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1 . Introduction 

In [6] we introduced the concept of an S-group. A topological group G 

is said to be an S-group of it is a non-compact topological Hausdorff

group such that SG is a compact topological group in which G is 

(canonically) embedded as a dense subgroup. Such g+oups have been con

sidered earlier by Glicksberg [1] and Kister [5]. 

In [1], Glicksberg remarked that it is easy to see that an S-group is 

pseudocompact, but he left open the converse question. We shall prove 

that a topological group G is an S-group if and only if G is pseudo

compact and non-compact. This will be a direct consequence of the fact 

that an arbitrary product of pseudocompact topological groups is 
' pseudocompact and the simplest case of Theorem 1 of [1]. The proof that 

a product of pseudocompact topological groups is pseudocompact is sur

prisingly simple if one characterizes pseudocompactness of a topologi

cal group in terms of its Bohr compactification. We conclude with some 

remarks about 0-dimensional S-groups. 

2, Preliminaries. 

In the sequel all topological spaces are Hausdorff spaces. If Xis a 

topological space, C(X) will denote the Banach algebra of all complex

valued bounded continuous functions on X (pointwise defined operations 

and supremumnorm). A subset A of Xis said to be c*-embedded in X if 

every f E C(A) can be extended to an element of C(X). A topological 

space Xis called pseudocompact if every continuous real-valued function 

on Xis bounded. There are several characterizations of pseudocompact

ness. We mention: 

2,1 THEOREM. Let X be a completely regular topological sp~ce. 

The following conditions are equivalent: 

(i) Xis pseudocompact. 

(ii) For any decreasing sequence {V } :., of non-empty open n OE,., 

sets in X, n V :j: r/J. 
nE lN n 
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(iii) Any sequence {W} m of non-empty, pairwise disjoint, 
n nE ll.~ 

• • ) 1 open sets in X has a cluster point . 

(iv) Any non-void closed G0-set in SX meets X. 

PROOF. (i) <===;> (ii) : C.f. [1]; (i) ~ (iii) c.f.[2], 9,13, and 

for {i) ~ (iv), c.f. [1] {compare also [2], 6 I 1). 

Recall that SX (X a completely regular space) denotes the Stone-Cech 

com~actification_of X, that is, a compact topological space in which 

Xis c*-embedded as a dense subspace; SX is unique up to a homeomor

phism which leaves X pointwise invariant. SX is characterized by the 

property of being a compact space in which Xis densely embedded such 

that any continuous function from X into a compact topological space 

has a continuous extension to all of ax. There is a close relation

ship between pseudocompactness and Stone-Cech compactifications: c.f. 

2.1 above. Moreover, a well known theorem of Glicksberg [1] states that 

S( TIX)= TI SX if and only if TI X is pseudocompact (here,for 
aEA a aEA a aEA a 

every a EA, X is a completely regular space). We need only the sim
a 

plest case of this theorem, the proof of which is quite straight-

forward: 

2.2 THEOREM. If X and Y are completely regular spaces and if Xx Y 

is pseudo-compact, then the canonical injection of Xx Y 

into SX x SY extends to a homeomorphism of S(XxY) onto 

sx X SY. 

PROOF. C . f. [ 1 ] . 

If G is a topological group, we denote the Bohr compactification of G 

by (a,G ). This means that G is a compact topological group and that 
C C 

a : G ➔ G is a continuous homomorphism of G onto a dense subgroup of 
C 

G such that for any continuous homomorphism$ of G into a compact topo-
c ~ 

logical group H there exists a continuous homomorphism$ G ➔ H such 
C 

that$=$ 0 a. This is analoguous to the characterization of a SX 

mentioned above; the analogon of the C~-embedding of X into SX is : if 

f G ➔ C is an almost periodic function (c.f. [3],18.2 for a definition), 

) ~hat is: any such a sequence is not locally finite. 
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then an f E C(G) exists such that f = f O ct. A Bohr compactification 
C 

(ct,G) of G always exists (c.f. [4] for references) and is unique up 
C 

to a topological isomorphism which leaves ct(G) pointwise invariant. 

Hence we may speak about "the" Bohr compactification of G. In general, 

ct : G ➔ G is not injective, and even if ct is injective ( for instance, 
C 

if G is a locally compact abelian group) ct need not be a homeomorphism. 

However, we have: 

2.3 THEOREM. Let G be a topological group. The following are 

equivalent: 

(i) ct is a topological embedding of G into G. 
C 

(ii) G is totally bounded. 

(iii) G is a subgroup of a compact topological group K. 

In this case, G may be identified with the closure of G 
C 

in any compact topological group KO in which G is embedded 

as a subgroup, and ct may be identified with the inclusion 

mapping of Gin its closure. 

PROOF. (i) =¢> (ii)~ (iii) are well-known and (iii)==;> (i) is easy. 

For proofs we refer to [6], Proposition 3,7 and lemma 3.2. 

Every topological group G is completely regular ([3], 8.4), hence topo

logically embedded in its Stone-Cech compactification SG.The embedding 

mapping will always be denoted by y. An S-group is a non-compact topo

logical group G such that ~G is a compact topological group in which G 

is embedded by y as a dense subgroup. In Section 4 of [6] we exhibited 

a large variety of non-S-groups. Moreover, we have ( c. f. [6], i:._ __ ,___crems 

3. 3 and 3. 8) : 

2.4 THEOREM. Let G be a topological group. The following are 

equivalent: 

(i) G is an S-group. 

(ii) C(G) is exactly the space of all almost periodic 

functions on G. 

(iii) There exists a homeomorphism i of SG onto G such that 
C 

ct=ctoy, 

(iv) G is totally bounded and every f E C(G) is right uni

formly continuous. 

/ 
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PROOF. The proofs are rather trivial, using the various characteri

zations of (a,G) and (y,SG), Theorem 2.3 and the fact that all almost 
C 

peri0dic functions are (left and right) uniformly continuous. 

3. The existence of S-groups. 

3.1 PROPOSITION. If G is a non-compact group, and G x G is pseudo-

compact, then G is an S-group. 

PROOF. Since G x G is pseudocompact we may identify the Stone-Cech 

compactification of G x G with (yxy,SGxSG), where (y,SG) is the Stone

Cech compactification of G (c.f. 2.2). Let p : G x G ➔ G denote the mul

tiplication mapping, that is, p(x,y) = xy for x, y E G. Because pis 

continuous, p has a continuous extension p: B(GxG) + ac. By the iden

tification, mentioned above, p may be regarded as a continuous mapping 

from SG x BG into SG. Since the restriction of p to G x G is p, and 

G x G x G is dense in SG x SG x SG, the fact that pis associative im

plies that pis associative. In the same way it can be seen, that 

p(e,x) = p(x,e) = x for all x E SG. Hence SG is a topological semi

group with identity e, containing Gas a dense subgroup. 
-1 By a similar procedure, the continuous mapping xt-➔ x from G onto G 

has a continuous extension to aG, which we also denote by 
-1 

x1-➔ x : SG + SG. Because - -1 the continuous mappings xi-+ p(x,x ), 
- -1 

xi-➔ p(x ,x) and xi-+ e from SG into SG coincide on the dense subset 

G of BG, they coincide on all of SG. Hence 

for all x E SG. Thus SG is a topological group in which G is a dense 

subgroup. 

3.2 Let {K laEA} be any set of topological groups, and let 
a, l K 

aEA a 
denote the subspace of the cartesian productspace I1 

aEA 
K , consisting 

a 

of all points x = (x) A such that, for at most countably many 
a aE 

a EA, xa + ea, the identity of Ka. It is easy to see that l 
aEA 

K 
a 
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is a dense subgroup of TI 
aEA 

K. Moreover, if, for all a EA, K is compact, 
a a 

then l is countably compact,hence pseudocompact(any sequence in l 
CiEA aEA 

K Ci has 

a cluster pointy E IT K ,and there cannot be more than countably many aEA 
aE.A a 

such that ya f ea, so that y E. l Ka). 
aE.A 

As far as we know the first proof of our next proposition is given by 

Glicksberg in [1]. Glicksberg makes use of a technique which enables him 

to state that any f E. C ( l K) does depend on not too many coordinates. 
aEA a 

A similar technique is used by Kister in [5] to prove the same propo

sition. We shall give another proof which avoids these techniques (we 

use only 3.1, that is, we use only i:::'heorem 1 of [1] for products of 

finitely many factors). 

3,3 PROPOSITION. If {K I a E. A} is any uncountable set of compact 
a 

topological groups, then the proper subgroup l K of 
aEA a 

K is an S-group. 
a 

PROOF. Since A is uncountable, I K is a proper subgroup of II K. 
CJ.EA a 

CJ.EA a 

Because I K lS dense in II K , this implies that I K l.S not 
etEA Ci etEA a CiEA Ci 

compact. By 3, 1 we need only to prove, that ( I K ) X ( l K ) l.S Ci Ci aEA etE.A 

pseudocompact. This follows immediately from the pseudocompactness of 

l (K x K) (c.f. the remark, preceding our proposition) and the fact 
Ct.EA a a 

that the mapping 

defines a l_,::,:0.eomor1::1ism from ( II K ) x ( II K ) onto II 
etEA a aEA a aEA 

which sends( l Ka) x ( l Ka) onto l (K x K ). 
aEA aE.A aE.A a a 

(K X K ), 
a a 
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3.4 COROLLARY. If {K I aEA} is any uncountable set of compact topo-
a I 

logical groups, then 

cation of K . 
a 

TI K is the Stone~Cech compactifi
a a.EA . 

PROOF. Since l K is an S-group, its Stone-Cech compactification and 
aEA a 

its Bohr compactification coincide (c.f. (i) ~ (iii) in 2.4). Since 

I 
aeA 

K is a dense subgroup of the compact group 
a 

K, the desired 
Ci, 

result follows from 2.3. 

3-5 REMARK. We provided a class of S-groups G such that G and G x G 

are pseudocompact, even countably compact. There are, however, S-groups 

which are not countably compact. 

To get an example, we first observe that if G0 is any S-group, 

and if His a subgroup of SG0 such that G0 ;;, H * SG
0

, then 

hence His an S-group. Now let A be an uncountable set, K 
a 

SH = SG0 , 
) 1 

= 'lI' for all 

a EA and G0 = l K. Let H be the subset of IT K, consisting of 
aEA a aEA a 

all x = (x) A such that x = exp (2TTit ) with t E ~, except for at a aE a a a 

most countably many a EA. By 3.4, K 
a 

= SGO, hence Go CH 

Thus His an S-group. But it is easy to see that H 1s not countably 

compact (this example is due to J.M. Kister [5]). 

4. A characterization of S-groups. 

4. 1 In this section we show that the class of S-groups is exactly the 

class of non-compact, pseudocompact topological groups. As a motivation 

for the method of proof that a non-compact, pseudocompact group is an 

S-group we wish to make the following remarks. 

The result follows easily from 3.1 as soon as we have established 

that an arbitrary product of pseudocompact topological groups is pseudo

compact. One of the characterizations of pseudocompactness for a com

pletely regular space Xis 2.1 (iv) : every non-void closed G0-set in 

SX meets X. If one tries to prove that a product TI X has this pro-
a aEA 

) 1 
'1f' always denotes the circle group {).. I A E C & I A I = 1} . 



perty if each X has it, the proof breaks down on the fact that 
Cl, 

13 ( rr 
Cl.EA 

X) is not equal to 
Cl, 

has the desired property). 

rr 
Cl.EA 

BX (unless we know already that 
Cl, 
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rr 
Cl.EA 

X 
Cl, 

Now it is natural, indeed, to consider Stone-Cech compactifications 

in connection with pseudocompactne9s. However, a pseudocompact topo

logical group G turns out to be totally bounded (c.f. the proof of 

4.2 below), and in view of 2,3 it may be usefull to characterize pseu

docompactness of Gin terms of the Bohr compactification G of G. 
C 

This has the advantage that the Bohr compactification of a product is 

the product of the Bohr compactifications (for totally bounded groups 

this is trivial in view of 2.3, but it is true for arbitrary topologi

cal groups; c.f. [4]). Such a characterization can be achieved: 

4.2 PROPOSITION. Let G be a topological group. The following are 

equivalent: 

(i) G is pseudocompact. 

(ii) G is a dense subgroup of a compact group G and 

every non-void G0-set in G meets G. 

PROOF. (i) ==;, (ii). If G is pseudocompact, then G is totally bounded. 

Suppose not. Then there is a neighbourhood U of e and a sequence 

x 1, x2 , •.. in G such that the sets xnU are mut~ally disjoint. Let V 

be a symmetrical neighbourhood of e such that V 5. U. Then the sequence 

{x V} 11\T is locally finite, contradicting the pseudocompactness of G. n nE ~ A 

By 2,3, G is a dense subgroup of a compact topological group G. Suppose 

a non-void G0-subset of G is contained in G \ G. Then it is easy t.o 

construct a continuous function f: G + [0,1] such that 

{ x I x E G & f(x) = 0 } c F c G \ G 
- - C • 

The function xi--+ 1/f(x) is continuous and not bounded on G, contra-

dicting the pseudocompactness of G. 

(ii)::::;, (i). Let {W} 1N be a descending sequence of open sets in G. n nE 

We must prove that n W + 0 
n=1 n 

( cf ( i) ~ (ii) of 2. 1 ) . 

, where W is the closure of W in G 
n n 

Now G is a dense subgroup of a compact group G, and for all n E 1N 
,. 
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there is an open set U in G such that W 
n n 

= G n U. We may assume that n 
U +1 c U for all n E llf. If we denote the 

n - n 
closure of a set A in G with 

A, then 

W = G n W = G n U n n n 
00 00 

for all n E 1N. Since n 
n=1 

W = G n 
n n U, it will clearly be sufficient n• n=1 

00 

to prove that n U contains a non-void G~-set. 
·n=1 n u 

Take, for all n E IN, x E U , and let V be an open neighbourhood of n n n oo 

the identy in G such that x V c U • Then N: = () V is a non-void 
n n - n n n=1 

Go in G (it is even a normal subgroup of G, and if one takes vn+1 C V ' 
- n 

~ 
00 

N ]~3 closed in G) .Since G is compact, the sequence {xn}n=1 has a clus-

terpoint X in G. 

Let y E N. Then xy 
00 

is clusterpoint of the sequence {x y} 
1 

in G. 
n n= 

For all n E JN we have y EV, hence x y Ex V c U. Thus any neigh-
n n n n - n 

bourhood O of xy in G meets U for infinitely many n E lN. Because . n 
Uk+ 1 .::. Uk for all k, this implies that On Un#¢ for all n E JN, so 

that xy EU fo~ all n E 1N. We have proved that the non-void G~-set 
n 00 u 

xN is contained in n . U . 
n=1 n 

4.3 THEOREM. Let A be a non-void set and, for all a EA; let G be a 
a. 

topological group. Then IT G is pseudocompact if and only a. a.EA 
if, for all a EA, G is pseudocompact. a. 

PROOF. Since every G is a continuous image of 
a.a 

rr 
a.EA 

G, pseudocompact
a 

ness of the product implies pseudocompactness of the factors. 

Conversely, suppose each G is pseudocompact. Then for all a. EA, G is a. a. 
a dense subgroup of a compact group Ga.' and every non-void G

5
-set in 

Gcfieets GN. Hence IT G is a dense subgroup of the compact group 
"" aEA a. 

rr 
a.EA 

G, and the proof is finished if we show, that given any non-void 
a 

G0-set Fin IT 
aEA 

G , F n 
a. 

is pseudocompact. ,. 

then we know by 4.2 that rr 
aEA 

G a. 
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Fix any x E F. It is easy to see that there are open sets U in 
n 

II 
Ci.EA 

G 
a, 

such that 

X E u 
n = JI 

CJ.EA 
u n,a 

for all n E :IN, with U open in G for all a EA and, in addition n,a a 

U: = n u C F (we do not need the fact that the u can be chosen 
nEW n - n,a 

such that u = G for all a E A\ A, where A is some finite subset n ,a a n n 
of A). 

n U . is a G 0-set in 
~ 

For each a EA, F : = G ' and X E F a' a ndl n,a a a 

F f ¢. Then we know that F n G f ¢ , say p E F n G . Let a a a a a a 

p: = (p) A; then a CJ.E 

p E U n II 
CJ.EA 

G c F n 
a -

II 
Ci.EA 

G . 
a 

Thus F n JI 
a.EA 

G f ¢ ' a 
and II 

CJ.EA 
G 

a 
is pseudocompact. 

so that 

4.4 THEOREM. A topological group G is pseudocompact if and only if 

either G is an S-group or G is compact. 

PROOF. Let G be pseudocompact and non-compact. By 4. 3, G x G is pseudo

compact, hence G is an S-group by 3,1. 

Conversely, suppose G is an S-group. From (i) ~ (iv) of 2.4 we know 

that G is totally bounded and that every f E C(G) is uniformly conti

nuous. Suppose G is not pseudocompact. Then there is a sequence of 

pairwise disjoint open sets in G which is locally finite. Hence there 

is a sequence {xn}:= 1 in G and a sequence {Wn}:= 1 of neighbourhoods of 
00 

the identity e of G such that the sequence {x W} 1 is locally finite, n n n= 
and the sets x W are pairwise disjoint. In addition, we may suppose 

n n 
that W + 1 c W for all n E 1N. 

n - n 

Because G is completely regular, for every n E 1N there is a con

tinuous function f : G ➔ [0,1] such that 
n 



f (x) = { 
n 0 

for x = x 
n 
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Note that x Wn+ 1 c x W (nE .IN). Since the sequence {x W }
00 

1 is lo-
n - n n n n n= 

00 

cally finite, the well defined, bounded function f: I 
n=1 

f is con
n 

tinuous, hence uniformly continuous. This implies that there is a 

neighbourhood U of e in G such that 

jf(x) - f(y)j <; 

for all (x,y) E G x G, x- 1y EU. In particular, for all n E lN, we have 

\;/y E G y E X U ::=, f(y) > ; , 
n 

However, for ally Ex W, we have f(y) = f (y), thus 
n n n 

Hence, for all n E .IN, Un W c Un W +1, and this implies 
n - n 

00 00 

U n w1 C U n n Wn,::. n Wn • 
n=1 n=1 

In particular, for every n E .IN, x (UnW
1

) c x W. Consequently, the 
n - n n 

non-void open sets xn(UnW1) are mutually disjoint, contradicting the 

tot~l boundedness of G. Thus, if G is an S-group, G is pseudocompact. 

Finally, it is trivial that compactness of G implies pseudocompactness. 

4.5 REMARK. The behaviour of the class of S-groups under the forming 

of products, subgroups and quotients is the same as the beha

viour of pseudocompact spaces under these operations. But in 

some cases we can say more. We state explicitly: 

4.6 PROPOSITION. Let G be an S-group. A non-compact subgroup Hof 

G is an S-group if and only if H is c* -embedded in G. 



-11-

PROOF. Note first, that His a dense subgroup of the compact topologi

cal group H, where H di::>notes the closure of Hin the compact topological 

group BG. If His an S-group, it follows from 2.3 and 2.4 that any 

compact topological group in which His a dense subgroup, may be iden

tified with BH. In particular, SH= H. Hence, by [2], 6.9, His c*-em

bedded in G. 

The converse-statement may be derived also from [2], 6.9: if H 

is c*-embedded.in G, SH= H, hence SH is a topological group. 

4,7 REMARKS. 0 1 . In general, a pseudocompact subspace of a pseudocom-

* * pact space need not be C -embedded, and a C -embedded subspace of a 

pseudocompact space need not be pseudocompact. 
6 . 2 . In general, a non-compact subgroup of an S-group is not an S-group 

* (hence not C -embedded). Let A be an uncountable set, K = T for all 
Cl, 

a EA, H0 a dense proper subgroup of T and G = l 
Cl.EA 

K. Then G is an 
a 

S-group, and G contains a copy Hof H0 as a subgroup. Since H0 is not 

an S-group (c,f.[6], 3,10), His not an S-group. 
0 • • * 3. An open subgroup of a topological group G is C -embedded in G. This 

follows immediately from the fact that G is the disjoint union of the 

distinct left cosets of Hin G, each of which is open in G and homeomor

phic with H. 

4.8 PROPOSITION. Let {G I a EA} be a set of non-compact topological 
a 

groups.Then IT G is an S-group if and only if, for all 
aEA a 

a EA, G is an S-group. 
a 

PROOF. Follows immediately from 4.3 and 4.4 

4.9 REMARK. If in 4.8 the non-compactness of the G's is not given, 
a 

then the fact that IT G is an S-group implies that every G is pseu-
aEA a a 

docompact, hence for all a EA, G is either compact or G is an S-a a 
group. Since IT G is not compact, there is at least one a for which 

a.EA a 

G is not compact. In any case, the following is true: a non-compact 
a 

topological group G is an S-group if and only if G x K0 is an S-group 

for some compact topological group K. In that case G x Kit an S-group 
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for every compact topological group K. 

4.10. PROPOSITION. Let G be an S-group, Ha non-compact topological 

group and cj, a continuous homomorphism of G onto H. 

Then His an S-group. 

PROOF. Immediate from 4.4 and the fact that continuous images of pseudo

compact spaces are pseudocompact. Nevertheless, we wiil give an a.musing 

a1ternative proof, that does not make use of the pseudocompactness cri

terion for S-groups, but of the equivalence of (ii) and (i) of 2.4. 

If K is any topological group, let A(K) denote the space of almost perio

dic functions on K. In addition, if a EK and g E C(K), let g denote 
a 

the function xr+ g(xa) : K + t. Let cj, C(H) + C(G) denote the mapping 

induced by cj, 

~(f~ : : f O cp-- ( f E C(H)). 

Then, for all a E G and f E C(H), we have [~(f)]a = ~(fcj,(a)). Since cp 

is a surjection, this implies that for every f E C(H) the equality 

{fb I b E H} 
~-1 

= cp { [~ ( f) J I a E G} 
a 

holds. Now cp is an isometrical isomorphism from C(H) onto a closed sub

algebra of C(G). Hence {fb I b EH} is totally bounded in C(H) if and 

only if {~(f) I a E G} is totally bounded in C(G). Thus, if f E C(H), 
a 

then f E A(H) if and only if i(f) E A(G). 

In general only the "only if" part of this statement is usefull, but in 

this case A(G) = C(G), that is, for all f E C(H) we have $(f) E A(G), 

hence f E A(H). This means, that A(H) = C(H). 

In [3], 4.21(d), (e) a class of O-dimensional groups is described which 

are all totally bounded. We shall show now, that all O-dimensional 

S-groups belong to this class. 

4.11 PROPOSITION. If G is a O-dimensional S-group, then there is an 

open basis at the identity e consisting of open normal 

subgroups of G with finite index. 

PROOF. If G is O-dimensional, then SG is O-dimensional (cf [2], 61). 
Now let Ube an arbitrary neighbourhood of e in G, say U = uO n G, with 

u
O 

a neighbourhood of e in BG. Then, by [3], 7.7 , u0 contains an open 
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normal subgroup N
O 

of SG, and U contains the open normal subgroup 

N
O 

n G of G. Since G is totally bounded by 2.3, this open subgroup 

of G must have a finite index in G. 

4.12 EXAMPLE. Let A be an uncountable set and, for all a EA, let 

K be the multiplicative discrete group {-1 ,1}. By 3.3, the group 
a 

G: = l 
aEA 

K is· an abelian S-group. An open basis at the identity is 
a 

formed by the collection of all sets 

x E G & x = 1 for all a EB} 
a 

with Ba finite subset of A. Then it is easy to see that for every 

finite subset B of A, HB is an open normal subgroup of G with finite 

index (the index of HB in G equals the number of elements in B). 

4,13 PROPOSITION, If G is a O-dimensional S-group and Ha closed 

normal subgroup of G, then G/H is a O-dimensional to

pological group. 

PROOF. (Compare [3], 7.11). Let B denote an open basis at the identi

ty e of G, and let q: G ➔ G/H denote the quotient mapping of G onto 

G/H. Then {q(U) I U EB} is an open basis at q(e) in G/H. By 4.11 we 

are allowed to suppose that every U EB is an open normal subgroup 

of G. Hence, for each U EB, q(U) is an open normal subgroup of G/H. 

Since open subgroups of a topological group (i.e. G/H} are closed, 

we have proved that there is an open basis at q(e) consisting of 

open-and-closed subsets. 

4.14 PROPOSITION. Let G be an S-group. The following are equivalent: 

(i) G is connected. 

(ii) G has no proper open subgroups. 

(iii) For every neighbourhood U of the identity e in G 

we have U ~ = G. 
nEW 
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PROOF (Compare [3], 7,9). The implications (i):::;, (ii) ~ (iii) are 

generally valid. We prove (ii)=;, (i). 

Suppose G is not connected. Then BG is not connected ([2], 61 1). 

Since SG is a compact topological group, the connected component of 

the identity in BG is the intersection of all open subgroups of 

SG (c,f [3], 7.8). Hence there is an open subgroup Hin BG such that 

H +BG.Then H n G is an open subgroup of G, and H n G + G: if 

H n G = G, then G ~ H, hence H = BG because His closed in BG and G is 

dense in BG, contradicting the fact that H +BG.Thus (ii)=> (i). 

4 . 1 5 EXAMPLE • There do exist connected S-groups. Let A be an un-

countable set, and let, for all a EA, K be a connected compact topoa 
logical group. 

Then G: = I 
aEA 

K is connected (the proof that a cartesian product of a 

connected spaces is connected works also for l K ). Hence G is a a aEA 
connected S-group. If, in addition, every K is locally connected, 

a 
then G is connected and locally connected. Finally, if K is a compact, 

locally connected, but non-connected group, G x K is a locally connec

ted, non-connected S-group (c.f. 4.9). 

4.16 REMARK, Let G be an S-group and let C be the connected component 

of the identity in G. We prove: if G/C is O-dimensional, then 

C = n{H I H l.S an open subgroup of G}. 

Since trivially C is contained in every open subgroup Hof G, we prove 

that C ~ n{H I His an open subgroup of G}. Take XE G\C. Then the 

canonical image x of x in G/C is different from;;, hence by 4.11 (if 

G/C is an S-group) or [3], 7,7 (if G/C is compact) there is an open 

subgroup Hin G/C such that xi H. Consequently, there is an open sub

group Hin G with Cc Hand xi H. 

Notice, that there.exist S-groups G such that G/C is non-trivial 

and 0-dimensional and G is not: if G is a locally connected, non

connected S-group, then C is an open subgroup in G and G/C is discrete 

and non-trivial (but finite, since Chas finite index in G). Ho~ever, 

in tpis example, (*) is trivially valid. 
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Problem: If G is an S-group and C is the connected component of the 

identity of G, has G/C to be 0-dimensional? Equivalently: is every 

totally disconnected S-group 0-dimensional? If not, is (*) equivalent 

with the fact that G/C is 0-dimensional? 
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