B, t2)(ρA,C(f)) = Hom(t1 ×B, t2)(λa.λb.f (a, b))

= (λh.t2 ◦ h) ◦ (λa.λb.f (a, b)) ◦ t1
≡ λx.

(
(λh.t2 ◦ h)((λa.λb.f (a, b))(t1 x))

)
≡ λx.

(
(λh.t2 ◦ h)(λb.f (t1 x, b))

)
≡ λx.t2 ◦ (λb.f (t1 x, b))

≡ λx.λy.t2 (f (t1 x, y))

and

ρA′,C′(Hom(t1, t
B
2 )(f)) = ρA′,C′(t2 ◦ f ◦ (t1 × idB))

= λa.λb.(t2 ◦ f ◦ (t1 × idB)) (a, b)

≡ λa.λb.t2(f (t1 a, b))

which are the same modulo renaming. Thus ρ is a natural transformation.
It remains to be proved that ρ and ρ−1 are indeed inverses of each other. The direction

ρA,C ◦ ρ−1
A,C = id is easy:

ρA,C(ρ−1
A,C(g)) = λa.λb.ρ−1

A,C(g)(a, b)

≡ λa.λb.g (π1 (a, b)) (π2 (a, b))

≡ λa.λb.g a b
≡obs g

Showing ρ−1
A,C ◦ ρA,C = id is slightly more complicated. First, we notice that for all

u ∈ ONA×B we have that (π1 u, π2 u) ≡obs u. This implies that for all f ∈ ONA×B→C
we get f (π1 u, π2 u) ≡obs f u by substitutivity (Lemma 3.8), which in turn implies that
λx.f (π1 x, π2 x) ≡obs f . This gives us

ρ−1
A,C(ρA,C(f)) = λx.ρA,C(f) (π1 x) (π2 x)

≡ λx.f (π1 x) (π2 x)

≡obs f

by the above discussion. Thus ρ−1
A,C ◦ ρA,C = id and each ρA,C is an isomorphism.

Since ρ−1 is the inverse of ρ, it is natural as well, thus (−)×B is left-adjoint to (−)B

and T↓ is Cartesian closed.

Next we prove that we can define for each type A, satisfying certain conditions, a
functor FA on T↓, and that fixed point types are initial algebras or final coalgebras for
such functors. These two results are proved my mutual induction, since initial algebras
and final coalgebras are used to define functors from fixed point types, and conversely,
functoriality is needed to obtain initial algebras and final coalgebras for smaller types.

First, we define FA on objects, which is independent of the mutual induction.

Definition 4.6 (Functors from types, on objects). For a type A in a context X1, . . . , Xn

we define a map on objects of product categories

FA : (T↓)n → T↓ by substitution FA(B1, . . . , Bn) = A[B1/X1, . . . , Bn/Xn].
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Recall that arrows (C1, . . . , Cn) → (D1, . . . , Dn) in a product category are tuples
(t1, . . . , tn) with ti : Ci → Di. We denote such a tuple by

#—
t and, analogously, we de-

note objects by
#—

C = (C1, . . . , Cn). If n = k + 1 and
#—

C = (C1, . . . , Ck), then we denote by

F
#—
C
A : T↓ → T↓ the mapping F

#—
C
A (D) = FA

(
#—

C,D
)

= FA[
#—
C/

#—
X](D). Moreover, we use the

following notation:

µF
#—
C
A = µX.A[

#—

C/
#—

X], αF
#—
C
A

= λx. α x : F
#—
C
A

(
µF

#—
C
A

)
→ µF

#—
C
A ,

νF
#—
C
A = νX.A[

#—

C/
#—

X], ξF
#—
C
A

= λx. ξ x : νF
#—
C
A → F

#—
C
A

(
νF

#—
C
A

)
.

Finally, if k = 0, then we drop the superscript
#—

C and simply write FA.
We start the mutual induction by defining the action of FA on arrows.

Lemma 4.7 (Functors from types, on arrows). For A a type in a context X1, . . . , Xn, we

define FA on an arrow
#—
t :

#—

C → #—

D inductively as follows.

FXi(t1, . . . , tn) = ti

FµX.A
( #—
t
)

=
(
αF

#—
D
A
◦FA

(
#—
t , idµF

#—
D
A

))
FA+B

( #—
t
)

= FA
( #—
t
)

+ FB
( #—
t
)

FνX.A
( #—
t
)

=
(
FA

(
#—
t , idνF

#—
C
A

)
◦ ξF #—

C
A

)∼
FA×B

( #—
t
)

= FA
( #—
t
)
× FB

( #—
t
)

FA→B(
#—
t )(f) = FB(

#—
t ) ◦ f

The bar and tilde superscripts denote inductive and coinductive extensions with respect to
αF

#—
C
A

and ξF
#—
D
A

.

Proof. We proceed by induction in A. In the base case A = Xi, we note that FXi
is the

ith projection from the product category, hence a functor.
To prove the induction step, Thm. 4.5 is used to show the functor laws for the compound

types A+B, A×B and A→ B. The case for the fixed point types was essentially provd
in e.g. [28]. We provide the details for convenience. Consider the fixed point type νX.A.
By induction hypothesis, FA : (T↓)n → T↓ is a functor. By Lem. 4.9 (see below), the

functors F
#—
C
A and F

#—
D
A have as final coalgebras ξF

#—
C
A

and ξF
#—
D
A

, and we take FνX.A(
#—
t ) to be

the coinductive extension of

νF
#—
C
A

ξ
F

#—
C
A−−−→ FA(

#—

C, νF
#—
C
A )

FA(
#—
t ,id)−−−−−−→ FA(

#—

D, νF
#—
C
A ).

The functor laws follow from uniqueness, see e.g. [28]. The case A = µX.A is treated
analogously.

Remark 4.8. Def. 4.6 and Lem. 4.7 can be proved more generally for types A in which
variables Xi occur in either negative position or in positive position. However, since we
restrict to strictly positive types the current formulation suffices.

The following lemma is needed in the induction step for fixed points in the proof of
Lem. 4.7.

Lemma 4.9. For any type A with a single free variable X, if the associated FA defined
in Def. 4.6 and Lem. 4.7 is a functor, then αFA

is the initial algebra and ξFA
the final

coalgebra of FA.
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Proof. Clearly, the algebra and coalgebra structures have the correct types FA(µX.A)→
µX.A and νX.A → FA(νX.A), respectively. Well-covering and observational normali-
sation are evident, as well. For terms a : FAC → C and c : C → FAC, we define the
terms

a : µFA → C

a (αx) = (a ◦ FAa)x
and

c̃ : C → νFA

ξ (c̃ x) = (FAc̃ ◦ c)x.

Clearly, both a and c̃ are closed, typeable and well-covering. With a bit of effort, one can
prove that they are also in ON, hence they represent arrows in T↓.

We must show that a and c̃ are well-defined, i.e., that they are independent of the
choice of representative, and that they are in fact (co)inductive extensions. We achieve
this by proving that the terms a and c̃ fulfil the homomorphism equations, and then
applying Lem. 4.10 (below).

First, c̃ is an FA-coalgebra homomorphism since

ξFA
◦ c̃ ≡ λx. ξ(c̃ x) ≡ λx.(FAc̃ ◦ c)x
≡ λx.(FAc̃)(c x) ≡ FAc̃ ◦ c.

For any other representative c′ with c′ ≡obs c, we get that c̃′ is a homomorphism as well,
which we use to show that c̃′ ≡obs c̃ as follows. For any non-trivial test ψ : C → νX.A, we
must have that ψ = [v] [ξ]ψ′ for some v : C and test ψ′ : FA(νX.A). Applying Lem. 4.10.1
to c and the test ϕ = [v]ψ′ : C → FA(νX.A), we obtain a term t : C → FA(νX.A) such
that t � ϕ⇔ ξFA

◦ c̃ � ϕ⇔ c̃ � ψ and t � ϕ⇔ ξFA
◦c̃′ � ϕ⇔ c̃′ � ψ. Since this holds for

any ψ, we have c̃′ ≡obs c̃.
In the same way, we show that c̃ is unique up to observational equivalence, by applying

Lem. 4.10.1 to any other FA-coalgebra homomorphism f from c to ξFA
. Note that in this

case the choice of representative from f does not matter.
Analogously, a is well-defined and an FA-algebra homomorphism by an application of

Lem. 4.10.2. So a and c̃ are the unique extensions of a and c, respectively. Hence αFA
is

the initial algebra and ξFA
is the final coalgebra of FA.

The following lemma is used in the proof of Lem. 4.9.

Lemma 4.10. Let A be a type with a single free variable X and assume that FA as defined
in Def. 4.6 and Lem. 4.7 is a functor.

1. For every FA-coalgebra term c : C → FAC and test ϕ : C → FA(νX.A), there is a
term t : C → FA(νX.A), such that for any FA-coalgebra homomorphism f : C →
νX.A from c to ξFA

, we have t � ϕ⇔ ξFA
◦f � ϕ.

2. For every FA-algebra term a : FAC → C and test ϕ : FA(µX.A)→ C, there is a term
t : FA(µX.A) → C, such that for every FA-algebra homomorphism f : µX.A → C
from αFA

to a, we have t � ϕ⇔ f ◦ αFA
� ϕ.

Proof. We only sketch the proof for the first item. Since f is an FA-coalgebra homomor-
phism, we have ξFA

◦f � ϕ ⇔ FAf ◦ c � ϕ hence it suffices to prove the existence of a t
with t � ϕ⇔ FAf ◦ c � ϕ. We do this by proving the following claim.

For any subexpression (or ingredient) B of A, any term c′ : C → FBC and any
test ψ : C → FB(νX.A) there is a t : C → FB(νX.A), such that for any FA-coalgebra
homomorphism f from c to ξFA

the equivalence t � ψ ⇔ FBf ◦ c′ � ψ holds. The result
then follows by taking c′ = c and ψ = ϕ. The claim can be proved by induction in ψ.
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From Lem. 4.7 and Lem. 4.9 the main result of this section follows.

Theorem 4.11. For all types A with a single free variable, the functor FA has an initial
algebra with carrier µX.A, and a final coalgebra with carrier νX.A.

We demonstrate Lem. 4.7 and Lem. 4.9 on a mixed fixed point type.

Example 4.12. Recall the type LFairAB = νX.µY.A × X + B × Y . The type L =
A × X + B × Y with free variables X,Y induces a functor FL : T↓ × T↓ → T↓ by
FL(C,D) = A × C + B × D. Since for any type C, the type µY.A× C +B × Y is the
carrier of an initial algebra of FCL = FL(C,−) (cf. Lem. 4.9), the construct FµY.L as defined
in Lem. 4.7 is a functor. Now, we find by Lem. 4.9 that FµY.L has a final coalgebra, whose
carrier is LFairAB.

We illustrate coinduction as proof principle by an elaborate example.

Example 4.13. In Ex. 2.4 we defined a map H : Str Nat → Str Nat → Str Nat of mixed
inductive-coinductive type. We also gave a direct definition by explicitly indexing into
streams. In this example, we show that both definitions give rise to the same map.

The basic step is to make the coinduction principle applicable. Since streams are a final
coalgebra, we redefine H to H1 : Str Nat×Str Nat → Str Nat by H1 x = H (π1 x) (π2 x),
using that T↓ is Cartesian closed. Now the codomain of H1 is a final coalgebra and the
corresponding coinduction principle is applicable.

Let us give the formal definition of the version of H that uses the explicit indexing. To
this end, we define a higher derivative on streams.

∂ : Nat→ StrA→ StrA

∂ 0 s = s

∂ (k + 1) s = ∂ k (tl s)

Moreover, we need a map that sums the first k entries in a stream:∑
≤ : Nat→ Str Nat→ Nat∑
≤0 s = 0∑
≤k+1 s = (hd s) +

(∑
≤k(tl s)

)
.

Using these maps, we can define the alternative version of H with explicit indexing by:

H2 : Str Nat× Str Nat→ Str Nat

H2 (s, t) = toStr (g s t)

g : Str Nat→ Str Nat→ (Nat→ Nat)

g s t n = hd
(
∂
(∑

≤n+1 t
)
s
)

This uses one part of the isomorphism ANat ∼= StrA:

toStr : (Nat→ A)→ StrA

hd (toStrh) = h 0

tl (toStrh) = toStr (λn.h (n+ 1)).

With all this set up, we can show that H1 ≡obs H2. This is where the universal property
of final coalgebras comes into play, since we can define a coalgebra c, such that H1 and
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H2 are coalgebra homomorphisms from c into the final coalgebra. Hence, by uniqueness,
they must be equal.

We use a coalgebra on the type C = Str Nat× Str Nat given by c : C → Nat×C with
c(s, t) = (hd r, (r, tl t)) where r = ∂ (hd t) s.

First, we show that H1 is a coalgebra homomorphism. To do this, we need the following
intermediate result. For all n, s and t we have that

f 0 (∂ n s) t ≡ f n s t, (2)

which is proved by induction in n. Using this result, we can show ξ ◦H1 ≡obs (id×H1) ◦ c
by a simple calculation. Letting r = ∂ (hd t) s, we have

(id×H1)(c(s, t)) ≡ (id×H1)(hd r, (r, tl t))

≡ (hd r,H1 (r, tl t))

≡ (hd r,H r (tl t)) Def. H1

≡obs ξ(f 0 r t) Def. f (both cases for 0 combined)

≡ ξ(f (hd t) s t) by (2)

≡ ξ(H s t) Def. H

≡ ξ(H1(s, t))

Hence, ξ ◦H1 ≡obs (id×H1)◦c by extensionality (Lem. 3.8.(vi)) and H1 is a homomorphism
from c to ξ.

To show that H2 is a homomorphism as well, we need again two intermediate results:

hd r ≡ hd(H2 s t) (3)

H2(r, tl t) ≡obs tl(H2 s t) (4)

First, we establish the equation for the head of H2, that is, equation (3).

hd (H2 s t) ≡ hd (toStr(g s t))

≡ g s t 0

≡ hd
(
∂
(∑

≤1 t
)
s
)

≡ hd(∂ (hd t) s) by hd t+ 0 ≡ hd t

≡ hd r

To establish (4), we need two intermediate results. The first result shows that ∂ is
linear in the first argument. It can be proved by induction in n.

∂ (n+m) s ≡ ∂ m (∂ ns) (5)

The second result is concerned with the evaluation of g at n+ 1.

g s t (n+ 1) ≡ hd
(
∂
(∑

≤n+2 t
)
s
)

≡ hd
(
∂
(

(hd t) +
(∑

≤n+1(tl t)
))

s
)

Def. of sum

≡ hd
(
∂
(∑

≤n+1(tl t)
)

(∂ (hd t) s)
)

by (5)

≡ g (∂ (hd t) s) (tl t)n

(6)
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Using these two equations, we can establish (4).

tl(H2 s t) ≡ tl(g s t)

≡ toStr(λn.(g s t (n+ 1)))

≡ toStr(λn.g (∂ (hd t) s) (tl t)n) by (6)

≡obs toStr(g (∂ (hd t) s) (tl t)) by extensionality

≡ H2(∂ (hd t) s, tl t)

≡ H2(r, tl t)

This concludes the intermediate results and we can finally show that H2 is a homo-
morphism:

(id×H2)(c(s, t)) ≡ (id×H2)(hd r, (r, tl t))

≡ (hd r,H2 (r, tl t))

≡ (hd(H2 s t),H2 (r, tl t)) by (3)

≡obs (hd(H2 s t), tl(H2 s t)) by (4)

≡obs ξ(H2 s t)

So ξ ◦H2 ≡obs (id×H2) ◦ c follows from extensionality.
Summarising, we have that both H1 and H2 are homomorphisms from c to ξ and

thus must be, by uniqueness, observationally equivalent. Hence, up to currying, H is
observationally equivalent to H2, which is given by explicit indexing.

4.2 Topological Properties

In this section we show that tests induce in a natural way a topology such that arrows in
T↓ are continuous. This result relates our work to the constructive view that computable
functions are continuous functions, cf. [12]. We also show that on streams and other coin-
ductive types, this topology coincides with the commonly used prefix-induced topology.
This tells us that observational equivalence does not identify too much.

Definition 4.14 (Topology on T (A)). Given a term t ∈ T (A) and a test ϕ : A, we define

Uϕ(t) = {t′ ∈ T (A) | t � ϕ⇔ t′ � ϕ}.

The topology ΘA on T (A) is generated by the subbase

U (A) = {Uϕ(t) | ϕ : A, t ∈ T (A)}.

Note that the definition of Uϕ(t) is independent of the choice of representative t by the
definition of ≡obs.

We give a topological interpretation of T↓ by defining a functor F : T↓ → Top to the
category of topological spaces and continuous maps as follows.

for all types A ∈ Ty, F (A) = (T (A),ΘA)

for all t ∈ T (A→ B), F (t) = t̂ : T (A)→ T (B)
(7)

where t̂ evaluates t on arguments, that is, for s ∈ T (A), t̂(s) = t s. Note that t̂ is well-
defined due to Lem. 3.7, and F preserves identity and composition since id s ≡ s and
(t̂2 ◦ t1)(s) ≡ t2 (t1 s) = t̂2(t̂1(s)). It remains to show that for terms t, t̂ is continuous.

Lemma 4.15. For any t ∈ T (A → B), the map t̂ : T (A) → T (B) is continuous with
respect to ΘA and ΘB.
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Proof. Let U = Uϕ(t′) ∈ U (B) be a subbasic open set. We show that for each s in t̂←(U),
the t̂-preimage of U , that there is an open set Vs ⊆ t̂←(U) containing s. It follows that
t̂←(U) =

⋃
s Vs is open, hence t̂ is continuous.

We have s ∈ t̂←(U) iff t s ∈ Uϕ(t′) iff U = Uϕ(t s). By letting f = t x we have that

f ∈ ON x:A
B and f [s/x] � ϕ, and we obtain from Lem. 3.9 a conjunctive test ψ : A such

that s � ψ, and for all s′ ∈ ONA, s′ � ψ implies that f [s′/x] � ϕ. In terms of open sets,
this implies that Uψ(s) ⊆ t̂←(U). Furthermore, Uψ(s) is open since it is the intersection
of the subbasic opens Uψi

(s) for conjuncts ψi of ψ, and hence continuity of t̂ follows by
taking Vs = Uψ(s).

Proposition 4.16. The map F defined in (7) is a functor F : T↓ → Top.

We finish the topological investigation by relating the topology ΘA to classical topolo-
gies. To this end, let us, for a test s : A and a type B, denote by s application to s, that
is, s : (A→ B)→ B with s = λf.(f s). We characterise the topology on ΘA as “extreme”
for the corresponding canonical maps.

Theorem 4.17. The topologies ΘA1×A2 , ΘνX.A and ΘA→B are initial with respect to

{π̂1, π̂2}, ξ̂ and {ŝ | s ∈ ONA}, respectively (that is, the coarsest topology making these
maps continuous). On the other hand, ΘA1+A2

and ΘµX.A are final (i.e., the finest topol-
ogy) for {κ̂1, κ̂2} and α̂, respectively.

As an example, let A be a type such that ΘA is discrete, for example A = Nat. It is
easy to see that in this case the topology on StrA is induced by the usual prefix metric,
given by d(x, y) = 2−k with k = min{k | hd tlk x 6≡ hd tlk y}.

5 Proof Techniques

In this section, we present coinductive methods for proving that two terms are observa-
tionally equivalent, and for proving that a term is observationally normalising. We do
so by defining a transition system on terms such that observational equivalence coincides
with bisimilarity, and hence observational equivalence of two terms can be proved by es-
tablishing a bisimulation relation containing them. On the same transition system, we
show that observational normalisation is a coinductive predicate such that observational
normalisation can be proved by establishing a subset of strongly normalising terms that
is closed under transitions. Moreover, we provide a number of up-to techniques that will
enhance these proof techniques.

5.1 Terms as Transition System

We define a transition structure in which the successors of a term t are the terms (modulo
reductions) that a test can inspect in order to determine whether it is satisfied by t. For
example, a term t of type C = A1 + A2 can either be reduced to a term of the form κi t

′

for some i and term t′ : Ai, or t does not have a WHNF. In the first case, the successors of
t are all those t′ such that t κi t

′ (these are the terms that will be inspected by tests).
In the second case, no further inspection is possible and there is no outgoing transition
from t.

Formally, the transition structure of terms is a coalgebra in the category of families of
sets indexed by the types of our type system. Let I be a set, the category SetI has as
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objects families of sets X = {Xi}i∈I indexed by I, and as morphisms f : X → Y families
of functions {fi : Xi → Yi}i∈I .

The branching type is given by a functor F : SetTy → SetTy such that for C ∈ Ty,
F (X)C consists of sets indexed by the types of subterms that can be inspected by tests
on type C. Formally, F is defined by:

F (X)C =



∐
i∈{1,2} P (XAi

) + {∗}, C = A1 +A2

P
(
XA[µX.A/X]

)
+ {∗}, C = µX.A∏

i∈{1,2} P (XAi) , C = A1 ×A2

P
(
XA[νX.A/X]

)
, C = νX.A

P (XB)
ONA , C = A→ B

where P (−) is the covariant powerset functor, and for a set U we denote by (−)U the
function space functor. F acts on morphisms in the obvious way. The component for
coproducts was explained above. The other components can be understood similarly
following Def. 3.5.

Let Λ = {Λ(A)}A∈Ty and define the coalgebra on terms δ : Λ→ F (Λ) by

δA1+A2(t) =

{
ιi({t′ : Ai | t κi t

′}), ∃t′. t κi t
′

∗, otherwise

δµX.A(t) =

{
{t′ : A | t α t′}, ∃t′. t α t′

∗, otherwise

δA1×A2
(t)(i) = {t′ : Ai | πi t t′}

δνX.A(t) = {t′ : A | ξ t t′}
δA→B(t)(u) = {t′ : C | t u t′}

Note that δ is well-defined on terms of sum type by confluence.

Example 5.1. We give two examples of the structure δ, the first for an inductive and the
second on a coinductive type. Since δ is a transition system, we use the common way of
displaying such systems by nodes and arrows. A node is labelled by the term it represents.
Transition arrows are provided with a label that indicates how the successor was obtained.

1. We denote by n the representation of a natural number as term, that is, 0 = α(κ1〈〉)
and n+ 1 = α(κ2 n). We display below some of the transitions starting in 1.

1 κ2 0 0 κ1 〈〉 〈〉α κ2 α κ1
ξ

Of course, there are also terms of type Nat that do not have a WHNF. For example,
let Σ be the definition block Σ = (f : Nat = {· 7→ f}), in which case we have
δNat(rlet Σ in f) = ∗.

2. The second example is H. We denote by o, z : Str Nat the streams that are constantly
1 and 0, respectively. We show a part of δ starting at H where o and z are used as
arguments.
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H

H o

H o z f 0 o z

H o (tl z)
1 · · ·

o· · · z nats · · ·

z z
· · · o

hd tl

tl
tl

tl

tl

tl

Remark 5.2. Note that F only distinguishes between inductive and coinductive types:

F (X)C ∼=



∐
i∈{1,2} P (XAi

) + {∗}, C = A1 +A2∐
i∈{∗} P

(
XA[µX.A/X]

)
+ {∗}, C = µX.A∏

i∈{1,2} P (XAi
) , C = A1 ×A2∏

i∈{∗} P
(
XA[νX.A/X]

)
, C = νX.A∏

i∈ONA
P (XB) , C = A→ B

This is interesting because it makes clear how the duality between inductive and coinduc-
tive types arises in the term coalgebra: Observations on inductive types are given by a
reduction WHNF, if possible, and removing the constructor in head position. Observa-
tions for coinductive types, on the other hand, are just given by applying the destructors
of the corresponding type.

5.2 Observational Equivalence as Bisimilarity

In this section, we establish that observational equivalence is a bisimulation. We use the
definition of bisimulation in terms of relation lifting, see e.g. [45]. For a family X ∈ SetTy,
we denote by Rel(X) the poset category of relation families R = {RA}A∈Ty where RA ⊆
XA ×XA, and the order is given by: R v R′ iff RA ⊆ R′A for each A ∈ Ty. The lifting of
F at Λ is defined as the functor F : Rel(Λ)→ Rel(F (Λ)) where F (R) is the image of the

map F (R)
〈F (π1),F (π2)〉−−−−−−−−−→ F (Λ) × F (Λ), where πi : R → Λ, i = 1, 2, are the projections of

R. That is, for all (U1, U2) ∈ F (Λ)A × F (Λ)A,

(U1, U2) ∈ F (R)A ⇐⇒ ∃U ∈ F (R)A : Uk = (Fπk)A(U).

A bisimulation on δ is a relation R ∈ Rel(Λ) such that R v Φ(R) where Φ(R) = (δ ×
δ)−1(F (R)), i.e.,

Φ(R)A = {(t1, t2) ∈ Λ(A)2 | (δA(t1), δA(t2)) ∈ F (R)A}.

We can now formulate the main result of this section.

Theorem 5.3. The largest bisimulation on δ is ≡obs.
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Proof. To show that ≡obs is a bisimulation on δ, we need to show that ≡obsv Φ(≡obs).
So we let t1 ≡Aobs t2 for some type A and show that (t1, t2) ∈ Φ(≡obs)A.

• For A = A1 +A2, we distinguish three cases.

i) The term t1 has a WHNF, i.e., there are i ∈ {1, 2} and t′1 with t1 κi t
′
1. But

then there is a t′2 with t2 κi t
′
2, for otherwise one of the tests [>,⊥] or [⊥,>]

would distinguish t1 and t2, contradicting t1 ≡obs t2. Thus t2 has a WHNF, too.

We show that for t′k with tk κi t
′
k, t′1 ≡obs t

′
2 must hold. In the case i = 1,

assume there is a test ϕ distinguishing t′1 and t′2. Then [ϕ,⊥] distinguishes t1 and
t2, contradicting t1 ≡obs t2. Thus we must have t′1 ≡obs t

′
2. The case of i = 2 is

symmetric. We put U = {(t′1, t′2) | tk κi t
′
k} and by the two arguments above,

we have ιi(U) ∈ F (≡obs)A and δ(tk) = ιi(πk(X)), thus (t1, t2) ∈ Φ(≡obs)A.

ii) Vice versa, if t2 has a WHNF, (t1, t2) ∈ Φ(≡obs)A using a symmetric argument.

iii) If neither t1 nor t2 has a WHNF, then δ(tk) = ∗ for k = 1, 2 and, since (∗, ∗) ∈
F (≡obs)A, we have that (t1, t2) ∈ Φ(≡obs)A.

• The case A = µX.B is proved analogously.

• If A = B → C, we have for each u ∈ ONB and t′k with tk u t′k that t′1 ≡obs t
′
2.

Since suppose t′1 and t′2 could be distinguished by a test ϕ, then the test [u]ϕ would
distinguish t1 and t2, contradicting t1 ≡obs t2. Thus t′1 ≡obs t

′
2, for all u ∈ ONB

and tk u t′k.

Now let X(u) = {(t′1, t′2) | tk u t′k}. By the above discussion, X ∈ F (≡obs)A, and
by definition, also πk(X(u)) = δ(tk)(u) for all u ∈ ONB , hence (t1, t2) ∈ Φ(≡obs)A.

• The cases for products and greatest fixed point types can be proved analogously.

It remains to prove that ≡obs is the largest such bisimulation. So let R v Λ2 be such that
R v Φ(R). We show that R v≡obs by showing that for all A ∈ Ty and all (t1, t2) ∈ RA,
t1 � ϕ⇔ t2 � ϕ. The proof is by induction in ϕ. The base case for the trivial tests > and
⊥ is immediate. We prove the induction step by case distinction in A.

• If A = A1 + A2, then, since R is a bisimulation, either δ(t1) = δ(t2) = ∗ or there is
an i ∈ {1, 2} such that

∀t′1. t1 κi t
′
1, ∃t′2. t2 κi t

′
2 ∧ (t′1, t

′
2) ∈ RAi

(8)

∀t′2. t2 κi t
′
2, ∃t′1. t1 κi t

′
1 ∧ (t′1, t

′
2) ∈ RAi

(9)

We use this to show that t1 and t2 satisfy ϕ simultaneously. If δ(tk) = ∗, then tk
does not have a WHNF and both t1 and t2 do not satisfy ϕ. Otherwise, we use that
the test ϕ must be of the form [ψ1, ψ2] with ψi : Bi. By definition, t1 � ϕ⇔ t′1 � ψi
for t1 ≡ κi t

′
1. The existence of t′1 with t1 ≡ κi t

′
1 implies that there is a t′′1 with

t1 κi t
′′
1 . By (8), there is a t′2 with t2 κi t

′
2 and (t′′1 , t

′
2) ∈ RAi

. Finally, by
induction hypothesis, t′1 and t′2 simultaneously satisfy ψi, hence t2 � ϕ. Using (9),
we prove analogously that t2 � ϕ implies t1 � ϕ.

• We proceed analogously for least fixed point types.
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• If A = B → C, then the assumption RA ⊆ Φ(R)A says that for all u ∈ ONB

∀t′1. t1 u t′1, ∃t′2. t2 u t′2 ∧ (t′1, t
′
2) ∈ RC (10)

∀t′2. t2 u t′2, ∃t′1. t1 u t′1 ∧ (t′1, t
′
2) ∈ RC (11)

This allows us to show that t1 � ϕ⇔ t2 � ϕ. The test ϕ must be of the form [u]ψ for
some u ∈ ONB and ψ : C. By (10), there is a t2 u t′2 with (t1 u, t

′
2) ∈ RC , which

implies by induction that t1 u and t′2 simultaneously satisfy ψ. Moreover, t2 u t′2
implies that t2 u and t′2 simultaneously satisfy ψ. Hence t1 u � ψ ⇒ t2 u � ψ and
thus t1 � ϕ ⇒ t2 � ϕ. Analogously, we prove t2 � ϕ ⇒ t1 � ϕ by (11), thus t1 and
t2 simultaneously satisfy ϕ.

• The case for products and greatest fixed points is proved analogously.

We now have a bisimulation proof principle for observational equivalence. However,
bisimulations on δ are very big, since successor sets are closed under reductions. One way
of ensuring all necessary pairs are included is to close the bisimulation under convertibility.
Moreover, we cannot use equational reasoning with respect to observational equivalence
directly, we rather need to close the bisimulation under observational equivalence by hand.
If we try to use Thm. 5.3 directly, we will find ourselves constructing very complicated
bisimulations. There are several reasons to this. The first is that a bisimulation relation
needs to contain all pairs of convertible terms, and to achieve this we would usually
close the bisimulation, we are interested in, under convertibility. Secondly, we cannot use
equational reasoning with respect to observational equivalence directly, we rather need to
again close the bisimulation under observational equivalence by hand. Finally, we need to
add trivial pairs to achieve, for example, that a relation is reflexive.

Having to explicitly close bisimulations as just described can be avoided by using so-
called (bisimulation) up-to techniques [9, 38, 39, 41]. Formally, an up-to technique is
defined as an endofunctor T : Rel(X) → Rel(X) on relations over a family X. However,
not every such functor is useful, rather we are interested in sound up-to techniques, that
is, up-to techniques T such that R v Φ(T (R)) implies R v ≡obs. R v Φ(T (R)) implies
R v≡obs.

Various up-to techniques for enhancing the bisimulation proof method have been stud-
ied in recent years [9, 38, 41]. An important concept that emerged in [38] is that of
compatible up-to techniques, where T is said to be Φ-compatible, if T ◦Φ v Φ ◦ T . It has
been shown in the abovementioned papers that compatible up-to techniques are sound
and that they can be composed. We make use of these facts in the following to establish
an up-to technique that solves all the problems of the bisimulation proof principle that we
mentioned above.

For R ∈ Rel(Λ), we denote by R≡obs ∈ Rel(Λ) the closure of R under observational
equivalence, that is,

R≡obs := ≡obs ◦R ◦ ≡obs .

Since F is the canonical lifting of F to relations, we get from [9] that up-to bisimilarity,
i.e. up-to ≡obs, is compatible. Furthermore, we denote by Eq the diagonal relation and
by t index-wise union. Then we have the following result.

Proposition 5.4. The functor T given by T (R) = (R t Eq)≡obs is a compatible up-to
technique. Hence, if R v Φ ((R t Eq)≡obs), then R v ≡obs.
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Proof. Since Eq v Φ(Eq), we have that the constant functor mappping to Eq is compati-
ble [9, Prop. 1]. By the same proposition, also (−)≡obs and t are compatible. Hence the
T composition is compatible, and soundness follows.

We reiterate Example 4.13 to demonstrate the results of this section for proving ob-
servational equivalence.

Example 5.5. We claim that the relation

RStr Nat× Str Nat→Str Nat = {(H1, H2)}
RStr Nat = {(H1 (s, t), H2 (s, t)) | s, t ∈ ONStr Nat}

RNat× Str Nat = {((u,H1 (s, t)), (u,H2 (s, t))) | u ∈ ONNat, s, t ∈ ONStr Nat}
RA = ∅, otherwise

is a bisimulation up to T (defined in Prop. 5.4) hence it proves that H1 ≡obs H2.

Proof. We need to show that RA ⊆ Φ(T (R))A for all types A. The first case of R is
easy. If (s, t) ∈ ONStr Nat× Str Nat, then we have for all r1, r2 with Hi (s, t) ri that
(r1, r2) ∈ T (R)Str Nat, as T closes R under observational equivalence and therefore under
convertibility. For the second case, recall that we proved in Ex. 4.13 the equations

ξ(H1 (s, t)) ≡obs (hd r,H1(r, tl t)) and

ξ(H2 (s, t)) ≡obs (hd r,H2(r, tl t)).

It immediately follows that all r1, r2 with ξ(Hi (s, t)) ri are related by T (R)Nat× Str Nat.
Finally, RNat× Str Nat ⊆ Φ(T (R))Nat× Str Nat follows since π1(u,Hi (s, t)) reduces to u and
T (R) contains the diagonal relation, and because π2(u,Hi (s, t)) is convertible to Hi (s, t).
Thus R is a bisimulation up to T and H1 ≡obs H2.

5.3 Observational Normalisation as Coinductive Predicate

After this warm-up, we show that ON is the largest predicate on terms among those that
only contain strongly normalising terms and are closed under δ transitions.

The scene for this is set as follows. Given X ∈ SetTy, PredX is the poset category
that consists of all predicates over X, that is, families P ∈ SetTy with P v X, ordered
by inclusion. As a predicate, ON lives in PredΛ, and we define δ∗ : PredFΛ → PredΛ, the
reindexing along δ, by taking index-wise preimages:

δ∗(P )A = δ−1
A (PA).

Functoriality of δ∗ is ensured, since taking preimages is a monotone operation. As for
bisimilarity, we need a lifting S : PredΛ → PredFΛ of the functor F , this time to predicates.
This lifting is essentially just F restricted to PredΛ, but since Λ ⊆ SN we do not need the
∗ as every strongly normalising term has a WHNF, and we define S by,

S(P )C =


⋃
k∈{1,2}{ιkX | X ⊆ PAk

}, C = A1 +A2

{ι1X | X ⊆ PA[µX.A/X]}, C = µX.A

F (P )C , otherwise

It is straightforward to check that S is a functor and a lifting of F , that is, P v Q implies
S(P ) v S(Q) and S(P ) v F (Λ). The final ingredients we need are the constant functor
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KSN : PredΛ → PredΛ that maps every predicate to SN, and the diagonal ∆ : PredΛ →
Pred2

Λ.
We combine all of this into one functor Ψ : PredΛ → Pred2

Λ by putting Sδ = δ∗ ◦ S
and Ψ = 〈KSN, Sδ〉. The purpose of Ψ is to characterise the two properties of observa-
tionally normalising terms: these are strongly normalising and an observation results in
an observationally normalising term.

For the sake of clarity, we first give an explicit description of Sδ on sums and function
spaces.

Sδ(P )A1+A2
= δ−1

A1+A2
(S(P )A1+A2

)

= {t : A1 +A2 | ∃i ∈ {1, 2}.∃X ⊆ PAi
. δ(t) = ιiX}

= {t : A1 +A2 | ∃i ∈ {1, 2}.∃X. δ(t) = ιiX ∧X ⊆ PAi
}

= {t : A1 +A2 | ∃i ∈ {1, 2}. (∃t′. t κi t
′) ∧ (∀t′. t κi t

′ ⇒ t′ ∈ PAi)}

Sδ(P )C→D = δ−1
C→D(F (P )C→D)

= {t : C → D | δ(t) ∈ P (PD)
ONC}

= {t : C → D | ∀u ∈ ONC . δ(t)(u) ⊆ PD}
= {t : C → D | ∀u ∈ ONC .∀t′. t u t′ ⇒ t′ ∈ PD}

Using this setup, we can formulate the main result of this section.

Theorem 5.6. The predicate ON is the largest predicate P on Λ such that

∆(P ) v Ψ(P )

where the inclusion is given point-wise in the product category PredΛ × PredΛ. That is,
for any P ∈ PredΛ satisfying

P v SN (12)

P v Sδ(P ), (13)

we have P v ON. A predicate that fulfils these conditions is called an ON-predicate.

Proof. By definition, ON v SN, hence (12) is fulfilled by ON. For (13), we proceed by
cases in the index of ON, i.e., by types.

• Let t ∈ ONA1+A2
. Since t ∈ SN, there is an i ∈ {1, 2} and a t′ with t κi t

′.
Moreover, for any such t′ we have, as we show now, that t′ ∈ ONAi

. Assume
that t′ 6∈ ONAi

and suppose that i = 1 (the case i = 2 is symmetric). Then
there is a test ϕ on A1 with JϕKt′ 6∈ SN and, since J[ϕ,>]K t JϕK t′, we get a
diverging reduction sequence of t under [ϕ,>]. This, however, contradicts that t is
observationally normalising, thus t′ must be in ONAi

. Putting this together, we
have that t ∈ δ∗(S(ON))A1+A2 .

• An analogous argument works for the least fixed point type.

• Let t ∈ ONA→B . We need to show that for all u ∈ ONA and t′ : B with t u t′,
t′ ∈ ONB . Towards a contradiction, assume that there is a test ϕ on B such that
JϕKt′ 6∈ SN. This implies immediately that J[u]ϕKt 6∈ SN, since t u t′, which
contradicts that t ∈ ONA→B . Therefore, t′ ∈ ONB .
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• For the other coinductive types, the proof works analogously.

Thus we also have ON v Sδ(ON), hence ∆(ON) v Ψ(ON).
We now show that every predicate P with ∆(P ) v Ψ(P ) is included in ON. To this

end, let t ∈ PA for some type A. We show that t ∈ ONA, by showing that for all tests
ϕ : A, JϕK t ∈ SN, by induction in ϕ. Condition (12) gives us that t ∈ SN, thus J>K t and
J⊥K t are strongly normalising. For the induction step, we distinguish the cases for A.

• If t ∈ PA1+A2 , then there is an i ∈ {1, 2} and a t′ with t κi t
′ and t′ ∈ PAi ,

from condition (13). Hence for any non-trivial test [ϕ1, ϕ2], we get by induction
that JϕiK t′ ∈ SN. We show J[ϕ1, ϕ2]K t ∈ SN by contradiction. Since t ∈ SN,
there is a normal form κi r with t κi r. If J[ϕ1, ϕ2]K t 6∈ SN, then there must be,
by confluence, an infinite reduction sequence originating at J[ϕ1, ϕ2]K (κi r). This,
however, implies that there is an infinite reduction sequence from JϕiK t′ ∈ SN,
again by confluence. Since this a contradiction, it follows that J[ϕ1, ϕ2]K t ∈ SN and
t ∈ ONA1+A2

.

• The case for least fixed points is treated analogously.

• If t ∈ PA→B and [u]ϕ ∈ TestsA→B , then for all t′ : B with t u t′, we have t′ ∈ PB
by (12), in particular, t u ∈ PB By the induction hypothesis, JϕK(t u) ∈ SN, thus
J[u]ϕKt ∈ SN and t ∈ ONA→B .

• The other cases for coinductive types proved analogously.

This shows that P v ON and ON is the largest predicate fulfilling (12) and (13).

Remark 5.7. In fact, we have shown that ON is the final (∆,Ψ)-dialgebra [20]. Alterna-
tively, ON is the final coalgebra for the functor H on PredΛ given by H(P ) = SN u Sδ(P ),
as point-wise intersection is right-adjoint to the diagonal ∆ : PredΛ → Pred2

Λ. We have
chosen the characterisation as a coinductive predicate partly in order to avoid introducing
unnecessary definitions, but mainly because it facilitates the adoption of up-to techniques
to our setting as we show next.

Thm. 5.6 gives us a coinductive proof principle for showing that a term is observation-
ally normalising. However, as with bisimilarity proofs, it can still be quite cumbersome to
use this principle. In the remainder of this section, we define a number of up-to techniques
for making this task easier. As we are now dealing with predicates, an up-to technique
is a functor T : PredX → PredX on predicates over the family X. We therefore need a
slightly different notion of compatibility here. The difference to Sec. 5.2 is that we need
another notion of compatibility here.

Definition 5.8. We say that an up-to technique T : PredΛ → PredΛ is (∆,Ψ)-compatible
if T ◦KSN v KSN ◦ T and T ◦ Sδ v Sδ ◦ T , that is, (T × T ) ◦Ψ v Ψ ◦ T .

The importance of compatible up-to techniques is, just as before, that they are sound
and can be composed. The latter is clear, the former is captured in the following lemma.

Lemma 5.9. If T is (∆,Ψ)-compatible and ∆(P ) v Ψ(T (P )), then P v ON.

Proof. We have that T ◦ u v u ◦ (T × T ), since u is a product. Combined with (∆,Ψ)-
compatibility, we find that

T ◦ u ◦Ψ v u ◦ (T × T ) ◦Ψ v u ◦Ψ ◦ T,
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hence T is (u ◦Ψ)-compatible for the definition of compatibility from [9].
Using the adjunction ∆ a u, we get from the assumption ∆(P ) v Ψ(T (P )) that

P v (u ◦Ψ)(T (P )), thus, from [9], we find P v ON.

The first, very basic, technique we establish is up-to ON. It is given by index-wise
union with ON:

CON(P ) = P tON

That CON is an endofunctor on PredΛ is immediate. Moreover, we have CON◦CON v CON

and Id v CON. Hence CON is a closure operator on predicates over terms. Compatibility
is also straightforward to prove.

Proposition 5.10. CON is (∆,Ψ)-compatible.

Proof. Since ON v SN, we have CON(SN) = SN. The second compatibility requirement
holds as well:

CON(Sδ(P )) = Sδ(P ) tON

v Sδ(P ) t Sδ(ON) by Thm. 5.6

v Sδ(P tON) by monotonicity and union

= Sδ(CON(P ))

Thus CON is a compatible up-to technique.

The next technique we consider is the closure under downwards reductions. Let P v Λ
be a predicate on terms, we define

C↓(P )A = {t′ : A | t ∈ PA, t t′}.

It is easy to see that C↓ is monotone and a closure operator.

Proposition 5.11. C↓ is (∆,Ψ)-compatible.

Proof. The first requirement for (∆,Ψ)-compatibility says that C↓(SN) v SN. Clearly, if
t ∈ SNA and t t′, then t′ ∈ SNA. Thus the first requirement is fulfilled.

For the second requirement we need to show that C↓(Sδ(P ))A ⊆ Sδ(C↓(P ))A for all
types A. Let t, t′ : A with t t′ and t ∈ Sδ(P )A. We show that t′ ∈ Sδ(C↓(P ))A by case
distinction in A.

• A = B1 + B2. First, we need to find an i ∈ {1, 2} and s : Bi such that t′ κi s.
Since t ∈ Sδ(P )A, there exist i and s′ with t κi s

′. By confluence, there is an s
with κi s

′ κi s t′, giving us the required term s : Bi.

Secondly, we need to show that for all s : Bi with t′ κi s, we have s ∈ C↓(P )Bi
. So

let s : Bi with t′ κi s. Since t t′, we have t t′ κi s. Therefore, s ∈ PBi

because t ∈ Sδ(P )A. Using that C↓ is a closure operator, we find s ∈ C↓(P )Bi
.

Putting these two arguments together, t′ ∈ Sδ(P )B1+B2 .

• The case for least fixed points is analogous.

• A = B → C. Here, we need to show that for all u ∈ ONB , all terms s : C
with t′ u s are in C↓(P )C , that is, s ∈ C↓(P )C . Since we have for such s that
t u t′ u s, s must be in PC already and the claim follows.
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• The other coinductive types follow analogously.

This proves that C↓ ◦ Sδ v Sδ ◦ C↓, thus C↓ is (∆,Ψ)-compatible.

The closure under reductions already lifts quite a burden from us in showing that a
term is observationally normalising. However, very often we would like to construct a
predicate P that contains, for example, a term t ∈ PA1×A2 and terms ri ∈ PAi with
πi t � ri. The problem is that we then also need to have πi t ∈ PAi

and then also
e[πi t] ∈ PB for evaluation contexts e. Explicitly adding all these terms can be avoided
due to the following up-to technique.

Let Cev be the closure under evaluations given by

Cev(P )A =
⋃
i=1,2

{πi t | t ∈ PA1×A2 ∧A = Ai ∧ ∃t′ ∈ PAi . πi t � t′ } (14)

∪ {ξ t | t ∈ PνX.B ∧A = B[νX.B/X] ∧ ∃t′ ∈ PA. ξ t � t′ } (15)

∪ PA. (16)

That Cev is a functor PredΛ → PredΛ can be seen rather easily and, moreover, we have
Id v Cev by definition. We now show that Cev is a compatible up-to technique.

Proposition 5.12. Cev is (∆,Ψ)-compatible.

Proof. First, we show Cev(SN)A ⊆ SNA by the cases of the definition of Cev.

(14) Let πi t ∈ Cev(SN)Ai
where t ∈ SNA1×A2

and πi t � t′ with t′ ∈ SNAi
. We note

that either t = e[f ] with f ∈ Sig or t = e[λD] for some (possibly empty) evaluation
context e, by definition of contraction. In both cases it is clear, from t′ ∈ SN and
t ∈ SN, that πi t ∈ SN, since the only reductions possible on this term are either
reduction on t or factor through the contraction to t′.

(15) Let ξ t ∈ Cev(SN) where t ∈ SNνX.B and ξ t � t′ with t′ ∈ SNB[νX.B/X]. Then
ξ t ∈ SNνX.B by an analogous argument.

(16) In the last case, t ∈ SNA holds by definition.

The second part is to show that Cev(Sδ(P ))A ⊆ Sδ(Cev(P ))A, which we again do by
distinguishing the cases in the definition of Cev.

(14) Let πi t ∈ Cev(Sδ(P ))Ai
where t ∈ Sδ(P )A1×A2

and πi t � t′ with t′ ∈ Sδ(P )Ai
. To

show πi t ∈ Sδ(Cev(P ))Ai
, we distinguish the cases for Ai.

• Ai = B1 + B2. We have to show that πi t has WHNF with the constructor
argument being in PBk

for some k and that any such argument is in PBk
.

For the first part, we note that, since t′ ∈ Sδ(P )B1+B2
, there is an s ∈ PBk

with
t′ κk s. Therefore, πi t � t′ κk s, giving us the required WHNF for πi t.

Next, let r : Bk with πi t κk r. There is a term s, as in the following diagram,
through which this reduction sequence factors.

πi t πi t
′′

t′ s κk r

� �
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It is given as follows. If t = e [λ{q1 7→ u1 ; · · · ; qn 7→ un}], and t′ = uj [σ] such
that qj [σ] = πi e, then t′′ = e′ [λ{q1 7→ u′′1 ; · · · ; qn 7→ u′′n}], and s = u′′j [σ′], where
σ σ′ is given by Lem. 2.9. If t = e[f ], the an analogous argument holds for
t′′ = e′[f ]. Using said term s, we get a reduction sequence t′ κk r, hence
r ∈ PBk

, as t′ ∈ PB1+B2 .

Thus πi t is already in Sδ(P )B1+B2 , hence in Sδ(Cev(P ))Ai .

• Ai = B → C. Let u ∈ ONB and (πi t)u r. Similar to the sum case, we factor
this reduction sequence as

(πi t)u (πi t
′′)u

t′ u s u r.

� �
It follows that r ∈ PC ⊆ Cev(P )C . Since this holds for any u ∈ ONB , we have
πi t ∈ Sδ(Cev(P ))B→C .

• The other cases for Ai are treated analogously.

Thus, if πi t ∈ Cev(Sδ(P ))Ai
by (14), then πi t ∈ Sδ(Cev(P ))Ai

.

(15) The proof in this case is analogous to that for the case (14).

(16) This case is trivial by definition.

Hence, in all cases for Cev, we find Cev(Sδ(P ))A ⊆ Sδ(Cev(P ))A, thus Cev ◦ Sδ v Sδ ◦ Cev.
Combined with the first part, we have that Cev is (δ,Ψ)-compatible.

Since CON, Cev and C↓ are compatible, we can combine them into a single up-to tech-
nique C = C↓ ◦Cev ◦CON. We illustrate the proof principle for observational normalisation
together with this combined up-to technique in the following example.

Example 5.13. This example consists of three parts. We first show how this general
up-to technique can be used to establish observational normalisation of a definition in the
simple stream SOS format [29]. Then we extract an up-to technique from this definition.
Finally, we use this technique to prove another term observationally normalising, even
though its definition is not in the simple SOS format.

1. We begin by defining negation on Bool and its point-wise lifting to streams.

¬ : Bool→ Bool ∼ : Boolω → Boolω

¬> = ⊥
¬⊥ = >

hd(∼s) = ¬(hd s)

tl(∼s) =∼(tl s)

It is clear that ¬t ∈ SNBool for every strongly normalising t, hence ¬ ∈ ON. Using
this, we can also show that ∼ is observationally normalising.

Proof. It suffices to show that the predicate P given by

PBoolω→Boolω = {∼}
PBoolω = {∼s | s ∈ ONBoolω}
PA = ∅, all other A
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is an ON-predicate up to C . Indeed, we have P v SN by definition. Moreover,
for all s ∈ ONBoolω and t : Boolω with ∼ s t, we have t ∈ C↓(P )Boolω , hence
t ∈ C(P )Boolω . To show that P is also closed from Boolω on, we note that for all
s ∈ ONBoolω , hd(∼s) � ¬(hd s) and tl(∼s) �∼(tl s). Since ¬(hd s) ∈ ONBool, by
the discussion above, we have hd(∼ s) ∈ (Cev ◦ CON)(P )Bool, hence for all t : Bool
with hd(∼s) t, we have t ∈ C(P )Bool. Likewise, we have ∼ (tl s) ∈ PBoolω , since
tl s ∈ ONBoolω , thus t ∈ C(P )Boolω for all t with tl(∼ s) t. Summarising, we
have ∆(P ) v Ψ(C(P )), hence ∼ ∈ ON.

2. The next step is to derive an up-to technique from the definition of ∼ , which we
can use to prove observational normalisation of other terms. The technique is given
by C ∼= C↓ ◦ T , where

T (P )Boolω = {tln(∼s) | n ∈ N, s : Boolω, tln s ∈ PBoolω}
T (P )Bool = {hd(tln(∼s)) | n ∈ N, s : Boolω,hd(tln s) ∈ PBoolω}.

We claim that C ∼ is (∆,Ψ)-compatible.

Proof. The first condition, C ∼(SN) v SN, is clear by definition. To show the second
condition, note that if tln s ∈ Sδ(P )Boolω , then for all t with tl(tln s) t, we have t ∈
PBoolω . In particular, tln+1 s ∈ PBoolω , which implies that tln+1(∼ s) ∈ T (P )Boolω .
From here, it follows, by the definition of C ∼ as composition of T with the reduction
closure, that any r with tl(tln(∼s)) r is in Sδ(C ∼(P ))Boolω . Analogously, every
r′ with hd(tln(∼s)) r′ is also in Sδ(C ∼(P ))Bool. Thus C ∼ is compatible.

3. Finally, we use the up-to technique C ∼, combined with the general up-to techniques
from above, to show that the following definition of the alternating bit stream is
observationally normalising.

alt : Boolω hd alt = > tl alt =∼alt

Note that the definition of alt is not in the simple stream SOS format because tl alt
is defined as a term of depth 2 (not 1). It is in the slightly more general format
where the tail (or derivative) can be defined by any term over the signature which
in this case contains the symbols ∼ and alt∗. The proof that alt is observationally
normalising is now as simple as it could be: The predicate P , where PBoolω = {alt}
and PA = ∅ for all other types A, is an ON-predicate up to C ◦ C ∼.

Proof. First, we have alt ∈ SN by its definition. Second, we find that > ∈ ONBool,
hence hd alt ∈ Cev(CON(P ))Bool. Moreover, since alt ∈ PBoolω , we have that ∼alt =
tl0(∼alt) is in C ∼(P )Boolω , thus tl alt ∈ Cev(C ∼(P ))Boolω . Putting this together, we
have P v Sδ(C(C ∼(P ))), hence alt ∈ ONBoolω .

Let us make some remarks about Ex. 5.13 before we close this section. Note that we
have derived, in the second step, an up-to technique from the definitions given in the first
step, and used this technique in the last step to close the predicate P so that terms in P

∗ This generalisation is an analogue of the generalisation from the simple SOS format that corresponds
to a natural transformation Σ(Bool×(−)) =⇒ Bool×Σ(−) to the format Σ(Bool×(−)) =⇒ Bool×Σ∗(−)
where Σ∗ is the free monad over Σ.
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can occur in the context of ∼ . In the light of Ex. 3.2, it is clear that we cannot obtain
up-to techniques by just taking the contextual closure of a predicate, so that [9, Sec. 4.3]
unfortunately does not apply immediately. However, we expect to be able to derive up-to
techniques, which are similar to contextual closures, for more general declarations, only
that we need to impose extra conditions on the terms we take the closure on. For instance,
we can only safely put, for a term t, even t into the closure, if tl t is fully defined. Finally,
note that a particularly nice feature of compatible up-to techniques is that they can be
composed. This allows us to derive up-to techniques separately for each declaration and
then compose them, to form an up-to technique for large declaration blocks.

6 (Un)Decidability of Observational Equivalence

In this section, we present two results concerning decidability of observational equivalence.
The first just makes the intuitive assertion precise that, in general, observational equiva-
lence is undecidable. The second result, however, establishes a fragment of the language on
which observational equivalence actually becomes decidable. This fragment is admittedly
rather small, but still an interesting start.

6.1 Observational Equivalence is Undecidable

Proposition 6.1. Observational equivalence is semi-decidable.

Proof. Let t1, t2 be two terms of type A. To decide whether t1 6≡obs t2 we can enumerate
all tests on A and check for each of them whether t1 and t2 do not satisfy it simultaneously.
This gives a procedure that terminates, if t1 6≡obs t2. We now show that it is impossible to
give a general algorithm that checks observational inequivalence via an encoding of Post’s
correspondence problem (PCP). This shows that observational equivalence is undecidable.

Let A be a finite alphabet with at least two letters, and w = (w1, . . . , wN ) and v =
(v1, . . . , vN ) sequences of words over A. A solution to the PCP for (w, v) is a finite sequence
(ik)1≤k≤K such that for all k ∈ {1, . . . ,K}, 1 ≤ ik ≤ N , and

wi1 · · ·wiK = vi1 · · · viK . (17)

It is known to be undecidable whether a solution exists for any given (w, v). The idea of
the encoding of the PCP, which we are about to give, is to define a decidable predicate
on finite sequences that contains all lists for which (17) holds. This is carried out in the
following way.

We begin by defining the relevant data structures as types, and basic functions on
them. Let A have n letters, so that we can encode A as the sum A = 1 + · · ·+ 1︸ ︷︷ ︸

n

. Words

over A are given by lists A∗ = µX.1+A×X, thus a word w can be written as a sequence of
constructors, and concatenation of lists · can be defined inductively in the usual way. We
can also define predicates eqA : A2 → Bool and eqL : (A∗)2 → Bool that are computable
on observationally normalising arguments, such that

eqA(a, b) ≡ > iff a ≡ b and

eqL(u, v) ≡ > iff u ≡ v.
Finally, we encode numbers bounded by N as N = 1 + · · ·+ 1︸ ︷︷ ︸

N

and finite, non-empty

sequences of them by N+ = µX.(N +N ×X).
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To reduce an instance (w, v) of PCP to observational equivalence, we define a map
h which given a sequence u = (ik)1≤k≤K computes the pair (wi1 · · ·wiK , vi1 · · · viK ), a
predicate P which tests whether a sequence is a solution, and the empty predicate P⊥ by

h : N+ → A∗ ×A∗

h(i) = (wi, vi)

h(i : u) = (wi · (π1 (hu)), vi · (π2 (hu)))

P : N+ → Bool P⊥ : N+ → Bool

P = eqL ◦ h P⊥(u) = ⊥

Hence, for u : N+, P (u) ≡ > if and only if u solves the PCP for (w, v), and P is clearly
computable for ON terms. Moreover, since observational inequivalence is witnessed by
tests, P 6≡obs P⊥ means that there is a ϕ ∈ TestsN+→Bool such that P � ϕ and P⊥ 6� ϕ.

We may assume that such a ϕ is of the form ϕ = [u] [>,⊥] for some u : N+ so that
P (u) ≡ >, and u is a solution to the PCP. Thus, if we can find ϕ, we can solve the PCP.
In other words, P 6≡obs P⊥ if and only if the PCP for (w, v) has a solution.

In summary, if for any terms t1, t2 it is decidable whether there is a test that distin-
guishes t1 and t2, then the PCP is decidable, hence observational equivalence cannot be
decidable.

6.2 Decidability on a Language Fragment

Even though observational equivalence is undecidable on the full language, there is a (tiny)
fragment of the language on which we can decide it. Analysing the encoding of Post’s
correspondence problem, we find that the encoding crucially requires functions. Indeed,
once we forbid terms of function type, observational equivalence becomes decidable.

Therefore, we assume, for this section, that all terms do not use abstraction and
application for functions. Moreover, we again restrict to observationally normalising terms.
The first assumption has the implication that abstractions (λ and definition blocks) only
use copatterns for products and greatest fixed points but never patterns, thus the terms
cannot contain variables.

We make three more simplifying assumptions: First, we fix a definition block Σ, and
assume that all terms t are typed within Σ and have no further rlet-bindings. Second,
all copatterns shall only have one layer, that is, bodies are always of the form {π1· 7→
t1 ; π2· 7→ t2} or {ξ · 7→ t}. Third, we assume that the λ-abstraction is never used. These
three assumptions do not pose any limitations, as we can first unroll nested copatterns
into nested λ-abstractions and then introduce for each λ-abstraction a new symbol into
the signature. These transformations preserve observational equivalence.

More precisely, we assume that terms are of the form

t ::= f | κi t | α t | πi t | ξ t

and are typed within a fixed definition block Σ, in which all definitions are of the form

D ::= {π1· 7→ t1 ; π2· 7→ t2} | {ξ · 7→ t}.

Under these assumptions, Algorithm 1 decides whether two terms are observationally
equivalent, returning a witnessing test if they are not or a bisimulation up-to convertibility
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if they are. The notation we use in the algorithm is similar to that of monadic Haskell-code,
where we treat Tests + (−) as a monad and use the left-arrow notation.∗

Algorithm 1: Decide whether two terms are observationally equivalent

CheckBisim(t1, t2 ∈ ONA, R ∈ Rel(Λ)) : Tests + Rel(Λ)
Invariant: If t1 RA t2, then R is a bisimulation up-to convertibility.
if t1 RA t2 then return R
Add (t1, t2) to R
Bring t1 and t2 into WHNF
case ti = fi with (fi : A = Di) ∈ Σ

case D1 = {π1 7→ r1 ; π2 7→ r2} and D2 = {π1 7→ s1 ; π2 7→ s2}
R′ ← UpdateTest(λλϕ. [π1]ϕ, CheckBisim(r1, s1, R))
UpdateTest(λλϕ. [π2]ϕ, CheckBisim(r2, s2, R′))

case D1 = {ξ 7→ r} and D2 = {ξ 7→ s}
UpdateTest(λλϕ. [ξ]ϕ, CheckBisim(r, s, R))

case t1 = κi t
′
1 and t2 = κj t

′
2

if i 6= j then return [>,⊥]
UpdateTest(CoprodTest(i), CheckBisim(t′1, t′2, R))

case t1 = α t′1 and t2 = α t′2
UpdateTest(λλϕ. α−1 ϕ, CheckBisim(t′1, t′2, R))

end
UpdateTest(f : Tests→ Tests, U ∈ Tests + Rel(Λ)) : Tests + Rel(Λ)

case U is a test ϕ return f(ϕ)
case U is a relation R return R

end
CoprodTest(i, ϕ)

if i = 1 then return [ϕ,⊥] else return [⊥, ϕ]
end

Informally, the algorithm works as follows. It compares recursively the given terms
according to what it requires to fulfil the same tests. If that fails, it builds up a test
witnessing this, while returning from the recursion. Otherwise, it puts the given pair of
terms in the bisimulation candidate R and tries to close R recursively. Once it arrives at
a pair that has already been compared, it returns the constructed relation, as it is closed
at that point.

Termination of the algorithm is ensured by the fact that, as we do not allow the use of
functions, a term t in the fixed definition block Σ is essentially a finite transition system.
Modulo reduction to WHNF, the only way of creating a term of inductive type is by a finite
sequence of constructors, hence we can remove only finitely many such. For coinductive
types, on the other hand, a WHNF must be a symbol in Σ, hence we must eventually
reach a pair of symbols that are already in the relation, as there are only |Σ|2 such pairs.
Therefore, the algorithm terminates.

We will now make these arguments precise.

Theorem 6.2. Let t1, t2 : A be any two observationally normalising terms in the restricted
language. Then the following holds.

∗ Implementation: https://github.com/hbasold/Sandbox/blob/master/OTTTests/DecideEquiv.hs

https://github.com/hbasold/Sandbox/blob/master/OTTTests/DecideEquiv.hs
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(i) If CheckBisim(t1, t2, ∅) returns a test ϕ, then t1 � ϕ 6= t2 � ϕ.

(ii) If CheckBisim(t1, t2, ∅) returns a relation R, then R is a bisimulation up-to con-
vertibility and (t1, t2) ∈ RA.

(iii) CheckBisim(t1, t2, ∅) terminates.

Proof. (i) This is very easy to see, as we only stop with a test if the constructors for
elements of a sum type do not match and then trace back the observations we made
to get to the sum constructors.

(ii) We prove the invariant given at the beginning of CheckBisim: If t1 and t2 are related
by R, then R is already a bisimulation up-to convertibility. Since ∅ fulfils this and
we return R without further changes, the statement of the theorem follows.

So assume that t1 and t2 are not yet related by R, in which case the pair is added
and we continue on the WHNF of these terms. In all cases, we recurse on elements
of δ(t1) and δ(t2). This means that, in the recursion step, if these elements are
already in R, we indeed have found a bisimulation. For example, if A = B1 × B2

and ti = fi with (fi : A = Di) ∈ Σ, then δ(ti)(j) = {t′ : Bj | t′ ≡ πj t} for
j = 1, 2 and, in particular, rj ∈ δ(f1)(j) and sj ∈ δ(f2)(j). Since, as a result of
CheckBisim(r1, s1, R), R′ is a bisimulation up-to convertibility and contains (r1, s1),
the result of CheckBisim(r2, s2, R

′) contains (r1, s1), (r2, s2) and is a bisimulation
up-to convertibility as well. Therefore, the invariant is preserved.

(iii) We use the following two termination measures: n, the maximum of the sizes of the
terms t1 and t2, and m = |Σ|2 −#pairs of symbols in R. On the recursive calls of
CheckBisim for inductive types, n strictly decreases and for coinductive types, m
strictly decreases (though n might increase in this case). Thus m becomes eventually
0, meaning that all symbols of Σ have been related with each other. From here on,
n must decrease until it becomes 1, at which point t1 and t2 must be symbols from
Σ and are thus related. Hence, CheckBisim stops and returns R.

After having proved that we can decide observational equivalence on observationally
normalising terms, one might ask whether observational normalisation is a decidable prop-
erty. The answer to this question is indeed yes and we describe the idea for a decision
procedure in the following.

We have seen that ON is the largest predicate that is contained in SN and is closed
under δ-steps. This can be leveraged, just as we did for observational equivalence, by
constructing recursively a predicate that contains strongly normalising terms, giving, again
as before, a terminating procedure, if we can decide strong normalisation. In the restricted
calculus, we only only need to decide whether there is a WHNF though, since

1. there is always a unique reduction sequence and

2. we check strong normalisation by continuing to check recursively for observational
normalisation under constructors.

So we are left with the task to decide whether a term has a WHNF. This can be done by
trying to reduce the term to a WHNF and storing every term in the reduction sequence
in a predicate that shall witness whether a term has no WNHF. If we reach a term a
second time in the reduction sequence, we know that there can be no WHNF. For the
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same reasons as before, this eventually terminates due to the finite automaton structure
of the terms.

We illustrate this with an example of a term that has no WHNF.

Example 6.3. Let Σ be the following declaration block.

grow : N× Nω

π1 grow = 0

π2 grow = π2 (ξ (π2 grow))

The term π2 grow leads to the following reduction sequence

π2 grow −→ π2 (ξ (π2 grow)) −→ π2 (ξ (π2 (ξ (π2 grow)))) −→ · · ·

that is obviously diverging. We can show this with the following predicate, which is
constructed by the decision procedure.

PNω = {π2 grow, π2 (ξ (π2 grow))}
PN×Nω = {ξ (π2 grow)}
PC = ∅, all other types C

That P indeed proves that π2 grow has no WHNF is seen as follows. In order to reduce
π2 grow, we need to reduce π2 (ξ (π2 grow)), thus we need to make a reduction step on
ξ (π2 grow), which in turn needs a reduction of π2 grow. Since all of these terms are in P ,
we have found a loop in the reduction sequence, hence π2 grow has WHNF.

7 Conclusion and Future Work

We have introduced the notions of observational normalisation and observational equiva-
lence for mixed inductive-coinductive programs, and argued for their suitability. Roughly,
we have shown that observational equivalence is sound and complete for equality in Carte-
sian closed µ-bicomplete categories [13], a statement we would like to make precise in
the future. Furthermore, we have given proof methods for observational equivalence and
observational normalisation that are based on coalgebraic techniques.

We believe that this semantic approach can used to extend our results to other lan-
guages and different notions of program equivalences. We also believe that our approach
using tests is suitable for implementation in theorem provers. To support this claim, we
have implemented tests and observational equivalence in Agda.∗ We would like to in-
vestigate the possibility of implementing the proof principles and up-to techniques from
Section 5 as proof strategies in theorem provers. This can be achieved by defining a syntax
for ON-predicates, bisimulations and the corresponding up-to techniques. Then a dec-
laration could be registered as being well-formed by exhibiting an ON-predicate (up to
some technique) in this syntax. Similar in spirit to [6], syntactic proofs of observational
equivalence could be used to coerce terms of dependent type.

Closely related to this is the need to extend our work to richer type systems, for
example, with dependent types. The conditions to carry out such an extension are that
the reduction relation of the calculus in question is confluent, and that we can find WHNFs
for inductive types and can apply destructors to coinductive types. Even more generally,

∗ https://github.com/hbasold/Sandbox/blob/master/OTTTests/Tests.agda

https://github.com/hbasold/Sandbox/blob/master/OTTTests/Tests.agda
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it might be possible to derive the test logic from a coalgebra, like the one we defined.
The only problem is that we cannot define observational normalisation this way, as it is
part of the type of the term coalgebra. It needs to be investigated if there is an abstract
characterisation of observations that allows us to also define observational normalisation.

Another direction for extending our results would be to relax the definition of ob-
servational normalisation so that we only require an ON-predicate P to be a subset of
weak head normalising terms in Thm. 5.6. This would simplify proofs of observational
normalisation significantly, as we do not need to prove strong normalisation separately.
Note that this is closely related to proofs of strong normalisation by using reducibility
candidates [18].
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n+ 1 : Nat, 8

tl s : StrA, 8
tt : Bool, 8
〈〉 : 1 (term), 8
test

definition, 12
interpretation, 12
satisfaction, 14

type
closed, 6
coinductive, 6
functor (FA on morphisms), 20
functor (FA on objects), 20
inductive, 6
set of (Ty), 6
strictly positive, 6
trivial, 18

typing
body, 7
copattern, 7
declaration block, 7
pattern, 7
term, 7

up-to technique, 33

weak head normal form, 11
well-covering, 11
WHNF, see weak head normal form
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A Proof of Confluence

In this appendix, we develop the details of the proof that −→ is confluent on Λ(A) for all
types A (Thm. 2.10).

Recall from Def. 2.8 that Λ(A) contains only well-covering terms, that is, terms in which
all declaration bodies are well-covering with respect to C|, a notion that was introduced
in [3]. For the purpose of the proof, we introduce the rules of the covering relation C|,
which are a straightforward adaption of those given in loc. cit. The idea of these rules
that we, starting at the empty sequence, build up a sequence of (typed) copatterns using
these rules. In each step, we apply exactly all copatterns to cover a type or split a variable
into all possible pattern cases, respectively.

Definition A.1. We say that a type A is covered by a sequence Q of copatterns if A C| Q
can be derived from the following rules, where we write Q ; Q′ for the concatenation of
two copattern sequences Q and Q′.

CHole
A C| (∅ c̀op · : A⇒ A)

A C| Q ; (Γ c̀op q : A⇒ A1 ×A2)
CProd

A C| Q ; (Γ c̀op πi q : A⇒ Ai)i=1,2

A C| Q ; (Γ c̀op q : A⇒ (B → C))
CApp

A C| Q ; (Γ, x : B c̀op q x : A⇒ C)

A C| Q ; (Γ c̀op q : A⇒ νX.B)
COut

A C| Q ; (Γ c̀op ξ q : A⇒ B[νX.B/X])

A C| Q ; (Γ, x : B1 +B2 c̀op q : A⇒ C)
CIncl

A C| Q ; (Γ, x′ : Bi c̀op q[κi x
′/x] : A⇒ C)i=1,2

A C| Q ; (Γ, x : µX.B c̀op q : A⇒ C)
CIn

A C| Q ; (Γ, x′ : B[µX.B/X] c̀op q[αx
′/x] : A⇒ C)

We show now that the reduction relation is confluent on Λ in three steps. First, we
prove that (co)pattern matching is deterministic on well-covering terms. This allows us,
as second step, to prove that −→0

Σ that is confluent. Finally, we show, by induction, that
−→n

Σ is confluent for all n, thus −→=
⋃
n∈N −→n

∅ is confluent as all −→n
∅ are disjoint.

We start by showing that copattern matching is deterministic.

Lemma A.2. Let A be a type, Q a copattern sequence with A C| Q and e an evaluation
context on A. If there exists a copattern q with Γ c̀op q : A⇒ B in Q and contexts e1, e2

with e = e1[e2], such that q[σ] = e2, then q, e1 and e2 are unique with this property.

Proof. Since any copattern sequence Q covering A is constructed using the rules in Def. A.1
starting at Q0 = (∅ c̀op · : A⇒ A), we can proceed by induction in the application of said
rules.

In the base case Q = Q0, there is only one choice by definition, namely q = · and
e1 = e and e2 = ·.

So assume that for any Q we have a unique choice of q and e = e1[e2]. We make a case
distinction on the rule used to construct Q′ from Q. Note that we can distinguish two
types of rules: CProd, CApp and COut increase the size of copatterns, whereas CIncl and
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CIn increase the size of patterns. We only prove the induction step for CApp and CIncl as
exemplary cases.

• Assume that Q′ is constructed from Q = Q′′ ; (Γ c̀op q : A ⇒ (B → C)) by an
application of CApp, so that Q′ = Q′′ ; (Γ, x : B c̀op q x : A ⇒ C). Moreover,
assume that q0 in Q′ matches e2 for some splitting e = e1[e2]. If q0 6= q x, then
q0 ∈ Q′′ and uniqueness of e1, e2 and q0 follows by induction. Otherwise, if q0 = q x,
then by the typing of e we must have e2 = e3 t for some term t : B and context e3.
Hence, we have that q ∈ Q matches e3 and, by induction, the splitting e = e1[e3 t]
is unique, as the choice of q is. Combining these cases, we have that the splitting
e = e1[e2] and the choice of q0 is still unique in Q′.

• Assume that Q′ is constructed from Q = Q′′ ; (Γ, x : B1 +B2 c̀op q : A⇒ C) using
the rule CIncl, resulting in Q′ = Q′′ ; (Γ, x′ : Bi c̀op q[κi x

′/x] : A⇒ C)i=1,2. If we

now have a splitting e = e1[e2] and a match q[κi x
′/x][σ] = e2, then we can define a

substitution τ such that q[τ ] = e2 by putting

τ(y) =

{
κi σ(x′), y = x

σ(y), otherwise
.

By the induction hypothesis, we now have that the splitting and q are unique for
this match, thus the splitting and the choice of q[κi x

′/x] is unique.

The next step is to prove confluence of the reduction in the base case, that is, of
−→0

Σ. To do so, we invoke a result by Cirstea and Faure [10], which proves confluence of
a reduction relation induced by a pattern matching algorithm for the so-called dynamic
pattern λ-calculus. This calculus is an extension of (untyped) λ-calculus, in which λ-
abstraction is allowed to have arbitrary terms in the abstraction, not just variable, that is
to say, abstractions are of the for λM.N for arbitrary terms M and N . To interpret such
an abstraction, we need to provide a pattern matching algorithm, which is a partial map
from pairs of terms and sets of variables to substitutions, and is written as Sol(M � N).
Such a pattern matching algorithm induces a reduction relation by taking the parallel
reduction closure of

(λM.N)P −→ N [σ], if σ = Sol(M � P ).

For more details, the reader should consult the corresponding paper.
The idea of how to encode the calculus we study in this paper into the dynamic pattern

λ-calculus and the (co)pattern matching into a pattern matching algorithm is very simple.
Since we are allowed to use arbitrary constants, we can encode all term constructors of
our calculus directly, only that we need to turn the projections πi and ξ into function
arguments. For instance, π2(ξ t) becomes M ξ π2, where M is the encoding of M . For
a fixed declaration block Σ, the pattern matching algorithm is then the adaption of the
matching with respect to evaluation context we used in Def. 2.6. This is similar to the
case branching example given in [10].

The induced parallel reduction is not exactly the same as the compatible closure of
contraction because they differ in the reduction of applications. However, the reduction
relations can simulate each other, in the sense that if we can reduce a term, then the
other relation can simulate this reduction in one or more steps. This is good enough to
prove confluence: if parallel reduction is confluent for this encoding, then our reduction is
confluent as well.
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The heart of the matter are now the following three conditions from [10], which are
sufficient to ensure that parallel reduction is confluent. Let us denote by fv(M) the free
variables of M and by dom(σ) the domain of σ. Then the conditions are given by.

• H0: If Sol(M � N) = σ, then fv(M) = dom(σ) and for all x ∈ dom(σ), we have
fv(σ(x)) ⊆ fv(N).

• H1: Pattern matching commutes with substitution of variables not bound by the
pattern: If Sol(M � N) = σ and dom(τ)∩ fv(M) = ∅, then Sol(M � N [τ ]) = τ ◦σ.

• H2: Pattern matching commutes with one-step reduction: If Sol(M � N) = σ and
N −→ N ′, then Sol(M � N) = σ′ where σ′ is the point-wise reduction of σ.

It is now straightforward to prove that the (co)pattern matching we used to define
contraction fulfils these conditions.

Lemma A.3. The (co)pattern matching on well-covering copattern sequences fulfils the
conditions H0, H1 and H2.

Proof. Let A and Q be so that A C| Q, and let q[σ] = e for an evaluation context e and
q ∈ Q. Note that q is unique by Lem. A.2.

H0 Clearly, σ binds all variables in q and does not introduce fresh variables.

H1 The condition H1 requires, given a substitution τ with dom(τ) ∩ fv(q) = ∅, that
q[σ][τ ] = e[τ ]. This is clearly the case, as no variable in q are substituted.

H2 Assume we have e −→ e′, we need to show that q[σ′] = e′ with σ −→ σ′, where we
can use the same q by uniqueness. Here we use the obvious lifting of−→ to evaluation
contexts and substitutions. If e was closed e′ is still closed and by Lem. A.2 we still
have a match q[σ′] = e′. The only interesting case to show that σ −→ σ′ is q = x,
i.e. x[t′/x] = t′, but since t −→ t′ we clearly have σ = [t/x] −→ [t′/x] = σ′. The
rest follows by induction in q.

By the above discussion, confluence follows on terms without rlet-bindings from [10].

Lemma A.4. On ΛΣ(A), −→0
Σ is confluent for all well-covering Σ.

Lemma A.4 is the base case for the main result, the confluence of −→k
Σ for any k,

which we prove by induction. To justify that this induction is actually well-formed, we
need the following technical lemma. Let us denote the rlet-nesting depth of any syntactic
entity S by d(S), where S can be a term, a declaration block etc.

Lemma A.5. For all terms t, t′ with t −→Σ t′, we have d(t′) ≤ max{d(t), d(Σ)}.

Proof. Let t and t′ with t −→Σ t′, and note that we then have that t −→d(t)
Σ t′, by

definition of −→Σ. We observe that the only possibility to change the rlet-nesting is a
use of contraction e[f ] �Σ′ r, where e[f ] is a subterm of t.

There are now two possibilities: Either there there is a declaration block Σ′′ ⊆ Σ′

that contains f and a term s that contains e[f ] as a subterm, such that rlet Σ′′ in s is a
subterm of t, or f is already contained in Σ.

In the first case, we reduce the subterm rlet Σ′′ in s to rlet Σ′′ in s′, which induces
the reduction t −→Σ t′ by the compatible closure and the rlet-rules. In turn, this re-
duction of subterms must be given by a reduction s −→Σ′ s′, where Σ′′ ⊆ Σ′, which
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is then induced by a contraction e[f ] �Σ′ r with (f : A = D) ∈ Σ′′. By definition,
we now have d(rlet Σ′′ in s) = max{d(Σ′′) + 1, d(s)}, thus d(r) ≤ d(D) and d(s′) ≤
max{d(r), d(s)} ≤ max{d(D), d(s)}. This implies that d(rlet Σ′′ in s′) = max{d(Σ′′) +
1, d(s′)} ≤ max{d(Σ′′) + 1, d(D), d(s)} = d(rlet Σ′′ in s), where the last step follows from
(f : A = D) ∈ Σ′′. Since the only change caused by the reduction t −→ t′ happens in s,
we have d(t′) ≤ d(t).

In the second case, we similarly get that d(r) ≤ d(Σ). Together with the first case, we
have that d(r) ≤ max{d(t), d(Σ)}.

This result allows us to prove that −→k
Σ is confluent using induction in k, as the nesting

depth cannot be increased by reduction steps.

Proof of Theorem 2.10. We show that −→k
Σ is confluent by induction in k, which implies

that −→Σ is confluent because every term has a unique rlet-depth. This induction is
well-founded by Lem. A.5. The base case is dealt with in Lem. A.4, so we immediately
continue with the induction step.

Assume that −→k
Σ is confluent for any well-covering Σ, we show that for any well-

covering Σ the relation −→k+1
Σ confluent. As usual, we show that for terms t, t1 and t2

with t −→k+1
Σ ti there is a term t3 with ti

k+1
Σ t3, which is called weak confluence and

implies confluence. First, we note that if the reductions to t1 and t2 both come from the
compatible closure, then we can find t3 by induction in the definition of the compatible
closure. The base case of this induction requires the existence of t3 for the case where
t −→k+1

Σ t1 and t �k+1
Σ t2, which we prove in the following.

i) If t = rlet Σ′ in s, then we have the following cases.

(a) ti = rlet Σ′ in si with s −→k
Σ,Σ′ si. Since −→k

Σ,Σ′ is confluent by induction,

there is an s3 with si −→k
Σ,Σ′ s3 and we can join t1 and t2 with rlet Σ in s3.

(b) t1 = rlet Σ′ in s1 with s −→k
Σ,Σ′ s1, s = α s′ and t2 = α(rlet Σ′ in s′). Then we

must have that s1 = α s′1 with s1 −→k
Σ,Σ′ s′1, hence we can t1 and t2 by

t = rlet Σ′ in(α s′)

t1 = rlet Σ′ in(α s′1) t2 = α(rlet Σ′ in s′)

α(rlet Σ′ in s′1)

(c) We proceed analogously if s = κis
′.

(d) The other cases follow by symmetry.

ii) If t = ξ(rlet Σ′ in s), t2 = rlet Σ′ in(ξ s) and t1 = ξ(rlet Σ′ in s1) with s −→k
Σ,Σ′ s1,

then we can reduce t1 to rlet Σ′ in(ξ s1) and s to s1. Thus the joining term is
rlet Σ′ in(ξ s1).

iii) We proceed analogously if t is an rlet in context of an application or πi.
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iv) The remaining cases are either trivial because the same reduction happens on both
t1 and t2, they follow by symmetry, or combinations of reductions by �k+1

Σ are
excluded by the types of t1 and t2.

This proves that, if t −→k+1
Σ t1 and t �k+1

Σ t2, then there exists t3 with ti
k+1
Σ t3. It

is straightforward to extend this by induction to the compatible closure, hence to arbi-
trary reductions towards t2. This shows that −→k+1

Σ is confluent for any well-covering Σ,
provided −→k

Σ′ is for any well-covering Σ′. Thus, by induction in k, −→Σ is confluent.
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