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Classifiers are applied in many domains where classification errors have significant implications. However,
end-users may not always understand the errors and their impact, as error visualizations are typically designed
for experts and for improving classifiers. We discuss the specific needs of classifiers’ end-users and a simplified
visualization, called Classee, designed to address them. We evaluate this design with users from three levels
of expertise, and compare it with ROC curves and confusion matrices. We identify key difficulties with
understanding the classification errors, and how visualizations addressed or aggravated them. The main issues
concerned confusions of the actual and predicted classes (e.g., confusion of False Positives and False Negatives).
The machine learning terminology, complexity of ROC curves, and symmetry of confusion matrices aggravated
the confusions. The Classee visualization reduced the difficulties by using several visual features to clarify the
actual and predicted classes, and more tangible metrics and representation. Our results contribute to supporting
end-users’ understanding of classification errors, and informed decisions when choosing or tuning classifiers.
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1 INTRODUCTION
Classifiers are inherently imperfect but their errors are accepted in a wide range of applications.
However, end-users may not fully understand the errors and their implications [25] and may mistrust
or misuse classifiers [27]. Error assessment is not self-evident for end-users with no machine
learning expertise. Yet they may need to understand the classification errors, e.g., to make fully-
informed decisions when choosing between classifiers. End-users may also need to control the tuning
parameters that can adjust the errors, e.g., to limit the errors for the most important classes. Although
machine learning experts better understand the complexity of the algorithms and their parameters,
end-users should take part in the final tuning decisions because they better understand the implications
of errors for their application domain.

We investigate how to enable end-users to choose among classifiers and tuning parameters, and
to understand the errors to expect when applying classifiers, e.g., as class sizes may be over- or
under-estimated [4, 8]. Choosing and tuning classifiers allow to adjust the errors to specific use
cases, e.g., to balance False Positives (FP) and False Negatives (FN, Table 1). For example, when
detecting medical conditions, FN are critical (pathologies must not be missed) and FP to a lesser
extent (although further procedures may be risky). Pre-defined tuning parameters may not fully
address end-user needs. For example, parameters may minimize both FP and FN while users prefer
to increase the FP if it reduces the FN. Cost functions can formalize such tradeoff by assigning costs
to FP and FN [11] but they are complex and weighing the cost of errors is not always straightforward
(e.g., what is the cost of missed pathologies?). The metrics and visualizations of classification errors
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are also complex and may be misinterpreted by non-experts [25] as their underlying concepts are not
common knowledge and do not easily convey the implications in end-usage applications.

We discuss end-users’ specific requirements, and identify information needs that pertain to either
end-users or developers (Section 2). We then discuss existing visualizations of classification errors
and the end-users’ or developers’ needs they address (Section 3). We introduce a simplified barchart
visualization [3], named Classee (Figures 2-5), that aims at addressing the specific needs of end-users
(Section 4). We evaluate Classee compared to ROC curves and confusion matrices (Section 5). The
suitability for specific audiences is assessed with users having three kinds of expertise: i) machine
learning; ii) mathematics but not machine learning (as it may impact the understanding of error
rates and ROC curves); iii) none of machine learning, mathematics or computer science. From the
quantitative results, we discuss users’ performance w.r.t. the type of visualization and users’ level of
expertise (Section 6). From the qualitative results, we identify key difficulties with understanding the
classification errors, and how visualizations address or aggravate them (Section 7).

The main issues concerned confusions between the actual class and the predicted class assigned
by the classifier (e.g., confusing FN and FP), misinterpretations of error rates and terminology (e.g.,
terms in Table 1), and misunderstandings of the impacts of errors on end-results. The simplified
visualizations facilitated user understanding by using simpler error metrics, and by distinguishing the
actual and predicted classes with several visual features. Our findings contribute to understanding
"how (or whether) uncertainty visualization aids / hinders [...] reasoning" about the implications of
classification errors, and "decisions" when choosing or tuning classifiers [24].

Table 1. Definition of FP, TP, FN, TN.

Abbr. Correctness Prediction Definition

FP False Positive Object classified into the Positive class (i.e., as the class of interest) while actually
belonging to the Negative class (i.e., belonging to a class other than the Positive
class).

TP True Positive Object correctly classified into the Positive class.
FN False Negative Object classified into the Negative class while actually belonging to the Positive

class.
TN True Negative Object correctly classified into the Negative class.

2 INFORMATION NEEDS AND REQUIREMENTS
We identified key information needs through interviews of machine learning experts and end-users,
conducted within the Fish4Knowledge and Classee projects [5, 15][2, Chapters 2-3]. We found that
the needs of developers and end-users have key differences and overlaps (Table 4). Their tasks require
specific information and metrics which may not be provided by all visualizations.

End-users are particularly interested in estimating the magnitudes of errors to expect in specific
classification end-results (e.g., within the objects classified as class Y how many truly belong to
class X?). Such estimations depend on class sizes, class proportions and error compositions (i.e., the
magnitude of errors between all possible classes) and can be refined depending on the features of
classified objects [6] [2, Chapter 5, Section 5.7.2].

End-users also expressed concerns regarding error variability, i.e., random variance due to random
differences among datasets, as well as systematic error rate differences due to lower data quality.
Users’ concerns are justified, as random and systematic differences among datasets significantly
impact the magnitude of errors to expect in classification end-results [4].
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Developers often seek to optimise classifiers on all classes and all types of error (e.g., limiting
both FP and FN). They often use metrics that summarize the errors over all classes, e.g., accuracy
shown in equation (3). For example, for binary classification (i.e., classification into two classes),
they measure the Area Under the Curve (AUC) to summarise all types of errors (FN and FP) over
all possible values of a tuning parameter [14]. This approach is irrelevant for end-users who apply
classifiers that are already tuned with fixed parameter values.

Furthermore, metrics that summarize all types of errors for all classes (e.g., Accuracy, AUC)
fail to convey "the circumstances under which one classifier outperforms another" [11], e.g., for
which classes, class proportions (e.g., rare or large classes), types of errors (i.e., errors between
specific classes), and values of the tuning parameters. These characteristics are crucial for end-users:
specific classes and types of errors can be more important than others; class proportions may vary in
end-usage datasets; and optimal tuning parameters depend on the classes and errors of interest, and
on the class sizes and proportions in the datasets to classify.

Class sizes and proportions (i.e., the relative magnitudes of class sizes) directly impact the
magnitudes of errors. One class’s size impacts the magnitude of its False Negatives, i.e., objects
that actually belong to this class but are classified into another class. The larger the class, the larger
the False Negatives it generates. These misclassified False Negatives are also False Positives from
the perspective of the class into which they are classified. The transfer of objects from their actual
class (as False Negatives) into their predicted class (as False Positives) is the core mechanism of
classification errors.

To understand the impact of classification errors, it is crucial to assess the error directionality, i.e.,
the actual class from which errors originate, and the predicted class into which errors are classified.
Error directionality reflects the two-fold impact of classification errors: objects are missing from their
actual class, and are added to their predicted class.

Finally, to support end-users’ understanding of classification errors, visualizations must provide
accessible information requiring little to no prior knowledge of classification technologies. The
information provided must be relevant for end-users’ data analysis tasks, e.g., clarifying the practical
implications of classification errors without providing unnecessary details.

Hence we identified 5 key requirements for end-user-oriented visualizations of classification
errors:

• R1: Provide the magnitude of errors for each class.

• R2: Provide the magnitude of each class size, from which class proportions can be derived.

• R3: Detail the error composition and directionality, i.e., the errors’ actual and predicted classes,
and the magnitude of errors for all combinations of true and predicted classes.

• R4: Estimate how the errors measured in test sets may differ from the errors that actually oc-
cur when applying the classifier to another dataset, e.g., considering random error rate variance,
and bias due to lower data quality or varying feature distributions.

• R5: Omit unnecessary technical details, e.g., about the underlying classification technologies,
and information unrelated to estimating the errors to expect in classification end-results (such as the
AUC metric).

Table 2. Notation used in Table 3.

nxy Number of objects actually belonging to class x and classified as class y (i.e., errors if x 6= y)
nx. Total number of objects actually belonging to class x (i.e., actual class size)
n.y Total number of objects classified as class y (i.e., predicted class size)
n.. Total number of objects to classify
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Table 3. Basic of error rates, i.e., equations (1)-(3), using notation from Table 2.

nxy

nx.
(1) Error rates w.r.t. actual class size (e.g., ROC curves)

nxy

n.y
(2) Error rates w.r.t. predicted class size (e.g., Precision)∑

x nxx

n..
(3) Accuracy, e.g., for binary data: TP +TN

TP +TN +FP +FN

Table 4. Relationships among users, tasks, information needs, metrics and visualizations.

Task Visualization
Improve Model
and Algorithm

Tune
Classifier

Estimate Errors
in End-Results

Confusion
Matrix

Precision-Recall
and ROC curves

Classee

Target Audience

End-Users X X X
Developers X X X X X

Low-Level Metric

Raw Numbers X X X X X
ROC-like Error Rates
in equation (1)

X X X X1 X

Precision-like Error Rates
in equation (2)

X X X2 X1 X

Accuracy in equation (3) X X X
Area Under the Curve (AUC) X X X3

High-Level Information

Total Number of Errors X X X X X

Errors over Tuning Parameter X X X X

Errors over Object Features X X4 X5

Error Composition for Each Class X X X X X6 X
Class Proportions X X X X
Class Sizes X X X X

1 ROC curves show two error rates defined by equation (1). Precision-Recall curves show one error rate defined by equation (2),
and one error rate defined by equation (1).
2 If class proportions vary across datasets, i.e., between test and target sets, error estimation methods based on these error
rates are biased [4].
3 Barcharts’ areas show information similar to AUC (Section 4).
4 Features distributions can be used to refine error estimates [6] or identify issues with the validity of error estimation methods
under varying feature distributions [4].
5 Objects’ features can be used as the x-axis dimension.
6 Binary classification only.
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Fig. 1. Explanation of classification errors and ROC curves for binary classification, as provided to the participants
of the study. The visualization shows threshold values on rollover (e.g., this screenshot shows a rollover on a
data point corresponding to threshold 0.2).
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3 RELATED WORK

3.1 Existing visualizations
Recent work developed visualizations to improve classification models [12, 21, 23], e.g., using
barcharts [1, 28]. They are algorithm-specific (e.g., applicable only to probabilistic classifiers or
decision trees) but end-users may need to compare classifiers based on different algorithms. These
comparisons are easier with algorithm-agnostic visualizations, i.e., using the same representations
for all algorithms, and limiting complex and unnecessary information on the underlying algorithms
(Requirement R5, Section 2).

ROC curves (Figure 1), Precision-Recall curves and confusion matrices are well-established
algorithm-agnostic visualizations [14] but they are intended for machine learning experts and simpli-
fications may be needed for non-experts (e.g., understanding ROC curve’s error rates may be difficult,
especially for multiclass data). Furthermore, ROC and Precision-Recall curves omit the class sizes, a
crucial information needed for understanding the errors to expect in classification end-results, and
tuning classifiers (Table 4, Requirement R2).

Cost curves [11] are algorithm-agnostic and investigate specific end-usage conditions (e.g.,
class proportions, costs of errors) but they are also complex, intended for experts, omit class sizes
(Requirement R2), and do not address multiclass data. The non-expert-oriented visualizations in
[25, 20] use simpler trees, grids, Sankey or Euler diagrams, but are illegible with multiclass data due
to multiple overlapping areas or branches.

3.2 Choice of error metrics
Different error metrics have been developed and their properties address different requirements
[18, 29, 30]. Error metrics are usually derived from the same underlying data: numbers of correct
and incorrect classifications encoded in confusion matrices, and measured with a test set (a data
sample for which the actual class is known). These raw numbers provide simple yet complete metrics.
They are easy to interpret (no formula involved) and address most requirements for reliable and
interpretable metrics, e.g., they do not conceal the impact of class proportions on error balance, and
have known values for perfect, pervert (always wrong) and random classifiers [29]. These values
depend on the class sizes in the test set, which is not recommended by [29]. However, raw numbers
convey the class sizes, omitted in rates, but needed to assess the class proportions and the statistical
significance of error measurements (Requirement R2). These are crucial for estimating the errors to
expect in end-usage applications [4].

Using raw numbers of errors, we focus on conveying basic error rates in equations (1)-(2), Table 3.
Accuracy is a widely-used metric summarizing errors over all classes, shown in equation (3), Table 3.
We also consider conveying accuracy, and focus on overcoming its bias towards large classes [18]
and missing information on class sizes (Requirement R2) and error directionality, e.g., high accuracy
can conceal significant errors for specific classes (Requirement R3).

4 CLASSEE VISUALIZATION
The Classee project simplified the visualization of classification errors by using ordinary barcharts
and raw numbers of errors (Figures 2 and 5). The actual class and the error types are differentiated
with color codes: vivid colors if the actual class is positive (blue for TP, red for FN), desaturated
colors if the actual class is negative (grey for TN, black for FP). The bars’ positions reinforces the
perception of the actual class, as bars representing objects from the same actual class are staked on
each other into a continuous bar, e.g., TP above FN (Figures 3 and 6 left). The zero line distinguishes
the predicted class: TP and FP are above the zero line, FN and TN are below (Figure 3 right).
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Fig. 2. Classee visualization of classification errors for binary data.

For binary data (Figure 2), objects from the same actual class are stacked in distinct bars: TP
above FN for the positive class, and FP above TN for the negative class (Figure 3 left). Basic
error rates can easily be interpreted visually (Figure 4). ROC curve’s error rates in equation (1) are
visualized by comparing the blocks within continuous bars: blue/red blocks for TP rate, black/grey
blocks for FP rate. Precision-like rates in equation (2) are visualized by comparing adjacent blocks
on each side of the zero line: blue/black blocks for Precision, red/grey blocks for False Omission
Rate. Accuracy, i.e., equation (3), can be interpreted by comparing blue and grey blocks against red
and black blocks, which is more complex. However, it overcomes key issues with accuracy [18] by
showing the error balance between FP and FN, and potential imbalance between large and small
classes. The visualization also renders information similar to Area Under the Curve [14] as blue, red,
black and grey areas can be perceived.

Fig. 3. Bars representing the actual and predicted classes.

Perceiving ROC-like error rates (1) requires comparing divided and adjacent blocks. Talbot et. al
[31] show that human visual perceptions may be more accurate with unadjacent blocks, e.g., used
by [1, 28]. However, Classee shows part-to-whole ratios while Talbot et. al researched part-to-part
ratios, and suggests that perceiving part-to-whole is more intuitive and effective. Further, Classee
lets users compare the positions of bar extremities to the zero line. Cleveland and McGill [9] show
that perceiving such positions is more accurate than perceiving relative bar lengths, which is the sole
visual perception enabled in [1, 28]. Finally, precision-like error rates (2) are perceived using aligned
and adjacent blocks. Cleveland and McGill [9] and Talbot et. al [31] show that it supports more
accurate perceptions compared to the divided unadjacent blocks used in [1, 28].
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Fig. 4. Bars showing basic error rates in equations (1)-(2).

For multiclass data (Figure 5), errors are shown for each class in a one-vs-all reduction, i.e.,
considering one class as the positive class and all other classes as the negative class, and so for all
classes (e.g., for class x, FP=

∑
y 6=x nyx and TN=

∑
y 6=x

∑
z 6=x nyz). TN are not displayed because

they are typically of far greater magnitude, especially with large numbers of classes, which can reduce
other bar sizes to illegibility. TN are also misleading as they do not distinguish correct and incorrect
classifications (e.g., nzz and nyz,y 6=z). Without TN, FP are stacked on TP which shows the Precision
for each class.

Fig. 5. Classee visualization of classification errors for multiclass data.

Basic error rates can easily be interpreted visually, using the same principles as for binary
classification. ROC curve’s error rates in equation (1) are visualized by comparing the blue and red
blocks (representing the actual class, Figure 6 left). Precision-like rates in equation (2) are visualized
by comparing the blue/black blocks (representing the predicted class, Figure 6 middle).

Accuracy can be interpreted by comparing all blue blocks against either all red blocks, or all black
blocks (the sum of errors for all red blocks is the same for all black blocks, as each misclassified
object is a FP for its predicted class and a FN for its actual class). Users can visualize the relative

Journal of Interaction Science www.JoIS.online, Vol.?, Article No ? Publication date: MM/YYYY.



Supporting End-User Understanding of Classification Errors XX<inserted by JoIS>:9

proportions of correct and incorrect classifications, although the exact equation of accuracy (3) is
harder to interpret. However, Classee details the errors between each class, which are omitted in
accuracy.

Compared to Ren et al. [28], which stacks TP-FP-FN in this order (from top to down), Classee
uses this order FP-TP-FN. It shows continuous blocks for TP and FN (Figure 6 left), which facilitates
the interpretation of TP rates (1) and actual class sizes [9, 31]. Compared to chord diagrams in
Alsallakh et al. [1], which encodes error magnitudes with surface sizes, Classee uses bar length,
which supports more accurate perceptions of error magnitudes [9].

100

100

200

300

400

0

Actual 
Class Predicted

Class False
Positives

False
Negatives

No Error

Fig. 6. Bars representing the actual and predicted classes.
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Fig. 7. Barchart blocks representing the main sources of errors.

Inspecting the error directionality, i.e., the magnitude of errors between specific classes, is crucial
for understanding the impact of errors in end-results (Requirement R3, Section 2). Users need to
assess the errors between specific classes and their directionality (i.e., errors from an actual class are
misclassified into a predicted class). If errors between two classes are of significant magnitudes, it
creates biases in the end-results. For example, errors from large classes can result in FP of significant
magnitude for small classes that are thus over-estimated. Such biases can be critical for end-users’
applications.

Hence Classee details the error composition between actual and predicted classes. The FP blocks
are split in sub-blocks representing objects from the same actual class. The FN blocks are also split
in sub-blocks representing objects classified into the same predicted class. To avoid showing too
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many unreadable sub-blocks, Classee shows the 2 main sources of errors in distinct sub-blocks and
merges the remaining errors in a 3rd sub-block (Figure 7). The FP sub-blocks show the 2 classes from
which most FP actually belong, and the remaining FP as a 3rd sub-block. The FN sub-blocks show
the 2 classes into which most FN are classified, and the remaining FN as a 3rd sub-block. Future
implementations could let users control the number of sub-blocks to display, and the boxes from Ren
et al. [28] may improve their rendering.

Fig. 8. Rollover detailing the errors for a specific class.

Users can select a class to inspect its errors (Figure 8). It shows which classes receive the FN
and generate the FP. The FN sub-blocks of the selected class are highlighted within the FP sub-
blocks of their predicted class. The FP sub-blocks are highlighted within the FN sub-blocks of their
predicted class. Users can identify the error directionality, i.e., they can differentiate Class X objects
misclassified into Class Y and Class Y objects misclassified into Class X (e.g., in Figure 8, objects
from class C6 are misclassified into C34, but not from C34 into C6). Future implementations could
also highlight the remaining FN and FP merged in the 3rd sub-blocks.

Large classes (with long bars) can hinder the perception of smaller classes (with small bars).
Thus we propose a normalised view that balances the visual space of each class (Figure 9). Errors
are normalised on the TP of their actual class as nxy/nxx (i.e., dividing FN/TP and reconstructing
the FP blocks using the normalised errors FN/TP ). Although unusual, this approach aligns all FP
and FN blocks to support easy and accurate visual perception [9, 31]. It also reminds users of the
impact of varying class proportions: the magnitude of errors change between normalised and regular
views, as they would change if class proportions differ between test datasets (from which errors
were measured) and end-usage datasets (to which classifiers are applied). It is also the basis of the
Ratio-to-TP method that estimate the numbers of errors to expect in classification results [4].
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Fig. 9. Normalized view with errors proportional to True Positives.

Color choices - Classee uses blue rather than green as in Alsallakh et al. [1] to address colorblind-
ness [32] while maintaining a high contrast opposing warm and cold colors. Classee color choices
can handle large numbers of classes compared to having one color per class as in Ren et al. [28],
where too many classes - thus colors - would clutter the visualization to illegibility, e.g., with more
than 7 classes [26].

Following the Few Hues, Many Values design pattern [32], sub-blocks of FN and FP use the same
shades of red and black. The shades of grey for FP may conflict with the grey used for TN in binary
classification. The multiclass barchart does not display TN and its shades of grey remain darker. Thus
color consistency issues are limited, and we deemed that Classee colors are a better tradeoff than
adding a color for FP (e.g., yellow in [1]).

As a result, the identification of actual and predicted classes is reinforced by the interplay of three
visual features: position (below or above the zero line for the predicted class, left or right bar for the
actual class), color hue (blue/red if the actual class is positive), and color (de)saturation (black/grey
if the actual class is negative).

5 USER EXPERIMENT
We evaluated Classee and investigated the factors supporting or impeding the understanding of
classification errors. We conducted in-situ semi-structured interviews with a think-aloud protocol to
observe users’ "activity patterns" and "isolate important factors in the analysis process" [22]. We
focus on qualitatively evaluating the Visual Data Analysis and Reasoning [22], as our primary goal
is to ensure a correct understanding of classification errors and their implications. We conducted
a qualitative study that informs the design of end-user-oriented visualization, and is preparatory to
potential quantitative studies. Quantitative measurements of User Performance complement this
qualitative study. We included a user group of mathematicians to investigate how mathematical
thinking impacts the understanding of ROC curves and error metrics. Such prior knowledge is a
component of the Demographic Complexity interacting with the Data Complexity, and thus impacting
user cognitive load [19].
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The 3 user groups represented three types of expertise: 1) practitioners of machine learning (4
developers, 2 researchers), 2) practitioners of mathematics but not machine learning (5 researchers, 1
medical doctor), and 3) practitioners of neither machine learning, mathematics nor computer science
(including 1 researcher). A total of 18 users with 2 users per condition (3 groups x 3 visualizations x
2 users) is relatively small but was sufficient to collect important insights in our qualitative study, as
we repeatedly identified key factors impacting user understanding.

The 3 experimental visualizations compared the simplified barcharts to two well-established
alternatives: ROC curve and confusion matrix (Figures 10-12). ROC curves are preferred to Precision-
Recall curves which exclude TN and do not convey the same information as the barcharts. All
visualizations used the same data and users interacted only with one kind of visualization. This
between-subject study accounts for the learning curve. After interacting with a first visualization,
non-experts gain expertise that would bias the results with a second visualization.

Fig. 10. Confusion table for binary data.

Fig. 11. ROC curves used for binary and multiclass data.

Fig. 12. Confusion matrices used for tasks T2-7 to T2-9.
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For binary data, classification errors were shown for 5 values of a tuning parameter called a
selection threshold. Confusion matrices for each threshold were shown as a table (Fig. 10) with rows
representing the thresholds, and columns representing TP, FN, TN, FP. The table included heatmaps
reusing the color coding of the barcharts. The color gradients form the default heatmap template
from D3 library (https://d3js.org/) were mapped on the entire table cells’ values, which is not optimal.
Each column’s values have ranges that largely differ. Thus the color gradients may not render the
variations of values within each column, as the variations are much smaller than the variations within
the entire table. Hence color gradient should be mapped within each column separately.

For multiclass data, the confusion matrix also included a heatmap with the same color coding.
The diagonal showed TP in blue scale. A rollover on a class showed the FP in dark grey scale and
the FN in red scale (Figure 12 right). If no class was selected, red was the default color for errors
(Figure 12 left). The ROC curves to multiclass data displayed a single dot per class, rather than
complex multiclass curves. The option to normalize barchart (Figure 9) was not included, to focus on
evaluating the basic barchart using raw numbers of errors.

The 15 user tasks were separated in two parts, for binary and multiclass data (Table 5). Each
part started with a tutorial explaining the visualization and the technical concepts (Figure 1). This
could be displayed anytime during the tasks. For binary problems, it explained TP, FN, FP, TN and
the threshold parameter to balance FN and FP. For multiclass problems, it explained class-specific TP,
FN, FP, TN in one-vs-all reductions, and that FN for one class (the actual class) are FP for another
(the predicted class). The explanations of the technical concepts were the same for all users and
visualizations. Only the explanations of the visualization differed.

The tasks used synthetic data that predefined the right answers. To assess user awareness of
uncertainty, users had to indicate their confidence in their answers. User confidence should match
the answer correctness (e.g., low confidence in wrong answers). The response time was measured,
but without informing users to avoid Time Complexity and stress impacting user cognitive load [19].
The task complexity targeted 3 levels of data interpretation, drawn from Situation Awareness [13].
Level 1 concerned the understanding of individual data (e.g., a number of FP). Level 2 concerned the
integration of several data elements (e.g., comparing FP and FN). Level 3 concerned the projection
of current data to predict future situations (e.g., the potential errors in end-usage applications). To
facilitate users’ learning process, the tasks were performed from Level 1 to 3.

Compared to the 3 levels of Task Complexity in [19], our level 1 introduces a lower level of
complexity. Our level 2 has less granularity and encompasses all 3 levels in [19]. Our level 3
introduces a higher level of complexity related to extrapolating unknown information (e.g., the errors
to expect when applying classifiers to end-usage datasets). Our level 3 also introduces Domain
Complexity, e.g., it concerns different application domains in tasks T1-4 to -6. The domain at hand
can influence user answers. To channel this influence, tasks T2-5 to -9 are kept domain-agnostic,
and T1-4 to -6 involve instructions that entail unambiguously right answers, and the same data and
reasoning as previous tasks T1-1 to -3.

User feedback was collected with a questionnaire (Table 6) adapted from SUS method to evaluate
interface usability [7]. Users indicated their agreement to positive or negative statements about the
visualizations, e.g., disagreeing with negative statements is a positive feedback. At the very end
of the experiment, we introduced the alternative visualizations to collect additional feedback with
unstructured questions.
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Table 5. Tasks of the experiment.

ID Level Question Right Answer

Step 1 - Binary Classification

T1-1 L1 Which threshold produces the most False Positives (FP)? 0.2
T1-2 L1 Which threshold produces the most False Negatives (FN)? 1
T1-3 L2 Which threshold produces the smallest sum of False Positives (FP) and False Negatives (FN)? 0.6
T1-4 L3 Choose the most appropriate threshold for person authentication?

(Task presentation tells users to limit FP)
0.8 or 1

T1-5 L3 Choose the most appropriate threshold for detecting cancer cells?
(Task presentation tells users to limit FN)

0.2

T1-6 L3 Choose the most appropriate threshold for detecting paintings and photographs? (Task presentation
tells users to limit both FP and FN)

0.6

Step 2 - Multiclass Classification

T2-1 L1 Which class has lost the most False Negatives (FN)? Class E
T2-2 L1 Which class has the most False Positives (FP)? Class A
T2-3 L2 Which class has the fewest False Positives (FP) and False Negatives (FN)? Class B
T2-4 L3 Which statement is true? 1) Objects from Class A are likely to be classified as Class E. 2) Objects

from Class E are likely to be classified as Class A. 3) Both statements are true. 4) No statement is
true.

Statement 2

T2-5 L3 Which statement is true? 1) The number of objects in Class A is likely to be under-estimated (lower
than the truth). 2) The number of objects in Class A is likely to be over-estimated (higher than the
truth). 3) The number of objects in Class A is likely to be correctly estimated (close to the truth).

Statement 2

T2-6 L3 Which statement is true? 1) The number of objects in Class D is likely to be under-estimated (lower
than the truth). 2) The number of objects in Class D is likely to be over-estimated (higher than the
truth). 3) The number of objects in Class D is likely to be correctly estimated (close to the truth).

Statement 1

T2-7 L3 Imagine that you are particularly interested in Class D. Choose the classifier that will make the
fewest errors for Class D.

Classifier 1

T2-8 L3 Imagine that you are particularly interested in Class A. Choose the classifier that will make the
fewest errors for Class A.

Classifier 2

T2-9 L3 Imagine that you are interested in all the classes. Choose the classifier that will make the fewest
errors for all Classes A to E

Classifier 2

Table 6. Feedback questionnaire.

F1-1, F2-1 I would like to use the visualization frequently.
F1-2, F2-2 The visualization is unnecessarily complex.
F1-3, F2-3 The visualization was easy to use.
F1-4, F2-4 I would need the support of an expert to be able to use the visualization.
F1-5, F2-5 Most people would learn to use the visualization quickly.
F1-6, F2-6 I felt very confident using the visualization.
F1-7, F2-7 I would need to learn a lot more before being able to use the visualization.
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6 QUANTITATIVE RESULTS
We discuss user prior knowledge (Figure 13), user performance between visualizations (Figure 14)
and user groups (Figure 15). User performance is considered improved if i) wrong answers are
limited; ii) confidence is lower for wrong answers and higher for right answers; and iii) user response
time is reduced. Finally, we review the quantitative feedback (Figure 16). The detailed participants’
answers are given in Figure 21 (p.27).

Our qualitative results are not generalizable due to our small user sample. However, we briefly
report them for completeness and future reference. In particular, impacts of task complexity are
identified and inform the design of such quantitative studies.
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Fig. 13. Profile of study participants.

The prior knowledge of math experts often included TP, FN, FP, TN as these are involved in
statistical hypothesis testing (Figure 13). Machine learning experts knew the technical concepts
well, except a self-taught practitioner who was only familiar to terms related to his daily tasks,
e.g., Accuracy but not ROC Curve or Confusion Matrix. This participant, who was in charge of
implementing, integrating and testing classifiers, mentioned "Clients only ask for accuracy" but did
not recall its formula. Two other machine learning experts were unfamiliar with either Precision-
Recall or ROC curves, and related formulas, because their daily tasks involved only one of these.

Machine learning practitioners use different approaches for assessing classification errors, using
specific metrics or visualizations. They may not recall the meaning and formulae of unused metrics, or
even metrics used regularly. Some metrics are not part of their routine, but may be relevant for specific
use cases or end-users. Hence experts too can benefit from Classee since i) Remembering error rate
formulae is not needed as rates are visually reconstructed; ii) Both ROC-like or Precision-like rates
can be visualized, i.e., equations (1)-(2); and iii) Accuracy can also be interpreted, i.e., by comparing
the relative proportions of errors (FP and FN in red and black bars) and correct classifications (TP in
blue bars, TN in grey bars for binary data). Classee also shows the error composition (i.e., which
specific classes are often confused) and class sizes. It supports machine learning experts tasks of
tuning and improving classifiers (Table 4).

With binary data, the number of wrong answers differed between tasks T1-1 to -3 and T1-4
to -6 while both sets of tasks entail the same answers and use the same dataset (Figure 14 top).
Tasks T1-4 to -6 involved extrapolations for end-usage applications. These tasks introduced Domain
Complexity [19] and the tasks’ description had increased task discretion (less detailed instructions
provided to users) thus increasing the cognitive load [16]. The increased task discretion had an
important impact as users spent considerable efforts relating the terms TP, FN, FP, TN to the real
objects they represent (e.g., intruders are FP).
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Barchart ROC Table
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Fig. 14. Task performance per visualization.

With barcharts, user confidence better matched answer correctness (lower for wrong answers,
higher for right answers) and so for all user profiles (Figure 15, top). Machine learning and math
experts gave almost no wrong answers regardless of the visualization, but were more confident with
barcharts than ROC curves (and than tables for machine learning experts). Non-experts gave more
wrong answers and were over-confident with tables, but with barcharts and ROC curves their lower
confidence indicates a better awareness of their uncertainty.

User response time was lower with barcharts (Figure 15 bottom) except for machine learning
experts. Their response time was equivalent for all visualizations but were most homogeneous with
ROC curves, possibly because this graph was most familiar.

With multiclass data, wrong answers were limited until task T2-4 (Figure 14 top). Answers
were mostly wrong from task T2-4 onwards, as task complexity increased to concern extrapolations
of errors in end-results. With barcharts, wrong answers were scarce after T2-4, e.g., after users have
familiarized with the graph, but remained high with other graphs. Machine learning and math experts
were more confident with barcharts (Figure 15 middle) but non-experts were under-confident. Yet
their response time decreased with barcharts, and was as fast as machine learning and math experts
(Figure 15 bottom).
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Fig. 15. Task performance per user group.

User feedback was collected twice, after the tasks for binary and multiclass data, with the same
questionnaire (Table 6). At the user profile level (Figure 16 top), for binary data, non-experts
and machine learning experts had the most negative feedback for ROC curves. Math experts had
equivalent feedback for all visualizations. For multiclass data, confusion matrices had the most
negative feedback from non-experts and math experts. ROC-like visualizations had the most positive
feedback from all profiles. At the question level (Figure 16 middle), for binary data, barcharts had
the most positive feedback on the design complexity (F1-2). ROC curves had the most negative
feedback for frequent use and need for support (F1-1, -4). For multiclass data, confusion matrices
received negative feedback at all questions, especially for confidence and need for training (F2-6, -7).
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Fig. 16. User feedback.

One participant who used Classee barchart gave the lowest possible feedback to almost all
questions. This user disliked math and any form of graph ("Ah! I hate graphs!", "I hate looking at
graphs, it’s too abstract for me") and was particularly reluctant to frequently using the graphs (F1-1,
F2-1). However, this user’s performance was excellent with barcharts for binary data: only right
answers with high confidence, and positive feedback especially on the learnability (F1-2, "The graph
is easy, even I can use it").

Besides this participant, barcharts had the most positive feedback for frequent use, usability and
need for training (F2-1, -3, -7). ROC curves had the most positive feedback on complexity and
learnability (F2-2, -5) but its apparent simplicity (only 5 dots on a grid) may conceal underlying data
complexity, leading to wrong answers (Figure 14).

Over all questions (Figure 16 bottom), for binary data the most negative feedback was observed
for ROC curves. The feedback was equivalently positive for barcharts and tables. For multiclass data,
the most negative feedback was observed for confusion matrices. The feedback was equivalently
positive for barcharts and ROC visualizations, excluding the barchart user especially averse to any
data visualization.

Users wondered if their feedback should also concerned the explanations, hence the collected
feedback may not concern only the visualization. Other limitations concern the small number of
users, and user tendency to avoid either average or extreme feedback ("I’m not the kind of person
having strong opinions"). More detailed and generalizable insights on the usability are elicited from
our qualitative analysis of user interviews.
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7 QUALITATIVE ANALYSIS
To identify the factors influencing user understanding of classification errors, we analysed user
comments and behaviours by transcribing written notes of the interviews. To let the factors emerge
from our observations, we first proceeded with grounded coding (no predefined codes). We then
organized our insights into themes and proceeded to a priori coding (predefined codes). We identified
3 key difficulties that are independent of the visualizations:

• The terminology, e.g., TP, FN, FP, TN are confusing terms.
• The error directionality, e.g., considering both FN and FP.
• The extrapolation of error impact on end-usage application, e.g., a class may be over-estimated.

We discuss these difficulties and how the visualizations aggravated or addressed them.

7.1 Terminology
The basic terms TP, FN, FP, TN were difficult to understand and remember ("In 30 minutes I’ll
have completely forgotten"). Twelve users (66%) mentioned difficulties with these terms, including
machine learning experts. The terms Positive/Negative were often misunderstood as the actual class
(instead of the predicted class) especially when not matching their applied meaning ("Cancer is
the positive class, that’s difficult semantically"). Users were also confused by the unusual syntax
("Positive and Negative are usually adjectives but here they are nouns, it’s confusing") and the
association of antonyms (e.g., False and Positive in FP, "False is for something negative") and
synonyms (e.g., "The words are so close" with True and Positive in TP, "I understand that FN are
not errors" because Negative and False is a logical association). Users misinterpreted the terms True
and False as representing the actual or predicted class, and both are incorrect. Some users suggested
adverbs to avoid such confusion ("Falsely", "Wrongly").

To cope with the semantic issues, users translated the technical terms into more tangible terms,
using concrete examples ("Falsely Discarded", "False face"). A machine learning expert requested
short acronyms (e.g., TP for True Positive). A non-expert suggested icons as another form of
abbreviation ("like a smiley", Figure 17). This user preferred labels mentioning the actual class first
(using Negative/Positive) then the errors (using True/False).

Fig. 17. User-suggested icons for TP, FN, FP, TN. Drawn by the interviewer following user’s instructions in
post-experiment discussions. User-suggested labels are below the icons. Usual labels were later added above.

The terminology of legends and explanations can yield difficulties ("You could make the text
more clear"). The terms Select and Discard in our tutorials and legends can be at odds with their
application ("Discarding objects may be confusing if both classes are equally important"). The term
true in its common meaning ("true class", "truly belong to [class x]") conflicts with its meaning in
TP, TN and must be avoided.
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Math experts were often familiar with TP, FN, FP, TN as these are involved in statistical hypothesis
testing. Machine learning experts knew the technical terms well, except a self-taught practitioner who
was only familiar to terms used in daily tasks, e.g., Accuracy but not ROC Curve or Confusion Matrix.
This user mentioned "Clients only ask for accuracy" but did not recall its formula. Two other machine
learning experts were unfamiliar with either Precision-Recall or ROC curves, as their daily tasks
involved only one of these. Hence machine learning practitioners may not recall the meaning and
formula of unused metrics, or even metrics used regularly. Some metrics are not part of their routines,
but may be relevant for specific use cases or end-users. Hence experts too can benefit from Classee
since i) remembering error rate formulae is not needed as rates are visually reconstructed; ii) both
ROC-like or Precision-like rates can be visualized (1)-(2); and iii) accuracy can also be interpreted.

7.2 Error Directionality
Users need to distinguish the actual and predicted classes of errors, and the direction of errors from
an actual class classified into a predicted class. Ten users (56%) from all profiles had difficulties with
error directions, e.g., confusing FP and FN ("Oh my FP were FN, why did I switch!"). With binary
data, users may not understand how the tuning parameter influence errors in both directions, e.g.,
decreasing FN but increasing FP ("I put a high threshold so that there’s no error [FP, FN] in the
results", "High threshold means high TP and TN"). With multiclass data, users may not understand
that FN for one class are FP for another, and that errors for class x concern both errors with predicted
class x and actual class x (e.g., not considering both FN and FP).

Terminology issues complicated user understanding of error directionality, e.g., the terms Pos-
itive/Negative could mean both the actual or predicted class. Some users intuitively interpreted
these terms as the predicted class, others as the actual class. Users often used metaphors and more
tangible terms to clarify the error directionality ("The destination class", "We steal [the FP] from
another class"). The terms Selected and Discarded, although using a tangible metaphor, can be
misunderstood as the actual class ("The class that must be selected") yielding misinterpretations of
error directionality.

7.3 Extrapolating Errors in End-Usage Applications
Users needed additional information to extrapolate the classification errors in end-usage applications
("It’s impossible to deduce a generality", "How can I say anything about the rest of the data?").
More information on the consequences of error was needed to decide which errors are tolerable
("There can be risks in allowing FP, additional tests have further health risks", "No guidance on
how to make the tradeoff"). Users questioned whether the error measurements are representative of
end-usage conditions, regarding potential changes in class sizes and error magnitudes ("Assuming
class proportions are equal", "This is a sample data, another sample could have some variations").
They also wondered about additional sources of uncertainty, such as changes in object features or
the presence of other classes ("Will it contain only paintings and photographs?") and their impact
on the algorithm ("How does the classifier compute the problem"). The lack of context information
decreased user confidence, e.g., when assessing if a class is likely to be over- or under-estimated.

7.4 ROC Curve
It is unusual to visualize line charts where both x- and y-axes represent a rate, and where thresholds
are a third variable encoded on the line. It is more intuitive to represent thresholds on the x-axis and
rates on the y-axis, with distinct lines for each rate (as a user suggested). Non-experts primarily relied
on text explanations to perform the tasks (e.g., reading that low thresholds reduce FP, then checking
each dot’s threshold to find the lowest). Only machine learning and math experts were comfortable
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with interpreting the data visually ("My background makes me fluent in reading ROC curves visually",
"I don’t use formulas, I compare the dots with each other without reading the values").

Error rate formulae were difficult to understand and remember, even for experts ("Formulas
are still confusing, and still require a lot of thinking"). All users but one needed to reexamine the
equations and their meaning many times during the tasks. It increased their response time and
impacted their confidence ("To be sure I’ll need to read it again"). Some users interpreted the rates as
numbers of errors, for a simpler surrogate metric. Otherwise, without the numbers of errors, class
sizes and potential imbalance are unknown, and it aggravates the difficulties with extrapolating the
errors in end-results, e.g., it is impossible to assess the balance of errors between large and small
classes ("Unknown ratio of Positive/Negative","Assuming class proportions are equal"). The error
composition (how many objects from class X are confused with class Y) is unavailable for multiclass
data. Some users noticed the lack of information ("There’s not enough information, errors can come
from one class or another", "Assuming the destination class is random") but others failed to notice,
even for one task that was impossible to answer without knowing the error composition.

Error rates’ ambiguous labels aggravated the terminology issues. The rates have actual class sizes
as denominators (1) but the term Positive in TP and FP rate refers to the predicted class. It misled
users in considering that both rates have the predicted class size as denominator, e.g., misinterpreting
TP rate (1) as Precision (2). This is consistent with Khan et al. [20] where misinterpretations were
more frequent with denominators than numerators, and with Hoffrage et al. [17] where a terminology
specifying the denominator of probabilistic metrics improved user understanding. A user suggested to
replace TP rate by the opposite FN rate (1 - TP rate). It is more intuitive that both rates focus on errors
(rather than on correct TP), and by mentioning both Positive and Negative labels, it may indicate
that the denominators differ. Yet the terminology remains confusing as it fails to indicate the rate’s
denominator. Longer labels could clear ambiguities but may be tedious to read.

Thus ROC curves aggravated the difficulties with the terminology and error directionality, because
error rate labels are ambiguous and fail to clarify the denominator. They also aggravated the difficulties
with extrapolating errors in end-results because their rates fail to provide the required information,
and end-users may fail to notice this limitation.

7.5 Confusion Matrix
It is unusual to interpret rows and columns as in confusion matrices, e.g., tables are usually read
row per row. Users needed to reexamine the meaning of rows and columns many times during the
tasks. It was difficult to remember if they represent the actual or predicted class, which aggravated
the difficulties with error directionality. By confusing the meaning of rows and columns, all users but
one confused FN and FP. By reading the table either row by row, or column by column, users did
not consider both FN and FP (including 2 machine learning experts). The experimental visualization
included large labels Actual Class and Automatic Classification to specify the meaning of rows and
columns, but further clarification and improved terminology are needed.

Row and column labels showed only the class names (e.g., Class A, Class B). It was confusing
because the list of labels was identical for rows and columns. Labels could explicitly refer to the
actual or predicted class, e.g., Actual Class A, Classified as Class B. One user suggested icons to
provide concise indications of the meaning of rows and columns. Another suggested animations to
show the relationships of rows or columns and the error directionality, e.g., a rollover on a cell shows
an arrow connecting it from its actual class to its predicted class.

Thus confusion matrices aggravated the difficulties with error directionality because the visual
features do not differentiate actual and predicted class. Users must rely on row and column labels,
and terminology issues can arise (e.g., if the labels only mention the class names). Color codes and
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heatmaps can help differentiating FP from FN, but only when a class is selected (errors are FP or FN
from the perspective of a specific class) and heatmaps support less accurate perceptions of magnitudes
[9]. Difficulties with extrapolating the errors in end-results were also aggravated because errors are
not easy to compare, i.e., users need to relate cells at different positions in the matrix.

7.6 Classee
The histograms were intuitive and quickly understood, especially for binary problems ("This you
could explain to a 5-year-old"). For multiclass problems, it was unusual to interpret histograms
where two blocks can represent the same objects. Indeed errors are represented twice: in red
FN blocks for their actual class, and in black FP blocks for their predicted class. When a class
is selected (Figure 8), highlighting the related FP and FN blocks helped users to understand the
error directionality ("Highlight with rollover helps understanding how the classifier works") but
clarifications were requested ("You could use an arrow to show the correspondence between FP and
FN", Figure 18). Animations may better show the related FN and FP (e.g., FN blocks moving to the
position of their corresponding FP blocks).

Once users familiarized with the duplicated blocks, Classee supported a correct understanding
of error directionality, and answers were rarely wrong ("It’s something to get trained on", "Once
you get used to it, it’s obvious"). Difficulties remained with confusion matrices and ROC curves, as
misunderstandings of FP and FN remained frequent. Classee better clarified the error directionality
with visual features that clearly distinguish actual and predicted classes ("I like the zero line, it makes
it more visual"). These also reduced the difficulties with the technical terminology and its explanation
("Explanations are more difficult to understand than the graph", "We usually say it’s easier said than
done, but here it’s the opposite: when you look at the graph it’s obvious") even though multiclass
legends were unclear ("What do you mean with 1st class and 2nd class?"). Classee was more tangible
and self-explanatory ("I see an object that contains things") and non-experts were more confident
than they expected ("I am absolutely sure but I should be wrong somewhere, I’m not meant for this
kind of exercise", "It sounds so logical that I’m sure it’s wrong").

Fig. 18. User-suggested animation with arrows.

Extrapolating the errors in end-results was also easier with Classee. Using numbers of errors
provides complete information while ROC curves conceal the class sizes ("You get more insights from
the barchart"). Confusion matrices also use numbers of errors, but are more difficult to interpret (cell
values are difficult to compare, rows or columns can be omitted or misinterpreted). Class sizes and
error balance were easier to visualize with Classee ("Here the grey part is more important than here",
"Histograms are more intuitive").

Thus Classee limited the difficulties with extrapolating errors in end-results because its metrics
and visual features are more tangible and intuitive, and they provide more complete information
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(including class sizes and error balance). Classee also limited the difficulties with the terminology
and error directionality by using visual features that clearly distinguish actual and predicted classes.
Yet error directionality can be further clarified for multiclass data by adding interactive features to
reinforce the correspondence of FP and FN (e.g., animations) and choose the details to display (e.g.,
error composition for more than 2 classes, or for specific classes).

After the experiment, we introduced the alternative visualizations. Most users preferred Classee,
especially after using the other graphs ("It’s easier, I can see what I was trying to do", "This is what I
did in my mind to understand the threshold"). The two machine learning experts who used Classee
during the experiment preferred this form of visualization. The other four preferred the familiar
confusion matrix or ROC curve ("You get more insights from the barchart, but ROC curve I read it in
a glimpse") or would use both confusion matrix and Classee as they complement each other with
overview and details.

8 CONCLUSION
We identified issues with the terminology, the error directionality (objects from an actual class are
misclassified into a predicted class) and the extrapolation of error impacts in end-usage applications.
To address these issues, labels and visual features must reinforce the identification of actual and
predicted classes, e.g., using domain terminology and tangible representations (animations, icons).

Error metrics have crucial impacts on user cognitive load. With error rates, users may overlook
missing information (e.g., class sizes) and misinterpret the denominators, which is worsened by
terminology issues. Raw numbers of errors are simpler to understand, but are difficult to analyse with
confusion matrices.

Classee successfully addressed these issues. Its use of numbers of errors encoded in histograms
is more tangible and self-explanatory, and supports accurate perceptions of error magnitudes and
class sizes (Requirement R1-3, Section 2). The combination of 3 visual features that distinguish
the actual and predicted class (position, color hue, color saturation) clarified the error directionality.
It helped overcome the terminology issues while providing complete information for choosing and
tuning classifiers, and for extrapolating the errors to expect in end-usage applications.

Multiclass problems remain particularly difficult to visualize. All three experimental visualizations
involve unusual representations in otherwise common graphs. ROC curves are simple line charts,
but have rates on both axes. Confusion matrices are simple tables, but must be read both column-
and row-wise. Classee visualizations are simple histograms, but have duplicated blocks representing
the same errors (as FN or FP). In our evaluation, Classee was the easiest to learn and familiarize
with, but its legends and interactions should be improved (e.g., with animations highlighting the error
directionality).

Future work is required to fully address the issue of estimating the errors to expect in classification
end-results. Additional information is required to assess the validity of the error measurements w.r.t.
the end-usage conditions. End-users need to verify that error rates measured with specific test sets are
representative of the end-usage datasets. For instance, the class sizes, class proportions, or object
features may differ. Changes in object feature distributions particularly undermine error estimation
methods, e.g., if end-usage datasets are of lower data quality the error rates may differ [4]. Future
work is required to address this issue, i.e., to develop error estimation methods that account for
varying feature distributions.

Future work is also required to design visualizations for exploring the relationships between
classification errors and feature distributions. Visualizing classification errors as a function of varying
feature distributions is complex, but Classee visualizations can provide basic templates to address
this problem. For example, with binary data, Classee visualization can display the features as the
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x-axis, instead of the threshold parameter in Figure 2, while the errors observed for each bin of feature
values remain displayed as the y-axis. For multiclass data, the x-axis can also be used to represent the
feature values, instead of the classes in Figure 5. However, in this case the graph can only display the
errors for a single class, or for all classes. Hence assessing the errors for each class, and the error
directionality, remains complex (Requirement R2-3).

Finally, future work is required to let end-users assess the statistical validity of error measurements.
For instance, if a class is scarce in either the test set or the end-usage dataset, error estimations can
be impacted by high variance [4]. The variance of error rates can be estimated using the Sample-to-
Sample method [4] and visualized with Classee as in Figures 19-20.

Fig. 19. Visualization of error variance, avoiding error bars as recommended by Correll and Gleicher [10].

Fig. 20. Visualization of error variance for stacked barcharts, splitting the data in 10 subsamples and juxtaposing
them (as stacking variance is mathematically incorrect).
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Fig. 21. Answers’ correctness and confidence for each participant.
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