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It 1s known that for each non-measurable cardinal o the product
Nga contains a closed discrete subspace of power 2° (see Juhasz [31).
It 1s clear that such a subspace cannot be C-embedded. Indeed, ]V20L
contains a dense set of power o so there are only 2% continuous functions

o
on N2 .

It is natural to ask whether there exists a closed discrete non-
C-embedded subspace of N2a which has cardinal o. In this note we show
that these subspaces certainly exist if a =f§b, i.e., Nzkb contains a
closed non-C-embedded copy of N. We thus give a different approach than
in Gillman and Jerison [1] page 97, who constructed a pseudocompact

space which contains a closed non-C-embedded copy of N.

Recall that a subset D of a space X is called C-embedded provided
that each continuous function on D can be extended continuously over X.

Furthermore, not that a closed subspace of a normal space is C-~embedded.

Denote by R* the real numbers supplied with the half open interval
topology (i.e. the subsets [a,b) for a,beR form a base for the open sets)
and let S = R x R*. We will first show that the space S contains a
closed countable discrete subset which is not C-embedded. Let the dis-
crete subspace DcS be defined by {(X,y)l Xx+y=1and D = D1uD where

2

D, and D2 are dense on the line D (considered as subspace of the plane)

and disjoint. The following proposition may be well-known (see also [4]

pp. 134).

PROOF. Suppose that U and V are open neighborhoods of D, and D2
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respectively, and suppose U = u{U(p) | peD1}; vV = u{U(p) | peD, } where
each U(p) is a basic n.b.h. of p which intersects D only in p. For
n=1,2,..., let Ln be a line parallel to the line D and on a distance

% from D. Then A = {peD, l U(p)nLn # ¢} and B ='{peD2 | U(p)nth¢_¢}
are nowhere dense subsets of the line D for sufficiently large n. Because
D is the union of the An's and Bn's we get a contradiction with Baire's
category . theorem.

PROPOSITION 2. D, (and also D,) ise not C-embedded in S.

===D==sESs=s 1 2

PROOF. We may suppose tha.t-D1 is countable. Let D, = {pn | n=1,2,...}
and define f: D1 -+ R by f(pn) = n. f cannot be extended over S. Indeed,
suppose that f is such an extension. For each n.= 1,2,... let Un be a
basic clopen neighborhood of P, in S such that F(U ) c(n-%,n+i) and
U nD = {pn}. Obviously {Un_| n—1,2,...} is a dlscrete collection of closed
sets in S (because {f_1(n—ﬁ,n+ﬁ) | n=1,2,...} is discrete in S), so
G = U{Un | n=1,2,...} is closed. ‘It follows that G is a closed n.b.h. of
D1 which does not intersect D2. This is impossible by Proposition 1.

Our main result is now proved if we can. show that the space S is
homeomorphic with a closed subspace of a product of continuously many
copies of N. Indeed, R" and hence also S satisfies the following con-

dition:

(*) Every maximal centered system of clopen sets with the countable

intersection property has a non-empty intersection,

and it is well-known (see e.g. [2]) that such a (realcompact) space is
homeomorphic with a closed subspace of NC(X3N) (C(X,N) is the set of

all continuous functions of X into N).

Hence, if ¢ is the cardinal of the continuum,

not C—embedded.
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REMARK. The set D, in Prop. 2 may have every cardinality between
,85 and ¢ (if the continuum hypothesis is not supposed). Hence V& contains
for each o with ff‘o < a < ¢ a closed discrete subspace of cardinality a
which is not C-embedded.

The remark leads furthermore to the following two problems:

a

PROBLEMS. 1. Is it true that for each o ne contains a closed
discrete subspace of cardinal o which is not C-embedded? The above
theorem says that this is valid for o =§¢b.

2. Can in the theorem'c be decreased to a smaller cardinal
\ - °
(>630 because N O is metrizable).
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