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1 . Introduction 

In [6] we introduced the concept of an S-group. A topological group G 

is said to be an S-group of it is a non-compact topological Hausdorff­

group such that SG is a compact topological group in which G is 

(canonically) embedded as a dense subgroup. Such g+oups have been con­

sidered earlier by Glicksberg [1] and Kister [5]. 

In [1], Glicksberg remarked that it is easy to see that an S-group is 

pseudocompact, but he left open the converse question. We shall prove 

that a topological group G is an S-group if and only if G is pseudo­

compact and non-compact. This will be a direct consequence of the fact 

that an arbitrary product of pseudocompact topological groups is 
' pseudocompact and the simplest case of Theorem 1 of [1]. The proof that 

a product of pseudocompact topological groups is pseudocompact is sur­

prisingly simple if one characterizes pseudocompactness of a topologi­

cal group in terms of its Bohr compactification. We conclude with some 

remarks about 0-dimensional S-groups. 

2, Preliminaries. 

In the sequel all topological spaces are Hausdorff spaces. If Xis a 

topological space, C(X) will denote the Banach algebra of all complex­

valued bounded continuous functions on X (pointwise defined operations 

and supremumnorm). A subset A of Xis said to be c*-embedded in X if 

every f E C(A) can be extended to an element of C(X). A topological 

space Xis called pseudocompact if every continuous real-valued function 

on Xis bounded. There are several characterizations of pseudocompact­

ness. We mention: 

2,1 THEOREM. Let X be a completely regular topological sp~ce. 

The following conditions are equivalent: 

(i) Xis pseudocompact. 

(ii) For any decreasing sequence {V } :., of non-empty open n OE,., 

sets in X, n V :j: r/J. 
nE lN n 
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(iii) Any sequence {W} m of non-empty, pairwise disjoint, 
n nE ll.~ 

• • ) 1 open sets in X has a cluster point . 

(iv) Any non-void closed G0-set in SX meets X. 

PROOF. (i) <===;> (ii) : C.f. [1]; (i) ~ (iii) c.f.[2], 9,13, and 

for {i) ~ (iv), c.f. [1] {compare also [2], 6 I 1). 

Recall that SX (X a completely regular space) denotes the Stone-Cech 

com~actification_of X, that is, a compact topological space in which 

Xis c*-embedded as a dense subspace; SX is unique up to a homeomor­

phism which leaves X pointwise invariant. SX is characterized by the 

property of being a compact space in which Xis densely embedded such 

that any continuous function from X into a compact topological space 

has a continuous extension to all of ax. There is a close relation­

ship between pseudocompactness and Stone-Cech compactifications: c.f. 

2.1 above. Moreover, a well known theorem of Glicksberg [1] states that 

S( TIX)= TI SX if and only if TI X is pseudocompact (here,for 
aEA a aEA a aEA a 

every a EA, X is a completely regular space). We need only the sim­
a 

plest case of this theorem, the proof of which is quite straight-

forward: 

2.2 THEOREM. If X and Y are completely regular spaces and if Xx Y 

is pseudo-compact, then the canonical injection of Xx Y 

into SX x SY extends to a homeomorphism of S(XxY) onto 

sx X SY. 

PROOF. C . f. [ 1 ] . 

If G is a topological group, we denote the Bohr compactification of G 

by (a,G ). This means that G is a compact topological group and that 
C C 

a : G ➔ G is a continuous homomorphism of G onto a dense subgroup of 
C 

G such that for any continuous homomorphism$ of G into a compact topo-
c ~ 

logical group H there exists a continuous homomorphism$ G ➔ H such 
C 

that$=$ 0 a. This is analoguous to the characterization of a SX 

mentioned above; the analogon of the C~-embedding of X into SX is : if 

f G ➔ C is an almost periodic function (c.f. [3],18.2 for a definition), 

) ~hat is: any such a sequence is not locally finite. 
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then an f E C(G) exists such that f = f O ct. A Bohr compactification 
C 

(ct,G) of G always exists (c.f. [4] for references) and is unique up 
C 

to a topological isomorphism which leaves ct(G) pointwise invariant. 

Hence we may speak about "the" Bohr compactification of G. In general, 

ct : G ➔ G is not injective, and even if ct is injective ( for instance, 
C 

if G is a locally compact abelian group) ct need not be a homeomorphism. 

However, we have: 

2.3 THEOREM. Let G be a topological group. The following are 

equivalent: 

(i) ct is a topological embedding of G into G. 
C 

(ii) G is totally bounded. 

(iii) G is a subgroup of a compact topological group K. 

In this case, G may be identified with the closure of G 
C 

in any compact topological group KO in which G is embedded 

as a subgroup, and ct may be identified with the inclusion 

mapping of Gin its closure. 

PROOF. (i) =¢> (ii)~ (iii) are well-known and (iii)==;> (i) is easy. 

For proofs we refer to [6], Proposition 3,7 and lemma 3.2. 

Every topological group G is completely regular ([3], 8.4), hence topo­

logically embedded in its Stone-Cech compactification SG.The embedding 

mapping will always be denoted by y. An S-group is a non-compact topo­

logical group G such that ~G is a compact topological group in which G 

is embedded by y as a dense subgroup. In Section 4 of [6] we exhibited 

a large variety of non-S-groups. Moreover, we have ( c. f. [6], i:._ __ ,___crems 

3. 3 and 3. 8) : 

2.4 THEOREM. Let G be a topological group. The following are 

equivalent: 

(i) G is an S-group. 

(ii) C(G) is exactly the space of all almost periodic 

functions on G. 

(iii) There exists a homeomorphism i of SG onto G such that 
C 

ct=ctoy, 

(iv) G is totally bounded and every f E C(G) is right uni­

formly continuous. 

/ 
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PROOF. The proofs are rather trivial, using the various characteri­

zations of (a,G) and (y,SG), Theorem 2.3 and the fact that all almost 
C 

peri0dic functions are (left and right) uniformly continuous. 

3. The existence of S-groups. 

3.1 PROPOSITION. If G is a non-compact group, and G x G is pseudo-

compact, then G is an S-group. 

PROOF. Since G x G is pseudocompact we may identify the Stone-Cech 

compactification of G x G with (yxy,SGxSG), where (y,SG) is the Stone­

Cech compactification of G (c.f. 2.2). Let p : G x G ➔ G denote the mul­

tiplication mapping, that is, p(x,y) = xy for x, y E G. Because pis 

continuous, p has a continuous extension p: B(GxG) + ac. By the iden­

tification, mentioned above, p may be regarded as a continuous mapping 

from SG x BG into SG. Since the restriction of p to G x G is p, and 

G x G x G is dense in SG x SG x SG, the fact that pis associative im­

plies that pis associative. In the same way it can be seen, that 

p(e,x) = p(x,e) = x for all x E SG. Hence SG is a topological semi­

group with identity e, containing Gas a dense subgroup. 
-1 By a similar procedure, the continuous mapping xt-➔ x from G onto G 

has a continuous extension to aG, which we also denote by 
-1 

x1-➔ x : SG + SG. Because - -1 the continuous mappings xi-+ p(x,x ), 
- -1 

xi-➔ p(x ,x) and xi-+ e from SG into SG coincide on the dense subset 

G of BG, they coincide on all of SG. Hence 

for all x E SG. Thus SG is a topological group in which G is a dense 

subgroup. 

3.2 Let {K laEA} be any set of topological groups, and let 
a, l K 

aEA a 
denote the subspace of the cartesian productspace I1 

aEA 
K , consisting 

a 

of all points x = (x) A such that, for at most countably many 
a aE 

a EA, xa + ea, the identity of Ka. It is easy to see that l 
aEA 

K 
a 
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is a dense subgroup of TI 
aEA 

K. Moreover, if, for all a EA, K is compact, 
a a 

then l is countably compact,hence pseudocompact(any sequence in l 
CiEA aEA 

K Ci has 

a cluster pointy E IT K ,and there cannot be more than countably many aEA 
aE.A a 

such that ya f ea, so that y E. l Ka). 
aE.A 

As far as we know the first proof of our next proposition is given by 

Glicksberg in [1]. Glicksberg makes use of a technique which enables him 

to state that any f E. C ( l K) does depend on not too many coordinates. 
aEA a 

A similar technique is used by Kister in [5] to prove the same propo­

sition. We shall give another proof which avoids these techniques (we 

use only 3.1, that is, we use only i:::'heorem 1 of [1] for products of 

finitely many factors). 

3,3 PROPOSITION. If {K I a E. A} is any uncountable set of compact 
a 

topological groups, then the proper subgroup l K of 
aEA a 

K is an S-group. 
a 

PROOF. Since A is uncountable, I K is a proper subgroup of II K. 
CJ.EA a 

CJ.EA a 

Because I K lS dense in II K , this implies that I K l.S not 
etEA Ci etEA a CiEA Ci 

compact. By 3, 1 we need only to prove, that ( I K ) X ( l K ) l.S Ci Ci aEA etE.A 

pseudocompact. This follows immediately from the pseudocompactness of 

l (K x K) (c.f. the remark, preceding our proposition) and the fact 
Ct.EA a a 

that the mapping 

defines a l_,::,:0.eomor1::1ism from ( II K ) x ( II K ) onto II 
etEA a aEA a aEA 

which sends( l Ka) x ( l Ka) onto l (K x K ). 
aEA aE.A aE.A a a 

(K X K ), 
a a 
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3.4 COROLLARY. If {K I aEA} is any uncountable set of compact topo-
a I 

logical groups, then 

cation of K . 
a 

TI K is the Stone~Cech compactifi­
a a.EA . 

PROOF. Since l K is an S-group, its Stone-Cech compactification and 
aEA a 

its Bohr compactification coincide (c.f. (i) ~ (iii) in 2.4). Since 

I 
aeA 

K is a dense subgroup of the compact group 
a 

K, the desired 
Ci, 

result follows from 2.3. 

3-5 REMARK. We provided a class of S-groups G such that G and G x G 

are pseudocompact, even countably compact. There are, however, S-groups 

which are not countably compact. 

To get an example, we first observe that if G0 is any S-group, 

and if His a subgroup of SG0 such that G0 ;;, H * SG
0

, then 

hence His an S-group. Now let A be an uncountable set, K 
a 

SH = SG0 , 
) 1 

= 'lI' for all 

a EA and G0 = l K. Let H be the subset of IT K, consisting of 
aEA a aEA a 

all x = (x) A such that x = exp (2TTit ) with t E ~, except for at a aE a a a 

most countably many a EA. By 3.4, K 
a 

= SGO, hence Go CH 

Thus His an S-group. But it is easy to see that H 1s not countably 

compact (this example is due to J.M. Kister [5]). 

4. A characterization of S-groups. 

4. 1 In this section we show that the class of S-groups is exactly the 

class of non-compact, pseudocompact topological groups. As a motivation 

for the method of proof that a non-compact, pseudocompact group is an 

S-group we wish to make the following remarks. 

The result follows easily from 3.1 as soon as we have established 

that an arbitrary product of pseudocompact topological groups is pseudo­

compact. One of the characterizations of pseudocompactness for a com­

pletely regular space Xis 2.1 (iv) : every non-void closed G0-set in 

SX meets X. If one tries to prove that a product TI X has this pro-
a aEA 

) 1 
'1f' always denotes the circle group {).. I A E C & I A I = 1} . 



perty if each X has it, the proof breaks down on the fact that 
Cl, 

13 ( rr 
Cl.EA 

X) is not equal to 
Cl, 

has the desired property). 

rr 
Cl.EA 

BX (unless we know already that 
Cl, 
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rr 
Cl.EA 

X 
Cl, 

Now it is natural, indeed, to consider Stone-Cech compactifications 

in connection with pseudocompactne9s. However, a pseudocompact topo­

logical group G turns out to be totally bounded (c.f. the proof of 

4.2 below), and in view of 2,3 it may be usefull to characterize pseu­

docompactness of Gin terms of the Bohr compactification G of G. 
C 

This has the advantage that the Bohr compactification of a product is 

the product of the Bohr compactifications (for totally bounded groups 

this is trivial in view of 2.3, but it is true for arbitrary topologi­

cal groups; c.f. [4]). Such a characterization can be achieved: 

4.2 PROPOSITION. Let G be a topological group. The following are 

equivalent: 

(i) G is pseudocompact. 

(ii) G is a dense subgroup of a compact group G and 

every non-void G0-set in G meets G. 

PROOF. (i) ==;, (ii). If G is pseudocompact, then G is totally bounded. 

Suppose not. Then there is a neighbourhood U of e and a sequence 

x 1, x2 , •.. in G such that the sets xnU are mut~ally disjoint. Let V 

be a symmetrical neighbourhood of e such that V 5. U. Then the sequence 

{x V} 11\T is locally finite, contradicting the pseudocompactness of G. n nE ~ A 

By 2,3, G is a dense subgroup of a compact topological group G. Suppose 

a non-void G0-subset of G is contained in G \ G. Then it is easy t.o 

construct a continuous function f: G + [0,1] such that 

{ x I x E G & f(x) = 0 } c F c G \ G 
- - C • 

The function xi--+ 1/f(x) is continuous and not bounded on G, contra-

dicting the pseudocompactness of G. 

(ii)::::;, (i). Let {W} 1N be a descending sequence of open sets in G. n nE 

We must prove that n W + 0 
n=1 n 

( cf ( i) ~ (ii) of 2. 1 ) . 

, where W is the closure of W in G 
n n 

Now G is a dense subgroup of a compact group G, and for all n E 1N 
,. 
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there is an open set U in G such that W 
n n 

= G n U. We may assume that n 
U +1 c U for all n E llf. If we denote the 

n - n 
closure of a set A in G with 

A, then 

W = G n W = G n U n n n 
00 00 

for all n E 1N. Since n 
n=1 

W = G n 
n n U, it will clearly be sufficient n• n=1 

00 

to prove that n U contains a non-void G~-set. 
·n=1 n u 

Take, for all n E IN, x E U , and let V be an open neighbourhood of n n n oo 

the identy in G such that x V c U • Then N: = () V is a non-void 
n n - n n n=1 

Go in G (it is even a normal subgroup of G, and if one takes vn+1 C V ' 
- n 

~ 
00 

N ]~3 closed in G) .Since G is compact, the sequence {xn}n=1 has a clus-

terpoint X in G. 

Let y E N. Then xy 
00 

is clusterpoint of the sequence {x y} 
1 

in G. 
n n= 

For all n E JN we have y EV, hence x y Ex V c U. Thus any neigh-
n n n n - n 

bourhood O of xy in G meets U for infinitely many n E lN. Because . n 
Uk+ 1 .::. Uk for all k, this implies that On Un#¢ for all n E JN, so 

that xy EU fo~ all n E 1N. We have proved that the non-void G~-set 
n 00 u 

xN is contained in n . U . 
n=1 n 

4.3 THEOREM. Let A be a non-void set and, for all a EA; let G be a 
a. 

topological group. Then IT G is pseudocompact if and only a. a.EA 
if, for all a EA, G is pseudocompact. a. 

PROOF. Since every G is a continuous image of 
a.a 

rr 
a.EA 

G, pseudocompact­
a 

ness of the product implies pseudocompactness of the factors. 

Conversely, suppose each G is pseudocompact. Then for all a. EA, G is a. a. 
a dense subgroup of a compact group Ga.' and every non-void G

5
-set in 

Gcfieets GN. Hence IT G is a dense subgroup of the compact group 
"" aEA a. 

rr 
a.EA 

G, and the proof is finished if we show, that given any non-void 
a 

G0-set Fin IT 
aEA 

G , F n 
a. 

is pseudocompact. ,. 

then we know by 4.2 that rr 
aEA 

G a. 
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Fix any x E F. It is easy to see that there are open sets U in 
n 

II 
Ci.EA 

G 
a, 

such that 

X E u 
n = JI 

CJ.EA 
u n,a 

for all n E :IN, with U open in G for all a EA and, in addition n,a a 

U: = n u C F (we do not need the fact that the u can be chosen 
nEW n - n,a 

such that u = G for all a E A\ A, where A is some finite subset n ,a a n n 
of A). 

n U . is a G 0-set in 
~ 

For each a EA, F : = G ' and X E F a' a ndl n,a a a 

F f ¢. Then we know that F n G f ¢ , say p E F n G . Let a a a a a a 

p: = (p) A; then a CJ.E 

p E U n II 
CJ.EA 

G c F n 
a -

II 
Ci.EA 

G . 
a 

Thus F n JI 
a.EA 

G f ¢ ' a 
and II 

CJ.EA 
G 

a 
is pseudocompact. 

so that 

4.4 THEOREM. A topological group G is pseudocompact if and only if 

either G is an S-group or G is compact. 

PROOF. Let G be pseudocompact and non-compact. By 4. 3, G x G is pseudo­

compact, hence G is an S-group by 3,1. 

Conversely, suppose G is an S-group. From (i) ~ (iv) of 2.4 we know 

that G is totally bounded and that every f E C(G) is uniformly conti­

nuous. Suppose G is not pseudocompact. Then there is a sequence of 

pairwise disjoint open sets in G which is locally finite. Hence there 

is a sequence {xn}:= 1 in G and a sequence {Wn}:= 1 of neighbourhoods of 
00 

the identity e of G such that the sequence {x W} 1 is locally finite, n n n= 
and the sets x W are pairwise disjoint. In addition, we may suppose 

n n 
that W + 1 c W for all n E 1N. 

n - n 

Because G is completely regular, for every n E 1N there is a con­

tinuous function f : G ➔ [0,1] such that 
n 



f (x) = { 
n 0 

for x = x 
n 
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Note that x Wn+ 1 c x W (nE .IN). Since the sequence {x W }
00 

1 is lo-
n - n n n n n= 

00 

cally finite, the well defined, bounded function f: I 
n=1 

f is con­
n 

tinuous, hence uniformly continuous. This implies that there is a 

neighbourhood U of e in G such that 

jf(x) - f(y)j <; 

for all (x,y) E G x G, x- 1y EU. In particular, for all n E lN, we have 

\;/y E G y E X U ::=, f(y) > ; , 
n 

However, for ally Ex W, we have f(y) = f (y), thus 
n n n 

Hence, for all n E .IN, Un W c Un W +1, and this implies 
n - n 

00 00 

U n w1 C U n n Wn,::. n Wn • 
n=1 n=1 

In particular, for every n E .IN, x (UnW
1

) c x W. Consequently, the 
n - n n 

non-void open sets xn(UnW1) are mutually disjoint, contradicting the 

tot~l boundedness of G. Thus, if G is an S-group, G is pseudocompact. 

Finally, it is trivial that compactness of G implies pseudocompactness. 

4.5 REMARK. The behaviour of the class of S-groups under the forming 

of products, subgroups and quotients is the same as the beha­

viour of pseudocompact spaces under these operations. But in 

some cases we can say more. We state explicitly: 

4.6 PROPOSITION. Let G be an S-group. A non-compact subgroup Hof 

G is an S-group if and only if H is c* -embedded in G. 
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PROOF. Note first, that His a dense subgroup of the compact topologi­

cal group H, where H di::>notes the closure of Hin the compact topological 

group BG. If His an S-group, it follows from 2.3 and 2.4 that any 

compact topological group in which His a dense subgroup, may be iden­

tified with BH. In particular, SH= H. Hence, by [2], 6.9, His c*-em­

bedded in G. 

The converse-statement may be derived also from [2], 6.9: if H 

is c*-embedded.in G, SH= H, hence SH is a topological group. 

4,7 REMARKS. 0 1 . In general, a pseudocompact subspace of a pseudocom-

* * pact space need not be C -embedded, and a C -embedded subspace of a 

pseudocompact space need not be pseudocompact. 
6 . 2 . In general, a non-compact subgroup of an S-group is not an S-group 

* (hence not C -embedded). Let A be an uncountable set, K = T for all 
Cl, 

a EA, H0 a dense proper subgroup of T and G = l 
Cl.EA 

K. Then G is an 
a 

S-group, and G contains a copy Hof H0 as a subgroup. Since H0 is not 

an S-group (c,f.[6], 3,10), His not an S-group. 
0 • • * 3. An open subgroup of a topological group G is C -embedded in G. This 

follows immediately from the fact that G is the disjoint union of the 

distinct left cosets of Hin G, each of which is open in G and homeomor­

phic with H. 

4.8 PROPOSITION. Let {G I a EA} be a set of non-compact topological 
a 

groups.Then IT G is an S-group if and only if, for all 
aEA a 

a EA, G is an S-group. 
a 

PROOF. Follows immediately from 4.3 and 4.4 

4.9 REMARK. If in 4.8 the non-compactness of the G's is not given, 
a 

then the fact that IT G is an S-group implies that every G is pseu-
aEA a a 

docompact, hence for all a EA, G is either compact or G is an S-a a 
group. Since IT G is not compact, there is at least one a for which 

a.EA a 

G is not compact. In any case, the following is true: a non-compact 
a 

topological group G is an S-group if and only if G x K0 is an S-group 

for some compact topological group K. In that case G x Kit an S-group 
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for every compact topological group K. 

4.10. PROPOSITION. Let G be an S-group, Ha non-compact topological 

group and cj, a continuous homomorphism of G onto H. 

Then His an S-group. 

PROOF. Immediate from 4.4 and the fact that continuous images of pseudo­

compact spaces are pseudocompact. Nevertheless, we wiil give an a.musing 

a1ternative proof, that does not make use of the pseudocompactness cri­

terion for S-groups, but of the equivalence of (ii) and (i) of 2.4. 

If K is any topological group, let A(K) denote the space of almost perio­

dic functions on K. In addition, if a EK and g E C(K), let g denote 
a 

the function xr+ g(xa) : K + t. Let cj, C(H) + C(G) denote the mapping 

induced by cj, 

~(f~ : : f O cp-- ( f E C(H)). 

Then, for all a E G and f E C(H), we have [~(f)]a = ~(fcj,(a)). Since cp 

is a surjection, this implies that for every f E C(H) the equality 

{fb I b E H} 
~-1 

= cp { [~ ( f) J I a E G} 
a 

holds. Now cp is an isometrical isomorphism from C(H) onto a closed sub­

algebra of C(G). Hence {fb I b EH} is totally bounded in C(H) if and 

only if {~(f) I a E G} is totally bounded in C(G). Thus, if f E C(H), 
a 

then f E A(H) if and only if i(f) E A(G). 

In general only the "only if" part of this statement is usefull, but in 

this case A(G) = C(G), that is, for all f E C(H) we have $(f) E A(G), 

hence f E A(H). This means, that A(H) = C(H). 

In [3], 4.21(d), (e) a class of O-dimensional groups is described which 

are all totally bounded. We shall show now, that all O-dimensional 

S-groups belong to this class. 

4.11 PROPOSITION. If G is a O-dimensional S-group, then there is an 

open basis at the identity e consisting of open normal 

subgroups of G with finite index. 

PROOF. If G is O-dimensional, then SG is O-dimensional (cf [2], 61). 
Now let Ube an arbitrary neighbourhood of e in G, say U = uO n G, with 

u
O 

a neighbourhood of e in BG. Then, by [3], 7.7 , u0 contains an open 
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normal subgroup N
O 

of SG, and U contains the open normal subgroup 

N
O 

n G of G. Since G is totally bounded by 2.3, this open subgroup 

of G must have a finite index in G. 

4.12 EXAMPLE. Let A be an uncountable set and, for all a EA, let 

K be the multiplicative discrete group {-1 ,1}. By 3.3, the group 
a 

G: = l 
aEA 

K is· an abelian S-group. An open basis at the identity is 
a 

formed by the collection of all sets 

x E G & x = 1 for all a EB} 
a 

with Ba finite subset of A. Then it is easy to see that for every 

finite subset B of A, HB is an open normal subgroup of G with finite 

index (the index of HB in G equals the number of elements in B). 

4,13 PROPOSITION, If G is a O-dimensional S-group and Ha closed 

normal subgroup of G, then G/H is a O-dimensional to­

pological group. 

PROOF. (Compare [3], 7.11). Let B denote an open basis at the identi­

ty e of G, and let q: G ➔ G/H denote the quotient mapping of G onto 

G/H. Then {q(U) I U EB} is an open basis at q(e) in G/H. By 4.11 we 

are allowed to suppose that every U EB is an open normal subgroup 

of G. Hence, for each U EB, q(U) is an open normal subgroup of G/H. 

Since open subgroups of a topological group (i.e. G/H} are closed, 

we have proved that there is an open basis at q(e) consisting of 

open-and-closed subsets. 

4.14 PROPOSITION. Let G be an S-group. The following are equivalent: 

(i) G is connected. 

(ii) G has no proper open subgroups. 

(iii) For every neighbourhood U of the identity e in G 

we have U ~ = G. 
nEW 
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PROOF (Compare [3], 7,9). The implications (i):::;, (ii) ~ (iii) are 

generally valid. We prove (ii)=;, (i). 

Suppose G is not connected. Then BG is not connected ([2], 61 1). 

Since SG is a compact topological group, the connected component of 

the identity in BG is the intersection of all open subgroups of 

SG (c,f [3], 7.8). Hence there is an open subgroup Hin BG such that 

H +BG.Then H n G is an open subgroup of G, and H n G + G: if 

H n G = G, then G ~ H, hence H = BG because His closed in BG and G is 

dense in BG, contradicting the fact that H +BG.Thus (ii)=> (i). 

4 . 1 5 EXAMPLE • There do exist connected S-groups. Let A be an un-

countable set, and let, for all a EA, K be a connected compact topo­a 
logical group. 

Then G: = I 
aEA 

K is connected (the proof that a cartesian product of a 

connected spaces is connected works also for l K ). Hence G is a a aEA 
connected S-group. If, in addition, every K is locally connected, 

a 
then G is connected and locally connected. Finally, if K is a compact, 

locally connected, but non-connected group, G x K is a locally connec­

ted, non-connected S-group (c.f. 4.9). 

4.16 REMARK, Let G be an S-group and let C be the connected component 

of the identity in G. We prove: if G/C is O-dimensional, then 

C = n{H I H l.S an open subgroup of G}. 

Since trivially C is contained in every open subgroup Hof G, we prove 

that C ~ n{H I His an open subgroup of G}. Take XE G\C. Then the 

canonical image x of x in G/C is different from;;, hence by 4.11 (if 

G/C is an S-group) or [3], 7,7 (if G/C is compact) there is an open 

subgroup Hin G/C such that xi H. Consequently, there is an open sub­

group Hin G with Cc Hand xi H. 

Notice, that there.exist S-groups G such that G/C is non-trivial 

and 0-dimensional and G is not: if G is a locally connected, non­

connected S-group, then C is an open subgroup in G and G/C is discrete 

and non-trivial (but finite, since Chas finite index in G). Ho~ever, 

in tpis example, (*) is trivially valid. 
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Problem: If G is an S-group and C is the connected component of the 

identity of G, has G/C to be 0-dimensional? Equivalently: is every 

totally disconnected S-group 0-dimensional? If not, is (*) equivalent 

with the fact that G/C is 0-dimensional? 
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