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THE ALGEBRA OF BOUNDED SEQUENCES AS FACTOR SEQUENCES 

1. Let A= (a ) be 
mn 

of bounded sequences 

are limited to zero. 

is denoted by xy and 

sequence xis given 

factor sequence for 

of factor sequences 

by 

G.M. PETERSEN 

a regular summability matrix. By A is denoted the set 

limited by A and by A0 those bounded sequences which 

If x = {x} and y = {y }, the product sequence {x y} n n n n 
{x + y } by x + y. The usual norm I lxl I of a bounded n n 

by I Ix 11 = sup Ix 1- The bounded sequence c; is a 
n n 

A (or A= (amn)) if ,x E A0 whenever x E A0 . The set 

corresponding to A we denote by A*. With the operations 

of addition and multiplication defined as above and under the usual norm, 

A* 6 is a Banach algebra, see [ ]. It is our purpose in this paper to discuss 

those regular matrices for which A* consists of the set of all bounded 

sequences. 

Before we can come to our main purpose, we must develop some other 

ideas. A sequence {t} is a thin sequence with respect to A= (a ) if 
n -- m,n 

tn = 0, n l {nk} where 

00 

lim I 
m-+«> k=1 

A matrix A = ( a ) is 
m,n 

rowed if there exists 

a = 0 n .:_ µ (m) . In 
m,n ' 

different way: 

la I = o. <1) 
m,nk 

positive if a > O, (m,n = 1,2, .•. ) and finite 
m,n -

an integer valued function µ(m) t 00 such that 

[5], the following theorem is proved though stated a 

Theorem 1. If A= (a ) is a positive, finite rowed and regular 
* m,n 

matrix, c;, EA n A, then~= r+t where r is convergent and tis thin. 

If A= B, the matrices A and Bare b-equivalent, if A~ B then A is 

b-stronger than B. If A= (a ) is any regular matrix, then there exists a 
m,n 

finite rowed matrix, A'= (a' ) which is b-equivalent to A, see [4] page 
m,n 

82, in particular A' has the same thin sequences as A. 
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For this reason we need only consider finite rowed matrices in the sequel. 

The following theorem is then an immediate consequence of Theorem 1: 

) A* Theorem 2. If A= (a is a positive regular matrix such that is 
mn 

the set of all bounded sequences, then x EA if and only if x = r+t where 

r is convergent and tis thin. 

A matrix defined by the transformations, 

(k = 1,2, ... ) 

where {nk} is an infinite subsequence of the natural numbers, satisfies the 

conditions of Theorem 2. This is also true of the matrix described by 

Garreau [1], see also [3]. We now prove: 

Theorem 3. Let A= (a ) be a regular matrix. The following two con-m,n 
ditions are equivalent: 

1) A* is the set of all qounded sequences 

2) x EA if and only if x = r+t where tis convergent and tis thin. 

Proof. We may in fact assume that a = 0 whenever n < A(m) or 
mn -

n > µ(m), A(m) t 00 , µ(m) t 00 , see [4], page 82. Now suppose there exists 

x EA which is not of the form given; then in fact we can suppose x E A0 . 

Since xis not the sum of a sequence convergent to zero and one thin with 

respect to A, for infinitely many m and some £ 1 > O, £2 > 0 we have 

(r=1,2, ... ) (2) 

and 
00 

(3) 

where it is important to note that {n} may depend on m, see [4]. However, r 
we select{~} so that (3) is satisfied whenever m =~and such that 

µ(~) .::_ A(~+1), (k=1,2, ... ). Then the same sequence {nr} can be chosen to 

all rows~ (k=1,2, ... ). Moreover xis not thin with respect to the matrix 

B = (bkn) defined by bk = a . The matrix B has at most one non-zero n Ir\n 
element in each column, hence we can define sgn n by sgn n = 1 if the non-

zero element in then-th coltmn is positive, or if all elements in the 
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column are zero; sgn n = -1 if the non-zero element is negative. Consider 

now the matrix C = (ckn) defined by 
00 

ckn = bkn sgn n / l lbknl. 
n=1 

The matrix C is regular and positive. The sequence x E C0 since 

* {xn sgn n} E B0 , i.e. {sgn n} EB. The sequence xis not thin with respect 

to C since 
00 co 

However if y E C0 ands is any bounded sequence, {yn sgn n} E B0 and so 

{sn yn sgn n} E B0 and this implies sy E C0 so that C* is the set of bounded 

* sequences. Hence we would have that C is the set of bounded sequences, but 

x E C0 is not of the form r + t where tis convergent and tis thin. This 

contradiction proves our theorem. 

Using the matrices defined in the proof of Theorem 3, it is easy to prove 

the following theorem which characterizes thin sequences in terms of the sum­

mability field: 

Theorem 4. If x E A0 , then x = r+t where r converges to zero and tis 

thin if and only if ,x E A0 for all bounded sequences S• 

We now prove: 

Theorem 5. If A = ( a ) is a regular matrix such that x E A implies that m,n 
x = r+t where r is convergent and tis thin, then there exists a positive regular 

matrix B = (bmn) such that B ~ A and such that A and B have the same thin 

sequences. 

Proof. Let B = (b ) be defined by 
mn 

co 

I 
n=1 

b = la I / mn mn la I mn (m,n = 1,2, ... ). 

Then tis thin with respect to A if and only if it is thin with respect to B. 

This completes our proof. 

We now prove the following: 

Theorem 6. Let A= (a ) be a positive regular matrix. Then there exists 
mn 

a positive regular matrix B = (b ) such that x EB if and only if x = r+t where 
mn 

r is convergent and tis thin with respect to A. 

Proof. An auxiliary matrix C = (c ) is first defined; suppose the first N 
mn 

rows of the matrix C have been defined, where 
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N = 2µ( 1 ) + 2µ( 2 ) + •.• + 2µ(m) (4) 

a = O, n~µ{m). Then the next 2µ(m+ 1 ) 
mn 

rows will be defined by where 

first taking the (m+1)st row of A as the N + 1 st row of C. The next µ(m+1) 

rows of C will consist of the (m+1)st row of A with each of the different 

elements a +1 m ,n 
1 < n ~ µ(m+1) - 1 successively replaced by a zero, the 

other (m+1) - 1 elements remaining the same. Now two elements of the row 

are replaced by zeros in all possible µ(m+ 1)c2 ways. The next µ(m+ 1)c3 rowB 

are determined by replacing three elements by zeros. In all 2µ(m+1) rows 

are used as the elements of them+ 1st row of A replaced in all possible 

ways by 1, 2, ••• , µ(m+1) zeros. The new matrix C is certainly not regular. 

However, if N is defined as in (4), it is clear that for N < r 2- N+2µ(m- 1)_, 

l Jc I= I c <Ia = l la I 
r,nk r,nk - m,nk mnk 

(5) 

where {nk} is any subsequence of the natural numbers. Consequently a 

sequence which is thin with respect to A is thin with respect to C. If x 

cannot be expressed as r + t, where r converges to zero and tis thin, then 

{3) is satisfied and we may even assume 

> E: . 1 (k = 1,2, ... ) 

or (6) 
X < -E: 

nk 1 
(k = 1,2, ... ) 

and for some row v 

N+1 < V < N+2µ (m+1) (7) 

we have either 

X = l n (8) 

or 

(9) 
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so that x is not limited to zero by C. Hence the only x € A0 limited to zero 

by Care the thin sequences. For every v satisfying (7), let 

and define B = (b ) by 
vn 

b = (1-n ) a + c ; vn v mn vn 

we can assume that L a = 1, (m= 1, 2, ... ) so that n 1 = 0 and O < n < 1 , 
( ) Inl1 - V -

(N+1 ::_ v ..::_ N+2µ m+ 1 ). It is clear from the construction that Bis regular; 

since bN+,,n = am,n (n=1,2, ... ) it follows that 80 c A0 . If x E A0 but is 

not limited to zero by C, it is clear from (8) and (9) that 

while 

lim l cN+,,n xn = 0. 

Hence x E B0 if and o~ly if x E A0 and is limited to zero by C; that is 

x = r+t where t is thin and r converges to zero. On the other hand, it is 

clear from (5) that all sequences thin with respect to A are limited to 

zero by B. This completes the proof. 

Combining Theorems 3, 5 and 6, we have: 

Theorem 7. Let A= (a ) be a regular matrix. If A* is the set of m,n 
bounded sequences, A is b-equivalent to a positive matrix. 

The construction used in Theorem 5 is similar to that of Garreau [ 1 J with 

respect to the (C, 1) matrix. However, Garreau' s construction could be slight­

ly more economical owing to the special properties of the (C) 1) matrix. The 

construction of Theorem 5 shows that there are many of these matrices since 

any regular matrix may be used as a basis for the construction. Of course 

a positive matrix with the bounded sequences as the algebra already will pro-
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duce a second matrix b-equivalent to the first. 

2. The matrix A= (a ) is b-multiplicative if whenever x € A0 and y € A0 m,n 
then xy € A0 , see [2]. If A= (amn) is b-multiplicative and x € A0 is not 

the sum of a thin sequence and one convergent to zero, construct the matrix 

C exactly a.sin the proof of Theorem 3. Let y = {xn sgn nl, then C limits y 

to zero and also yk (k=1,2, ••• ). Then since y is not thin with respect to C, 

we arrive at a contradiction as in [5]. Hence A= (amn) is b-multiplicative 

if and only if all members of A are of the form r + t where r is convergent 

and tis thin. This leads to the following result: 

Theorem 8. The regular matrix A= (a ) is b-multiplicative if and only mn 
if the set of factor sequences is the set of bounded sequences. 

I wish to thank Professor Baayen for a careful review and some fruitful conversation. 
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