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Abstract
In hinterland container transportation the use of barges is getting more and more

important. We propose a real-life operational planning problem model from an inland

terminal operating company, in which the number of containers shipped per barge is

maximized and the number of terminals visited per barge is minimized. This problem

is solved with an integer linear program (ILP), yielding strong cost reductions, about

20%, compared to the method used currently in practice. Besides, we develop a

heuristic that solves the ILP in two stages. First, it decides for each barge which ter-

minals to visit and second it assigns containers to the barges. This heuristic produces

almost always optimal solutions and otherwise near-optimal solutions. Moreover,

the heuristic runs much faster than the ILP, especially for large-sized instances.
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1 INTRODUCTION

In container logistics, we encounter two major trends: (a)

the increasing size of container vessels and (b) decreasing

freight rates (World container and general shipping, 2016).

The first trend leads to an increasing number of containers

that are delivered at once at a deep-sea terminal. This puts

a large pressure on the terminal operations, but also the hin-

terland transport needs to be optimized in order to guarantee

an efficient dispatch of all containers. The second trend is

putting pressure on the cost side of container transportation.

Rough estimates are that between 40 and 80% of the total

costs for the transport of a container are made in the hinter-

land (Notteboom, 2004), whereas the inland transportation

usually covers only a small fraction of the distance of the total

trip. To reduce the costs of transportation, the use of barges is

extremely important. Barges are a cheap and eco-friendly way

of transporting containers, especially compared to trucks. On

top of that, road congestion is a serious problem in the densely

populated areas where deep-sea ports are usually located.

For instance, 40% of the vehicles in the area of the port

of Rotterdam are heavily delayed (Behdani, Fan, Wiegmans,

& Zuidwijk, 2016). Combining all the aspects above, both

the European Commission (2011) and the Port of Rotterdam

Authority (2011) have the ambition to achieve a modal shift

from truck to barge and train. Drawbacks of barges are that

they are slow and less flexible in visiting terminals. A barge

operator has to make an appointment for visiting a terminal

a few days in advance. On the other hand, the more contain-

ers are on a barge, the lower the average transportation costs

per container are. Combining these two aspects, it is clear that

for barge transportation, the planning of the containers is a

difficult and important problem.

In this paper, we consider a real-life operational barge plan-

ning problem from the perspective of an inland terminal. This

terminal has contracts with barge operating companies which

offer barge services and with trucking companies. The inland

terminal may choose the mode and day of transportation of
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a container, as long as the container arrives on time at the

customer. From the inland terminal, the containers are trans-

ported to their final destination. The customers of the terminal

are located close to the inland terminal, so the last mile trans-

portation will always be done by a truck on the desired day.

We refer to Caris and Janssens (2013) for an operational

planning problem for this last-mile transportation. Next to

the mode of transportation from the deep-sea terminal to the

inland port, also the day of the hinterland transportation needs

to be decided. The difference between the arrival and the

departure of a container is called dwell time (Steenken, Vo, &

Stahlbock, 2004). An important factor in the decision for the

day of transportation are the storage costs at the inland and

deep-sea terminal. The storage costs differ per day and are not

the same for the deep-sea terminal and the inland terminal.

Since the storage costs are quite substantial, optimizing the

dwell time at a terminal is an important aspect of hinterland

container logistics (Iannone, 2012).

Usually, the appointments a barge operator needs to make

are restrictive and not negotiable so that they indirectly imply

the route the barge needs to sail. Moreover, as pointed out

by Fazi, Fansoo, and Woensel (2015), the deep-sea terminals

are usually densely clustered, thus a good route is not hard to

construct. For this reason, the routing of the barges is not con-

sidered in our problem. Nevertheless, mooring at a terminal is

a time-consuming process, thus if a barge moors at a terminal,

it is beneficial to load many containers. On top of that, at many

terminals there is a big chance of incurring a delay. At the port

of Rotterdam, delays of a few hours are not uncommon for

barges. Hence, it is desired to visit a terminal as rarely as pos-

sible, in order to reduce the delay of a barge. A disadvantage

of our approach is that our time interval is set to a day, so we

cannot take time into consideration. Time can, for instance,

be important if shipments and vehicle moves have to be syn-

chronized, or if terminals or locks have certain opening times

(Sharyapova, 2014). In our problem setting, the barge opera-

tor is responsible for ensuring that the timing of the barge is

such that all terminals can be visited. Moreover, the only syn-

chronization is at the inland terminal and we can include in

our formulation a constraint that our container should arrive

on time at the inland terminal.

Next to making a barge planning that does not visit many

terminals, the capacity of the barges should also be used as

much as possible. If there are more containers on a barge, the

fixed costs such as the wage of the skipper can be divided

over more containers. Consequently, the cost per container

will decrease. Therefore, one part of the objective of our

barge planning is to minimize the empty container spots of the

barges. The combination of maximizing the number of con-

tainers shipped by barge, minimizing the storage costs and

minimizing the number of terminals visited by barge is a com-

plicated and nontrivial problem. Sometimes, it might be better

to have more storage costs in order to visit fewer terminals or

being able to ship more containers by barge. Making a plan-

ning that deals with all these aspects is now done by hand

at the inland terminal, but we will propose an integer linear

program (ILP) model to solve this problem.

The contribution of this paper is threefold. First, we dis-

cuss a problem that is faced by an inland terminal and that

has not been studied in the literature before. The uniqueness

of this problem lies in the fact that not only the assignment

of containers to services is considered and that the routes of

the barges do not need to be decided. The goal is to minimize

the costs of container hinterland transportation and minimize

the number of terminals visited by barge. This problem is

richer than problems in which only containers are assigned

to services and easier than problems in which the routes also

have to be decided. The latter fact makes that the problem

can be solved much faster, while still being relevant for prac-

tice. Second, we present an ILP-model that can be used to

solve this problem. We test our model on real-life data from

an inland terminal based in the Netherlands and we achieve

a cost reduction of about 20% compared to current practice.

For large problem instances the computation time of the ILP

might be too long to be used in practice. Hence, our third con-

tribution is that we propose a method that solves the ILP in

two steps. This method reduces the computation time of diffi-

cult instances immensely, while still producing solutions that

are extremely close to the optimal solution.

This article is organized as follows. We start with giving

a review of the existing literature for operational problems

in container hinterland transportation in Section 2. After-

ward, we give a detailed description of the problem in

Section 3. In Section 4, we present three methods to solve

the problem. In Section 5, the three methods are used to

solve medium-sized and large-sized instances and the results

are compared. Finally, we will draw some conclusions and

indicate further research directions in Section 6.

2 LITERATURE REVIEW

In the literature there are three types of definitions that

are closely connected to container hinterland transportation:

intermodal, multimodal, and synchromodal transportation.

Intermodal transportation is a form of transportation in which

the goods are shipped in only one transportation unit (con-

tainer) during the entire shipment. Multimodal transportation

means that the goods are shipped by at least two differ-

ent types of modes. In synchromodal transportation there is

synchronization between multiple different modes of trans-

portation, meaning that at any time the best mode of trans-

portation based on the circumstances is chosen (SteadieSeifi,

Dellaert, Nuijten, van Woensel, & Raou, 2014). There is

much overlap between these definitions and all of them could

be applied to our problem. Recently, quite a few review

papers have been published in the area of these three types

of transportation problems (Carris, Macharis, & Janssens,

2013; SteadieSeifi et al., 2014; Van Riessen, Negenborn,

& Dekker, 2015). In the literature, there are also papers
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on interterminal transport by barges that are related to our

problem, see, for example, Heilig and Voß (2017), Schroer,

Corman, Duinkerken, Negenborn, and Lodewijks (2015),

and Tierney, Vo, and Stahlbock (2014). Interterminal trans-

portation deals with the transportation of containers from

one terminal at a deep-sea port to another terminal in the

same port.

In the multimodal literature, most attention has been paid to

strategic problems, such as network design, but little focus has

been on operational problems (Mes & Iacob, 2016). Never-

theless, there are a few recent papers that explicitly deal with

operational decision making in synchromodal transportation.

Based on the decision made, the problems in the existing liter-

ature are divided into three categories: (a) problems in which

containers are assigned to existing barge services, (b) prob-

lems in which the routes of barges are determined for a given

demand, and (c) problems in which both the assignment of

containers to barges and the route of barges are decided upon.

In the first category, the assignment of containers to ser-

vices can be done offline and online. In an offline planning

problem, the assignment of containers to services is done

once the information of all containers is known, whereas

in an online problem, the planner needs to decide the ser-

vice of a container immediately once the booking is done. In

Baykasoglu and Subulan (2016), a multiobjective planning

problem of the loads in an intermodal network is presented.

In their model, the transportation costs, the service level,

and CO2-emissions are optimized for both the import and

export flow of containers. Another offline problem is dis-

cussed in Tierney et al. (2014), in which the interterminal

transportation in a deep-sea terminal is analyzed. The goal

of this problem is not to minimize costs, but to minimize

the delay from containers being transshipped within the port.

Perez Rivera and Mes (2016) study an offline problem in

which containers have to be assigned to modes of transporta-

tion in a synchromodal network in order to minimize the costs.

They formulate this problem as a Markov decision process

in order to also take into account uncertain future costs. In

Van Riessen, Negenborn, and Dekker (2016), optimal offline

solutions are obtained for an intermodal planning problem in

which the objective is to minimize the transportation costs

and penalties of being late. These offline solutions are used

to infer a decision tree that is then used to make online deci-

sions. Mes and Iacob (2016) also consider an online planning

problem. They propose a k-shortest path approach in which

the planner receives for each order the k best paths in the net-

work in terms of costs, delays, and CO2-emissions. Finally,

the work of Wang, Bilegan, and Crainic (2016) incorporates

revenue management for barge transportation. Given a fixed

barge schedule, the goal is to decide for every incoming order

whether to accept the order or not and which service to use

for the container.

The paper of Li, Negenborn, and Lodewijks (2016) falls

under the second category of the literature. In this paper, a

distributed constraint optimization problem is formulated to

decide upon the route of vessels in a port. In this problem, it is

known for each vessel which terminals it should visit and how

many containers to load at these terminals and the decision to

be made is the route of the vessels. In Karlaftis, Kepaptsoglou,

and Sambracos (2009), a case study is presented in which con-

tainers have to be transported between ports on islands in the

Aegean Archipelago and mainland Greece. If a ship is visiting

a port, all containers have to be transported, so this problem

is formulated as a capacitated vehicle routing problem.

Finally, we discuss three studies that fall into the third

category. In Fazi et al. (2015), a decision tool is developed

for planning the hinterland transportation. Similar to our

problem, Fazi et al. (2015) maximize barge utility and penal-

ize a barge visit at a terminal. Nevertheless, they account

for sailing time and the transportation costs are per hour.

Therefore, they need to calculate the actual route the barge is

sailing. Moreover, they are not considering any storage costs

at the deep-sea or inland terminal. The model of Behdani

et al. (2016) decides which containers to assign to a ser-

vice and when a service should leave a terminal. Their goal

is to minimize both the transportation costs and the wait-

ing time of containers at terminals. Finally, in the work of

Sharyapova (2014) a scheduled service network design is

introduced with continuous time synchronization and trans-

shipment constraints. The goal here is to minimize the total

operational costs by selecting which services to use, determin-

ing the timing of the vehicles and deciding which containers

to transport with which service. Since the time of a service is

incorporated in the decision making, we have chosen to group

this work in the third category and not in the first.

3 PROBLEM DESCRIPTION

Our problem focuses on the transportation of containers from

multiple deep-sea terminals to a single inland terminal. Each

container arrives with a deep-sea vessel at a deep-sea termi-

nal. If a container is already at the deep-sea terminal, the day

of arrival is naturally known. In case a container arrives in the

future, an estimated time of arrival (ETA) is known. We will

refer in both cases to ETA as the day of arrival. Moreover,

for each container a certain day is known, the so-called call
date, at which it has to be present at the customer. Customers

are located in the direct neighborhood of the inland terminal,

thus if the container arrives at the inland terminal exactly at

the call date, it can still be shipped on time to the customer.

Therefore, the call date can also be seen as the day the con-

tainer has to arrive at the inland terminal. As unloading a large

deep-sea vessel may take hours, we assume that the container

is available for hinterland transportation a day after the ETA.

In our problem, transportation of the containers by barge takes

1 day, so the day before the call date is the last day a con-

tainer can be shipped by barge. As transportation by truck is

much faster, the container can still be shipped by truck on the

call date. Our approach can easily be adjusted to a situation
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in which transportation or unloading takes a different time

length.

The ETA and the call date of the container impose hard

constraints on the possible days of shipments. On top of that,

the ideal day of shipment is also influenced by demurrage
costs and storage costs. Demurrage costs are costs paid to the

carrier of the container if the container stays too long at the

deep-sea terminal. Storage costs are the costs incurred when

the container is at the inland terminal. Usually, a container has

a certain demurrage free period for which no demurrage costs

have to be paid. After that demurrage free period, demurrage

costs are paid per day that a container is located at a deep-sea

terminal. Storage costs are the costs associated with the num-

ber of days the container is located at the inland terminal.

Generally, the storage costs per day are much lower than the

demurrage costs per day because space at an inland terminal is

less scarce than at a deep-sea terminal. In other words, before

the demurrage free period has ended, it is cheaper to store the

container at the deep-sea terminal than at the inland termi-

nal and vice versa after the demurrage free period has ended.

For each day it is straightforward to calculate the demurrage

and storage costs that are incurred with transporting a con-

tainer on that day. Given these costs, finding the day for which

the minimum demurrage and storage costs have to be paid is

easy.

A barge schedule that specifies which barge is present at

the deep-sea port on which day is made by the barge opera-

tor and thus input for our model. We assume that each barge

has only 1 day on which it can load containers at the deep-sea

port. This assumption is reasonable because all barges have

a tight schedule in order to ship as many containers as possi-

ble. Consequently, if we assign a container to a barge, then the

day of transportation is also known. Each barge has a maxi-

mum capacity that cannot be exceeded. The size of a container

is measured in twenty-foot equivalent unit (TEU) and so is

the maximum capacity of the barge. For each barge, there are

fixed costs to use that barge. Moreover, transporting a unit of

TEU on a barge has certain costs.

Besides a barge, it is also possible to ship a container by

truck. We assume that a truck can only transport a single con-

tainer, irrespective of the size of a container. As a result, the

costs of shipping a container by truck are much higher than

the shipping costs by barge. An advantage of trucking a con-

tainer is that from a practical perspective it is reasonable to

assume that there is always a truck available. If we decide to

ship a container by truck, it can thus be shipped on any day.

Consequently, the day of truck shipment is the day with the

minimum storage and demurrage costs. As a result, the trans-

portation day of a truck does not need to be determined. All

in all, for each container it has to be decided on which barge

it is shipped or if it is shipped by truck.

We consider a planning problem with a finite horizon. In

determining the length of the planning horizon a trade-off has

to be made between reliable information and planning flexi-

bility. If a short planning horizon is chosen, the information

of the containers is rather reliable and unlikely to be subject

to changes. On the other hand, only a few barges might be

available for the transportation of the containers. Hence, the

assignment possibilities for each container are restrictive. In

case a long planning horizon is chosen, the flexibility of

assigning the containers to barges increases, but the available

information becomes more unreliable. In practice, a planning

horizon of a week is used. A week ahead all information of

the containers and barges is often rather reliable. If one takes

a longer planning horizon it might happen that a customer

has not put in an order yet or that the ETA of the sea ves-

sel changes, for instance, because of bad weather conditions.

Recent works have also focused on the ETA of a container

being stochastic, see for instance Perez Rivera and Mes (2017)

and Zuidwijk and Veenstra (2015).

The finite planning horizon results in the fact that some con-

tainers have a call date after the end of the planning horizon.

We will call these containers low-priority containers and con-

tainers that need to be shipped during the planning period will

be called high-priority containers. In Section 4, a more formal

definition of low and high-priority containers will be given.

When time progresses, each low-priority container will even-

tually become a high-priority container. These low-priority

containers do not necessarily need to be transported in the

planning period. Two standard approaches for dealing with

low-priority containers are either ignoring them for the cur-

rent planning period or forcing them to be transported anyway.

These approaches work fine if the number of arriving con-

tainers at the deep-sea port and the available barge capacity

is almost constant for each day. However, in practice, these

numbers are far from constant over the days.

To illustrate why these two methods might fail, consider

a situation in which a large batch of containers is available

for transportation on a specific day, but the call date of these

containers is a day after the end of the planning horizon. If

there is a barge in the planning period with some unused

capacity and the low-priority containers are ignored, we face

the risk that there is insufficient barge capacity after the cur-

rent planning period and we need to transport (part of) the

batch per truck, whereas it was possible to ship at least part

of the batch per barge. On the other hand, if there is under-

capacity on the barges in the current planning period and

one has decided that low-priority containers have to be trans-

ported, some containers will be transported by truck in the

current planning period. However, it might be possible that

there is a large amount of barge capacity available on the

day after the end of our planning horizon. So in hindsight, it

would have been possible to ship our batch of containers by

barge.

Ideally, we would like to ship the low-priority containers

only if there is capacity left on the barges in the current plan-

ning period and wait with transportation of the low-priority

containers if no barge capacity is left. Therefore, it is not

possible to take minimizing the transportation costs as an

objective, because not transporting low-priority containers is
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always cheaper than transporting the low-priority containers.

To ensure that low-priority containers also have the

possibility of being transported, we have chosen to maximize

the containers transported by barge as the objective, instead

of minimizing the transportation costs. Since transportation

by barge is much cheaper than by truck, a planning in which

the number of containers that is shipped per barge is maxi-

mal is also likely to be a planning in which the transportation

costs are low.

The containers are located at multiple deep-sea terminals

and in order to visit as few terminals as possible by barge, we

impose penalty costs for each visit. The penalty costs result

in a situation in which a terminal is only visited if there are

enough containers that can benefit from the fact that they do

not have to be transported by truck. To achieve a situation in

which there is a large set of containers available for transporta-

tion, some containers have to be shipped on another day than

their ideal shipment day. Instead of penalizing a terminal visit

by barge, it would also have been possible to impose a con-

straint on the number of terminals visited per barge. The rea-

son why we have not chosen for this option is twofold. First,

if visiting one more terminal than the “maximum” number

of terminal visits reduces the transportation costs by a large

amount, we would like to visit that terminal anyway. Second,

if there are two schedules with the same total transportation

costs and one is visiting fewer terminals than the other, the

schedule with fewer terminal visits is preferred. In summary,

a trade-off has to be made between the transportation costs,

the demurrage and storage costs and the number of terminals

that are visited by barge. To find the optimal solution for this

problem is all but trivial if the instances become of realistic

size.

3.1 Problem instance: Running example

Throughout this paper, the same problem instance will be

used as an example to illustrate the problem. First in Figure 1,

we explain the different characteristics of containers and after-

ward in Figures 2 and 3, we illustrate how containers can

be assigned to barges and trucks. In Figure 1, an example

of possible classes of containers at a deep-sea terminal is

given. In this example, there are 10 containers, which all have

a size of two TEU, and the planning horizon is 3 days. A

container can only be transported on a day if the rectangle

representing the container is in the column representing that

day. So for instance, container 2 can be transported on all

3 days, but container 10 only on day 3. As container 2 is

available for transportation on day 1 and needs to be trans-

ported at the latest on day 3, it means that its ETA is day 0

and its call date is day 4. The fact that container 2 is light

gray on day 3 means that demurrage costs have to be paid

if it is transported on that day. Containers 3 and 4 are col-

ored dark gray on day 3 because demurrage costs for 2 days

have to be paid when they are shipped on day 3. Containers

1–4 are rather flexible because we can ship them on any of

the 3 days, whereas containers 8–10 can only be transported

on one specific day. Besides, also container 5 can only be

transported on day 1 because it was not assigned to a truck

or barge before day 1. Container 7 is a low-priority con-

tainer because its call date is after the end of the planning

period.

In the running example we will consider a situation with

two terminals: terminal R and S. The 10 containers that are

given in Figure 1 are located at both terminal R and S. More-

over, barges are available on day 1 and day 3 and both of

these barges have a maximum capacity of 15 TEU. As there

are only containers of two TEU, each barge can ship at most

seven containers. The fixed costs of using the barges are set

low enough to ensure that both barges will always be used.

Container 9 from Figure 1 is ignored in the remainder of the

running example because it can never be transported by a

barge. In Figures 2 and 3, two different examples are given

of how the containers can be allocated to barges and trucks.

At the top of Figure 2, the available containers are shown for

each terminal for each day. On day 1 in the situation in Figure

2, barge 1 is visiting terminal R, as indicated by the arrow

pointing from barge 1 to the box with all available contain-

ers at terminal R on day 1. The available containers that are

transported by a barge are indicated with a circle within the

square of the container. So in Figure 2, all containers at termi-

nal R that are available for transportation are transported by

barge 1. At terminal S on day 1 in Figure 2, there are contain-

ers with a diamond inside their box. These containers, namely

S5, S6 and S8, will be transported by a truck. We need to ship

these containers with a truck because on day 3 when the next

barge is available they cannot be transported anymore. If there

is neither a circle nor a diamond inside the square of a con-

tainer, it means that a container is not transported on that day.

For example, containers S1–S4 are not transported on day 1

in Figure 2. On day 3, in Figure 2, container S2 has a light

gray box and containers S3 and S4 have a dark gray box. Sim-

ilar to Figure 1, the light gray box represents a container for

which 1 day of demurrage costs have to be paid and the dark

gray box represents a container for which 2 days of demurrage

costs have to be paid.

In contrast to visiting only one terminal, it is also possible

that a barge visits two terminals, as is illustrated in Figure 3.

If we compare the situations of Figures 2 and 3, we see that in

Figure 2 four containers are shipped per truck and in Figure 3

only two. Besides, in Figure 3 seven containers are shipped

on the barge of day 3 and in Figure 2 only six. Moreover,

in the situation illustrated in Figure 2, there are in total 5

days with demurrage costs and in Figure 3 only four. All in

all, the barges in Figure 2 are visiting fewer terminals than

in Figure 3, but in Figure 2 more demurrage days occur,

fewer containers are shipped per barge and more per truck. It

depends on how severe a visit of a terminal is penalized if the

situation of Figures 2 or 3 is preferred.
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FIGURE 1 Example of different container classes at a deep-sea terminal

FIGURE 2 Example of container assignment with one terminal visit per barge

4 MATHEMATICAL MODELS

To solve the problem discussed in Section 3, we present three

different algorithms in this section. First of all, we present an

optimal ILP-formulation in Section 4.1. Afterward, in Section

4.2 a two-stage heuristic that is based on the ILP-formulation

from Section 4.1 is formulated. Finally, in Section 4.3 we

present an algorithm that mimics the behavior of experienced

planners who plan the containers to barges manually.

4.1 Optimal ILP formulation

To formulate the ILP, first some notation is introduced. We

consider an instance with n containers that are located at R
deep-sea terminals. In the entire planning period there are b

barges available. Each container could be assigned to these b
barges or to a truck, thus in total there are b+ 1 vehicles: v= 0

is a truck and v= 1, … , b are the barges. Let the barges be

numbered in increasing order of their day at the deep-sea port.

In other words, barge 1 is the first barge to be in the deep-sea

port and barge b the last barge. The remainder of the input

data is as follows:

• cT are the shipping costs per truck;

• cB
v are the shipping costs for a unit of TEU on barge

v= 1, … , b;

• cD
iv are the demurrage costs for container i if it is transported

by vehicle v;

• cS
iv are the storage costs for container i if it is transported

by vehicle v;
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FIGURE 3 Example of container assignment with two terminal visits per barge

• 𝜋rv are the penalty costs if barge v is visiting terminal r;

• 𝜌v are the fixed costs for barge v;

• uv is the maximum capacity of barge v in TEU;

• dv is the day that barge v is at the deep-sea port;

• ti is the size in TEU of container i;
• ai is the estimated arrival date of container i at the deep-sea

terminal;

• bi is the call date of container i;
• mi is the deep-sea terminal where container i is located;

• 𝜏 is the last day of the planning horizon;

• T is the largest size in TEU of a container, that is,

T =maxi= 1, … , nti

• ℬ is the set of all available barges;

• 𝒞 is the set of all containers;

• ℋ is the set of all high-priority containers;

• ℒ is the set of all low-priority containers.

In Section 3, high-priority containers were defined as con-

tainers that had to be transported in the planning period. Now,

a more formal definition will be given. There are two criteria

that determine the priority of a container. First, if the call date

of a container is before the end of the planning period, the con-

tainer is a high-priority container. Second, if the total costs of

shipping the container on the last barge of the planning period

are higher than the total costs of shipping a container by truck,

the priority of the container is also high. The reasoning behind

the second criterion is based on the fact that the demurrage

costs are higher than the storage costs at the inland terminal.

So after the end of the demurrage free period, the total stor-

age and demurrage costs will increase for each day. Hence,

if it is cheaper to transport a container per truck in the cur-

rent planning period than on the last barge, it is also cheaper

to transport the container per truck in the current planning

period than on a barge in the next planning period. Using the

notation just introduced, the two criteria will be formalized in

Definition 1. If a container is not a high-priority container, it

is automatically a low-priority container, that is,ℒ = 𝒞 ⧵ℋ .

Definition 1 Container i ∈ 𝒞 is in the set of

high-priority containers ℋ , if at least one of the

two inequalities holds:

• bi ≤ 𝜏;

cB
b + cD

𝑖𝑏
+ cS

𝑖𝑏
≥ cT + cD

i0 + cS
i0.

Besides the input parameters, three types of binary decision

variables are used:

Xiv =

{
1 if container i is transported by vehicle v;
0 otherwise.

Yrv =

{
1 if terminal r is visited by barge v;
0 otherwise.

Zv =

{
1 if barge v is used;
0 otherwise.

Using these variables we can define the following ILP:

min

b∑
v=1

(
cB

v

(
uv −

n∑
i=1

tiXiv

))

+
n∑

i=1

cTXi0 +
b∑

v=0

n∑
i=1

(cD
iv + cS

iv)Xiv
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+
b∑

v=1

R∑
r=1

𝜋rvYrv +
b∑

v=1

𝜌vZv, (1)

subject to:

n∑
i=1

tiXiv ≤ uv for v = 1, … , b; (2)

b∑
v=0

Xiv = 1 for i ∈ ℋ ; (3)

b∑
v=0

Xiv ≤ 1 for i ∈ ℒ ; (4)

Xiv ≤ Yrv for i = 1, … , n∧v = 1, … , b∧r = mi; (5)

Yrv ≤ Zv for r = 1, … ,R∧v = 1, … , v; (6)

Xiv = 0 if dv ≤ ai ∨ dv ≥ bi for i = 1, … , n∧v = 1, … , b;
(7)

Xiv ∈ {0, 1} for i = 1, … , n∧v = 0, … , b; (8)

Yrv ∈ {0, 1} for r = 1, … ,R∧v = 1, … , b; (9)

Zv ∈ {0, 1} for v = 1, … , b. (10)

The objective function in (1) consists of five sums. The first

sum makes that for each unit of TEU that is not used on barge

v
(
uv −

∑n
i=1 tiXiv

)
, a penalty of cB

v has to be paid. As a result,

this sum ensures that the capacities of the barges are utilized

as much as possible. The first sum is equivalent to a situa-

tion in which at first uvcB
v is paid to the barge operator and the

barge operator refunds cB
v for each TEU that is actually trans-

ported on barge v. The second sum contains all shipping costs

that are made by truck shipment. The third sum is the total

of all demurrage and storage costs. Furthermore, the fourth

sum contains the penalties that are paid for visiting a termi-

nal by barge. Finally, the fifth sum is all the fixed costs that

need to be paid to use the barges. Constraint (2) makes that

each barge ships at most its maximum capacity in TEU. Con-

straint (3) forces all high-priority containers to be shipped

exactly once, and constraint (4) ensures that all low-priority

containers are shipped at most once. Constraint (5) connects

the Xiv and Yrv variables. If a container is picked up by a

barge, then that barge also needs to visit the terminal where

the container is located. Similarly, constraint (6) connects the

Yrv and Zv variables. Terminal r can only be visited by barge

v if barge v is used. Constraint (7) ensures that a container is

not transported before its arrival at the deep-sea port or after

its call date. Finally, Constraints (8)–(10) are the integrality

constraints.

The value of 𝜋rv obviously has a big influence on the out-

come of the ILP-model. As 𝜋rv is an artificial penalty, it could

be set to any value. The value of 𝜋rv indirectly imposes certain

constraints on the optimal solution. In Lemmas 1–3 below, we

show a relation between the value of 𝜋rv and respectively, the

minimum number of containers needed to visit terminal r by

barge v, the maximum number of terminals visited by barge v
and the minimum number of TEU on barge v.

Lemma 1 If 𝜋rv ≥ 𝜆(cT + 𝑇 𝑐B
v ) and barge

v is visiting r, then at least 𝜆 containers from
terminal r are loaded on barge v.

Proof For the sake of contradiction, let 𝒦
be a set consisting of k<𝜆 containers from ter-

minal r which are loaded on barge v in the

optimal solution. The total costs of shipping the

containers in set 𝒦 are equal to:

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ). (11)

Using the fact that the size of a container is at

most T TEU (ti ≤T), we can derive the follow-

ing lower bound on the costs of shipping the k
containers from set 𝒦 with barge v:

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v )

≥ 𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − 𝑇 𝑐B
v )

= 𝜋rv − 𝑘𝑇 𝑐B
v +

∑
i∈𝒦

(cD
iv + cS

iv). (12)

The fact that each container could be trans-

ported by a truck is used below for an upper

bound for (11).

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) ≤

∑
i∈𝒦

(cD
i0 + cS

i0 + cT )

≤

∑
i∈𝒦

(cD
i0 + cS

iv + cT )

= 𝑘𝑐T +
∑
i∈𝒦

(cD
iv + cS

iv). (13)

The first inequality uses the fact that the total

costs for trucking the containers in the set𝒦 are

an upper bound for the optimal costs of trans-

porting the containers in the set 𝒦 . The second

inequality follows from the property that con-

tainer i can be transported by a truck on any day,

so we know that the sum of the demurrage and

storage costs when transporting the container by

truck are not larger than when the container is

shipped on barge v: cD
i0 + cS

i0 ≤ cD
iv + cS

iv. Com-

bining the lower bound from (12) and the upper

bound from (13) leads to the following relation:

𝜋rv − 𝑘𝑇 𝑐B
v +

∑
i∈𝒦

(cD
iv + cS

iv) ≤ 𝑘𝑐T +
∑
i∈𝒦

(cD
iv + cS

iv)

⇒ 𝜋rv − 𝑘𝑇 𝑐B
v ≤ 𝑘𝑐T

⇒ 𝜋rv ≤ k(cT + 𝑇 𝑐B
v ) < 𝜆(cT + 𝑇 𝑐B

v ).

The last inequality follows from the

assumption that k<𝜆 and leads to a contradic-

tion with the assumption of this lemma, namely

𝜋rv ≥ 𝜆(cT + 𝑇 𝑐B
v ). ▪
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Lemma 2 If 𝜋rv ≥
uv(cB

v +cT )−𝜌v

𝜆
for all termi-

nals r for barge v, then barge v will not visit more
than 𝜆 terminals.

Proof Let the set of terminals visited by barge

v and the set of containers transported on barge

v be denoted as ℛ and 𝒦 , respectively. For

the sake of contradiction, assume that barge v
is visiting m= |ℛ | >𝜆 terminals. The costs of

shipping the containers from 𝒦 on barge v are

equal to:∑
r∈ℛ

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) + 𝜌v.

First, a lower bound on these total costs will

be derived:∑
r∈ℛ

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) + 𝜌v

≥

∑
r∈ℛ

𝜋rv − uvcB
v +

∑
i∈𝒦

(cD
iv + cS

iv) + 𝜌v

≥

∑
r∈ℛ

𝜋rv − uvcB
v +

∑
i∈𝒦

(cD
i0 + cS

i0) + 𝜌v

m
𝜆
(uv(cB

v + cT ) − 𝜌v) − uvcB
v +

∑
i∈𝒦

(cD
i0 + cS

i0) + 𝜌v. (14)

The first inequality follows from the fact

that the total number of TEU assigned to a

barge can never exceed the capacity. The sec-

ond inequality holds because the storage and

demurrage costs for shipping a container by

truck are always lower than shipping a con-

tainer by barge. The final inequality is a direct

consequence of the assumption of this lemma.

Similarly to Lemma 1, an upper bound can

be derived using the costs of transporting the

containers per truck:∑
r∈ℛ

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) + 𝜌v

≤

∑
i∈𝒦

(cD
i0 + cS

i0 + cT )

= |𝒦 |cT +
∑
i∈𝒦

(cD
i0 + cS

i0)

≤ uvcT +
∑
i∈𝒦

(cD
i0 + cS

i0). (15)

The final inequality follows from the fact that

the smallest size of a container is 1 TEU, so the

cardinality of the set 𝒦 is at most uv. Combin-

ing the lower bound from (14) and the upper

bound from (15), we get the relation:

m
𝜆
(uv(cB

v + cT ) − 𝜌v) − uvcB
v +

∑
i∈𝒦

(cD
i0 + cS

i0) + 𝜌v

≤ uvcT +
∑
i∈𝒦

(cD
i0 + cS

i0)

⇒
m
𝜆
(uv(cB

v + cT ) − 𝜌v) − uvcB
v + 𝜌v ≤ uvcT

⇒
m
𝜆

≤ 1,

which is a contradiction to our assumption that

m>𝜆. ▪

Lemma 3 If 𝜋rv ≥ 𝛼uv(cT +cB
v )−𝜌v for every

terminal r for barge v, then barge v is filled with
at least 𝛼uv if barge v is used for transportation.

Proof Let the set of terminals visited by barge

v and the set of containers transported on barge

v be denoted as ℛ and 𝒦 , respectively. For the

sake of contradiction, assume that barge is filled

with 𝛽uv TEU with 𝛽 <𝛼. The costs of shipping

the containers from 𝒦 on barge v are equal to:∑
r∈ℛ

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) + 𝜌v.

Similarly to the proofs of Lemmas 1 and 2,

a lower bound and upper bound for these costs

will be derived. The lower bound is equal to:∑
r∈ℛ

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) + 𝜌v

≥ 𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) + 𝜌v

≥ 𝜋rv − 𝛽uvcB
v +

∑
i∈𝒦

(cD
i0 + cS

i0) + 𝜌v. (16)

The final inequality uses the fact that we know

that barge v is filled with 𝛽uv TEU. The upper

bound uses again the fact that all containers

could be shipped per truck and is as follows:∑
r∈ℛ

𝜋rv +
∑
i∈𝒦

(cD
iv + cS

iv − ticB
v ) + 𝜌v

≤

∑
i∈𝒦

(cD
i0 + cS

i0 + cT )

≤ 𝛽uvcT +
∑
i∈𝒦

(cD
i0 + cS

i0). (17)

Combining the lower and upper bound from

(16) and (17), we get:

𝜋rv − 𝛽uvcB
v +

∑
i∈𝒦

(cD
i0 + cS

i0) + 𝜌v

≤ 𝛽uvcT +
∑
i∈𝒦

(cD
i0 + cS

i0)

⇒ 𝜋rv − 𝛽uvcB
v + 𝜌v ≤ 𝛽uvcT

⇒ 𝜋rv ≤ 𝛽uv(cT + cB
v ) − 𝜌v < 𝛼uv(cT + cB

v ) − 𝜌v,

which is a contradiction to the assumption of

this lemma. ▪

Which of the bounds provided by the three lemmas is the

tightest depends on the parameters used. The bounds from

Lemmas 2 and 3 are tight if the fixed costs of using a barge are

high. However, in the upper bounds in the proof of both these

lemmas all containers that were originally assigned to the

barge are transported per truck, which could be a weak upper
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bound. In the upper bound of Lemma 1, a smaller number of

containers are transported per truck.

We will close this section with three remarks that give easy

adjustments for the ILP-model in Equations (1)–(10).

Remark 1 It might be desirable to scale the

costs of visiting a terminal exponentially with

the number of visits. Since the more terminals

are visited, the more likely it is that a barge

is delayed. It is still possible to model this

problem as an ILP. To this end, an extra type

of binary decision variable is needed, namely

Γvj ∈ {0, 1}, which indicates whether barge v
visits exactly j terminals or not. Moreover, let

𝛿vj be the total costs for visiting j terminals with

barge v. The sum
∑b

v=1

∑R
r=1 𝜋rvYrv in the objec-

tive function in (1) will have to be replaced by∑b
v=1

∑R
j=0 𝛿𝑣𝑗Γ𝑣𝑗 . Besides, an extra constraint

of the type:

R∑
r=1

Yrv = jΓ𝑣𝑗 for v = 1, … , b∧ j = 0, … ,R,

is needed. An advantage of the exponential costs

for visiting a terminal is that the terminal visits

will be more equally divided among the barges.

For example, with linear costs visiting eight ter-

minals with one barge and two with the other

is equally expensive as visiting five terminals

with both barges. In the case of exponential

costs, the latter scenario is cheaper. An obvious

disadvantage is the need to introduce more deci-

sion variables and constraints. Moreover, with

exponential costs it is not possible to distinguish

between the terminals: each terminal has the

same costs for visiting that terminal as jth termi-

nal. In practice, there are terminals for which it

is harder to get an appointment or which impose

a higher chance of delay, so we would like to

penalize a visit to these terminals more severely.

Remark 2 Instead of using binary variables

for each container, it could also be possible

to use integer variables for a group of con-

tainers. A group of containers consists of all

containers with the same ETA, call date, size in

TEU, terminal, demurrage free period, demur-

rage costs and storage costs. An advantage of

using these groups of containers is that the num-

ber of variables is reduced. However, the num-

ber of characteristics containers need to share

to be in a group is substantial, so it is likely

that the decrease in the number of variables

will not be large. We have chosen to implement

the binary variable version because it gives a

planner using the model more possibilities in

manually making decisions on a container level.

For example, a planner could decide to ship a

specific container on a truck.

Remark 3 A terminal might require a

minimum number of containers to be picked up

by barge on a visit. This requirement is caused

by the fact that the number of available berths

at a deep-sea terminal is limited. If only a few

containers are picked up at a single visit, the

time the ship is occupying the berth in relation

to the number of loaded containers is relatively

high, because mooring is a time-consuming

activity. On the other hand, a constraint to max-

imize the number of containers to be picked up

by a barge visit might also be needed because

it often happens that only a limited number of

containers can be handled by a terminal. Let us

denote the maximum number of containers that

can be picked by barge v at terminal r as Mrv
and the minimum number as 𝜇rv. For any com-

bination of r and v the following constraints

could be added: ∑
i∶mi=r

Xiv ≥ 𝜇rv, (18)

∑
i∶mi=r

Xiv ≤ Mrv. (19)

Running example continued
The running example introduced in Section 3 is continued.

We define the cost parameters as follows: cT = 150, cB
1
= cB

2
=

25, the demurrage costs for each container are 60 per day and

the storage costs 2 per day. Let the fixed costs for the barges

be 𝜌1 = 𝜌2 = 500. Figure 2 is the outcome if a penalty of 100

is given to a terminal visit, and Figure 3 corresponds to a

solution if for each terminal visit 250 has to be paid. For this

problem instance there are many solutions that are all optimal.

For example, in Figure 3, switching one of the containers on

barge 1 with a container on the truck yields the same costs.

Moreover, container R3 which is transported on barge 2 can

be switched with R4, S3, or S4 yielding the same solution.

4.2 Two-stage ILP-based heuristic

An important aspect of an operational planning for synchro-

modal transportation is that it can easily be adjusted (Van

Riessen et al., 2015). If new information becomes available or

if certain data changes, the planning should be recalculated.

One could think of the arrival of new containers or, as dis-

cussed in Remark 3 in Section 4.1, limitations imposed by the

container terminals. The problem formulation from Section

4.1 is a generalization of the generalized assignment problem

(GAP) (Fisher, Jaikumar, & Wassenhove, 1986). In the GAP

there is a set of jobs that needs to be assigned for minimum
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costs to a set of agents, which have a maximum capacity. In

our generalization, the containers are the jobs and the barges

and trucks are the agents. The generalization can be done by

setting 𝜋rv and 𝜌v to zero and setting infinite costs for assign-

ing a container to a barge that is either before the ETA or after

the call date. On top of that, all containers are high-priority

so have to be transported. The GAP is an NP-hard problem

(Fisher et al., 1986) and as we will show in Section 5 for

larger instances the running time of our problem is indeed

too long for practical purposes. Therefore, in this section a

heuristic based on the ILP-model from the previous section is

developed.

The main advantage of the problem formulated in Section

4.1, compared to other models in the literature, is that the

route is not calculated, which reduces the number of decision

variables by a factor R. Our formulation requires only a

Yrv-variable to indicate if terminal r is visited by a barge v.

If the route is also to be decided, a variable indicates also

which terminal is visited after the other terminal. In real-life

instances, containers are located at a relatively small number

of deep-sea terminals. In the ILP-model described in the pre-

vious section, there is an X-variable for each container-barge

combination, a Y-variable for each barge-terminal combina-

tion, and a Z-variable for each barge. As there are many

more containers than terminals and barges, the number of

Y-variables and Z-variables is small compared to the num-

ber of X-variables. To give some idea about this difference, in

the instances we consider the number of containers is about

50–100 times larger than the number of terminals and about

100 times larger than the number of barges. Therefore, the

number of integrality constraints decreases significantly if

the X-variables are relaxed. This gives rise to the following

two-stage heuristic:

Heuristic 1 Two-stage ILP-based heuristic:

Step 1: Solve the ILP with relaxing the con-

straints in (8), that is, 0 ≤ Xiv ≤ 1.

Let Y and Z be the optimal outcome of

the Y-variables and Z-variables, respec-

tively.

Step 2: Fix Y and Z, set all Xiv-variables to be

binary and solve the remaining ILP.

In other words, this heuristic determines in Step 1 which

barges are used and which terminals are visited, and in Step 2

it finds the optimal allocation of the containers to barges and

trucks, given the set of terminals that are visited. For every

potential set of visited terminals in Step 1, it is possible to find

a feasible allocation of the containers in Step 2 because each

container can be assigned to a truck. The solution of the ILP

from Section 4.1 is denoted by X*, Y* and Z* and the solution

from Heuristic 1 by X, Y , and Z. The value for the X-variables

after Step 1 of Heuristic 1 is denoted as X̃. Moreover, let v(X,

Y , Z) be the value of the objective function for X, Y , and Z.

After the Y-variables and Z-variables are fixed, it is decided

in the second step of Heuristic 1 how to assign the containers

to the barges and trucks, which is equivalent to the GAP.

Corollary 1 There exists an optimal solution
for Step 1 of Heuristic 1 for which the number
of containers that are not completely assigned
to one vehicle is at most the number of barges
for which the total capacity is used.

Proof Given that Y and Z are fixed, the value

for X̃ is the LP-relaxation of the GAP. In Ben-

ders and van Nunen (1983), it is shown that for

a linear relaxation of the GAP, the number of

fractional assignments is at most the number of

machines scheduled to the maximum capacity.

Since in our problem the number of trucks is

unlimited, the number of containers which is

fractionally assigned is at most the number of

barges. ▪

Since the number of barges is small compared to the num-

ber of containers, the solution after Step 1 is almost feasible,

which has two consequences. First, from the solution after

Step 1, it is easy to find a feasible solution in Step 2. For

instance, by assigning the fractional assigned containers to a

truck. Moreover, the value of the objective function after Step

1 is likely to be close to the optimal value, so it is probably

a tight lower bound. Combining these two properties, Step 2

is likely to perform fast. Furthermore, if Heuristic 1 selects

in Step 1 the optimal terminals to visit, then the heuristic

will produce an optimal solution, as is shown in Lemma 4.

In Lemma 5, a bound on the difference between the solution

from Heuristic 1 and the optimal solution is provided.

Lemma 4 If Y = Y∗, then v(X,Y ,Z) =
v(X∗,Y∗,Z∗).

Proof If Y = Y∗, then it must also be that Z =
Z∗. In case at least one Yrv-variable for barge

v is equal to one, then constraint (6) implies

that Zv = 1. If all Yrv-variables for barge v
are zero, the variable Zv could take value zero

or one, but since the objective is to minimize

costs the Zv will always be zero. The same argu-

ments hold for Y* and Z*, so Y = Y∗ implies

that Z = Z∗. By the optimality of the ILP, we

have that v(X,Y ,Z) ≥ v(X∗,Y∗,Z∗). Since the

X-variables are the optimal variables, given the

variables Y and Z, it must hold that:

v(X,Y ,Z) = v(X,Y∗,Z∗) ≤ v(X∗,Y∗,Z∗).

All in all, the values v(X*, Y*, Z*) and

v(X,Y ,Z) should be the same. ▪
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Lemma 5 The value of the objective function
of the solution of Heuristic 1 is bounded by:

v(X,Y ,Z) ≤ v(X∗,Y∗,Z∗) + (T − 1)

(
1

T
𝑏𝑐T +

b∑
v=1

cB
v

)
.

Proof In Step 1 of Heuristic 1, the integrality

of the Xiv-variables is relaxed, so the objective

function after Step 1 is a lower bound for the

optimal solution and the solution of the heuris-

tic: v(X̃,Y ,Z) ≤ v(X∗,Y∗,Z∗) ≤ v(X,Y ,Z). Let

ℱ be the set of containers which is fraction-

ally assigned to a barge, that is, ℱ ≔ {i ∈
𝒞 |∃v ∈ ℬ ∶ 0 < Xiv < 1}. By Corollary 1, we

know that |ℱ |≤ b. We will construct a feasible

solution (X′,Y ,Z) from the solution after Step 1

from the heuristic, in the following way:

• If i∈ℱ ∩ℋ , then X′
i0 = 1 and X′

iv = 0 for

v= 1, … b;

• If i∈ℱ ∩ℒ , then X′
iv = 0 for v= 0, … , b;

• If i∉ℱ , then X′
iv = X̃iv for v= 0, … , b.

In other words, in the solution X′
none of the

containers in ℱ are assigned to a barge. All

high-priority containers in ℱ are assigned to a

truck and all low-priority containers in ℱ are

not transported. We will first show that the sum

of the demurrage and storage costs in X′
is not

higher than in X̃. We will only focus on the con-

tainers in the set ℱ , because the other contain-

ers have the same demurrage and storage costs

in X′
and X̃. The difference between the storage

and demurrage costs in X′
and X̃ is given by:

∑
i∈ℱ ∩ℋ

(cD
i0 + cS

i0)(1 − X̃i0) −
∑
i∈ℱ

b∑
v=1

(cD
iv + cS

iv)X̃iv

=
∑

i∈ℱ ∩ℋ

(
cD

i0 + cS
i0 −

b∑
v=0

(cD
iv + cS

iv)X̃iv

)

−
∑

i∈ℱ ∩ℒ

b∑
v=1

(cD
iv + cS

iv)X̃iv

≤

∑
i∈ℱ ∩ℋ

(
cD

i0 + cS
i0 −

b∑
v=0

(cD
iv + cS

iv)X̃iv

)

≤

∑
i∈ℱ ∩ℋ

(
cD

i0 + cS
i0 − minv=0,… ,b{cD

iv + cS
iv}

b∑
v=0

X̃iv

)

=
∑

i∈ℱ ∩ℋ

(
cD

i0 + cS
i0 − (cD

i0 + cS
i0)

b∑
v=0

X̃iv

)
= 0. (20)

In the final equality, the property from con-

straint (3) is used, which implies that
∑b

v=0 X̃iv =
1, for i∈ℱ ∩ℋ . Second, we will look at the

increase in barge and truck shipping costs in X′

compared to X̃, which is equal to:

∑
i∈ℱ ∩ℋ

cT (1 − X̃i0) +
∑
i∈ℱ

b∑
v=1

ticB
v X̃iv. (21)

We divide the set ℱ ∩ℋ into the following

two subsets:

𝒥 ≔ {i ∈ ℱ ∩ℋ ∶ X̃i0 > 0};

𝒦 ≔ {i ∈ ℱ ∩ℋ ∶ X̃i0 = 0}.

The containers in set 𝒥 are partially assigned

to a truck after the first step of Heuristic 1. The

containers in set 𝒦 are fractionally assigned to

at least two barges. Without loss of generality,

we assume that uv is integral, so if a fraction

of a container is assigned to a truck it should

always be at least one TEU. Hence, for all i ∈ 𝒥
the value X̃iv ≥

1

T
. Using a similar argument,

the fraction of TEU from container i on barge

v is always at most ti − 1, which gives us the

following upper bound for Equation (21):∑
i∈𝒥

cT (1 − X̃i0) +
∑
i∈𝒦

cT +
∑
i∈ℱ

b∑
v=1

ticB
v X̃iv

≤

∑
i∈𝒥

cT
(T − 1

T

)
+
∑
i∈𝒦

cT +
∑
i∈ℱ

b∑
v=1

(ti − 1)cB
v

≤

(T − 1

T
|𝒥 | + |𝒦 |) cT + (T − 1)

b∑
v=1

cB
v . (22)

To derive a bound regardless the sizes of 𝒥

and 𝒦 , the maximum of
(

T−1

T
|𝒥 | + |𝒦 |) has

to be calculated. From Corollary 1 it follows

that |ℱ | ≤ b and since every container i ∈ 𝒦
is at least assigned to two different barges, we

know that |𝒥 | + 2|𝒦 | ≤ b. In case T = 1, the

set ℱ is empty because uv is integral and each

barge v has at most one fractionally assigned

container. Hence, T should be at least two,

which implies that
T−1

T
≥

1

2
. Given this fact and

the constraint |𝒥 | + 2|𝒦 | ≤ b, the maximum

of
(

T−1

T
|𝒥 | + |𝒦 |) is attained at |𝒥 | = b and|𝒦 | = 0. Thus Equation (22) can be further

bounded by:(T − 1

T
|𝒥 | + |𝒦 |) cT + (T − 1)

b∑
v=1

cB
v

≤
T − 1

T
𝑏𝑐T + (T − 1)

b∑
v=1

cB
v . (23)

Combining the two results from

Equations (20) and (23), the following bound

for the solution of Heuristic 1 can be derived:

v(X,Y ,Z) ≤ v(X′,Y ,Z)
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≤ v(X̃,Y ,Z) + T − 1

T
𝑏𝑐T + (T − 1)

b∑
v=1

cB
v

≤ v(X∗,Y∗,Z∗) + (T − 1)

(
1

T
𝑏𝑐T +

b∑
v=1

cB
v

)
.

▪

The bound derived in Lemma 5 is tight, as the following

example illustrates. Consider a small example with one barge

with u1 = 3 and two terminals. Let the planning period be a

single day. At terminal 1, two containers with a size of two

TEU are located and at terminal 2 there is one container of

size one TEU. All those three containers are high-priority

and since the planning period is 1 day, the demurrage and

storage costs for shipping them per truck or per barge are

the same. Therefore, we ignore those costs for the rest of the

example. Let the penalty costs for visiting a terminal be 𝜋11 =
𝜋21 = 1

2
cT +𝜀 for 𝜀> 0. The optimal solution for this problem

instance is to visit both terminals and ship one container from

terminal 1 and the container from terminal 2 per barge and

the other container from terminal 1 per truck. The total costs

of this solution are: 2cT + 2𝜀 − 3cB
1
. On the other hand, the

first step of the heuristic only visits terminal 1. At this termi-

nal, one container is assigned integrally to the barge and only

half of the other container is assigned to the barge. The other

half of the container and the container at terminal 2 are trans-

ported by truck. Hence, the barge in the second step of the

heuristic can only visit terminal 1 and load one of the two con-

tainers at that terminal. The other two containers are shipped

per truck, resulting in the following costs: 2
1

2
cT + 𝜀 − 2cB

1
.

FIGURE 4 Assignment of the containers from the running example after the first step of Heuristic 1

All in all, the difference between the solution produced by the

two-stage heuristic and the optimal solution is:
1

2
cT − 𝜀 + cB

1
.

As we can take 𝜀 arbitrarily small, this is equivalent to the

difference (T − 1)
(

1

T
𝑏𝑐T +

∑b
v=1 cB

v

)
from Lemma 5.

Running example continued
Similar as in Section 4.1, the running example instance

is solved for both 𝜋rv = 100 and 𝜋rv = 250. Contrary to the

ILP-solution, the two-stage heuristic produces the same solu-

tion for the two penalties. For both penalties, the solution after

Step 1 of the heuristic is the same and is given in Figure 4.

After the first stage of Heuristic 1, all containers but

container S4 are assigned in the same way as in Figure 3. Half

of container S4 is assigned to barge 1 and half of container S4

is assigned to barge 2. With this assignment, the full capac-

ity of 15 TEU of the two barges is used. In the second step of

Heuristic 1, container S4 is assigned to a truck, because it is

not possible to assign eight containers with a size of two TEU

integrally to one of the two barges. All in all, the heuristic

produces for both 𝜋rv = 100 and 𝜋rv = 250 the same solution

as in Figure 3. So for 𝜋rv = 100, the terminal visits after Step

1 are the same as the optimal visits and thus by Lemma 4

the heuristic produces an optimal solution. In the setting that

𝜋rv = 250, the terminal visits after Step 1 are not optimal and

the final solution of the heuristic is not optimal, either. The

optimal value of the objective function is 2,668, whereas the

two-stage heuristic produces a solution with a value of 2,754.

The difference between those two solutions, namely 86, is sig-

nificantly smaller than the bound given by Lemma 5, which

is (2 − 1)
(

1

2
× 2 × 150 + 25 + 25

)
= 200.
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4.3 Planner algorithm

In current practice, the transportation planning of the contain-

ers is made by experienced planners from the inland termi-

nals. Based on interviews with practitioners we have devel-

oped an algorithm that imitates the behavior of that planner.

The algorithm is a greedy algorithm that uses more or less a

first come first serve approach. It was also pointed out by Van

Riessen et al. (2016) and Wang et al. (2016) that these kinds

of methods are often used in real-life planning. This planner

algorithm is described in pseudocode in Algorithms 1 and 2.

In Algorithm 1, it is described how the planner decides which

terminals to visit and which barges to use. Algorithm 2 selects

for a specific barge the containers to assign to that barge.

Algorithm 1: Algorithm to select barges and terminal

visits.

Sort the barges in non-decreasing order of the day they

are present at the deep-sea port.

1 for All barges do
2 Assign unassigned containers to barge according to

Algorithm 2

3 for All terminals do
4 if Barge loads sufficient containers at terminal

with respect to Lemma 1 then
5 Visit terminal;

end
6 Assign all unassigned containers located at visited

terminals according to Algorithm 2

7 if Costs of shipping containers assigned to barge
plus the barge rent is smaller than costs of trucking
all high-priority containers assigned to barge then

8 Use barge;

end
9 for All unassigned high-priority containers do

10 Transport container by truck

end

Assign all unassigned containers located at visited termi-

nals according to Algorithm 2.

In Algorithm 1, the barges are considered in chronolog-

ical order of the day they are at the deep-sea port. It uses

Algorithm 2 as a subroutine to determine the containers that

will be assigned to the current barge. In lines 4 and 5, it is

decided which terminals are visited. A terminal is visited

only if sufficient containers are loaded at that terminal. We

use Lemma 1 to decide what is sufficient in order to make a

comparison with the ILP and the two-stage heuristic. If there

are terminals at which insufficient containers are loaded, the

barge is not visiting them, so it might be that some capacity

on the barge becomes available. Therefore, Algorithm 2 is

run again in line 6 to see if there are unassigned containers

available on terminals that are already visited. In line 7, the

planner algorithm decides if it is going to use the current

Algorithm 2: Algorithm to select containers.

Input: Specifications of barge

Select containers which have ETA and call date such

that they could be transported on barge

Sort the containers in non-decreasing order of their

end of demurrage free period, ETA and terminal.

1 for All unscheduled containers do
2 if Call date of container is between arrival of

current barge and next barge & current barge has
capacity to fit container then

3 Assign container to barge;

end
4 for All unscheduled containers do
5 if Demurrage free period of container ends before

next barge arrives & current barge has capacity to
fit container then

6 Assign container to barge;

end
7 for All unscheduled high-priority containers do
8 if Current barge has capacity to fit container then
9 Assign container to barge;

end
10 for All unscheduled low-priority containers do
11 if Current barge has capacity to fit container then
12 Assign container to barge;

end

barge. If transporting the high-priority containers that are

assigned to the barge per truck is more expensive than ship-

ping them with the barge, the barge is used. Otherwise, we

do not use the barge. After all barges are considered, it

might be that there are still some unassigned containers. If

these containers have a high-priority, they are shipped by a

truck.

Algorithm 2 uses a barge as input and selects only the

containers that could be transported on that barge. These con-

tainers are sorted based on the end of their demurrage free

period, ETA and deep-sea terminal. Afterward, the algorithm

goes four times through all containers and checks if a con-

tainer can be assigned to the barge. In the first for-loop of

Algorithm 2, containers which have a call date such that they

can be transported by this barge, but not with the next barge,

are added to the barge, unless the remaining capacity of the

barge is not sufficient. In the second for-loop, the algorithm

goes again through all unscheduled containers and if the

demurrage free period ends before the next barge arrives,

it is scheduled on the current barge if it has free capacity.

The third part of Algorithm 2 goes through all unscheduled

high-priority containers. These containers are added to the

barge if it is not full yet. If there is still capacity left on

the barge, in the fourth for-loop low-priority containers are

assigned to the barge.
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FIGURE 5 Assignment of containers from the running example via the planner algorithm

Running example continued
In Figure 5, containers from the running example are

assigned according to the planner algorithm. The order in

which the containers are displayed at the terminal from left to

right and top to bottom is the way they are sorted at the begin-

ning of Algorithm 2. The demurrage free period of containers

3, 4 and 6 ends on day 1 and they have the same ETA, so

for these containers the ties are just broken by their container

number. After the containers for which demurrage is relevant,

container 5 is the first container because its ETA is the low-

est. In the barges, the containers are shown from left to right

and top to bottom in the order they are assigned to that barge.

Container R6 is the first container to be assigned to barge 1

because it is the first container at Terminal R whose call date

is before the arrival day of the next barge. Container S6 is

the next container because it has the same characteristics as

R6, but it is only located at another terminal. All containers

in Figure 5 that are assigned to a barge are assigned in line 2

of Algorithm 1. Container R3 is the only container assigned

to a barge in the second for-loop of Algorithm 2 in which

the demurrage free period is decisive, all other containers are

already assigned in the first for-loop of Algorithm 2.

The planner algorithm produces a solution in which four

terminals are visited. The minimum containers picked up at a

terminal by barge is three. According to Lemma 1 with previ-

ously defined cost parameters, three is higher than the mini-

mum containers to be picked up given 𝜋rv = 100 or 𝜋rv = 250.

Hence, in lines 4 and 5 of Algorithm 1 it is decided to visit all

terminals and thus there is no capacity to assign containers

in line 6. We have assumed that in the running example the

fixed costs are set low enough that both barges are used. In

lines 9 and 10 containers R10 and S10 are assigned to a truck.

As the planner algorithm is visiting four terminals in total, it

is interesting to see how it performs in comparison to the out-

come of Figure 3, which is the optimal solution for visiting

four terminals. In both scenarios 14 containers are shipped

per barge and two per truck. However, in Figure 3 demurrage

costs had to be paid for 4 days and in Figure 5 there are eight

demurrage days. The planner algorithm is a greedy algorithm,

which is not able to look into the future. In this example, that

results in the fact that it is not able to detect that it already

has to ship container by truck on the first day. In the end, in

the planner algorithm it is decided to transport containers per

truck on day 3 and thus more demurrage has to be paid.

5 COMPUTATIONAL RESULTS

In this section, the performance of the three methods

introduced in Section 4 is compared. We are interested

in how much improvement can be made by implementing

the ILP-method from Section 4.1 compared to the planner

algorithm from Section 4.3 that models the current practice.

Second, both the running time and the solution quality of the

two-stage heuristic are compared with the ILP.

5.1 Medium-sized instances

To evaluate the performance of the three methods, we have

used 12 instances based on real-life data. Each instance

consists of all containers that are available for transportation

and the barges that can be used for transportation. The plan-

ning horizon for each instance is set to a week. In Table 1,

some key properties of the different instances are given. In
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TABLE 1 Summary of properties of 12 medium-sized instances

Instance
Number
containers (n) Total TEU

High-priority
containers (%)

Number
barges (b)

Total capacity
barges

M1 670 957 35 4 886

M2 1,163 1,636 38 6 1,329

M3 549 843 91 4 886

M4 651 990 90 4 941

M5 753 1,083 60 4 850

M6 863 1,279 95 4 1,004

M7 892 1,221 91 4 945

M8 596 877 96 4 945

M9 503 770 91 4 945

M10 1,064 1,584 91 5 1,027

M11 855 1,177 72 4 945

M12 924 1,300 83 4 945

Abbreviation: TEU, twenty-foot equivalent unit.

the second column of Table 1, the number of containers for

each instance is given. This number varies roughly between

500 and 1,000. In the third column, the total number of TEU

of these containers is shown. The percentage of high-priority

containers, that is, the containers that need to be shipped, dif-

fers between 35 and 96%. In column 5, the number of barges is

given, which is most of the time equal to four, but because the

capacity of the barges is not always the same, the maximum

capacity in TEU shown in the last column differs.

Besides the container and barge characteristics, the costs

that are used need to be defined. For transporting a container

we use cT = 150 and cB
v = 25 for every barge. The demurrage

costs are 40 for every day after the end of the demurrage free

period for containers of one TEU and 60 for larger contain-

ers. The storage costs are 1 per TEU per day that a container

is stored at the inland terminal. Moreover, the fixed costs of

using any barge are 𝜌v = 4, 500. Finally, the value for 𝜋rv is

chosen in such a way that according to Lemma 1 at least five

containers are picked up at every terminal, so 𝜋rv = 1,000 for

every barge and terminal.

In Table 2, the optimal value of the objective function of

the ILP-model is compared to the outcome of the two-stage

heuristic and the planner algorithm. In the second column,

the optimal solution of the ILP-model is given. In the third

and fourth column, the objective function of the two-stage

heuristic and the percentage difference with the optimal solu-

tion is given. Finally, in the last two columns, the costs of the

solution from the planner algorithm are given and the per-

centage difference with the optimal solution. The first thing

to note from Table 2 is that the two-stage heuristic produces

for all but one of the instances the optimal solution. For the

instance for which the solution of the two-stage heuristic is

not optimal, it is only 0.2% more expensive than the optimal

solution. Second, the value of the planner algorithm is on

average 20% higher than the optimal solution. Nevertheless,

the solution quality of the planner algorithm differs substan-

tially per instance. For example, for M2 and M9 it produces

a solution that is within 2% of the optimal solution, but for

instance M10 the difference between the optimal solution and

the solution of the planner algorithm is almost 45%.

TABLE 2 The solution of the planner heuristic and two-stage heuristic compared with the optimal solution

Instance
Optimal
solution

Two-stage
heuristic 𝚫%

Planner
algorithm 𝚫%

M1 58,213 58,213 0 69,002 18.5

M2 57,785 57,785 0 58,651 1.5

M3 48,429 48,429 0 54,954 13.5

M4 41,812 41,884 0.2 45,942 9.9

M5 47,575 47,575 0 55,679 17.0

M6 68,628 68,628 0 90,075 31.3

M7 63,833 63,833 0 76,198 19.4

M8 52,611 52,611 0 63,034 19.8

M9 42,476 42,476 0 43,320 1.8

M10 82,399 82,399 0 119,431 44.9

M11 71,428 71,428 0 96,970 35.8

M12 65,263 65,263 0 85,814 31.5
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TABLE 3 Costs for the optimal ILP and the planner algorithm split out per
category

Type costs
Optimal
solution

Planner
algorithm 𝚫

Total costs Total costs

Unused TEU barge penalty 77,250 56,475 20,775

Truck costs 211,800 173,850 37,950

Demurrage costs 47,780 176,340 −128,560

Storage costs 52,622 52,314 308

Terminal visit penalty 131,000 211,000 −80,000

Fixed barge costs 180,000 189,000 −9,000

Abbreviations: ILP, integer linear program; TEU, twenty-foot equivalent unit.

To understand in which aspect of the planning the ILP out-

performs the planner algorithm, the total costs are split out

into different categories in Table 3. In the second column of

Table 3, the total costs for the planner solution for each cate-

gory are given. In the third column, the planner’s total costs

are shown and in the fourth column, the difference between

the optimistic planner and the optimal solution is calculated.

In general, the planner algorithm ships more containers per

barge and fewer containers per truck. However in doing that,

the barges visit in the planner algorithm more than 60% more

terminals than in the optimal solution. On top of that, the

planner algorithm results in almost four times as many demur-

rage costs. An intuitive explanation is that in the optimal

solution a container is shipped more often per truck in order

not to visit a terminal or to reduce the demurrage costs than

in the solution from the planner algorithm. All in all, the

ILP-method potentially yields a great amount of costs savings.

The running time for the ILP for all 12 medium-sized

instances is less than 3 s. The two-stage heuristic is on aver-

age about 1.4 times faster. As the running time for the ILP

is not that long, one could argue for these instances a heuris-

tic solution is not really needed. In the next section, we will

consider larger instances to see if the ILP is still a good

solution method.

5.2 Large-sized instance

The medium-sized instances from the previous section could

be solved by the ILP in reasonable time. In this section, it

will be investigated how well the running time of the ILP

scales with the input sizes. We have constructed randomly 10

instances with 1,500 containers. Moreover, the barge sched-

ule consists of six barges and is the same for every instance.

Since a large number of containers are selected randomly

for each instance, the characteristics of the containers in

the large-sized instances are quite similar. These large-sized

instances are solved by the ILP, the two-stage heuristic and

the planner algorithm using the same cost parameters as for

the medium-sized instances.

The results for these large-sized instances are given in

Table 4 below. In the second, third and fourth column of the

table the running times of the, respectively, ILP, two-stage

heuristic and planner algorithm are given. In the fifth, sixth

and seventh column the objective function of the solution

from these three methods is given. Although the instances

are rather similar, the running time of the ILP differs sub-

stantially. For instances L7 and L10, the ILP did not find the

optimal solution after 3 hr, when the algorithm was stopped.

On top of that, also instances L5 and L9 took almost 5 min

to produce the optimal solution, which might already be too

long if a planner needs to recalculate the consequences of a

change to the schedule. On the other hand, the running time

of the two-stage heuristic is for all 10 instances about 10 s,

even for the instances for which the ILP could not find the

optimal solution in 3 hr. The planner algorithm produces for

all instances in a fraction of a second a solution. However,

the value of the objective function of the planner algorithm is

about 50% higher than for the other two algorithms. Similarly,

as was shown in Table 3, the solution of the planner algorithm

for the large-sized instances has especially more demurrage

costs and terminal visits.

The objective function for all 10 instances is almost the

same, which is not surprising as the instances are similar. Out

TABLE 4 Running times and objective function of the ILP, the two-stage heuristic and the planner
algorithm for 10 large-sized instances

Running time (s) Objective function

Instance ILP Two-stage Planner ILP Two-stage Planner

L1 13 8 ≪1 96,595 96,595 152,703

L2 32 7 ≪1 99,096 99,096 161,385

L3 24 8 ≪1 98,167 98,167 157,132

L4 13 7 ≪1 98,788 98,788 145,083

L5 297 11 ≪1 101,777 101,777 162,332

L6 31 7 ≪1 100,406 100,406 158,824

L7 — 7 ≪1 — 102,378 162,919

L8 68 8 ≪1 101,777 101,808 167,846

L9 280 10 ≪1 101,055 101,055 153,598

L10 — 10 ≪1 — 99,712 161,736

Abbreviation: ILP, integer linear program.
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of the eight instances for which the optimal solution is known,

the two-stage heuristic produces the optimal solution seven

times. The two-stage heuristic does not produce the optimal

solution for instance L8, but its solution is only 0.03% worse.

Moreover, the two-stage heuristic produces the solutions for

these eight instances on average almost 10 times faster than

the ILP. Concluding, the ILP-method does not work well for

the large-sized instances. For two instances, it could not pro-

duce the optimal solution. Furthermore, for all instances the

two-stage heuristic produces in a fraction of the time of the

ILP a solution that is almost always optimal and otherwise it

is almost optimal.

6 CONCLUSION AND FURTHER
RESEARCH

We have proposed an ILP to minimize the storage and demur-

rage costs, the truck transportation costs, the empty space on

barges and the number of terminals visited by barge. In order

to fill the barges as good as possible, we have introduced

the concept of high-priority and low-priority containers. The

high-priority containers need to be transported, whereas the

low-priority containers can be used to fill the barges.

To evaluate the benefits of the ILP, we have introduced

the planner algorithm that produces a solution in a similar

way as an experienced planner. The potential cost savings for

the medium-sized instances is about 20% and for large-sized

instances it is about 50%. The fact that the number of vari-

ables for assigning a container to a barge is much larger than

the number of variables indicating whether a barge is used

and a terminal is visited by a barge, is used in the two-stage

heuristic. The theoretical difference between the optimal solu-

tion and the solution of the heuristic is given. Nevertheless,

computational experiments show that the two-stage heuristic

almost always finds the optimal solution. Moreover, for the

large-sized instances the two-stage heuristic finds the solution

much faster than the ILP, which could not find the optimal

solution within 3 hr for some instances.

We have only included the import flow of containers

because that is the dominant flow in most of Europe (Fazi

et al., 2015). A natural extension would be to include the

export flow of containers in this model. It would be interesting

to see how much can be gained by combining the two flows

in one model, instead of planning the two flows separately of

each other. A second topic that might be interesting to investi-

gate if it is possible to make a planning that is more robust for

the feedback of the terminal. The current model could possi-

bly make a completely different schedule once one constraint

of the type (18) and (19) is added. In practice, one would not

want to communicate with many terminals to change the plan-

ning, because there is only one terminal that makes a small

adjustment to the planning. A planning in which the num-

ber of containers picked up by a barge per terminal does not

change that much if one extra constraint is added, is likely to

be preferable. Finally, we have assumed that the barge sched-

ule was given as input, but this schedule could be suboptimal.

It would be interesting to see how much could be gained by

only having a set of barges available and to decide on the

day a barge is at the deep-sea port. With this setting, one can

investigate the benefits of stronger collaboration between the

inland terminal and the barge operator. The question will also

be if our heuristic is still reasonably applicable to the changed

setting.

ACKNOWLEDGMENTS
This work was partly supported by a public–private part-

nership between the Centre for Mathematics and Computer

Science (CWI) and container terminal CTVrede in the Nether-

lands. Moreover, we would like to thank the anonymous

reviewers for their useful remarks that improved the quality

of the paper.

ORCID

Bernard G. Zweers https://orcid.org/0000-0003-2477-

1291

REFERENCES
Baykasoglu, A., & Subulan, K. (2016). A multi-objective sustainable

load planning model for intermodal transportation networks with a

real-life application. Transportation Research Part E, 95, 207–247.

Behdani, B., Fan, Y., Wiegmans, B., & Zuidwijk, R. (2016). Multi-

modal schedule design for synchromodal freight transport systems.

European Journal of Transport and Infrastructure Research, 16(3),

424–444.

Benders, J., & van Nunen, J. (1983). A property of assignment type

mixed integer linear programming problems. Operations Research
Letters, 2(2), 47–52.

Caris, A., & Janssens, G. (2013). Container drayage operations at inter-
modal terminals: A deterministic annealing approach. In W. Wang

& G. Wets (Eds.), Computational intelligence for traffic and mobility

(Vol. 8). Paris, France: Atlantis Press.

Carris, A., Macharis, C., & Janssens, G. (2013). Decision support in

intermodal transport: A new research agenda. Computers in Industry,

64, 105–112.

European Commission. (2011). Roadmap to a single European transport
area (Tech. Rep.).

Fazi, S., Fansoo, J., & Woensel, T. v. (2015). A decision support system

tool for the transportation by barge of import containers: A case study.

Decision Support Systems, 79, 33–45.

Fisher, M., Jaikumar, R., & Wassenhove, L. v. (1986). A multiplier

adjustment method for the generalized assignment problem. Manage-
ment Science, 32(9), 1095–1103.

Heilig, L., & Voß, S. (2017). Inter-terminal transportation: An annotated

bibliography and research agenda. Flexible Services and Manufactur-
ing Journal, 29(1), 35–63.

Iannone, F. (2012). A model optimizing the port-hinterland logistics of

containers: The case of Campania region in southern Italy. Maritime
Economics & Logistics, 14(1), 33–72.

https://orcid.org/0000-0003-2477-1291
https://orcid.org/0000-0003-2477-1291
https://orcid.org/0000-0003-2477-1291


ZWEERS ET AL. 271

Karlaftis, M., Kepaptsoglou, K., & Sambracos, E. (2009). Containership

routing with time deadlines and simultaneous deliveries and pick-ups.

Transportation Research Part E, 45, 210–221.

Li, S., Negenborn, R., & Lodewijks, G. (2016). Distributed constraint

optimization for addressing vessel rotation planning problems. Engi-
neering Applications of Artificial Intelligence, 48, 159–172.

Mes, M., & Iacob, M. (2016). Synchromodal transport planning at a
logistics service provider. In H. Zijm, M. Klumpp, U. Claussen, & M.

ten Hompel (Eds.), Logistics and supply chain innovation: Bridging

the gap between theory and practice. Heidelberg, Berlin: Springer.

Notteboom, T. (2004). Container shipping and ports. Review of Network
Economies, 3(2), 86–106.

Perez Rivera, A., & Mes, M. (2016). Service and transfer selec-
tion for freights in a synchromodal network. In Computational

logistics—ICCL 2016. Lecture notes in computer science. Heidel-

berg, Berlin: Springer.

Perez Rivera, A., & Mes, M. (2017). Anticipatory freight selection in

intermodal long-haul round-trips. Transportation Research Part E,

105, 176–194.

Port of Rotterdam Authority. (2011). Port vision 2030: Port compass
(Tech. Rep.).

Schroer, H., Corman, F., Duinkerken, M., Negenborn, R., & Lodewi-

jks, G. (2015). Evaluation of inter terminal transport con gurations
at Rotterdam Maasvlakte using discrete event simulation. In A. Tolk,

S. Diallo, O. Ryzhov, L. Yilmaz, S. Buckley, & J. Miller (Eds.), Pro-

ceedings of the 2014 winter simulation conference. New York, NY:

IEEE Press.

Sharyapova, K. (2014). Optimization of hinterland intermodal container
transportation. (Unpublished doctoral dissertation). Eindhoven Uni-

versity of Technology, Eindhoven.

SteadieSeifi, M., Dellaert, N., Nuijten, W., van Woensel, T., &

Raou, R. (2014). Multimodal freight transportation planning: A

literature review. European Journal of Operational Research, 233(1),

1–15.

Steenken, D., Vo, S., & Stahlbock, R. (2004). Container terminal opera-

tion and operations research. OR Spectrum, 26, 3–49.

Tierney, K., Vo, S., & Stahlbock, R. (2014). A mathematical model

of inter-terminal transportation. European Journal of Operational
Research, 235, 448–460.

Van Riessen, B., Negenborn, R., & Dekker, R. (2015). Synchro-
modal container transportation: An overview of current topics and
research opportunities. In F. Corman, S. Vo, & R. Negenborn (Eds.),

International conference on computational logistics. Heidelberg,

Berlin: Springer.

Van Riessen, B., Negenborn, R., & Dekker, R. (2016). Real-time con-

tainer transport planning with decision trees based on offline obtained

optimal solutions. Decision Support Systems, 89, 1–16.

Wang, Y., Bilegan, I., & Crainic, T. (2016). A revenue management
approach for network capacity allocation of an intermodal barge
transportation system. In Computational logistics—ICCL 2016, Lec-

ture notes in computer science. Heidelberg, Berlin: Springer.

World container and general shipping (Tech. Rep. No. 5/6). (2016).

Institute of Shipping Economies and Logistic.

Zuidwijk, R., & Veenstra, A. (2015). The value of information in con-

tainer transport. Transportation Science, 49(3), 675–685.

How to cite this article: Zweers BG, Bhulai S, van

der Mei RD. Optimizing barge utilization in hinterland

container transportation. Naval Research Logistics
2019;66:253–271. https://doi.org/10.1002/nav.21837


