
Tracking Set Correlations at Large Scale

Foteini Alvanaki
Saarland University

Saarbrücken, Germany
alvanaki@mmci.uni-saarland.de

Sebastian Michel
Saarland University

Saarbrücken, Germany
smichel@mmci.uni-saarland.de

ABSTRACT
In this work, we consider the continuous computation of
correlations between co-occurring tags that appear in mes-
sages published in social media streams. The vast amount
and pace these messages are created makes it necessary to
parallelise the computation of correlations to various nodes
in a computing cluster. The main challenge in this is to
ensure that each node will compute a subset of the coeffi-
cients and every coefficient will be computed by some node.
The core task is to continuously create and maintain parti-
tions of the tags and forward the incoming messages based
on them. Our approach proposes and evaluates several algo-
rithms that partition the tags to the nodes while at the same
time they minimise the replication of tags to the nodes and
balance the load on them. The proposed framework is im-
plemented in Java within the Storm stream processing plat-
form. We evaluate the partitioning algorithms and validate
the feasibility of our approach through a thorough experi-
mental study performed using real data.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications; H.4
[Information Systems Applications]: Miscellaneous

Keywords
Distributed Stream Processing; Partitioning; Set Correla-
tions

1. INTRODUCTION
In 2012, Twitter alone contributed over 200 million tweets

a day and around 2.3 billion posts were shared on Facebook1.
Such user generated content is usually carrying short tex-
tual annotations – so called tags – that specify the topic
of a tweet, content of videos or images, locations and per-
sons, or events. Analysing these massive and topically di-
verse streams of user generated content in real time is one

1http://www.statisticbrain.com/social-networking-
statistics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGMOD/PODS’14, June 22–27 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610510.

{#munich,#beer,
#socccer}{#beer,#pizza}

{#munich,
#oktoberfest} {#bavaria,#soccer}

{#beach,#sunny}

{#friday,#sunny}

410

3

1

2

1

Figure 1: Example of a tagset graph with relations

of the dimensions of the big data challenge, with the ulti-
mate goal to extract valuable information for business set-
tings, political campaigns, disease outbreak warnings etc.
One of the applications most prominently visible in recent
research aims specifically at extracting trends out of Twit-
ter tweets. Here, the choice of terms used as hashtags is not
imposed by Twitter, which results in a wild use of such tags
– person names, brands, locations, events, etc. Computing
correlation measures between co-occurring tags proves to be
challenging, due to high rate of arriving data together with
the massive amounts of contained tags. In order to meet the
needs of real-time applications, it is necessary to distribute
the computations to multiple nodes (machines), where each
node will be responsible to compute the measures of interest
for a subset of all co-occurring tags. In this work, we specif-
ically consider the computation of the Jaccard coefficient;
for a set of tags it is defined as the ratio of the number of
documents annotated with all of the set’s tags to the num-
ber of documents annotated with any of the tags. This paper
devises and evaluates algorithms and the necessary informa-
tion processing topology within the Storm stream processing
platform [19] to allow computing Jaccard coefficients for all
co-occurring tags of a Twitter-scale data stream.

Consider for instance the graph in Figure 1. Each vertex
represents a set of co-occurring tags with a weight equal to
the number of received documents that were annotated with
the specific tagset. There is an edge between two vertices if
the corresponding tagsets have common tags. A partition
that assigns connected components of vastly different size
to different nodes creates large load imbalances. Assuming
that the ratio of incoming documents does not change over
time, the node assigned the partition with tags {#munich,
#beer, #pizza, #socccer, #oktoberfest, #bavaria} will re-
ceive and process 86% of the incoming documents, while
the node assigned the partition with tags {#beach, #sunny,
#friday} only the remaining 14%. On the other hand, a par-
tition that cuts the large connected component creates repli-
cated tags, which increases/causes the communication over-
head. Assuming that the partitions are {#munich, #beer,
#socccer, #oktoberfest, #beach, #sunny, #friday} and

1507

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

{#beer, #pizza, #socccer, #bavaria} all documents con-
taining either #beer or #socccer will have to be forwarded
to both nodes.

1.1 Problem Statement
We consider a stream of documents D obtained through

Twitter or other social media. Each document di in this
stream is annotated with a set of tags (or hashtags) si =
{t1, t2, . . . , tk}.

We use a time-based sliding window over the documents
to limit the focus on the most recent of them. Before mov-
ing the window, we estimate the similarity of the tags in any
subset of co-occurring tags currently in the window comput-
ing its Jaccard coefficient. Assuming a set TG = {t1, t2, . . .}
of all tags in the window, we compute the Jaccard coefficient
for all sets {ti, tj , . . .} ∈ 2TG that co-occur in at least one
document. While the consideration of all subsets in TG is
computationally intractable in theory, in practice, the natu-
ral restriction to tags that actually co-occur in the observed
data renders the computation feasible. This is due to the
relatively low number of tags per tweet and the, in general,
quite disperse use of hashtags in thematically unrelated com-
munities.

We want to distribute the computation of the Jaccard
coefficients to multiple nodes. For that, we want to assign a
set of tags pri out of TG to each node ni. Each node ni will
then be responsible to compute the Jaccard coefficient for
all sets of co-occurring tags in 2pri . The distribution of the
tags to the nodes should ensure that

1. All co-occurring tags are assigned to some node, such
that all Jaccard coefficients can be computed.

2. Assignment of the same tag to multiple nodes is avoided,
so that the network traffic is kept low.

3. Assignment of popular tags is spread, such that the
load in the nodes is balanced.

Formally: For a set S of tagsets si = {t1, t2, . . .} annotat-
ing a set of documents D = {d1, d2, . . .} create k partitions
pr1, . . . , prk such that

1. ∀si ∈ S ∃prj : si ⊆ prj (i.e. coverage)

2.
∑

ti∈{
⋃

j sj} (|{prm | ti ∈ prm}|) is minimised (i.e. lit-

tle/no replication)

3. given li = |{dm | sj ⊆ pri ∧ sj annotates dm}|) to be
the load of a node i; minimise the Gini coefficient, or
in general the load variance, among the nodes (i.e.,
balanced load)

1.2 Contributions and Outline
In this paper, we make the following contributions.

• We derive a data dissemination scheme that assigns
tags to nodes considering their co-occurrences and us-
ing communication and computational load as optimi-
sation criteria.
• We discuss a theoretic view on the performance of the

presented partitioning algorithms.
• We describe a detailed operator topology that we im-

plemented within the Storm distributed stream pro-
cessing framework.
• We present the results of a carefully conducted ex-

perimental evaluation in a Storm cluster, using real
Twitter data.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the related work. Section 3 describes the
key idea and framework. Section 4 presents algorithms to
distribute tags to nodes. Section 5 estimates theoretically
the expected performance of the presented partitioning al-
gorithms. Section 6 describes in details the implementation
of our system using the distributed data stream processing
platform Storm. Section 7 addresses the problem of dynami-
cally adapting partitions to evolving tag usage and Section 8
presents the results of our experimental evaluation and sum-
marizes the lessons learned. Section 9 concludes the paper.

2. RELATED WORK
Analysing massive streams of user generated content in

real time is one of the dimensions of the big data challenge,
and most prominently visible in works specifically aiming at
extracting trends out of Twitter tweets. Among the early
works along these lines is the Twitter Monitor approach,
by Mathioudakis and Koudas [15], which extracts bursty
tags and then groups them to form meaningful descriptions
of individual trends. Our own approach, enBlogue [2], com-
putes the magnitude of a trend as the prediction error of the
tagset correlation, where the Jaccard coefficient is computed
for pairs of observed tags – or a subset of them.

There are many works on identifying topics on Twitter.
For example Sriram et al. in [18] try to assign tweets in broad
categories like News, Opinions etc. In [16] the authors limit
the topics they identify to those containing known entities
and in [20] to those happening at specific places. Weiler et
al. in [21] identify topics using the inverse document fre-
quency and Ritter et al. in [17] use more sophisticated NLP
techniques and unsupervised clustering. All these works and
many more focus on identifying qualitative topics over Twit-
ter and overlook any performance issues. Similarly, in the
work of Eftekhar et al. [7] the main focus is to identify high
quality topics. The procedure is preformed offline over data
gathered during a whole day. In this setting they also try
to develop algorithms that can identify topics efficiently. In
this work, we focus on continuously computing tag correla-
tion statistics over multiple servers in a computing cluster.
The computed statistics can serve as input to various works
above. The task to compute tag correlations in a distributed
fashion requires partitioning the incoming data stream. As
we deal with set-valued data (i.e. Tweets and their hash-
tags), the problem is related to graph partitioning. The
graph in our case has tagsets as nodes and edges between
tagsets that share tags; we will review this in more detail in
Section 4. Graph partitioning is a well studied problem and
many algorithms on solving this problem exist. Among the
best known is the Kernighan-Lin algorithm [12] and the algo-
rithms based on spectral analysis [6]. The algorithms based
on spectral analysis use the eigenvectors of the connection
matrices to estimate the areas in the graph where the par-
titions should be performed. Given a set of partitions, the
Kernighan-Lin algorithm transfers vertices from one parti-
tion to the other trying to minimise the edge-cut. The com-
bination of these algorithms [11] has been shown to produce
better partitions. The above and any other partitioning al-
gorithm could be used in our setting to create the partitions
of tag-sets. However, in a dynamic environment like ours
all these techniques are deemed computationally expensive
considering the observation that any partitioning computed
will be valid/appropriate only for a short period. Addition-
ally, there are algorithms that maintain graphs dynamically
(e.g. [8]). Dynamic techniques are more appropriate for our
setting. However, methods for dynamic graph maintenance

1508

T G , ti Global set of tags, A single tag
D, di A set of documents, A single document
Ti The set of documents annotated with tag ti
T A set of sets Ti

S, si A set of tagsets, A single tagset
PR, pri A set of tag partitions, A single tag partition
k Number of partitions
DS, dsi A set of disjoint sets, A disjoint set
li, ci Load of tagset si, Cost of tagset si
P Number of Partitioners
thr The threshold allowed before repartitions are

requested
tps Incoming tweets per second

Table 1: Notations used in the paper

are restricted to changes in the edges and cannot handle ad-
ditions or deletions of vertices. Changes in vertices (e.g. new
tagsets) are very common in our approach.

Using probabilistic sketching data structures like Bloom
Filters [3] or Count-Min sketches [5] has been proposed to
accelerate set operations like intersection of union. If we use
them to represent the sets of documents annotated with each
tag we will falsely consider tags to be co-occurring, due to
“false positives” imposed by the sketches. In a setting as ours
were most of the tags do in fact not co-occur, i.e. their sets
of documents have an empty intersection, using sketches will
pose a significant overhead forcing us to consider many non
co-occurring tags.

An early version of this paper has been published in [1]; we
refer to it for its modeling of the expected communication
overhead of set-cover–based partitioning methods that we
briefly pick up in this work.

3. IDEA AND FRAMEWORK
We consider a stream D of incoming documents di each

one annotated with a set of tags si = {t1, t2, . . .} from a
global set of tags TG. We have at our disposal k machines
that are independent from each other, i.e. they cannot com-
municate. We want to assign the tags in TG to the k ma-
chines (or nodes) in such a way that each machine can com-
pute the Jaccard coefficient for a subset of the sets of co-
occurring tags seen in the input. The tagsets for which a Jac-
card coefficient is computed should equal the co-occurring
tags found in the incoming stream of documents. After the
assignment, each machine receives all documents annotated
with tags it has been assigned.

Assume there are 2 machines and the received documents
along with their tagsets are summarised by the graph in
Figure 1. One of multiple possible partitions is the following

• pr1={#munich, #beer, #soccer, #oktoberfest, #beach,
#sunny, #friday}
• pr2={#beer, #pizza, #bavaria, #soccer}

The node assigned partition pr1 will compute the Jaccard
coefficient for the sets of co-occurring tags in the following
list

• {#munich, #beer}
• {#munich, #soccer}
• {#beer, #soccer}
• {#munich,#beer, #soccer}
• {#munich, #oktoberfest}
• {#beach, #sunny}
• {#friday, #sunny}

The node will not compute a Jaccard coefficient for {#ok-
toberfest,#friday}, for instance, since the two tags do not
co-occur in any of the received documents. Similarly, the
node assigned partition pr2 will compute a Jaccard coeffi-
cient for the tagsets

• {#bavaria, #soccer}
• {#beer, #soccer}
• {#beer, #pizza}

In the above partitioning, the tags #beer and #soccer are
assigned to both nodes, introducing communication over-
head as any document containing either of these tags would
be forwarded to both nodes. However, this cannot be avoided.
Removing for example #beer from pr2 will result in loosing
the coefficient for the tagset {#beer, #pizza}, since there
will be no node assigned both the tags.

Assuming that the relative number of documents anno-
tated with each tagset remains the same through time, the
expected load in each node is computed as the number of
documents annotated with any of the tags the node has been
assigned. In this example, the tags in pr1 are found in 21
documents (the documents annotate with {#beer, #pizza},
{#bavaria, #soccer} or {#munich, #beer, #soccer}) and
the tags in pr2 in 15 (the documents annotated with {#mu-
nich, #beer, #soccer}, {#munich, #oktoberfest} or {#beer,
#soccer}). Thus, the node assigned pr1 will have a load of
58% and the node assigned pr2 the remaining 42%.

Ideally, partitions are mutually disjoint and cause equal
load to the nodes that are responsible for handling them.
In practise, such an ideal partitioning does not necessarily
exist due to the characteristics of the data. Algorithms aim
at low mutual overlap for low communication overhead and,
as much as possible, equally loaded nodes.

With evolving time, new tags and unseen tag combina-
tions are introduced by users, and the relative popularity of
the assigned tagsets changes deteriorating the quality of the
partitions. We propose a practical online solution that

(i) computes partitions based on the recently observed
tags and their co-occurrences,

(ii) introduces updates/additions to computed partitions
to account for new tags and new tag co-occurrences

(iii) monitors the quality of the partitions and triggers their
recomputation

The framework we propose consists of three main opera-
tors

Calculator: it counts occurrences of tagsets and computes
the Jaccard coefficients for the co-occurring tags

Partitioner: it computes tag partitions that indicate which
Calculator receives which documents

Disseminator: it forwards the documents to the Calcula-
tors according to the defined partitions and monitors
the quality of the partitions

The implemented topology within the Storm framework
is presented in Section 6. The next paragraphs give an in-
troduction to the high-level task each individual operator is
continuously performing.

3.1 Calculator Operator
Each Calculator is assigned a set of tags and is respon-

sible to compute the Jaccard coefficients for all sets of co-
occurring tags in this set. The Jaccard coefficient for a set
of tags si = {t1, t2, . . . , tn} is computed as the ratio of the
number of documents annotated with all tags in si to the

1509

number of documents annotated with any of the tags in si:

J(ti|ni=1) =
|
⋂

j{dj}|
|
⋃

j{dj}|
(1)

where dj is a document annotated with any of the tags in
si In order to compute this measure, the Calculator oper-
ator needs to be provided with all documents that contain
any of the Calculator’s partition of tags. For each set of
co-occurring tags existing in the data, the Calculator main-
tains a simple counter for its occurrences, that is the count of
documents that contain all of the tagset’s tags. The count of
documents that are annotated with any of the tagset’s tags
is given by the inclusion-exclusion principle:∣∣∣∣ n⋃

i=1

ai

∣∣∣∣ =

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

|ai1 ∩ · · · ∩ aik |

 (2)

Still, Calculators have to receive all documents annotated
with any of the tags they have been assigned. At first glance,
this exact counting of occurrences of all subsets sounds pro-
hibitively expensive due to the combinatorial explosion for
large number of tags. However, since tags are used to indi-
cate the topic of a document and the documents we consider
in this work are posts in the Blogosphere, e.g. tweets (i) less
than 10 tags are used per document (cf. e.g. [7]) and (ii) not
all possible tag combinations are used.

3.2 Partitioner Operator
The Partitioner operator uses a set of recent documents

and decides how the tags found in these should be parti-
tioned to the Calculators. The partitioning algorithm, used
by the Partitioner to split the tags to the Calculators, should
take care to split them such that for any tagset seen in the
input there is one Calculator assigned all tags comprising it.
For any tagset which is not completely assigned to a Calcu-
lator the Jaccard coefficient cannot be computed. Section 4
discusses algorithms used for the partitioning.

3.3 Disseminator Operator
The Disseminator operator has a global view of the tags

assigned to each Calculator. It receives the incoming doc-
uments and is responsible to forward them to the appro-
priate Calculators, i.e. those that have been assigned tags
used for the annotation of the document. Finding efficiently
the Calculators that should be informed about each doc-
ument is important. The work [10] on indexing set-valued
attributes suggests that using an inverted index is more ef-
ficient compared to other techniques. For each tag ti a set
{C|C is counting tag ti} of Calculators is kept and indexed
by key ti, usually in a simple hash-based index. For a re-
ceived document, an index lookup for each tag in the doc-
ument is performed to obtain the Calculators that should
receive this document.

4. PARTITIONING ALGORITHMS
Any partitioning algorithm used to split the tags to the

partitions must ensure that for every set of co-occurring tags
there is one partition containing all its tags – the Jaccard
coefficient of a not completely captured tagset cannot be
computed. Additionally, it should create partitions of equal
load and minimise the communication overhead.

This problem can be modeled as a graph partitioning prob-
lem. Each vertex vi in the graph corresponds to a tagset si
and there is an edge e(vi,vj) between two vertices vi, vj if the
corresponding tagsets si, sj have common tags. The weight

of a vertex vi represents the number of documents that will
be forwarded to the Calculator assigned the tagset si. The
weight of an edge e(vi,vj) represents the reduction in the
number of documents that will be forwarded to the Calcu-
lator assigned both tagsets si, sj .

For the kind of data we consider in this work – tagsets
of low cardinality occurring in social media messages like
tweets – a graph constructed like this contains a large amount
of small connected components. In the following, we present
a partitioning algorithm that uses these connected compo-
nents to create disjoint sets of tags, grouped afterwards into
k partitions (Subsection 4.1). Additionally, we present algo-
rithms based on the Set Cover [4] problem (Subsection 4.2).

4.1 Disjoint Sets Algorithm (DS)
In social media like Twitter users annotate their messages

with tags that reflect the topics discussed on them. Tags
describing the same topic are thus strongly connected, i.e.
found in the same messages, while being completely discon-
nected from the other tags. Algorithm 1 is based on this
observation.

Algorithm 1: Disjoint Sets Algorithm (DS)

Input: Integer k, Set S of tagsets si,
Set of tags T G, Set T of sets of documents Ti

Output: Set PR of k tag partitions pri

1 DS = {}, PR = {}
2 while T G 6= ∅ do
3 find dsj =

⋃
i si disjoint set of tags

4 lj = |
⋃

i Ti|, ti ∈ dsj
5 DS = DS ∪ {dsj}
6 T G = T G \ dsj
7 end while
8 while DS 6= ∅ do
9 dsi = argmaxdsj lj

10 DS = DS \ {dsi}
11 if k > 0 then
12 prk = dsi
13 PR = PR ∪ {prk}
14 k = k − 1
15 else
16 pri = argminprj

∑
dsk∈prj

lk

17 pri = pri ∪ dsi
18 end if
19 end while
20 return PR

Initially the sets of tags that form connected components,
disjoint sets, are identified (Algorithm 1, Lines 2-7). The
identified disjoint sets are merged into k sets/partitions,
where k is the number of available machines (Algorithm 1,
Lines 8-19). Each disjoint set dsj carries a load lj equal to
the number of documents annotated with any of the tags
ti ∈ dsj (Algorithm 1, Line 4). As long as there are more
disjoint sets to be assigned the one with the biggest load is
selected (Algorithm 1, Line 9) and assigned to the partition
with the lowest current load (Algorithm 1, Line 16).

At the end of the algorithm there are k tag partitions with
approximately the same load. Because of the initial phase
where disjoint sets are identified and never split after that,
the algorithm guarantees that for any set of co-occurring
tags there is a single node that has been assigned all its

1510

tags. So, the Jaccard coefficient for any set of co-occurring
tags can be computed.

In case there are not enough disjoint sets to create k par-
titions or there is a disjoint set that is very big, set-cover–
based algorithms, presented below, can be used in combi-
nation with the disjoint sets algorithm to split this set (or
these sets) to smaller ones.

4.2 Set-Cover–Based Algorithms
The following algorithms treat the creation of k partitions

as a Set cover problem (SCP) over the input tagsets si. The
general SCP assumes that all elements of the given sets are
independent to each other. Therefore, a collection of sets
S = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}} can be represented with
less sets like {{1, 2, 3}, {4, 5}} without losing information.
Considering {1, 2, 3} and {4, 5} to create two partitions there
is one partition containing every single element in S.

In our setting, assigning each single element in a partition
is not enough. Instead, every occurring tagset should be as-
signed as a whole to some partition as the Jaccard coefficient
for non-assigned tagsets cannot be computed locally at the
Calculator nodes. We use a greedy approach of the Bud-
geted Maximum Coverage Problem [13] to create k initial
partitions and then assign to them all non-assigned tagsets.

In the Budgeted Maximum Coverage Problem there is a
collection of sets S = {s1, s2, . . . , sn} defined over a collec-
tion of elements TG = {t1, t2, . . . , tn}. Each set si ∈ S has a
cost ci, each element ti ∈ TG has a weight wi and there is a
budget B. The goal is to find a collection of sets S′ with to-
tal cost that does not exceed the budget B with maximised
total weight of covered elements. In our setting, the sets si
are the sets of co-occurring tags and the elements ti are the
tags. The weight of each single tag is equal to the unit, i.e.
there are no tags more important than others.

In each iteration of the Budgeted Maximum Coverage Prob-
lem there is a subset C ⊂ S of n sets si that have been
selected to be part of the final set cover. The best set to
be added in C is the one that covers the most elements not
already covered by the sets in C, while at the same time the
total cost does not exceed the budget B. We do not have a
hard limit on the budget, but we want to minimise the final
cost of the cover.

Algorithm 2 outlines the procedure followed for the selec-
tion of the k initial sets that will be later used as the basis
for the k partitions. At each iteration the tagset si with the
minimum cost that covers the most uncovered tags (Algo-
rithm 2, Line 3) is added to the set of selected tagsets.

Algorithm 2: Set Cover Based Algorithms – Phase 1:
Creation of initial partitions

Input: Integer k, Set S of tagsets si,
Set T of sets of documents Ti

Output: Set PR of k tag partitions pri

1 CV = {} // Set of already covered tags
2 while k > 0 and S 6= ∅ do
3 si = argminsj cj and argmaxsj |sj \ CV |
4 prk = si
5 PR = PR ∪ {prk}
6 S = S \ {si}
7 CV = CV ∪ si
8 k = k − 1
9 end while

10 return P

The cost of each set si differs depending on whether the
algorithm optimises for the communication overhead or for
the processing load. In case the measure of interest is the
communication overhead, the cost ci of each set si in
each iteration is equal to the number of tags tj ∈ si that
are already covered by the sets in C. When the measure of
interest is the processing load, the cost ci of each set si
in each iteration is equal to the difference of the share this
set has in the load to the optimal share. Each tag ti has
been found in a set of documents Ti. The cardinality of the
union of these documents for all tags ti ∈ sj is considered
to be the load lj of the tagset sj . Assuming we are in the
mth iteration of the algorithm, C contains m − 1 sets and
we will select the mth set. The optimal share of load in this
iteration is plop = 1

m
, i.e. the load is equally distributed to

all nodes. The real share of load of a candidate set sn is
pln = ln∑m−1

i li+ln
and the cost of sn is define as |plop− pln|.

To the initial k partitions created using Algorithm 2 are
added the remaining tagsets until there is no unassigned
tagset. The best partition to assign a tagset depends again
on the measure of interest. When optimising for the commu-
nication overhead (SCC algorithm shown in Algorithm 3),
in each iteration the set with the most not covered tags hav-
ing the least total tags is selected (Algorithm 3, Line 3).
The selected tagset is added to the partition sharing with it
the most tags having the least load (Algorithm 3, Line 4).
When optimising for the load distribution (SCL algorithm
shown in Algorithm 4) in each iteration the set with the
most load having the least already covered tags is selected
(Algorithm 4, Line 3). The selected tagset is added to the
partition having the least load sharing the most tags with
the selected tagset (Algorithm 4, Line 4).

Algorithm 3: Set Cover Based Algorithms – Phase 2:
Assigning the remaining tagsets minimising the commu-
nication overhead (SCC)

Input: Set PR of k initial tag partitions pri,
Set S of tagsets si,
Set T of sets of documents Ti

Output: Set PR of k final tag partitions pri

1 CV =
⋃

i pri // Set of already covered tags
2 while S 6= ∅ do
3 si = argmaxsj |sj \ CV | and argminsj |sj |
4 pri = argmaxprj |si ∩ prj | and

argminprj

∑
sk∈prj

lk

5 pri = pri ∪ si
6 S = S \ {si}
7 CV = CV ∪ si
8 end while
9 return PR

In prior work [1], the partitioning problem is treated as a
Maximum Coverage Problem without budget to select the k
first tagsets. The assignment of the remaining tagsets to par-
titions is performed using the number of tags shared among
the tagset and the partition. Algorithm 2 is used also in this
case to select the k initial tagsets setting the cost of each
tagset to zero. The second phase of this set cover based al-
gorithm (called SCI) is described in Algorithm 5. In each
iteration, a random set is selected (Algorithm 5, Line 2) and
added to the partition with which it shares the most tags
(Algorithm 5, Line 3)

1511

Algorithm 4: Set Cover Based Algorithms – Phase 2:
Assigning the remaining tagsets balancing the processing
load (SCL)

Input: Set PR of k initial tag partitions pri,
Set S of tagsets si,
Set T of sets of documents Ti

Output: Set PR of k final tag partitions pri

1 CV =
⋃

i pri // Set of already covered tags
2 while S 6= ∅ do
3 si = argmaxsj lj and argminsj |sj ∩ CV |
4 pri = argminprj

∑
sk∈prj

lk and

argmaxprj |si ∩ prj |
5 pri = pri ∪ si
6 S = S \ {si}
7 CV = CV ∪ si
8 end while
9 return PR

Algorithm 5: Set Cover Based Algorithms – Phase 2:
Assigning the remaining tagsets as described in [1] (SCI)

Input: Set PR of k initial tag partitions pri,
Set S of tagsets si,
Set T of sets of documents Ti

Output: Set PR of k final tag partitions pri

1 while S 6= ∅ do
2 si = S.random()
3 pri = argmaxprj (si ∪ prj)
4 pri = pri ∪ si
5 S = S \ {si}
6 end while
7 return PR

5. THEORETIC PROPERTIES
The performance of the described algorithms depends on

how well they can create similar-sized and non-overlapping
partitions. We review these aspects by investigating the ex-
pected size of the biggest disjoint set of tags – which is crucial
for the DS algorithm – and the expected degree of commu-
nication overhead for equally sized tag partitions. For addi-
tional details on the latter we refer to [1].

5.1 Number of Disjoint Sets
Assume a tagger that randomly annotates tweets with

tags following uniform distribution. The derived graph G
having one vertex for each tag and one edge for each pair
of co-occurring tags can be described by the Erdős–Rényi
graph model [9]. According to Erdős and Rényi’s theory a
graph G can be described either by the number of vertices
n and the number of edges M , G(n,M), or by the number
of vertices n and the probability p than an edge between
two vertices exists, G(n, p). The number of edges M and the
probability p are related with each other with M =

(
n
2

)
p.

Erdős and Rényi [9] derive properties of G, depending on
the ratio between the number of vertices n and the edge
probability p. For np < 1, the graph is expected to not
have any connected component larger than O(log(n)), while
for np > 1, it it likely to have one large component, and
no other component contains more than O(log(n)) vertices
(with a theoretical special case of np = 1, left out in the
discussion).

We investigated the frequency of tweets with respect to
the number of tags they contain using a sample of 15 mil-
lion tweets received through Twitter’s streaming API (on
a randomly chosen day; Jan 28, 2012). The results showed
that the number of tags used to annotated the tweets fol-
lows Zipf’s law, i.e. no tags at all are the most popular case,
one tag the second most popular case, and so on, with skew
parameter s = 0.25.

A tweet annotated with m tags adds
(
m
2

)
edges in the

graph, one edge for each pair of co-occurring tags, and ac-
cording to Zipf’s law the frequency of tweets annotated with
m tags, considering that a tweet can be annotated with
mmax tags at most, is given by the formula f(m,mmax, s) =

1
ms∑mmax

i=1
1
is

. The expected number of edges in G(n,M) is

computed as

E[M] := t×
mmax∑
m=2

[
f(m,mmax, s)×

(
m

2

)]
where t is the distinct number of tweets – as obviously du-
plicate tweets do not add any additional edges.

Out of the roughly 15 million tweets per day that we ob-
served in the 10% sample obtained from Twitter, we ob-
served around 600, 000 distinct tags in roughly 700, 000 dis-
tinct tweets. To have statistics about the full stream (100%),
we assume the worst case for the DS algorithm: 600, 000 dis-
tinct tags, as in the 10% sample stream, but 7 million dis-
tinct tweets. Considering a graph over a 5 minute window
of tweets leads to an np value of 0.76, if a maximal value of
mmax = 8 tags per tweet is assumed. For a 10 minute win-
dow, we get np = 1.52, for the same mmax, but np = 0.85
for mmax = 6.

This model assumed independence of tags. If we actually
count the number of distinct tag pairs (i.e., edges) that we
see per day in the Twitter data (assuming the 100% stream
has 10 times more of them than our 10% sample), we have
around 5.5 million distinct pairs per day, i.e., around 34, 000
distinct tag pairs (edges) added per 10 minutes, which leads
to np = 0.11 for the graph after 10 minutes, instead of
np = 1.52 assuming independence of tag usages in the above
model. We see that the above model is given a pessimistic
behaviour of the expected disjoint sets, as the number of
edges (tag pairs) is over estimated. On the other hand, it
still describes pretty well how the various factors render the
DS algorithm applicable or not – according to Erdős and
Rényi’s theory.

Further, as long as users select tags from topic-specific vo-
cabularies, graph G falls apart in as many connected com-
ponents as topics. This comes to rescue the DS algorithm to
a large extent. However, if tags from multiple topic-specific
vocabularies are mixed there is still the danger to have one
large connected component. The existence of a large con-
nected component is more likely when tweets from the more
distant past are considered together with tweets from the
more recent past since the content drift in tweets can cause
mixing tags from different topics. Additionally, if tags from
a joint vocabulary are used with probability 1 − α a large
connected component can develop for any α < 1, with faster
development for smaller values of α.

5.2 Communication
We presented the modeling of the expected communica-

tion overhead for equal-sized and randomly-created parti-
tions in [1], where the expected number of partitions that
are affected by a single tweet is studied. We call this the
communication load, with a value of 1 indicating zero com-

1512

munication overhead. Considering a vocabulary of v tags,
n tweets over which the partitions are formed, k partitions
and m tags per tweet, the expected communication load is
given as

E[communication] := k ×

1−

[(
v−m
m

)(
v
m

)]n
k

This means that for small vocabulary and large number

of tags per tweet, each incoming tweet needs to be sent to
(almost) all partitions; a knockout blow for any decentralised
approach. For large vocabularies and few tags per tweet, as it
is the case for Twitter data, the problem appears tractable.
This is also verified by the experimental evaluation.

6. OPERATORS AND TOPOLOGY
For the implementation of our framework, we have used

the distributed stream processing system Storm [19]. In this
section, we briefly describe the basic characteristics of it and
the specific implementation of our approach.

6.1 Storm
Storm is a framework that provides a fault-tolerant, dis-

tributed stream processing infrastructure, similar to what
MapReduce/Hadoop is for batch processing. It can scale to
big loads/rates of data by adding more machines for individ-
ual processing tasks running in parallel. Application devel-
opers have to provide the implementation of stream sources
and operators, following the provided API.

Spouts, Bolts and Topologies.
Operators in Storm are organised in a graph, called topol-

ogy. The nodes in the topology are connected to each other
depending on how they communicate. The communication
in Storm is performed following a push-based model. Storm
distinguishes two kinds of nodes, Spouts and Bolts. Spouts
are sources of streams. Bolts consume incoming streams,
process them and emit new streams.

The application developer that defines a topology is spec-
ifying at the same time the number of instances for each
operator. Storm creates that many threads for each opera-
tor to perform the processing across the cluster of machines.
For each Bolt in the topology the developer should provide
its functionality by implementing the execute method, which
is invoked in every incoming tuple and, in general, outputs
a new tuple to the consuming (subscribed) Bolts.

Data Flow Specification.
The operators in Storm work with tuples, i.e. simple lists

of named values. Bolts consume data from Spouts or other
Bolts by registering to their output streams. One of the
key properties of Storm is to allow multiple instances of
Spouts and Bolts. If multiple instances of a Bolt exist, Storm
offers various rules that dictate how the tuples flow from
producing Bolts or Spouts to the consuming multi-instance
Bolt:

shuffle grouping: Tuples are distributed randomly over
the various instances of the registered Bolt ensuring
that each instance receives approximately the same
number of tuples.

all grouping: Tuples are broadcasted, thus each instance
gets all tuples.

fields grouping: Tuples are forwarded based on the values
on one or multiple of their fields. It enables directing
tuples based on their semantics/content.

local grouping: Tuples are forwarded on instances that
reside on the same JVM.

direct grouping: Tuples are forwarded to specific instance
(or instances) by using the instance’s unique identifier.

6.2 Implemented Topology and Operators
The topology of our approach, implemented in Storm, is

shown in Figure 2. It shows the basic operators – Source,
Disseminator, Partitioner and Calculator – as introduced in
Section 3 and a few more – Parser, Merger and Tracker. The
numbers inside the circles indicate whether there is one (1)
or multiple (n) instances/tasks created for each operator. In
the following we describe in more details the implementation
of all the operators.

n

Parser

1

Twitter

n

Disseminator

1

Merger

n

Partitioner

n

Calculator

1

Tracker

Figure 2: Topology

Parser.
The Source (Spout) in our implementation produces a

stream of Twitter tweets, either based on live data through
Twitter’s streaming API or for repeatability of experiments
read from a file. Tweets are sent using shuffle grouping to
one of the multiple instances of the Parser Bolt. Parser Bolts
are responsible to extract for each tweet di a set of tags si
containing the hashtags used by the users to annotate it.
This tagset can be enriched with named entities, location,
or sentiment, extracted from the messages’ body and inter-
preted as additional tags. For each incoming tweet di the
Parser emits a tuple of the form (timestampi, si), where
timestampi is the time of the arrival of di in the system.
Disseminator and Partitioner both register to Parser.

Partitioner.
The Partitioner operator is responsible to create the tag

partitions using one of the algorithms presented in Section 4.
To accelerate the procedure of partitioning multiple instances
of this operator can be created. Each Partitioner instance
receives tuples from the Parser using field grouping on the
whole tagset si. This way the same tagsets are forwarded
always to the same Partitioner instances.

Partitioners maintain a sliding window (cf. e.g. [14]) of size
W over the incoming tagsets. Conceptually, this window can
be time-based (e.g. capturing 5 minutes of tweets) or count-
based (e.g. 10000 tweets). When the Partitioners are asked
to create partitions they use the tagsets currently in the
window. The creation of new partitions is triggered by the
Disseminator when the quality of the current partitions has
deteriorated significantly.

Partitioners emit tuples of the form ({pr1, pr2, ..., prk}).

Merger.
With multiple Partitioners present, the final number of

created partitions amounts to more than k, the requested
number of partitions. This creates the need for an additional
operator, the Merger, which takes the partitions from the
Partitioners and creates the final k partitions.

The Merger can be viewed as another Partitioner. It re-
ceives tagsets and outputs tag partitions. The tagsets it re-

1513

ceives are the tag partitions created by the Partitioners. Fol-
lowing this principle, the Merger creates the final partitions
using the same algorithm the Partitioners use.

To preserve the general idea of the Disjoint Sets algorithm
when executing it in the Merger, we make a slight change in
the Disjoint Sets (DS) Algorithm executed in the Partition-
ers. Partitioners execute only the first part of it, i.e. they
create all possible disjoint sets but do not merge them into
k partitions. The Merger receiving these sets is thus able
to combine them into bigger disjoint sets and merge them
afterwards into k final partitions.

The Merger sends the final partitions to the Disseminator
and waits for messages from it regarding tagsets seen in the
input but not found in any of the partitions. For any such
tagset, sent by the Disseminator, the Merger finds the best
fitting partition and informs back the Disseminator about its
decision. This procedure is described in detail in Section 7.

Disseminator.
The Disseminator receives the partitions from the Merger

and uses them to create an index from tags to Calculators
(Section 3). For every tagset si, sent by the Parser using
shuffle grouping, the Disseminator searches this index for
the Calculators that have been assigned any of the tags in
si. It sends a tuple of the form (sji) to each of the involved

Calculators. sji is a subset of si containing all tags assigned
to Calculator j. For example, suppose that si = {a, b, c} and
Calculator 1 is assigned the tags a, b, c and Calculator 2 is as-
signed the tags a, c. The Disseminator will output the tuples
({a, b, c}) and ({a, c}), each one delivered to the appropriate
Calculator using direct grouping. These messages are called
notifications. To accelerate the notification of Calculators for
the received tagsets multiple instances of the Disseminator
operator can be created.

Apart from notifying the Calculators, the Disseminator is
responsible to inform the Merger about the tagsets in the
input that are not reflected in the partitions. Additionally,
they monitor the partitions and trigger repartitions when
the quality of them, with respect to communication overhead
and processing load, is not any more acceptable. More details
on this are provided in Section 7.

Calculator.
Calculators are responsible to compute the Jaccard co-

efficients for a set of co-occurring tags. They register to
the Disseminators and receive from them tuples of the form
({t1, t2, . . . , tn}) using direct grouping.

Calculators are oblivious to the tags they have been as-
signed. They infer the information about the sets of co-
occurring tags for which they should compute a Jaccard
coefficient from the messages they receive from the Dissem-
inators. Calculators compute the Jaccard coefficients as de-
scribe in Section 3. For this, each Calculator should know
the cardinalities of the intersections of co-occurring tags and
thus this is the information stored by them.

Consider for example that Calculator 1 receives the tuple
({a, b, c}). From that it infers that it should compute the Jac-
card coefficient for the tagsets {a, b, c}, {b, c}, {a, b}, {a, c}
(i.e all subsets of tags included in the received tuple). For
each of these tagsets it creates a counter. If the counter al-
ready exists it updates it increasing it by one.

Every y time units the Calculators use the counters to
compute the maximum possible number of Jaccard coef-
ficients. The coefficients are emitted and the counters are
deleted.

Tracker.
The Tracker operator receives the Jaccard coefficients emit-

ted by the Calculators and uses them to perform further
computations. If the same tags are assigned to multiple par-
titions it might happen that multiple Calculators emit Jac-
card coefficients for the same tagset simultaneously. In such
a case, the Tracker should select one of them for further us-
age. We opted for the coefficient computed over data tracked
for a longer period. For this reason, Calculators emit tuples
of the form (si, J(si), CN(si)). J(si) is the Jaccard coeffi-
cient for si and CN(si) is the value of the counter used for si.
When receiving multiple tuples for the tagset si, the Tracker
keeps the one with the maximum CN(si). This heuristic
guarantees that at least all tagsets assigned to the partitions
during the creation of them will have a correct Jaccard co-
efficient not mixed with a Jaccard coefficient computed in a
Calculator as a result of the evolution of the partitions.

7. HANDLING DYNAMICS
Twitter is highly dynamic. Old topics evolve through time

and new topics appear very frequently introducing new tags
and tag combinations. These dynamics are even more acute
when focusing on a small subset of the data, i.e. data ob-
tained during the last 5 or 10 minutes. However, theory and
real data show that it is not feasible to create partitions
over large windows as the existence of a large number of
tweets causes the DS algorithm to break due to a large con-
nected component (Section 5.1), while the set-cover–based
algorithms suffer from large amounts of redundant commu-
nication (Section 5.2). In our setting, we identify and handle
the following two requirements:
Evolving Partitions: tags and tag co-occurrences not re-
flected in the partitions are continuously seen in the input.
Triggering the recreation of partitions for each of them is
clearly not feasible. Instead they are incrementally added to
the existing partitions.
Partition Quality Monitoring: enriching partitions with
additional tags affects the quality of them in terms of com-
munication overhead and load balance. Identifying that the
quality is not within acceptable limits anymore and creating
new partitions is necessary.

As Disseminators connect the two logical parts of our ap-
proach, the creation of the partitions and the computation
of the Jaccard coefficients, they have a central role in ad-
dressing the above two points.

7.1 Evolving Partitions
Disseminators directly notice when a tagset si is not found

in any of the partitions since they cannot find a Calculator
being assigned all tags in it. If si is seen in the input sn
times without being found in any Calculator the Dissemi-
nator informs the Merger about it and the Merger adds it
in the best possible partition. The best partition to add a
tagset depends on the partitioning algorithm. For the DS,
SCC and SCI algorithms the partition is selected so that
the increase in communication is minimised. For the SCL
algorithm the partition is selected so that the load in the
Calculators remains as balanced as possible. The addition
of a tagset to some partition is called Single Addition. The
occurrence threshold sn is ideally small, not to miss impor-
tant tagsets, but large enough to ignore spam or typos.

When a Single Addition is performed the Disseminators
receive a message from the Merger telling them the Calcu-
lator that was assigned the tagset. Disseminators use this
message to update their indices. All Disseminators receive

1514

the message independently of whether they asked for the
addition or not.

7.2 Partition Quality Monitoring
Every time a new partition is created the Merger noti-

fies the Disseminators about it sending to each of them a
tuple of the form (partitions, avgCom,maxLoad). Dissem-
inators use partitions to create their index. avgCom and
maxLoad contain the average communication and the max-
imum load of the created partitions as computed immedi-
ately after their creation. Disseminators use avgCom and
maxLoad as reference values to ensure that the quality of the
partitions through time remains within acceptable bounds.

In order to estimate the quality of the partitions at any
time the Disseminators maintain some statistics represent-
ing the current average communication avgCom′ and max-
imum load maxLoad′ of the partitions. For each received
tagset si the Disseminators store for each Calculator whether
a notification was sent to it or not. Consider the example
where si = {a, b, c}, Calculator C1 is assigned {a, b, c} and
Calculator C2 is assigned {a, c}. Assume there is one more
Calculator C3 not assigned any of the tags in si. Two of
the Calculators, the Calculators C1 and C2, receive a noti-
fication and one Calculator, Calculator C3 does not. Only
tagsets for which there was at least one notification sent are
considered in the statistics.

When z tagsets have been considered, the Disseminators
compute the average sent notifications avgCom′ as the sum
of all sent notification divided by z. maxLoad′ is computed
as the percentage of the most notifications sent to a sin-
gle Calculator. As long as both avgCom′ and maxLoad′ do
not exceed avgCom and maxLoad respectively more than a
threshold thr the Disseminators reset the statistics and con-
tinue using the existing partitions. Otherwise, the Dissem-
inators ask from the Partitioners to create new partitions.
Increasing thr decreases the number of repartitions allow-
ing for worse performance with respect to communication
overhead or processing load.

7.3 Topology Scaling
In the used version (v0.8.2) of Storm a reconfiguration

of a running topology is not possible. Storm only allows to
rebalance a topology creating more threads (executors) or
workers but does not allow changing the number of instances
(tasks) for each operator. In order to be able to adjust the
number of Calculators to the observed load the necessary
logic should be implemented in the operators. The maxi-
mum expected number of Calculators should be defined be-
fore submitting the topology. The Partitioners can specify
the actual number of Calculators that are used at any time
by adjusting the number of partitions they create. Only Cal-
culators that are assigned a partition are indexed by the
Disseminators, receive documents and compute Jaccard co-
efficients.

8. EXPERIMENTS
We have implemented the above operators in Java 1.7.

For the experiments we used a cluster of 26 Linux (3.12.0)
servers, each running Storm 0.8.2 (with Zookeeper 3.4.5).
Each machine has an Intel quad-core i7-2600K CPU@3.4GHz
and 16GB RAM.

The dataset we used consists of 6 hours of tweets ob-
tained through the Twitter’s streaming API on Septem-
ber 5, 2013. In all experiments, we compare four algorithms:
Set Cover Based focusing on communication (SCC), Set
Cover Based focusing on processing load (SCL), Disjoint

Sets (DS) and the approach in [1] (SCI), which we described
in detail in Section 4.

8.1 Parameters
Number of partitions k: We set the number of parti-

tions (the number of calculators in the topology) to 5, 10
and 20. In general, keeping the communication low while
maintaining the processing load equally distributed are con-
tradicting goals. Keeping the load in each Calculator close
to the average means that tagsets sharing tags have to be as-
signed to different partitions and keeping the communication
low means that tagsets sharing tags should be assigned to
the same partitions resulting in unbalanced partitions. The
attempt to balance the two measures is becoming harder as
the number of partitions increases.

Number of Partitioners P : We set the number of Par-
titioners that in parallel try to create the partitions to 3, 5
and 10.

Data arrival rate tps: In real world 1300 tweets are
created every second. For that we set the arrival rate of
tweets on the system to 1300 and 2600 tweets per second.

Repartition Threshold thr: Repartition threshold de-
fines the maximum percentage of change that is considered
acceptable by the Disseminators. When the processing load
or the communication have changed more than the provided
threshold the Disseminators ask for repartitioning. We set
the repartition threshold to 0.5 and 0.2. A threshold of 0.5
means that the communication (or processing load) is 50%
worse than the communication (processing load) when the
partitions were computed.

8.2 Experimental Results
The results for the various parameters show the same

trend. For this reason we decided to set the parameters to
a specific value and show the corresponding results. More
specifically, unless otherwise mentioned to be varied, we set
the parameters to the following values P=10, k=10, thr=0.5,
tps=1300. All configurations use one Parser and one Dissem-
inator.

The Disseminator asks for a Single Addition when a tagset
is seen in the input without being found in any Calculator
3 times. The statistics used to estimate the quality of the
partitions (average communication and maximum load) are
computed for every 1000 tweets for which there was a notifi-
cation sent. Calculators report the Jaccard coefficients every
5 minutes. The Partitioners create the partitions using the
set of tweets seen in the previous 5 minutes.

8.2.1 Communication
We define the Communication to be the average number

of messages sent from the Disseminator to Calculators for
each received tagset. We do not consider tagsets which are
not found in any Calculator and, thus, do not cause any
message to be sent. The plots in Figure 3 show how the
change in each parameter affects the communication.

We see that the number of partitions plays the most im-
portant role in the communication (Figure 3c). Having more
partitions makes it difficult to assign tags to them without
making partitions overlap. This is not true for DS which
creates the partitions using only disjoint sets. For this rea-
son DS has in general the best performance with respect
to communication. On the other hand, SCL which focuses
mainly on balancing the processing load shows the worst per-
formance with respect to communication. Surprisingly SCI
performs significantly worse than SCC although the algo-
rithms are very similar in principle. This justifies our choice

1515

to develop a new algorithm with the communication as its
primary optimisation criterion.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

thr=0.2 thr=0.5

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

P=10 - k=10 - tps=1300
DS SCI SCC SCL

(a) Varying threshold

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

P=3 P=5 P=10

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

k=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(b) Varying Partitioners

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

k=5 k=10 k=20

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

P=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(c) Varying partitions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

tps=1300 tps=2600

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

P=10 - k=10- thr=0.5
DS SCI SCC SCL

(d) Varying tweets rate

Figure 3: Communication

8.2.2 Processing Load
We define the Processing Load of a single Calculator Ci to

be the percentage of notifications sent to Ci out of the total
sent notifications. To measure the inequality of Processing
Load in the various Calculators we use the Gini coefficient.
The Gini coefficient is one of the most common measures of
statistical dispersion and it is defined mathematically based
on the Lorenz curve which depicts the cumulative propor-
tion of ordered individuals mapped onto the corresponding
cumulative proportion of their size. A small value of the Gini
coefficient indicates a more balanced distribution.

The plots in Figure 4 show how the various parameters
affect the load distribution. SCL with primary optimisation
criterion the balanced processing load shows the best per-
formance. The parameter that affects the load balance most
is the number of partitions (Figure 4c). The reasoning is
similar to that used for the communication. Having more
partitions makes it more difficult to balance the load on
them without increasing substantially the communication.
Interestingly SCC, in contrast to SCI, is affected also by the
number of Partitioners (Figure 4b). The difference between
SCC and SCI is that SCI randomly chooses the next tagset
to be added to some partition while SCC selects the more
appropriate tagset to be added to some partition. The plot
in Figure 4b suggests that the careful selection of the next
tagset although keeps communication low (cf. Figure 3b)
cannot help load balance.

8.2.3 Jaccard Accuracy
The Calculators can compute the Jaccard coefficient only

for the tagsets they have been assigned. During the parti-
tioning we make sure that all tagsets present in the data are
assigned to some Calculator. However, as new documents
are received new tag combinations arise. The Disseminator
waits until it has seen such a tagset sn = 3 times before
asking for a Single Addition. After the Single Addition is
completed the tagset might or might not be seen in the in-
put again. In case it is seen again, then a Jaccard coefficient
will be reported that will deviate from the correct coefficient
since until the addition is completed none of the Calculators
tracks the counter needed for the tagset. In case it is not
seen again, a Jaccard coefficient will not be computed at all

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

thr=0.2 thr=0.5

L
o
a
d
 (

G
in

i)

P=10 - k=10 - tps=1300
DS SCI SCC SCL

(a) Varying threshold

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

P=3 P=5 P=10

L
o
a
d
 (

G
in

i)

k=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(b) Varying Partitioners

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

k=5 k=10 k=20

L
o
a
d
 (

G
in

i)

P=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(c) Varying partitions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

tps=1300 tps=2600

L
o
a
d
 (

G
in

i)

P=10 - k=10- thr=0.5
DS SCI SCC SCL

(d) Varying tweets rate

Figure 4: Processing Load

resulting in missing completely the information about this
tagset. To measure the error in accuracy and the total loss
of coefficients we implemented a centralised approach which
gets all tagsets and computes their Jaccard coefficients. We
use the centralised results as our baseline. Since a tagset is
added when seen at least 3 times the centralised approach
considers only tagsets appearing more than 3 times.

Our experiments showed that all algorithms manage to
compute a Jaccard coefficient for more than 97% of the
tagsets seen more than 3 times in the input. In Figure 5
we report on the average error of these Jaccard coefficients
compared to the Jacacrd coefficients computed for the same
tagsets by the centralised approach.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

thr=0.2 thr=0.5

E
rr

o
r

P=10 - k=10 - tps=1300
DS SCI SCC SCL

(a) Varying threshold

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

P=3 P=5 P=10

E
rr

o
r

k=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(b) Varying Partitioners

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

k=5 k=10 k=20

E
rr

o
r

P=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(c) Varying partitions

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

tps=1300 tps=2600

E
rr

o
r

P=10 - k=10- thr=0.5
DS SCI SCC SCL

(d) Varying tweets rate

Figure 5: Error for tagsets seen more than 3 times

In general, DS is the algorithm computing the most accu-
rate coefficients. It is interesting that an increase in the num-
ber of Partitioners causes a significant reduction in the er-
ror of SCC (Figure 5b). Additionally, an increase in the rate
decreases the error in all algorithms but SCC (Figure 5d).
Both these cases are related to the number of repartitions
(see plots in Figure 6). When a repartition happens it might
be the case that tagsets assigned to some Calculator before it
are assigned to another Calculator after it. This causes mul-
tiple coefficients for the same tagsets being reported while
none of them is accurate.

1516

8.2.4 Number of Repartitions
The number of repartitions depicts how Single Additions

affect the quality of the partitions. A repartition is triggered
if either the communication or the processing load exceeds
the threshold. In some cases both measures had been found
to have exceeded the threshold. The plots in Figure 6 show
the effect of the various parameters on the number of repar-
titions. As expected, DS does repartitions caused by load
imbalance. SCC and SCI although focusing on communica-
tion, similarly to DS, have repartitions caused by big com-
munication overhead. What is interesting is that SCL and
SCI do not manage to drop the number of repartitions for
bigger threshold (Figure 6a) . This contradicts our expecta-
tions and suggests that it is very difficult in general for these
algorithms to maintain acceptable communication.

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I

SC
C

SC
L

D
S

SC
I

SC
C

SC
L

#
R

e
p
a
rt

it
io

n
s

P=10 - k=10 - tps=1300

thr=0.5thr=0.2

Communication Both Load

(a) Varying threshold

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L

#
R

e
p
a
rt

it
io

n
s

k=10 - thr=0.5 - tps=1300

P=10P=5P=3

Communication Both Load

(b) Varying Partitioners

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L

#
R

e
p
a
rt

it
io

n
s

P=10 - thr=0.5 - tps=1300

k=20k=10k=5

Communication Both Load

(c) Varying partitions

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I

SC
C

SC
L

D
S

SC
I

SC
C

SC
L

#
R

e
p
a
rt

it
io

n
s

P=10 - k=10- thr=0.5

tps=2600tps=1300

Communication Both Load

(d) Varying tweets rate

Figure 6: Number of Repartitions

8.2.5 Evolution of Partition Quality
The plots in Figures 8 and 9 show the changes in com-

munication and processing load with evolving time. For the
communication the average communication is used while for
the processing load we show the detailed load in each Calcu-
lator. The processing load has been sorted so that one line
has always the load of the most loaded Calculator, another
line has the load of the second most loaded Calculator and so
on. One vertical line has been drawn representing the points
when a repartition was performed.

The plots regarding DS clearly show the effect of the Sin-
gle Additions and the repartitions to the communication
(Figure 8a) and processing load (Figure 9a). As long as
there are repartitions happening the communication stays
low while there is one Calculator having more load that the
others. Between repartitions the communication increases
and processing load tends to become more balanced, i.e. the
load of the most loaded Calculator decreases, until the next
repartition when communication decreases again and load
becomes more unbalanced. Similar results are seen for SCC
in Figures 8b and 9b. For SCL and SCI the results are not
that clear since there are very many repartitions (there is
approximately one repartition every 2750 processed docu-
ments). However, for SCL Figure 9c clearly shows that the
processing load is balanced through the whole experiment.

8.2.6 Connectivity of Tagsets
In Figure 7, we report some statistics regarding the Twit-

ter dataset as they are fundamentally related to the prob-
lem we consider in this work and, in particular, relevant

for the performance of the DS algorithm. For the measure-
ments, we used the same tweets we used for the experiments.
Over them we defined non-overlapping sliding windows of 4
different sizes (2, 5, 10 and 20 minutes). Every time the
window slides we measure the maximum percentage of tags
contained in a single connected component of tags and the
maximum number of documents related with a single con-
nected component.

 0

 5

 10

 15

 20

 25

 30

2 5 10 20

#
T

a
g
s
 (

%
)

Window Size (minutes)

Expected Maximum #Tags

(a) Maximum size
of connected tagset
per round

 0
 5

 10
 15
 20
 25
 30
 35
 40

2 5 10 20

#
D

o
c
u
m

e
n
ts

 (
%

)

Window Size (minutes)

Expected Maximum Load

(b) Maximum load
of connected tagset
per round

 0

 5000

 10000

 15000

 20000

 25000

2 5 10 20

#
D

is
jo

in
t
S

e
ts

Window Size (minutes)

Expected #Disjoint Sets

(c) Number of con-
nected tagsets per
round

Figure 7: Tagsets connectivity and load

8.3 Lessons Learned
We observe by the experimental evaluation, supported by

the theoretic reasoning in Section 5, that our presented ap-
proach is feasible for Twitter-style data characteristics. It
further has proven doable to tune the set-cover–based meth-
ods according to which cost (communication or processing)
is most critical. The disjoint sets (DS) algorithm has by de-
sign optimal communication load (zero redundancy) but in
practise and theory can reach scenarios where the load im-
balances are too drastic, given one (or few) large evolving
disjoint sets. If that happens, splitting the large disjoint sets
is required, but current data characteristics did not exhibit
such a case. Thus, as the rule of thumb, for current, Twitter-
scale streams, DS is the method of choice, particularly since
it reaches the most accurate results as fewer tagsets are as-
signed to multiple nodes, thus, there are fewer Jaccard co-
efficients reported multiple times. However, we did see that
some partitions in the DS algorithm have higher load than
others, so if balancing load is crucial and network cost is
not critical, SCL should be used instead of DS. Ultimately,
disjoint sets should form the basis of all partitioning algo-
rithms, but large ones need to be split (to not impair the
load balancing), for instance by applying set-cover–based
algorithms like SCL.

9. CONCLUSION
Detecting shifts in correlation between annotations in so-

cial media content is a common technique to analyse streams
of social media, most importantly Twitter. With data ar-
riving at high rates is becomes computationally infeasible
to compute co-occurrence statistics on a single machine or
semantically too restrictive to impose a fixed, small tag vo-
cabulary to focus on. In this work, we addressed the prob-
lem of computing correlation statistics for tagsets arriving
in a massive data stream, involving the consideration of all
subsets of co-occurring tags with no restriction on the used
tags. The key idea was to spread the computation to multi-
ple machines in a computing cluster by continuously defin-
ing partitions of tags according to which the data is spread
to counting nodes. We implemented a prototype of our ap-
proach using the distributed stream processing engine Storm
and evaluated several partitioning algorithms together with
the generic behaviour of the system under realistic load,
using data obtained through the Twitter streaming API.
Overall, we showed in theory and practise that it is feasible
to track the ocurrences/correlation of all existing tagsets in

1517

 1.1

 1.2

 1.3

 1.4

 1.5

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(a) DS Communication

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(b) SCC Communication

 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(c) SCL Communication

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(d) SCI Communication

Figure 8: Communication over Time

 0.1

 0.2

 0.3

 0.4

 0.5

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(a) DS Load

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(b) SCC Load

 0.08

 0.1

 0.12

 0.14

 0.16

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(c) SCL Load

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(d) SCI Load

Figure 9: Processing Load over Time

Twitter-scale data streams. We believe this is an enabling
step toward high-quality, large-scale social trend mining as
no ad-hoc pruning of the tagset space is anymore required.

ACKNOWLEDGMENTS
We thank the anonymous reviewers at SIGMOD for their
constructive feedback that helped improving this work and
the Database Architectures group at CWI Amsterdam for
providing access to their computing cluster. This work has
been partially supported by the Excellence Cluster on Multi-
modal Computing and Interaction (MMCI) and the German
Research Foundation (DFG) under grant MI 1794/1-1.

10. REFERENCES
[1] F. Alvanaki and S. Michel. Scalable, continuous

tracking of tag co-occurrences between short sets using
(almost) disjoint tag partitions. DBSocial, 2013.

[2] F. Alvanaki, S. Michel, K. Ramamritham, and
G. Weikum. See what’s enblogue: real-time emergent
topic identification in social media. EDBT, 2012.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7), 1970.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[5] G. Cormode. Count-min sketch. Encyclopedia of
Database Systems, 2009.

[6] W. Donath and A. Hoffman. Algorithms for
partitioning graphs and computer logic based on
eigenvectors of connection matrices. IBM Technical
Disclosure Bulletin, 15(3), 1972.

[7] M. Eftekhar and N. Koudas. Partitioning and ranking
tagged data sources. PVLDB, 6(4), 2013.

[8] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic
graph algorithms. Algorithms and Theory of
Computation, 1999.

[9] P. Erdős and A. Rényi. On the evolution of random
graphs. In Publication of the Mathematical Institute of
the Hungarian Academy of Sciences, 1960.

[10] S. Helmer and G. Moerkotte. A performance study of
four index structures for set-valued attributes of low
cardinality. VLDB J., 12(3), 2003.

[11] B. Hendrickson and R. Leland. A multilevel algorithm
for partitioning graphs. Supercomputing, 1995.

[12] B. Kernighan and S. Lin. An Efficient Heuristic
Procedure for Partitioning Graphs. The Bell Systems
Technical Journal, 49(2), 1970.

[13] S. Khuller, A. Moss, and J. Naor. The budgeted
maximum coverage problem. Inf. Process. Lett., 70(1),
1999.

[14] J. Krämer and B. Seeger. Semantics and
implementation of continuous sliding window queries
over data streams. ACM Trans. Database Syst., 34(1),
2009.

[15] M. Mathioudakis and N. Koudas. Twittermonitor:
trend detection over the twitter stream. SIGMOD,
2010.

[16] A.-M. Popescu, M. Pennacchiotti, and D. Paranjpe.
Extracting events and event descriptions from twitter.
WWW (Companion Volume), 2011.

[17] A. Ritter, Mausam, O. Etzioni, and S. Clark. Open
domain event extraction from twitter. KDD, 2012.

[18] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu,
and M. Demirbas. Short text classification in twitter
to improve information filtering. SIGIR, 2010.

[19] Storm: Distributed and fault-tolerant realtime
computation. http://storm-project.net/.

[20] K. Watanabe, M. Ochi, M. Okabe, and R. Onai.
Jasmine: a real-time local-event detection system
based on geolocation information propagated to
microblogs. CIKM, 2011.

[21] A. Weiler, S. Mansmann, and M. H. Scholl. Towards
an advanced system for real-time event detection in
high-volume data streams. PIKM, 2012.

1518

