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1. Introduction

In [6] we introduced the concept of an S—group. A topological group G
is said to be an S-group of it is a non~compact topological Hausdorff-
group such that BG is a compact topological group in which G is
(canonically) embedded as a dense subgroup. Such groups have been con-
sidered earlier by Glicksberg [1] and Kister [57.

In [1], Glicksberg remarked that it is easy to see that an S-group is
pseudocompact, but he left open the converse question. We shall prove
that a topological group G is an S-group if and only if G is pseudo-
compact and non-compact. This will be a direct consequence of the fact
that an arbitrary product of pseudocompact topological groups is
pseudocompact'and the simplest case of Theorem 1 of [1]. The proof that
a product of pseudocompact topological groups is pseudocompact is sur-
prisingly simple if one characterizes pseudocompactness of a topologi-
cal group in terms of its Bohr compactification. We conclude with some

remarks about O~dimensional S-groups.

2. Preliminaries.

In the sequel all topological spaces are Hausdorff spaces. If X is a
topelogical space; C(X) will denote the Banach algebra of all complex-
valued bounded continuous functions on X (pointwise defined operations
and supremumnorm). A subset A of X is said td be ¢ -embedded in X if
every f € C(A) can be extended to an element of C(X). A topological

space X is called pseudocompact if every continuous real-valued function

on X 1s bounded. There are several characterizatiéns of pseudocompact-

ness. We mention:

2.1 THEOREM. Let X be a completely regular topological space.
The following conditions are equivalent:
(i) X is pseudocompact.

(ii) For any decreasing sequence {Vn}n of non-empty open

€ ul

sets in X, (\ V£ $ g.
ne N
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(iii) Any sequence {Wn}n€ of non-empty, pairwise disjoint,

N
open sets in X has a cluster point)1.
(iv) Any non-void closed Gs-set in BX meets X.
PROOF. (i) == (ii) : Cc.f. [11; (i) == (4iii) : e.f.[2], 9.13, and
for (i) == (iv), c.f. [1] (compare also [2], 6 I 1).

Recall that BX (X a completely regular space) denotes the Stone-Cech

compactification of X, that is, a compact topological space in which

X is C*—embedded as a dense subspace; BX is unique up to a homeomor-
phism which leaves X pointwise invariant. BX is characterized by the
property of being a compact space in which X is densely embedded such
that any continuous function from X into a compact topological space
has s continuous extension to all of gX. There is a close relation-
ship between pseudocompactness and Stone—éech compactifications: ¢.f.
2.1 above. Moreover, a well known theorem of Glicksberg [1] states that

B( MX )= T PBX if and only if 1 X 1is pseudocompact (here,for
o ) )
aech oehA oeh

every o € A, Xa is a completely regular space). We need only the sim-
plest case of this theorem, the proof of which is quite straight-

forward:

2.2 THEOREM. If X and Y are completely regular spaces and if X x Y
is pseudo-compact, then the canonical injection of X x Y
into BX x BY extends to a homeomorphism of B(XxY) onto
BX x BY.

PROOF. C.f. [11.

If G is a topological group, we denote the Bohr compactification of G

by (a,Gc). This means that Gc is a compact topological group and that

a G-~ Gc is a continuous homomorphism of G onto a dense subgroup of

Gc such that for any continuous homomorphism § of G into a compact topo-
logical group H there exists a continuous homomorphism ¢ : Gc - H such
that ¢ = ¢ © o. This is analoguous to the characterization of a BX
mentioned abovej; the analogon of the C*—embedding‘of X into BX is : if

f: G- C is an almost periodic function (c.f. [3]1,18.2 for a definition),

)1

That is: any such a sequence is not locally finite.
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then an T e c(a,) exists such that f = f o a. A Bohr compactification
(u,Gc) of G always exists (c.f. [L4] for references) and is unique up
to a topological isomorphism which leaves a(G) pointwise invariant.
Hence we may speak about "the" Bohr compactification of G. In general,
o : G-~ Gc is not injective, and even if o is injectife (for instance,
if G is a locally compact abelian group) o need not be a homeomorphism.

However, we have:

2.3 THEOREM. ILet G be a topological group. The following are
equivalent: '
(i) a is a topological embedding of G into G,
(ii) G is totally bounded.
(iii) G is a subgroup of a compact topological group K.
In this case, Gc may be identified with the closure of G
in any compact topological group KO in which G is embedded
as a subgroup, and o may be identified with the inclusion
mapping of G in its closure.
PROOF. (i) => (ii) = (iii) are well-known and (iii) = (i) is easy.

For proofs we refer to [6]; Proposition 3.7 and Iemma 3.2.

Every topological group G is completely regular ([3], 8.4), hence topo-
logically embedded in its Stone-Cech compactification BG.The embedding
mapping will always be denoted by Y. An S-group is a non-compact topo-
logical group G such that BG is a compact topological group in which G
is embedded by y as a dense subgroup. In Section 4 of [6] we exhibited
a large variety of non-S-groups. Moreover, we have (c.f. [6], T...crems

3.3 and 3.8):

2.4 THEOREM. ILet G be a topological group. The following are
equivalent:
(i) G is an S-group .
(ii) ¢(G) is exactly the space of gll almost periodic
functions on G.
(1iii) There e§ists a homeomorphism o of BG onto Gc such that
o =0 ° Y.
(iv) G is totally bounded and every f € C(G) is right uni-

formly continuous.
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PROOF. The proofs are rather trivial, using the various characteri-
zations of (a,Gc) and (v,B8G), Theorem 2.3 and the fact that all almost

periedic functions are (left and right) uniformly continuous.

3. The existence of S—-groups.

3.1 PROPOSITION. If G is a non-compact group, and G X G is pseudo-

_ compact, then G is an S~-group.
PROOF. Since G x G is pseudocompact we may identify the Stone-Cech
compactification of G X G with (yxy,BGxBG), where (y,BG) is the Stone-
Jech compactification of G (c.f. 2.2). Let p : G x G > G denote the mul-
tiplication mapping, that is, p(x,y) = xy for x, ¥y € G. Because p is
continuous, p has a continuous extension p : B(GxG) -+ BG. By the iden-
tification, mentioned above, E'may be regarded as a continuous mapping
from BG X BG into BG. Since the restriction of p to G x G is p, and
G x G % G is dense in BG x BG x BG, the fact that p is associative im-
plies that p is associative. In the same way it can be seen, that
ple,x) = p(x,e) = x for all x e BG. Hence BG is a topological semi-
group with identity e, containing G as a dense subgroup.
By a similar procedure, the continuous mapping x+ x"1 from G onto G
has a continuous extension to BG, which we also denote by

1

X X RG -+ BG. Because the continuous mappings x+ Elx,x—1),

X E(x—1,x) and x> e Trom BG into B8G coincide on the dense subset

G of BG, they coincide on all of BG. Hence

-1

E(x,x_1) =plx ' ,x) =e

for all x € BG. Thus BG is a topological group in which G is a dense

subgroup.

3.2 Let {Ka]aeA} be any set of topological groups, and let Z Ka
v o€l
denote the subspace of the cartesian productspace 1 Ku’ consisting
oel

of all points x = (x_)

o’ aen such that, for at most countably many

o € A, x, ¥ e , the identity of K . It is easy to see that ) K
o o o aed &
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is a dense subgroup of 1 Ka' Moreover, if, for all o ¢ A, Ku is compact,

aeh
then Z is countably compact,hence pseudocompact (any sequence in Z Ka has
o€l ‘ ach

a cluster point y ¢ 1 Ka,and there cannot be more than countably meny aech
oA

such that v, + e,» 8O that v € z Ka)‘
och

As far as we know the first proof of our next proposition is given by
Glicksberg in [1]. Glicksberg makes use of a technique which enables him

to state that any £ ¢ C () Ka)'does depend on not too many codrdinates.
oeh

A similar technique is used by Kister in [5] to prove the same propo-
sition. We shall give another proof which avoids these techniques (we
use only 3.1, that is, we use only Theorem 1 of [ 1] for products of

finitely many factors).

3.3 PROPOSITION. If {Ka ] o € A} is any uncountable set of compact

topological groups, then the proper subgroup z Ka of
oeh

I XK 1is an S-group.
o
o€l

PROOF. $Since A is uncountable, 2 L is a proper subgroup of 1 Ka'
O€A aeh

Because z K is dense in T K , this implies that z K is not
o o o
o€A oech . oeh

compact. By 3.1 we need only to prove, that ( | K,) * ) K,) is
oech oeh

pseudocompact. This follows immediately from the pseudocompactness of

) (Ka x Ka) (c.f. the remark, preceding our proposition) and the fact
o€A

that the mapping

(y ) dr— ((x,vy.))

((xu)aeA ’ o’oeh o’ Yo' ‘oeh

defines a hLomeomorrhism from ( I K ) x (T K )onto T (K xK ),
o o o a
och aeh och

which sends( ) K,) * ( ) K,) onto ) (K. x Ka).
aeh oel oeh o
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3.4 COROLLARY. If {Ka ] aeA} islany uncountable set of compact topo-
logical groups, then I K, is the Stone-Cech compactifi-
: oeh

cation of Z K .
o
aeh

PROOF. Since Z Ku is an S-group, its Stone-Cech compactification and
oA

its Bohr compactification cofncide (c.f. (i) = (iii) in 2.4). Since

Z Ka is a dense subgroup of the compact group I K , the desired
ochA aeh 2

result follows from 2.3.

3.5 REMARK. We provided a class of S-—groups G such that G and G x G
are pseudocompact, even countably compact. There are, however, S~groups
which are net countably compact.

To get an example, we first observe that if GO is any S-group,
and if H is a subgroup of BGO such that GO«S H‘i BGO, then BH =TBGO’
hence H iz an S-group. Now let A be an uncountable set, Ku =" for all

o € Aand G, = ) K, Let H be the subset of I K, consisting of
o€l o€l

all x = (xd) such that x = exp (2ﬂita) with t, € @, except for at

o€

most countably many o ¢ A. By 3.k, T X = BG., hence G, < H ¢ BG_.
-y o 0 0 =% 0

Thus H is an S-group. But it is easy to see that H is not countably
compact (this example is due to J.M. Kister [51).

4, A characterization of S-groups.

4.1 1In this section we show that the class of S-groups is exactly the
class of non-compact, pseudocompact topological groups. As a motivation
for the method of proof that a non-compact, pseudocompact group is an
S-group we wish to make the following remarks.

The result follows easily from 3.1 as soon as we have established
that an arbitrary product of pseudocompact topological groups is pseudo-
compact. One of the characterizations of pseudocompactness for a com-
pletely regular space X is 2.1 (iv) : every non-void clesed Gs—set in

BX meets X. If one tries to prove that a product I X has this pro-

aeh
i — e ————

>1'I‘always denotes the circle group {A | A € € & | A | =11 .



perty if each X& has it, the proof breaks down on the fact that

B( M X ) is not equal to T BX (unless we know already that 1 X
aeh ) aes ¢ aeh &

has the desired property).

Now it is natural, indeed, to consider Stone-lech compactifications
in connection with pseudocompactness. However, a pseudocompact topo-
logical group G turns out to be totally bounded (c.f. the proof of
4,2 below), and in view of 2.3 it may be usefull to characterize pseu-
docompactness of G in terms of the Bohr compactification Gc of G.

This has the advantage that the Bohr compactification of a product is
the product of the Bohr compactifications (for totally bounded groups
this is trivial in. view of 2.3, but it is true for arbitrary topologi-

cal groups; c.f. [4]). Such a characterization can be achieved:

L.2 PROPOSITION. Let G be a topological group. The following are
equivalent:

(1) G is pseudocompact.

-

(ii) G is a dense subgroup of a compact group G and

every non-void Ga—set in G meets G.

PROOF. (i) == (ii). If G is pseudocompact, then G is totally bounded.
Suppose not. Then there is a neighbourhood U of e and a sequence

Xis Xps eoe in G such that the sets xnU are mutually disjoint. Let V

29
be a symmetrical neighbourhood of e such that V2.5 U. Then the sequence

{an}n€ N is locally finite, contradicting the pseudocompactness of G.
By 2.3, G is a dense subgroup of a compact topological group G. Suppose

a non-void G -subset of G is contained in G \ G. Then it is easy to

8
construct a continuous function f : G = [0,1] such that

{x | xe¢ G&f(x)=0}§_F_c_:_Gc\ G.
The function x+ 1/f(x) is continuous and not bounded on G, contra-
dicting the pseudocompactness of G.

(ii) = (i). Let {Wn} be a descending sequence of open sets in G.

ne N

We must prove that n ﬁn + 0 , where %n is the closure of Wn in G
n=1

(cf (i) == (ii) of 2.1).

-~

Now G is a dense subgroup of a compact group G, and for all n € N

#
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there is an open set Uh in G such that Wn =Gn Uh. We may assume that
Uh+1 < Un for all n € N. If we denote the closure of a set A in G with
K, then

W =GaW =GnU
n n n

oo Loe] .
for all n € N. Since [ Wo=Gan N ffn, it will clearly be sufficient
n=1 n=1 ’

to prove that (] ﬁﬁ contains a non-void Ga—set.
n=1

Take, for all n ¢ 1, X, € Un’ and let Vn be an gpen neighbourhood of

the identy in G such that x V, £ U -Then N: = N v, is a non-void
n=1

~

Gg in G (it is even a normal subgroup of G, and if one takes V£+1 S

~ -~

N iz closed in G).Since G is compact, the sequence {xn}:=1 has a clus-

terpoint x in G.

Let y € N. Then xy 1is clusterpoint of the seguence {xny}:;1 in G.

For all n € N we have y € Vn’ hence xny € anh < Un' Thus any neigh-
bourhood O of xy in G meets u, for infinitely many n ¢ WN. Because
U c U for all k, this implies that O n Un # ¢ for all n € N, so

k+1 — 'k
that xy € Uh for all n € W. We have proved that the non-void G

oo

6—set

xN is contained in [° 'Un.
n=1

4.3 THEOREM. Let A be a non-void set and, for all a € A, let Ga be g

topological group. Then I Ga is pseudocompact if and only
oe€h
if, for all o € A, Ga is pseudocompact.

PROOF. Since every Gu ig a continuous image of I Gu’ pseudocompact-
0 oeh

ness of the product implies pseudocompactness of the factors.
Conversely, suppose each Ga is pseudocompact. Then for all o €A, Ga ig
a dense subgroup of a compact group Gu’ and every non-void Gé—set in

deeets Ga' Hence I Ga ig a dense subgroup of the compact group
o€l

-~

I Ga’ and the proof is finished if we show, that given any non-void
o€l

Ge-set Fin T G ,Fn I G # ¢ : then we know by 4.2 that T G
J o o o
o€l ach o€l

is pseudocompact.
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Fix any x € F. It 1s easy to see that there are open sets Uh in

I G such that
o
oeh .

for all n ¢ W, with U
n,o

open in Ga for all o € A and, in addition
?

U: = (~] Un-E F (we do not need the fact that the Uh o can be chosen

nell s
such that U = G for all o € A \ A , where A 1is some finite subset
n,o o n n
of A).
For each o € A, F : = rﬂ‘ U is a G.-set in G, and x e F , so that
o N, § o. o o

nell ?

F, % . Then we know that F 0 G ¢, say p, € F nG . Let

p: = (p,), , 5 then

pelUn I Ga cFn I G.
€A aes

Thus Fn T G #¢ ,and I G is pseudocompact.
¢4 o
ach oeh

4.4 THEOREM. A topological group G is pseudocompact if and only if
either G is an S-group or G is compact.

PROOF. Let G be pseudocompact and non-compact. By 4.3, G x G is pseudo-

compact, hence G is an S-group by 3.1. ,

Conversely, suppose G is an S-group. From (i) == (iv) of 2.k we know

that G is totally bounded and that every f e C(G) is uniformly conti-

nuous. Suppose G is not pseudocompact. Then there is a sequence of

pairwise disjoint open sets in G which is locally finite. Hence there

is a sequence {xn}z= in G and a sequence {Wn}:=1 of neighbourhoods of

1
the identity e of G such that the sequence {onn}:=1 is locally finite,
and the sets ann are pairwise disjoint. In addition, we may suppose

that W c W for all n € W.
n+tl — n

Because G is completely regular, for every n € N there is a con-

tinuous function fn : G~ [0,1] such that

&
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1 for x = x
n

f (x) =
n 0 forxéx W
n ntl
Note that x W , . cx W (ne N). Since the seguence {XnZn}n=1 is lo-
cally finite, the well defined, bounded function f : = z fn ig con~

n=1
tinuous, hence uniformly continuous. This implies that there is a

neighbourhood U of e in G such that

[£(x) - £(y)| < 3

for all (x,y) € G x G, x~1y € U. In particular, for all n ¢ W, we have

o=
.

VyecG:ye X U = f(y) >

However, for all y € x W _, we have fly) = fn(y), thus

xn-U n‘xn Wn S X, Wn+1 (ne W),

Hence, for all n e IN, Un Wn-S Un 12 and this implies

unw cun (Y e[ .
n=1 n=1

In particular, for every'n e N, xh(UnW ) E-Xn Wh. Consequently, the

1

non-void open sets xn(UnW ) are mutually disjoint, contradicting the

1
total boundedness of G. Thus, if G is an S-group, G is pseudocompact.

Finally, it is trivial that compactness of G implies pseudocompactness.

4.5 REMARK. The behaviour of the class of S-groups under the forming
of products, subgroups and quotients is the same as the beha-
viour of pseudocompact spaces under these operations. But in

some cases we can say more. We state explicitly:

4.6 PROPOSITION. Let G be an S-group. A non-compact subgroup H of
G is an S—group if and only if H isC -embedded in G.
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PROOF. DNote first, that H is a dense subgroup of the compact topologil-
cal group ﬁ; where H denotes the closure of H in the compact topological
group BG. If H is an S-group, it follows from 2.3 and 2.4 that any
compact topoiogical group in which H is a dense subgroup, may be iden-
tified with BH. In particular, BH = H. Hence, by [2], 609, H is C -em-
bedded in G.

The converse-statement may be derived also from [2], 6.9: if H

is C*-embedded‘in G, BH = H, hence BH is a topological group.

4,7 REMARKS. 1°. In general, a pseudocompact subspace of a pseudocom-
pact space need not be C*-embedded, and a C*-embedded éubspace of a
pseudocompact space need not be pseudocompact.

26. In general, a nonacompact subgréup of an S-group is not an S-group
(hence not C*-embedded). Let A be an uncountable set, Ku =T for all

o €A, H, a dense proper subgroup of Mand G = z Ka' Then G is an

0 aeh
S-group, and G contains a copy H of HO as &a subgroup. Since HO ig not
an S-group (e¢.f.[6], 3.10), H is not an S-group.

3°, An open subgroup of a topological group G is C*-embedded in G. This

follows immediately from the fact that G is the disjoint union of the
distinet left cosets of H in G, each of which is open in G and homeomor-

phic with H.

4.8 PROPOSITION. Let {Ga | @ € A} be a set of non-compact topological

. I
groups.Then ael

a € A, Gu is an S-group.

Gais an S-group if and only if, for all

PROOF. Follows immediately from 4.3 and L.L

4.9 REMARK. If in 4.8 the non-compactness of the Ga's‘is not given,

then the fact that I G& ig an S-group implies that every Ga is pseu-
aech

docompact, hence for 8ll a € A, Ga is either compact or Ga is an S-

group. Since I Ga is not compact, there is at least one o for which
o€l

Ga is not compact. In any case, the following is true: a non-compact

topological group G is an S-group if and only if G x K. is an S-group

0
for some compact topological group K. In that case G X K i% an S-group

&
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for every compact topological group K.

4.10. PROPOSITION. Let G be an S-group, H a non-compact topological

group and ¢ a continuous homomorphism of G onto H.

Then H is an S-group.
PROOF. Immediate from 4.4 and the fact that continucus images of pseudo-
compact spaces are pseudocompact. Nevertheless, we will give an amusing
glternative proof, that does not.make use of the pseudocompactness cri-
terion for S-groups, but of the equivalence of (ii) and (i) of 2.k.
If K is any tépological group, let A(K) denote the space of almost perio-
dic functions on K. In addition, if a € K and g € C(K), let g_ denote
the function x+ g(xa) : K ~ €. Let ¢ : C(H) » C(G) denote the mapping
induced by ¢

$(£) 1= £ 0 ¢ (£ e c(m).

Then, for all a € G and £ ¢ C(H), we have [g(f)] = (£ s(a )). Since ¢
)

is a surjection, this implies that for every f e C(H the equality

-1
| b e} =3 {[6(£)] ,laca

nolds. Now ¢ is an isometrical isomorphism from C(H) onto a closed sub-
algebre of C(G). Hence'{f | € H} is totally bounded in C(H) if and
only if {$( f) | 2 € G} is totally bounded in C(G). Thus, if f e C(H),
then f ¢ A(H) if and only if ¢(f) e A(G).

In general only the "only if" part of this statement is usefull, but in
this case A(G) = C(G), that is, for all f € C(H) we have 0(£) € AG),
hence f € A(H). This means, that A(H) = C(H).

In [3], 4.21(d), (e) a class of O-dimensional groups is described which
are all totally bounded. We shall show now, that all O-dimensional
S-groups belong to this class.

k.11 PROPOSITION. If G is a O-dimensional S-group, then there is an
open basis at the identity e consisting of open normal
subgroups of G with finite index.

PROOF. If G is O~-dimensional, then BG is O-dimensional (cf [2], 6L).

Now let U be an arbitrary neighbourhoed of e in G, say U = U_ n G,.With

0
U. a neighbourhood of e in BG. Then, by [31, 7.7 U5 contains an open

0

&
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normal subgroup N_ of BG, and U contains the open normal subgroup

0

NO n G of G. Since G is totally bounded by 2.3, this cpen subgroup

of G must have a finite index in G.

L.,12 EXAMPLE. Let A be an uncountable set and, for all o e A, let
Ka be the multiplicative discrete group {-1,1}. By 3.3, the group

G: = Z Ku ig an abelian S-group. An open basis at the identity is
oA

formed by the collection of all sets

Hy: ={x | xeG&x =1forall acB}

with B & finite subset of A. Then 1t i1s easy to see that for every

finite subset B of A, H_ is an open normal subgroup of G with finite

B

index (the index of H_ in G equals the number of elements in B).

B

4.13 PROPOSITION. If G is a O-dimensional S-group and H a closed
normal subgroup of G, then G/H is a O-dimensional to-
pological groﬁp.

PROOF. (Compare [3], 7.11). Let B denote an open basis at the identi-

ty e of G, and let q : G » G/H denote the quotient mapping of G onto

G/H. Then {q(U) | U € B} is an open basis at g(e) in G/H. By L.11 we

are allowed to suppose that every U € B is an open normal subgroup

of G. Hence, for each U € B, q(U) is an open normal subgroup of G/H.

Since open subgroups of a topological group (i.c. G/H) are closed,

we have proved that there is an open basis at q(e) consisting of

open-and-closed subsets.

4,14  PROPOSITION. Let G be an S-group. The following are equivalent:
(i) G is connected.
(ii) G has no proper open subgroups.

(iii) For every neighbourhood U of the identity e in G

we have \J Un = G.

nell
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PROOF (Compare [3], 7.9). The implications (i) = (ii) <= (iii) are
generally valid. We prove (ii) = (i).

Suppose G is not connected. Then BG is not connected ([21, 6L 1).
Since BG is.a compact topological group, the connected component of
the identity in BG is the intersection of all open subgroups of

BG (c.f [3]; 7.8). Hence there is an open subgroup H in BG such that
H + BG. Then H n G is an open subgroup of G, and H n G + G : if
HnG= G, then G ¢ H, hence H = BG because H is closed in BG and G is
dense in BG, contradicting the fact that H # gG. Thus (ii) = (i).

4.15 EXAMPLE. There do exist connected S-groups. Let A be an un-
countable set, and let, for all a € A, Ku be a connected compact topo-

logical group.

Then G : = z Ka is connected (the proof that a cartesian product of
o€l
connected spaces is connected works also for z Ku)' Hence G is a
ceh

connected S-group. If, in addition, every Ka is locally connected,
then G is connected and locally connected. Finally, if K is a compact,
locally connected, but non-connected group, G X K is.a locally connec-

ted, non-connected S-group (c.f. 4.9).

4,16 REMARK. Let G be an S-group and let C be the connected component
of the identity in G. We prove: if G/C is O-dimensional, then

(%) C = r\{H | H is an open subgroup of G}.

Since trivially C is contained in every open subgroup H of G, we prove
that C > r\{H | H is an open subgroup of G}. Take x ¢ G\C. Then the '
canonical image x of x in G/C is different from e, hence by 4.11 (if
G/C is an S-group) or [3], 7.7 (if G/C is compact) there is an open
subgroup H in G/C such that x ¢ H. Consequently, there is an open sub-
group H in G with C ¢ H and x ¢ H.

Notice, that there exist S-groups G such that G/C is non-trivial
and O-dimensional and G is not: if G is a locally connected, non-
connected S-group, then C is an open subgroup in G and G/C is dlscrete
and non-trivial (but finite, since C has finite index in G). However ,

in this example, (*) is trivially valid.
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Problem: If G is an S-group and C 1s the connected component of the
identity of G, has G/C to be O-dimensional? Equivalently: is every
totally disconnected S-group O-dimensional? If not, is (*) equivalent

with the fact that G/C 1s O-dimensional?
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