
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C.M. Baeten, W.P. Weijland

Semantics for prolog via term rewrite systems

Computer Science/Department of Software Technology Report CS-R8739 August

Bibtiotheek
Centrum voor Wis!(urn:!e eoinforml'§tl!'.:a

Amste1darr

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the· Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

b OJ :; VI \ ' h 1 {:.\1 l b c, l,\ \ \ (, Cj ;k. l ? I l1 " c \'L,

Copyl'ight © Stichting Mathematisch Centrum, Amsterdam

Semantics for Prolog via term rewrite systems

J.C.M. Baeten

Dept. of Computer Science, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

W.P.Weijland

Dept. of Software Technology, Centre for Math. and Comp. Sci.,

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: We present semantics for logic programs using term rewrite systems.
Reading program lines from left to right (so reversing the arrows), considering the result
as a rewrite system, immediately gives the usual declarative semantics (the least
Herbrand model). Then, we add a priority ordering on the rewrite rules, and obtain a
procedural semantics for Prolog with depth-first search rule. This gives us different
semantics in the same setting.

Key words and phrases: Prolog, logic programming, term rewrite system, priority
rewrite system, depth-first search.
1985 Mathematics subject classification: 68045, 68050, 68N15.
1987 CR categories: F.4.1, F.4.2, D.3.1, 1.2.3, F.3.2.

Note: Partial support received under ESPRIT contract 432, An Integrated Formal
Approach to Industrial Software Development (Meteor).
This report will be submitted for publication elsewhere.

1. INTRODUCTION

In this paper, we give a new approach to semantics for logic programming and Prolog. This

semantics is based on tenn. rewriting. If we reverse the arrows in a logic program, and consider all

closed instances of program clauses, we can, after two minor adaptations, work with the resulting

TRS (Tenn. Rewrite System). We prove the following theorems:

1. A ground atom reduces to true in the TRS iff it is an element of the success set of the logic

program.

2. A ground atom has no infinite reductions and no nonn.al fonn. true in the TRS iff it is an element

of the finite failure set of the logic program.

Thus, there is a clear correspondence between the least Herbrand model and the set of rewrites

detenn.ined by the TRS, and we get a declarative semantics for logic programs by means of tenn.

rewrite systems.

Then, in section 3 we review the theory of Priority Rewrite Systems (PRS), and give a

generalization of the theory in [2, 3]. A PRS is a TRS with a partial ordering on the set of rules.

W.r.t. thlS partial ordering, we have a notion of correctness, that tells us when a particular rewrite

Report CS-R8739
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

is allowed; roughly speaking, it is allowed if it is not obstructed by a rewrite of higher priority. We
say that a PRS is well-defined if it has a unique sound and complete rewrite set, i.e. a set of
rewrites such that a rewrite is an element of it iff it is correct w .r.t. it.
In section 4 we define a notion of correctness for PRS's, that implements the depth-first search
rule, such that a PRS with this notion of correctness is always well-defined. Then, we have the
following theorems:

1. A ground atom has a correct reduction to true in the PRS iffit is in the success set of the Prolog
program, implemented with depth-first search rule.
2. A ground atom has no infinite reduction, and no normal form true in the PRS iff it is in the finite
failure set of the Prolog program with depth-first search rule.
Thus, we obtain a procedural semantics for Prolog, using the same formalism as in our earlier
semantics. By adopting a reduction strategy on top of the priority ordering, we can implement a
particular computation rule. In the last section, we give some indications how one can obtain a
declarative semantics for Prolog.

It is the subject of ongoing research to give an implementation in this formalism for control features
such as cut.

2. DECLARATIVE SEMANTICS FOR LOGIC PROGRAMS
We give a declarative semantics for logic programs based on term rewrite systems (1RS's). In
section 4, we will see that we can use the same approach in order to give a procedural semantics for
Prolog with depth-first search rule. First, we give some basic definitions concerning logic
programs and term rewrite systems.

2.1 DEFINITION

We have an alphabet or signature containing (countably many) variables, constants, functions and
predicates. Terms, atomic formulas and formulas are defined in the usual way. A term or formula is
called ground or closed iff it contains no variables.
A clause is any formula that is the universal closure of a formula of the form (81 A ••. A Bn) ~
(A1 v ... v Ak) (n+k > 0, the Ai and Bi are atomic formulas), usually written as

A1' ... , Ak t- 81, ... , Bn.
A clause is a program clause if k=1, and a goal clause if k=O.
A program is a finite sequence of program clauses (so the clauses occur in a certain order). We
will also assume that the signature of any program does not contain a constant named true, or a
predicate named & (if this is not the case, a renaming is necessary).
A substitution is a mapping from variables to terms, and a substitution extends in the obvious
way to terms and formulas. The result of applying substitution 0 to formula A is denoted Ae. A
ground substitution maps all variables to closed terms.
We define the notions of an SLD-derivation, an SLD-refutation and an SLD-tree as in [5]. Note that
an atom has an SLD-refutation iff it is a logical consequence of the program.
The success set of a program is the set of all ground atoms that have an SLD-refutation.

3

The finite failure set of a program consists of all ground atoms A that have a finitely failed
SLD-tree (i.e. a finite SLD-tree with no success branches).

2.2 DEFINITION

In a term rewrite system (1RS), there is no difference between predicates and functions (they are all
called functions), and so there is also no difference between terms and atomic formulas (they are all
called terms). A 1RS is a finite sequence of (rewrite) rules, pairs of terms <t,S>, usually written
as t -4> s.
The left-hand side term t in such a rule must not be only a variable, but here we do not adopt the
usual requirement that any variable occurring in the right-hand side s must also occur in t.
These rules generate a reduction relation on terms: this is the closure of the rules under
substitution and contexts, and is also denoted -4>. If t __. s for closed terms t,s, we call t __. s a
rewrite. The semantics of a 1RS is its set of rewrites. Further, __.* is the transitive and reflexive
closure of-4>. A term t is a normal form if for no term s we have t __. s; a term t' has a normal
form if there is a normal form t with t' __.* t.

2.3 TRANSLATION

Now with every program we will associate a term rewrite system. The signature of the 1RS will

contain, besides the elements of the signature of the program, a special constant true, and a special
binary predicate (function) &. We will use the following conventions in order to use & as a function
of variable arity:

&(t) is another notation for t

&(t1, ... , tn+1) is another notation for &(&(t1, ... ,tn), tn+1).
Now the transformation from a logic program to a 1RS will translate a clause A ~ 8 1, ... , 8n with
n~1 into a rule A__. &(81, ... , 8n) and a clause A~ into a rule A __. true; further, the
transformation will preserve the ordering and will finally add two rules

&(x, &(y, z)) __. &(&(x, y), z)
&(true, true) __.true.

IflP is a logic program, call the 1RS that results by applying this transformation lP*.

2.4EXAMPLE

Let lP be the logic program in table la. Then the 1RS lP* is displayed in table lb.

p ~ q, r{x)

p~

q ~ r(x)

Table la.

p __. &(q, r(x))

p __.true

q __. r(x)

&(x, &(y, z)) __. &(&(x, y), z)

&(true, true) __.true

Table lb.

4

Now we can fonnulate the following theorem. In the proof, we use tenninology of [5].

2.5THEOREM

The ground atom G is an element of the success set of the logic program lP iff G has true as a
nonnal fonn in the TRS JP*.

PROOF: Suppose G is a ground atom. Since Gisin the success set of JP, there is an SLD-refutation
of lP u {rG}. Using the obtained answer substitution, we can turn this refutation into an
(unrestricted) SLD-refutation in which all successive goals consist of ground atoms. Now each step
in the SLD-refutation will correspond to a rewrite step in the TRS JP*, as follows: for each step
from a goal r A1, ••• , Am, ... , Ak (consisting of ground atoms) to a resolvent goal r A1, ••• , Am_1,

8 10, ... , 8q0, Am+1, ••. , Ak, using a rule Ar 8 1, ••• , 8q and a ground substitution 0 withA0 =
Am, there is a corresponding reduction sequence &(A1, ••• , Am, ... , Ak) -+ &(A1, ••• , Am_1, &(810,

... , 8q0), Am+1' ••• , Ak) -+* &(A1, ••• , Am_1, 8 10, ... , 8q0, Am+1' ••• , Ak), using the 0-instantiati01
of rule A -+ &(81, ... , 8q) in the first step, the added rules in the following steps. The empty clause
o corresponds to the tenn true.

The reverse direction is equally easy.

2.6THEOREM

The ground atom G is an element of the finite failure set of the logic program lP iff G has no infinite
reductions in JP*, and does not have true as a nonnal fonn in JP*.

PROOF: Just like the previous theorem. Note that if we have an SLD-tree that has no success
branch and no infinite branch, then by Konig's lemma there must be a k such that the tree is finitely
failed of depth ~k.

3. PRIORITY REWRITE SYSTEMS

In this section we give a review of the theory of Priority Rewrite Systems (PRS's). The notion of a
PRS was introduced in BAETEN, BERGSTRA & KLOP [2], and rephrased by the same authors in
[3]. Here, we give a more general treatment, in order to define a special purpose PRS in the
following section. For more explanations and examples, see [3] or [2].

3.1 DEFINITION

A Priority Rewrite System is a triple (IR, <, c), where lR is a Tenn Rewrite System, <is a
partial ordering on the rewrite rules, and c is an anti-monotonic mapping on sets of rewrites.
In this paper, we will only consider the linear ordering, i.e. if a PRS has rules r1 , ... ,r n (presented in
this order), then ri < rj iff i < j. If r < s, we say rule r has priority over rule s.
Instead of c(R) we write Re. Anti-monotonicity means that R ~ S implies that Re~ se. If a
rewrite is in Re, we say it is correct w.r.t. R.
Now, l~t lP be a PRS. Considered as a TRS, its semantics is the set of all rewrites, i.e. the set of all
closed instantiations of its rewrite rules. As a PRS, some of these rewrites are invalidated, are not
correct, because of the existence of a rule that takes priority. We clarify our intention with the

5

following example.

3.2EXAMPLE

Consider a PRS containing the rules in table 2 below. Rule r 1 has priority over rule r 2. Let a be a

constant. Now the rewrite eq(a,a) -+false is incorrect, because the term eq(a,a) is also an

instantiation of the left-hand side of rule r1, and the rewrite eq(a,a)-+ true will take priority.

r 1: eq(x,x) -+ true

r 2: eq(x,y) -+ false

Table 2.

To be more precise, we could use the following definition of the mapping c: a rewrite r: p -+ q is

incorrect w.r.t. a set of rewrites Riff there is a rewriter': p -+ ... in R with r' < r. It is obvious that

this definition makes c into an anti-monotonic mapping.

In references [2] and [3], different notions of correctness were used. In this paper, we will need

still another notion, in order to give a procedural semantics for Prolog.

3.4 DEFINITION

Let]pi be a PRS, and R a set of rewrites of IP.

i. R is sound iff R ~Re, i.e. every rewrite in R is correct w.r.t. R;

ii. R is complete iff R ~ Re, i.e. every rewrite, that is correct w.r.t. R, is in R;

iii. IP is well-defined iff there exists a unique sound and complete rewrite set for IP. Such a

rewrite set is called the semantics of IP.

3.5 NOTE

It is by no means the case that every PRS is well-defined. In [3], examples are presented of a PRS

with no sound and complete rewrite set, and a PRS with two sound and complete rewrite sets. It is

the subject of ongoing research to determine classes of PRS's that are well-defined. For example,

in [3], it is proven that all strongly terminating PRS's are well-defined (w.r.t. the definition of

correctness in [3]).

3.6LEMMA

Let lP' be a PRS, and R a set of rewrites of IP.

i. if R ~ S, and S is sound and complete, then R is complete;

ii. if R !;;;;; S, and S is sound and complete, then R is sound.

PROOF: i: R ~ S implies Re!;;;;; se. Since Sis sound and complete, se = S. Thus R ~ Re, which

means th~t R is complete. The proof of ii. is similar.

6

3. 7 DEFINITION

Let lP' be a PRS, and R a set of rewrites of JP'. We put 9tp(R) = (R0) 0 • If there is no confusion
possible, we write 9t instead of 9tp. Since c is anti-monotonic, it follows that 9t is a monotonic
mapping. In general, however, 9t need not be continuous. Since 9t is monotonic, we have a least
fixed point lfp(9t) and a greatest fixed point gfp(9t).
Also, we can define the sets 9tia. and 9t-i.a. for every ordinal a. as in e.g. LLOYD [5]. We have:
1. 9tiO = 0 and 9t-i.O = 0°
2. 9ti(a.+ 1) = 9t(9tia.) and 9t-i.(a.+ 1) = 9t(9t!a.)
3. 9tiA. = ua.<A. 9ti a. and 9t!A. = na.<A. 9t-i.a., if A. is a limit ordinal.

3.8LEMMA

Let lP' be a PRS, and let n E N. Then:

i. 9tin is sound and 9t!n is complete

ii. (9tin)0 = 9t-i.n
iii. (9t-i.n)0 = 9ti(n+ 1).
PROOF: By induction on n. For n=O, we have (i) since 0 ~ 0°, which implies 0° ~ 0cc, and (ii)
and (iii) follow by definition. The induction step is just as easy.

3.9 LEMMA (Stabilization Lemma, see also [2] or [3])

Let lP' be a PRS. If for some n,m 9tin = 9t!m, then lP' is well-defined.
PROOF: Immediate from 3.6 and 3.8. 9tin is the least and greatest fixed point of the mapping 9t.

4.PROCEDURALSEMANTICSFORPROLOG

Now we will define a notion of correctness for priority rewrite systems, such that adding this
priority to a term rewrite system as in section 2 will give us a procedural semantics for Prolog using
a depth-first search rule (for terminology, see LLOYD [5]). We use the word Prolog for logic
programs implemented with the depth-first search rule. Initially, we do not consider a certain
computation rule (one could say that we discuss concurrent Prolog). Later on, we will see that the
adoption of a selection rule amounts to the adoption of a reduction strategy in the corresponding
rewrite systems.

4.1 INTUITION

Let lP' be a term rewrite system with the linear rule ordering (see 3.1). We will say that a rule
instance r: p __., q is incorrect, if there is a ruler' < rand a rewriter': p __., ... ,such that Prolog will
never consider the rewrite r: p __., q. Since Prolog will consider the rules in order, first the rewrite
r': p __., ... will be carried out, but later, by backtracking, r: p __., q may also be considered. There
are two cases in which r: p __., q will never be considered:

1. r': p ;-+ ... results in a normal form true;
2. r': p __., ... gives rise to an infinite reduction.

A second circumstance in which the rewrite r: p __., q is incorrect, is when there is also a rewrite r:

7

p--. q' with a different q' (so this only happens when the ruler introduces a variable), such that

the substitution made in q will never be considered. We give examples of both types of

incorrectness.

4.2 EXAMPLES

1. Consider the following Prolog program lP in table 3 (written as a TRS according to the

definitions of section 2, with the two added rules for & left out):

r1: p-.q
r2: p--. true

rs: q-.q

Table 3.

In the standard procedural semantics with depth-first search rule, we find that the goal p gives no

answer, because Prolog will get stuck in the infinite reduction sequence q __. q __. q __. ... Thus,

we must have that the reduction p __.true is incorrect w.r.t. the set of reductions {p __. q, q __. q}.

2. Consider the following Prolog program Q in table 4.

q(f(x)) --. q(f(x))

q(a)--. true

p __. q(x)

Table4.

In the standard procedural semantics with depth-first search rule, we find that the goal p gives no

answer, because Prolog will unify q(x} and q(f(x)), and start an infinite reduction. Thus, we must

have that the reduction p--. q(a)--. true is incorrect. Since the rewrite q(a) __.true is obviously

correct, we will ensure that the rewrite p--. q(a) is incorrect w.r.t. the set {p __. q(f(a)), q(f(a)) __.

q(f(a))}.

Next we give some definitions, that are preparatory to the definition of our notion of correctness.

4.3 DEFINITION

Let cr: s1 -.r1 s2 -.r2 s3 __. ... and p: t1 -.r1' ~ -.r2' t3 __. ... be two reduction sequences (finite

or infinite). The ordering on rules induces a lexicographical ordering on reduction sequences, so p

< cr if r1' < r1, or r1' = r1 and either r2' < r2 or p has length 1, or

We call~ (finite) reduction sequence successful, if it ends in the normal form true.

We call pan obstruction of cr, notation cr > p, if s1 = t1, p < cr and p is either successful or

infinite. See figure 1 (on the following page).

8

p: t • t3

<
2 r ,

2
s
1

cr: s2 • s3 r
2

Fig. 1. cr > p.

Now we can give the fonnal definition of correctness.

4.4 DEFINITION
Let lP' be a tenn rewrite system, with the linear rule ordering.
Let cr be a reduction sequence, and let R be a set of rewrites.

true or oo

p < O'

Then cr is incorrect w.r.t. R, if there is a reduction sequence pin R such that cr > p.
Now let r: p--+ q be a rewrite (a closed instantiation of ruler). This rewrite is incorrect w.r.t. R,
if every reduction sequence starting with this rewrite is incorrect w.r.t. R.
Further, if r: p --+ q is incorrect, then every application in context of this rewrite is also incorrect.
A rewrite is correct w.r.t. R, if it is not incorrect w.r.t. R.
The reader can check for himself that this definition indeed leads to the right results in the examples
in 4.2.
It is obvious that this gives us an anti-monotonic mapping c, and so we can use the results of
section 3. We will call this notion of correctness DFS correctness (correctness pertaining to the
depth-first search rule).
Now a procedural semantics for Prolog will be given by the sound and complete rewrite set of the
resulting PRS. Therefore, we first have to establish that such PRS's are well-defined. This we do
next.

4.5THEOREM
Let lP' be a PRS with the DFS notion of correctness. Then lP' is well-defined.
In fact, 9\i1 = 9\-l.1 (in the notation of section 3).
PROOF: We will prove this in a number of claims.

CLAIM 1: Let R be a set of rewrites, and t a closed tenn. If t has an infinite or successful reduction
in R, then t also has an infinite or successful reduction in R n Re.
PROOF: Suppose cr: t --+ --+ ... is an infinite or successful reduction in R, which is not a reduction
in Re. Let p--+ q be the first rewrite in cr which is not in Re. Then p--+ q--+ ... is incorrect w.r.t.
R, so there is an obstruction p--+ q'--+ ... in R. If the rewrite p--+ q' is still not correct w.r.t. R,
there is another obstruction p --+ q" --+ ... in R. After finitely many steps, we must obtain a
reduction sequence p --+ q* --+ ... in R of which the first rewrite is correct w.r.t. R (since there are
only finitely many rules). Thus, we obtain an infinite or successful reduction sequence cr*: t --+ --+ ,.
p --+ q* --+ ... in R, which is also in Re for at least one more step (see fig. 2, on the following
page).

9

q* true or oo

/'
o: t • • p • q _. true or oo

Fig. 2.

Continuing in this fashion, we obtain reduction sequences, of which larger and larger initial

segments remain unchanged. It follows that we can write down a reduction in Rn Re, and the

proof is finished.

CLAIM 2: Let R be a set of rewrites. Then Ree~ Re.
PROOF: If a rewrite is not correct w.r.t. R (e Re), then there is an obstruction in R. By the

previous claim, there is also an iobstruction in Re, and so the rewrite is also not correct w.r.t. Re
(e Re~.

CLAIM 3: 9ti1 = 9t! 1.

PROOF: Let R be the set of all rewrites. By claim 2 we have Ree ~ Re. On the other hand, R is

complete, so Re is sound, and thus by definition Re~ Ree. Then 9ti1 =Re= Ree= 9t! 1.

4.6 DEFINITIONS

We define the success set and finite failure set of a Prolog program in the sequel.

1. We define the notion of a SLD-tree just like in [5]. For each computation rule, a goal has a

different SLD-tree. The edges in the tree are labeled by the name of the rule used. The ordering of

the rules induces an ordering on the edges, and in this paper, all SLD-trees will be ordered trees.

An example, for the program in 4.2.1 for goal p, is given in fig. 3a.

2. A DFS-tree (SLD-tree using the depth-first search rule) of a goal is obtained from the SLD-tree

by leaving out all subtrees that have an infinite obstruction in the tree (i.e. from the root there is an

infinite branch starting with a higher rule). The DFS-tree of the tree in fig. 3a is given in fig. 3b.

p p

A y
q true q

r3 r3

q q

r3 r3

q q

·1 I
Fig. 3a. Fig. 3b.

10

3. A ground atom A is in the success set of a Prolog program IP, if the goal A has a DFS-tree

with success branch (a branch ending in o).

4. A ground atom A is in the finite failure set of a Prolog program IP, if the goal A has a finite

DFS-tree with no success branch.

4.7THEOREM

The ground atom A is an element of the success set of the Prolog program IP iff A has a successful

correct reduction in the PRS IP*.

PROOF: =>: Suppose A is in the success set of the Prolog program IP, so there is a DFS-tree with

success branch. Using the translation of2.3, we get a reduction sequence

a.: A -+ A1 -+ ... -+ true.

If a is incorrect, then there is an obstruction a.1. If a.1 is infinite, then a cannot be in the DFS-tree.

Therefore, a.1 is finite and successful. If a.1 is also incorrect, then there is a finite ~ with a.1 >­
a.2. In this way, we obtain a sequence a>- a.1 >- a.2 ... of successful reductions of A. If this

sequence is infinite, then the transitivity of the obstruction relation yields an infinite obstruction for

a, and so a is not in the DFS-tree. Thus, the sequence a >- a.1 >- a.2 ... >-~ is finite, and a.k is

a correct reduction from A to true.

~= Straightforward, by definition of DFS-tree.

4.8THEOREM

The ground atom A is an element of the finite failure set of the Prolog program IP iff A has no

infinite or successful correct reductions in IP*.

PROOF: Similar to the proof of 2.6 and 4.7.

4.9 Thus, we see that the adoption of a priority ordering on a term rewriting system gives us a

procedural semantics for Prolog with depth-first search rule. This is interesting since no explicit

semantics could be found in the literature, only semantics directly in terms of SLD-trees with the

search procedure defined on them.

The priority mechanism seems powerful enough to deal in addition with extra features like cut, or

the use of negation in Prolog programs. Details of such extensions are not clear to us at the

moment, however.

4.10 So far, we have not discussed the effect of a computation rule, i.e. we were dealing with a

form of concurrent Prolog, in which each element of a sequence of goals is reduced independently.

In the present setting, adoption of a computation rule just amounts to the adoption of a reduction

strategy on the corresponding PRS. Thus, adoption of the standard computation rule (that always

selects the left-most atom) means in terms of rewriting that we only consider reductions in which in

each step the left-most redex is contracted.

11

5. DECLARATIVE SEMANTICS FOR PROLOG

In the previous sections, we found a procedural semantics for Prolog with depth-first search rule,

using priority rewrite systems. Moreover, we proved this procedural semantics to be equivalent to

the semantics of depth-first search trees.

In this section, we give some indications on how to obtain a declarative equivalent for the

DFS-semantics for Prolog. In the case of logic programs, we know that the declarative semantics

simply consists of its set of Hom clauses. This declarative semantics is equivalent to the procedural

one, in the sense that for any logic program IP' we have that an atom A is in the succes set of IP' if

and only if A is a logical consequence of IP'. But what to say about the DFS succes set oflP'?

In order to find an answer to this question, consider the following definitions.

5.1 DEFINITION

In the following we will write substitutions (see [5]) as equational formulas. To give an example:

suppose we have 0 = {x/a} then we can translate this substitution to 0(x) = {x=a}. The most

general unifier of atoms A and B, will be denoted by mgu(A,B). Writing mgu(A,B) as an

equational fonnula we obtain:

for all atoms A and B: I= V (mgu(A,B) ~(AH 8)).

5.2EXAMPLE

Let A= p(x,f(z)) and B = p(a,f(g(y))) then clearly, mgu{A,B) = {x/a,z/g(y)}. Writing this

substitution as an equational fonnula we obtain: mgu(A,B) = {x=a,z=g(y)} and clearly we find

1= V [x=a A z=g(y) ~ (p(x,f(z)) H p(a,f(g(y)))].

5.3 TRANSLATIONS OF PROGRAMS

Next, we will translate a given program IP' into a set of Hom clauses JL(IP'), which is equivalent to

the original program except that it is restricted to the depth-first search rule. This can be done as

follows.

LetlP'be A~ 8 1, ... , Bq

C ~ D1, ... ,Dr-

With the depth-first search rule, the upper clause A~ 8 1, ... , Bq has highest priority. So we may

write: V (81 A ••• A Bq ~ A) e JL(IP').

The second clause C ~ D1, ... , Dr cannot simply be added to JL(IP'), since it will only be used if

either the first clause has failed (by backtracking) or if the current goal did not match A. This can be

expressed by the following sentences:

V (mgu{A, C) A -,81 A ••• A -,Sq A D1 A ••• A Dr~ C) and

V (-,mgu(A, C) A D1 A ••• A Dr ~ C) e JL(IP').

Note that-, is used to express negation in the sense of finite failure. This procedure can simply be

extended to a general procedure for programs with more then only two clauses.

5.4 TURNING JL(l?) INTO A GENERAL PROGRAM

Note that lL(lP') can easily be translated to a general program, i.e.: a program with negated literals in

12

its clauses. Taking the program lP' from 5.3 again, we see that lL(lP') is equivalent to
lP'': A~ 8 1, ... , 8q

A~,81, ... ,,8q, D1, ... ,Dr

C ~ D1, ... , Dr>,mgu(A, C).
As we see, we will pemlit equations in the bodies of the clauses.

5.6 SEMANTICS OF GENERAL PROGRAMS

In FITTING [4] a general theory for fixed point semantics of general programs is presented, using
three valued logic. Fitting uses sets of signed fomlulas T <I> or F<j> to indicate whether an atom can be
proved true, false, or cannot (yet) be proved equal to either of the two. Of course such a set need
not be consistent (for example if it contains both T <I> and F<j>), but if it is, it can be seen as a (partial)
model.

Next, in the same way as is done in APT & V ANEMDEN [l], a monotonic mapping <I>lP' is defined
on partial models as follows:

TA e <I>p(X) <=> there is a ground instance A ~ 8 1, ... , 8q,,C1, ... ,,Cr of a clause
from lP' such that {T81, ... , T8q, FC1, ... , FCr} k: X;

FA e <I>lP'(X) <=> for every ground instance A~ 8 1, ... , 8q,,C1, ... ,,Crof a clause
from IP we have {T81, ... , T8q, FC1, ... , FCr} g;; X.

Now it can be proved that for any program IP, <I>lP' has a least fixed point which precisely consists
of the succes set of IP and the complement of the finite failure set ([4], proposition 7.3). Moreover,
any general program has a semantics via <I>p.

5.7 So, the general program IP' in 5.5, has a clear semantics (see also LLOYD [5]). This semantics
could be proved equivalent to the semantics we gave in 3.9 and 4.5. It goes beyond the subject
matter ofthis paper, to try to develop such a proof here.

REFERENCES

[l] K.R.APT & M.H.v AN EMDEN, Contributions to the Theory of Logic Programming, J. ACM
29 (3), pp. 841 - 862, 1982.

[2] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, Priority rewrite systems, report CS-R8407,
Centre for Math. & Comp. Sci., Amsterdam 1984.

[3] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, Term rewrite systems with priorities, in: Proc.
2nd Conf. on Rewriting Techniques and Applications, Bordeaux 1987, Springer LNCS 256, pp.
83 - 94, 1987.

[4] M.FIITING, A Kripke semantics for logic programs, Journal of Logic Programming 4, pp. 295
- 312, 1985.

[5] J.W.,.LLOYD, Foundations of logic programming, Springer 1984.
[6] T.C.PRZYMUSINSKI, On the declarative and procedural semantics of stratified deductive
databases, Dept. of Math. Sci., Univ. of Texas, El Paso.

