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Abstract 

This paper shows the equivalence of two semantics for a version of Concurrent Prolog with 

non-flat guards: an operational semantics based on a transition system and a denotational 

semantics which is a metric semantics (the domains are metric spaces). We do this in the 

following manner: First an uniform language £ is considered, that is a language where the 

atomic actions have arbitrary interpretations. For this language we prove that a denotational 

semantics is correct with respect to the operational semantics. This result relies on Banach's 

fixed point theorem. Techniques stemming from imperative languages are used. Then we show 

how to translate a Concurrent Prolog program to a program in £ by selecting certain basic 

sets for £ and then instantiating the interpretation function for the atomic actions. In this 

way we induce the two semantics for Concurrent Prolog and the equivalence between the two 

semantics. 

Remark: an extended abstract of this report will appear in Proc. Fifth Generation Computer 

Systems 1988 (FGCS '88), December 1988, Tokyo, Japan. 
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1 Introduction 

'Pure' logic programming (LP) has by now a well-established semantic theory, described in, e.g. 

[Ll], [Ap] or [AvE]. Traditionally, at least three varieties of semantics are distinguished, viz. the 

'declarative', 'procedural' and 'process' interpretations, and, for pure LP, it is a standard result 

that these semantics all coincide. For logic programming languages - with the emphasis now on 

programming language rather than on the underlying mathematical framework of pure LP - the 
situation is much less clear. Already for PROLOG, the prime example of a sequential language 

with its prescribed execution order (left-first selection and depth-first searching) and cut operator, 

the development of models situated in the tradition of programming language semantics - viz. 

operational and denotational-, and the establishment of the relationships between these models is 

a topic of recent and current research (e.g. [JM], [DM], [ABe], [Vi]). 

*This work was carried out in the context of ESPRIT 415: Parallel Architectures and Languages for Advanced 

Information Processing - a VLSI-directed approach and in the context of LPC: the dutch National Concurrency 

Project, supported by the Netherlands Organization for Scientific Research (N.W.O.), grant 125-20-04 

t Author's present address: Departement of Computer Science, University of Utrecht, P.O. Box 80.089, 3508 TB 

Utrech1, the Netherlands. 
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Next we consider the field of parallel logic languages. A forerunner was Van Emden and De 
Lucena's Predicate logic as a language for parallel logic programming [vEdL]. The most well­
known parallel logic languages are Concurrent Prolog [Shl], PARLOG [CG], [Ri] and Guarded 
Horn Clauses [Ue]. Further offsprings include (see [Ri] for more details and comparative language 
design comments) Flat Concurrent Prolog [MTSLS] and Flat Guarded Horn Clauses (discussed in 
[Ri]). Finally, we mention TFCP (Theoretical Flat Concurrent Prolog), described in [Sh2]. 

Parallelism in LP languages brings along the well-known (from the field of imperative languages) 
phenomena such as synchronization, suspension and deadlock, sending and receiving of messages, 
and process creation. Accordingly, it may be more advantageous to address the semantic issues 
in parallel LP following the tradition in imperative languages (emphasizing 'control') rather than 
that of pure LP (emphasizing 'logic'). 

For operational semantics the method of Structured Operational Semantics ([Pl]) has become 
the standard tool. Systems of (possibly labeled) transitions are embedded into syntax directed de­
ductive systems, providing a concise, powerful and flexible tool, as demonstrated by numerous ap­
plications (for parallel logic languages we mention [Sa]). For denotational semantics, a classification 
can be based on the underlying mathematical structures, thus leading to (at least) order-theoretic, 
metric, algebraic and category-theoretic models. We use metric structures as our main tool. The 
motivation for this is, briefly, the following: In a setting with parallelism, some form of 'history' 
of the computation (be it (sets of) sequences or traces, trees etc.) always plays a key role. Now, 
firstly, histories allow a natural metric (the longer the histories remain the same, the smaller their 
distance). Secondly, with respect to this metric many functions which play a role in our semantic 
domains are contracting. Contracting functions have unique fixed points, a fortunate circumstance 
which facilitates definitions of (the meaning of) recursion and of semantic operators, and which 
leads to an uniform and powerful technique in comparing concurrency semantics ([KR], [BM]). 

A well-known phenomenon from imperative concurrency is that of deadlock (in LP returning 
as failure), inducing the need for a model which embodies more structure than just (sets of) se­
quences. A large variety of such 'branching time' models has by now been proposed, including ready 
sets, failure sets, and (synchronization) trees (see [OH] for a comparison). In case programming 
notions requiring branching time are combined with state transformations, the need for Plotkin's 
resumptions arises. We have developed our own (metric) way of solving domain equations which 
are at the bottom of such resumptions (described in [BZ] or [AR]). The introduction of committed­
choice in parallel logic languages is a cause of deadlock (see for example [FL] for an analysis of this 
phenomenon). 

In [K] we developed a denotational semantics for a version of Concurrent Prolog, employing the 
metric techniques (domains of processes in the resumptions style, contracting functions etc.) of 
[BZ] and successors. The branching structure built up as result of a computation before a commit 
is encountered, is collapsed, at the moment of such an encounter, into a set of streams. The 
paper [GCLS] develops, for the language TFCP [Sh2], operational and denotational semantics, the 
latter based on failure sets. Moreover, a fully abstractness theorem relating the two is presented. 
The third investigation we mention follows the approach of declarative semantics. In [LP2), a 
comprehensive analysis is provided of a number of synchronization mechanisms in parallel logic 
languages. This is achieved by defining a 'universal' language which incorporates all the features 
required to model the various synchronization mechanisms, and which contains as proper subsets 
Concurrent Prolog, Flat CP, GHC (and, a fortiori, Pure Horn Clause Logic). This language is given 
the usual semantic definitions on an extended Herbrand Universe, and all the standard results are 
shown to hold. The paper [LP2] is an extension of [LPl], dealing with the declarative semantics of 
logical read-only variables. Recently also a declarative semantics for Flat Guarded Horn Clauses 
was proposed (Le]. 

In this paper we develop an operational and a denotational semantics for a language .C. This 
language is uniform in the sense that some basic sets can have arbitrary interpretations. Another 
feature of .C is that we have an operator that turns its argument (any, possibly complex, statement 
s) into an elementary action or (control) atom, denoted by [s]. Hence our emphasis on atomicity in 
this investigation. We provide a proof of the correctness of the denotational semantics with respect 
to the 9perational semantics (we show that there exists a restriction operator which relates the 
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Figure 1: overview of the models 

two). The operational semantics 0 is based on a transition system. The denotational semantics 
1J is a metric semantics: the domains are metric spaces. A key role is played by contractions: 
they are used in almost all definitions. We have used uniform abstraction: In order to obtain the 
two semantics for Concurrent Prolog, we interpret the abstract sets of C. For example, the set of 
elementary actions B will be the set of pairs (a1, a2) of (logical) atoms. The intended meaning of 
such a pair (a1, a2) of atoms is that we have to unify ai and a2. We then show how to translate a 
Concurrent Prolog program to a program in the uniform language C. The denotational model that 
is induced in this way (from the denotational model for C) resembles the model given in [K]. We 
also have an induced operational semantics and an induced relation between the two semantics. 
Figure 1 shows the relations. Note that the heavy lines in this figure refer to induced mappings 
only. 

We think that the uniform abstraction procedure of first giving semantics to an uniform lan­
guage and then the interpretation, gives more insight into the model. Moreover, we have the 
automatic link with an operational model. 

The idea of a translation of Concurrent Prolog is already present in [Be]. In that paper a 
translation to Milner's CCS (Calculus of Communicating Systems) is provided. The recursion 
structure that is used in the paper is different: a clause is modeled by an agent which tries 
continuously to apply itself. In our model the equivalent of clauses is (recursive) procedures. The 
model in [Be] is based on synchronous communication, which is not present in our model. 

We treat a larger subset of Concurrent Prolog than [GCLS]. The main difference is that we allow 
non-flat guards. This leads to more complex semantic domains: we have to introduce the notion 
of atomicity. One of the nice points of [GCLS] is that it makes clear what can be observed from 
a Concurrent Prolog program: for example that we can distinguish between failure and deadlock. 
They prove that their semantics is fully abstract with respect to the operational semantics. If 
we take the same observation criteria, we can adapt our semantic model (restricted to the subset 
considered by [GCLS]) in such a way that it is fully abstract along the lines of the methods 
described in [Ru]. A point of further research is whether or not non-flat guards influence these 
results. Following Apt and Plotkin ([AP]) we recall that in the case of unbounded nondeterminism 
(caused by non-flat guards) it might be impossible to assign a fully abstract semantics. 

We give an outline of the rest of our paper. Metric topological preliminaries are given in 
section 2. Section 3 describes the language C with its operational semantics 0 and in section 4 
the denotational semantics is defined. Section 5 gives the relationship between 0 and 1J. Finally, 
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section 6 provides the translation from Concurrent Prolog to £. There are two appendices: the 
first one shows the compactness of a certain set (this result is used to show that one of the semantic 
models is welldefined) and in the second appendix we treat the extended unification of Concurrent 
Pro log. 

2 Metric Preliminaries 

We give in this section some basic definitions and properties about metric spaces. Let N be the 
set of natural numbers. For further reference we suggest [En]. 

Definition 2.1 (Metric Spaces) A metric space is a pair (M, d) with M a non empty set and 
d a mapping d: M x M-+ [O, 1] (a metric distance), which satisfies the following properties: 

1. Vx, y E M[d(x, y) = 0 {:} x = y], 

2. Vx, y E M[d(x, y) = d(y, x)], 

3. Vx, y, z E M[d(x, y):::; d(x, z) + d(z, y)]. 

A metric space is called an ultrametric space if we replace 3 by the stronger 3': 

31
• Vx, y, z E M[d(x, y):::; max(d(x, z), d(z, y))]. 

Definition 2.2 Let ( M, d) be metric space. Let ( Xi )i be a sequence in M. 

1. We say that (xi)i is a Cauchy sequence whenever we have 

Ve> 03N E NVn, m > N[d(xn, Xm) < e]. 

2. Let x EM. We say that (xi)i converges to x and call x the limit of (xi)i whenever we have 

Ve> 03N E NVm > N[d(x, xm) < e] 

Such a sequence we call convergent. Notation: liIDi-oo Xi = x. 

3. The metric space (M, d) is called complete whenever each Cauchy sequence converges to an 
element of M. 

Definition 2.3 Let (Mi, di), (M2, d2) be metric spaces. Let 0:::; c < 1. A function f from Mi to 
M2 which satisfies 

Vx,y E M[d2(f(x),f(y)):::; c.di(x,y)] 

we call contracting. 

Theorem 2.4 (Banach's fixed point theorem) Let (M, d) be a complete metric space and f: 
M -+ M a contracting function. Then there exists an x E M such that the following holds: 

1. f(x) = x (x is a fixed point of!), 

2. Vy E M[f(y) = y ~ y = x] (x is unique). 

Definition 2.5 (closed subsets) A subset X of a metric space (M,d) is called closed whenever 
each Cauchy sequence of elements in X converges to an element of X. 

Definition 2.6 The closure Cl(X) of a subset X of a metric space is the set {liIDi-oo Yi : Vi[yi E 
X] /\ (Yi)i is a Cauchy sequence}. 
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Definition 2. 7 {compact subsets) A subset X of a metric space ( M, d) is called compact when­
ever each sequence of elements in X has a converging subsequence. 

Definition 2.8 Let (M, d) (Mi, di) (M2, d2) be metric spaces. 

1. We define a metric d on the functions in Mi-+ M2 as follows. For Ji, h E Mi -+ M2 

d(fi, h) = sup{d2(Ji(x), h(x)): x E Mi} 

2. Let Pc0 (M) = {X C M : X is compact and non empty} and Pc1(M) = {X C M : 
X is closed and non empty} . We define a metric dH on both Pc0 (M) and Pc1(M) 1 called 
the Hausdorff distance, as follows. For every X, YE Pco(M) {E Pc1(M)) 

dH(X, Y) = max{sup{d(x, Y) : x EX}, sup{d(y, X) : y E Y}} 

where d(x, Z) = inf{d(x, z): z E Z} for every Z CM, x EM. 

Theorem 2.9 Let (M,d), (Mi, di), (M2,d2) be complete (ultra)metric spaces. We have that 
Mi -+ M2, P co(M) and P ci(M) (with the metrics defined above) are complete (ultra)metric spaces. 

In the sequel we sometimes suppress the definitions of metrics. We then assume that they are 
constructed in the standard ways as outlined above. 

3 Syntax and operational semantics 

Assume given a (possibly infinite) set of atomic actions B, with typical element b. Let Proc, with 
typical element P, be a set of procedure variables. These two basic sets are used in 

Definition 3.1 We define the set of statements£, with typical element s, by the following gram­
mar: 

A statement s is one of the following six forms: 

• an elementary action b 

e a procedure variable P 

• the sequential composition si; s2 of statements si and s2 

• the nondeterministic choice si + s2 

• the concurrent execution s1 II s2, modeled by arbitrary interleaving 

e the atomic version [s] of s, modeled by interpreting s as an elementary action 

Assume given a set of states E, with typical element u. Let Int = B-+ E -+partial Ebe the set of 
interpretations and let f be a typical element of Int. Given an elementary action band an initial 
state u, f(b)(u) (if it exists) is the state after the execution of bin state u. The set of declarations 
Deel (with typical element d) has as elements functions from Proc -+ £ 9 , where £ 9 (the set of 
guarded statements) is defined in 

Definition 3.2 We define the set of guarded statements £ 9 , with typical element g, by the following 
syntax: 

9 b I 9; s I 9i + 92 I 9i 11 u2 I [uil 
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Note that £ 9 C £. Intuitively, a statements is guarded if all procedure variables are preceded by 
some statement. A program is a triple(!, d, s), where sis a statement, d E Deel is a declaration 
for the procedure variables in s and f is an interpretation of the atomic actions. Let Prog be the 
set of programs. In the sequel we sometimes suppress the declaration and interpretation parts of a 
program: instead of writing (!, d, s) we write just s. The operational semantics for £ is based on a 
transition relation in the style of [PI]. A transition relation describes the steps we can take during 
a computation. We use a special symbol E, which stands for termination. A step can change the 
state and the (rest of the) program we have to execute. 

Definition 3.3 Let 

- ~ (Prog x Ex (Prog u {E}) x E) 

be the smallest relation satisfying (writing (s, u) - (s', u') for (s, u, s', u') E- and (s, u) - (E, u') 
for (s, u, E,u') E- and writing A -? Ail ... !An => B -? Bil · .. IBn for A - Ai => B -
Bi A ... /\ A - An=> B - Bn where A, B are typical elements of (Prog U {E}) X E) 

• (b,u)-(E,f(b)(u)) if f(b)(u) exists 

• (d(P), u) - (s, u')l(E, u') => (P, u) - (s, u')l(E, u') 

• (si,ui)- (s2,u2)l(E,u2) =>(si;s,ui) -(s2;s,u2)l(s,u2) 
(si II s, ui)- (s2 II s, u2)l(s, u2) 
(s 11 si, u1)- (s 11 s2, u2)l(s, u2) 
(s + s1, ui)- (s2, u2)l(E, u2) 
(s1 + s, u1)- (s2, u2)l(E, u2) 

• (s, u) -· (E, u') => ([s], u) - (E, u') (writing_ .. for the transitive closure of-) 

The last rule takes several transitions together: in order to get a step from ([s], u) we analyse 
sequences of steps from (s, u). We have the following lemma: 

Lemma 3.4 For alls E £ and u E E, the set 

{ s' E £ : 3u' E E[(s, u) - (s', u')]} 

is a finite set. 

Please note that the set (for any s E £ and u E E) {( s', u') E £ x E : ( s, u) - ( s1
, u')} is in general 

an infinite set. 

We use the transition relation to give an operational semantics: we collect the sequence of states 
during a computation. Such a sequence can be finite or infinite. We also signal deadlock by 
a special symbol 6. Deadlock means that from a configuration (s, u) no transition is possible. 
This can happen because Int contains partial functions. Let E* (Ew) denote the collection of all 
finite (infinite) words over E. Let x be a typical element of E* and let y be a typical element of 
E00 = E* U Ew. Let E+ be E* without the empty word and let Eit = E* · { 6} U E+ U Ew. Let z 
be a typical element of Eit. Put S = E - P(E~t): the set of functions from E to subsets of Ejt. 
The operational semantics is given in 

Definition 3.5 Let 

0: Prog-S 

be given by 

O(s) = AU. { 1T1 ···Un : (s, u) - (s1, u1)- · · - (E, ITn)}U 

{ 1T1 ···Un···: (s, u) - (si, u1) · · · - (sn, Un) - · · ·}U 
{u1 · · • Un6 : (s, u) - (s1, u1)- · ·-? (sn, Un)~} 
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(writing (sn,un) f+ forVs,u[(sn,O"n,s,u) <t.- A(sn,O"n,E,u) <t.-]J 

Note that the operational semantics is not compositional: take for example: B = { v := 1, v := 
2, v := v + 1}, E = N (the set of integers), The state records the value of v. Let f E Int be such 

that f(v := l)(u) = 1, f(v := 2)(u) = 2, f(v := v + l)(u) = u + 1. Take s1 = v := 1; v := v + 1 

and s2 = v := 1; v := 2. We have O(s1) = O(s2) = Au.{12}, but O(s1 II s1) = Au.{1212, 1123} and 

O(s2 II s2) = Au.{1212, 1122}. 

We turn Eit into a complete metric space in 

Definition 3.6 

1. Define for each z E E~t, z[n] as the prefix of length n, if this exists, and z[n] = z, otherwise. 

2. We define a metric dst on Eit by putting dst(z1, z2) = 2-N if z1 'I z2 where N = sup{n : 

z1[n] = z2[n]} and dst(z1, z2) = 0 if if z1 = z2. 

We have the following lemma: 

Lemma 3.7 For any s EC and u EE, O(s)(u) is a closed set. 

Proof Take any s E C and u E E. Suppose (Yi)i is a Cauchy sequence in O(s)(u). We show 

that limt-oo Yi E O(s)(u). We only consider the case that limt-oo Yi E Ew (otherwise limt-oo Yi 

is constant from some moment on). Suppose that limt-oo Yi = u1u2 · · ·. For all i we have that 

Yi E O(s)(u) and this implies that for any i we can pick sequences (sij, O"ij ); such that 

(s,u) - (sil,uii) - (si2,0"i2) - ··· 

and 

Because (Yi)i is a Cauchy sequence, an infinite number of O"il equals 0-1. By lemma 3.4, there 

is only a finite number of possibilities for Si1. Hence there exists a s1 E C such that an infinte 

number of tuples (sil, uil) equals (s1, 0-1). We can continue this construction and find a sequence 

of statements (s1)1 such that 

(s, u) - (s1, 0-1) - (s2, 0-2) - · · ·. 

Hence y = 0-10-2 · · · E O(s)(u). 0 

Next we give an alternative definition for the operational semantics. Lemma 3.4 is used to show 

that this definition is well-defined. In the proof that the two definitions of 0 coincide we use 

lemma 3.7. 
From this moment on, we restrict S to the set of functions from E to the closed subsets of Eit: 

S = E - P c1(E~t). This enables us to assign a metric to S in the standard way described in the 

previous section. 

Definition 3.8 (alternative definition for 0) Let('.) : Prog - S be the unique fixed point of 

the contraction d: (Prog - S) - (Prog - S) which is defined as follows. 

~(F)(s) =AO". {6: (s,u) f+} U 

{0-1 : (s, u) - (E, 0-1)} U 
LJ{u1 · F(si)(ui) : (s, u) - (s1, 0-1)} 

First we show that the definition above is welldefined, i.e. that for any F, s, u we have that 

~(F)(s)(u) is a closed set. Take any F, s, u and a Cauchy sequence (zi)i in ~(F)(s)(u). There 

exists an infinite subsequence of ( z J(i) )i (f : N - N monotonic) in one of the three following sets: 

1. {6: (s,u) -/+} 
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2. { u1 : (s, u) ---+ (E, u1)} 

3. LJ{u1 · F(s1)(u1) : (s, u)---+ (s1, u1)} 

We consider only the third case. By lemma 3.4 we know that there is only a finite number of 
possibilities for s1. Hence we can pick a u1 and a monotonic funtion g : N ---+ N such that 
(zg(J(i)>}i is an infinite subsequence of (zJ(i))i in {u1 · F(s1)(u1): (s,u)---+ (s1,u1)}. (Only u1 is 
free.) Because (zg(J(i)>)i is an infinite subsequence of a Cauchy sequence, we can find a u1 and 
a monotonic a monotonic funtion h : N ---+ N such that (zh(g(J(i))))i is an infinite sequence in 
{u1 · F(si)(u1): (s,u)-+ (s1,u1)}. Because (by definition of F) F(s1)(u1) is a closed set we have 
that { u1 · F(s1)(u1) : (s, u) ---+ (s1, u1)} is a closed set. Hence the infinite subsequence (zh(g(J(i))))i 
of (zi)i converges to an element in A(F)(s)(u). So also the whole Cauchy sequence converges to 
the same element in A(F)(s)(u). 

Next we show that the two definitions for 0 coincide. By lemma 3.7 we know that 0 : Prag---+ S 
(0 of definition 3.5). It is not difficult to see that A(O) = 0. By Banach's fixed point theorem 
we have that the two fixed points are the same. 

4 Denotational semantics 

In this section we define a denotational semantics for .C. We call a semantics denotational if it is 
compositionally defined and tackles recursion with the help of fixed points. With each operator 
in £, we associate a semantic operator. The denotational semantics will be the fixed point of a 
higher-order operator. The denotational semantics will be based on domains which are metric 
spaces. These domains are defined as solutions of domain equations. The equations can be solved 
with techniques described in (AR] or (BZ]. 

In the construction of the domains for the denotational semantics we need an operator :E O which 
is defined in 

Definition 4.1 Let (M, d) be a metric space. We define a metric d on :E OM =de/ E~t U :E+ x M 
by putting 

• d( Zi, z2) = dst( z1, z2) if z1, z2 E E5t 

if z1,z2 E :E+,m1,m2 E M,z1 '# z2 
if z1, z2 E :E+, m1, m2 E M, z1 = z2 

if z1 E :E~t, z2 E :E+, m E M, z1 '# z2 
if z1 E :E~t, z2 E :E+, m E M, z1 = z2 

if z2 E :E~t, z1 E :E+, m E M, z1 '# z2 
if z2 E :E~t, z1 E :E+, m E M, z1 = z2 

We have that (:E OM, d) is a complete ultrametric space if (M, d) is a complete ultrametric space. 
We briefly recall the notion of a (metric) domain equation. The general form of such an equation 
is P = F(P) or, more precisely, (P,d) e:: F((P,d)), where the mapping F maps metric spaces 
to metric spaces. Under certain conditions, we can find unique solutions (upto isometry) in the 
category of complete metric spaces. We have no room to discuss details. For our purposes, it 
is sufficient to know that P = :E ---+ Pc0 (:EoP) has a complete ultrametric space as solution. 
Formally, the metric on :E---+ 'Pc0 (:EOP) is derived from the metric on Mi= P, M 2 = EOM1, 
M3 = Pco(M2) and M4 = :E---+ M3. 

Definition 4.2 Let P be the unique complete ultrametric space that satisfies 

P = :E---+ 'Pco(EoP) ,, 
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Elements of P are called processes. Let p be a typical element of P. Given an initial state u, p( u) 
is a (compact) set. Elements of this set are either in :E~t or in :E+ x P. An element in :E+ (:Ew) 
can be seen as a (non) terminating computation, an element in :E* · {8} as a computation ending 
in deadlock. An element in :E+ x P can be viewed as a terminating computation which has a 
resumption: after the computation (which is finite), it turns itself into another process. 

For each syntactic operator in .C we define a semantic operator. The semantic operators corre­
sponding with ;, +and II will be of type P x P-+ P and the semantic operator corresponding to 
[·] will be of type P -+ P. 

Definition 4.3 The operators®, +, 0: P x P-+ P and the operator stream: P-+ P are defined 
as follows. Let 

P1 +P2 = ,\u.(p1(u) U P2(u)) 

and let®, 0 be the unique fixed points of the contractions <P0, <Pfl : {P x P-+ P)-+ {P x P-+ P) 
that are defined as follows 

<P0(F)(pi,p2) = ,\u. {z: z E P1(u) A z E :EW u :E* .{S}}u 
{(z,p2): z E P1(u) A z E :E+}u 
{(z, F(p,p2)): (z,p) E P1(u)} 

<Pn{F)(p1,p2) = <P0(F)(pi,p2)+<P0(F)(p2,P1) 

and let stream: P-+ P be the unique fixed point of the contraction <Patream: {P-+ P)-+ (P-+ P) 
that is defined by 

<Patream(F)(p) =AU. {z E :E$t: Z E p(u)}U 
{xu'z: (xu',p') E p(u) A z E F(p')(u')} 

We give some explanation for the stream operation. First note that for all processes p and states u 
we have that stream(p)(u) f; :Eit. Hence we can say that the operator stream removes the tree-like 
structure of the process. It also removes the interleaving points of a process. Processes allow for 
interleaving: an element ofp(u) can be of the form (x,p'). After computation x it turns itself into 
p'. Before starting the computations in p', other processes can do some computations. Accordingly 
we say that between x and p' we have an interleaving point. The operator stream removes these 
points by passing the final state of the computation x as argument to the process p1

• 

In the sequel we use a left-merge operator 

Definition 4.4 Define 11: P x P-+ P by 11 = <P0(0). 

We often write +, 11, IL rather than +, n, 11 if no confusion is possible. We have the following 

lemma. 

Lemma 4.5 For all p1,p2,PLP~ E P and for all op E {®,II, IL+} we have 

and 

A proof of a very similar lemma was given in [BZ]. Now we can define a denotational semantics 
for .C in 

Definition 4.6 Let V : Prog-+ P be the unique fixed point of the contraction <P : (Prog-+ P) -+ 
(Prog-+ P) which is defined inductively as follows. 

,, 
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• <I>(F)(b) =.Au. { {{{}(b)(u)} iff(b)(u)exists 
u otherwise 

• <I>(F)(P) = <I>(F)(d(P)) 

• <I>(F)(si;s2) = <I>(F)(si) ® F(s2) 

• <I>(F)(si + s2) = <I>(F)(si) + <I>(F)(s2) 

• <I>(F)(si II s2) = <I>(F)(si) II <I>(F)(s2) 

• <I>(F)([s]) = stream(<I>(F)(s)) 

5 Relation between the operational and denotational se­
mantics 

The operational semantics 0 delivers linear-time objects (for a given state u, O(s)(u) ~ :E6t) 
whereas the denotational semantics 'D delivers branching time objects in P. We define a restriction 
operator restrwhich will link 0 and 'D: given a process p and an initial state u, it delivers certain 
'paths' in the process p. A path will be an element of :E6t. In the next definition we use the 
operator last which takes the last element of a word in I;+. 

Definition 5.1 Let 

restr: P-+ S 

be the unique fixed point of the contraction 

r : (P -+ S) -+ (P -+ S) 

which is given by r(F)(p)(u) = {6} if p(u) C :Ew U :E* · {6} and 

r(F)(p)(u) = Cl( {last(x): x EI;+/\ x E p(u)} U 
LJ{last(x) · F(p')(last(x)): (x,p') EI;+ x P /\ (x,p') E p(u)} 

) 

otherwise. 

We have 

Theorem 5.2 0 = restr o 'D 

In order to prove this theorem, we will define an intermediate semantics I. It is called intermediate 
because it serves as an intermediate semantics between 0 and 'D: it is defined with the help 
of a transition system (like the operational semantics) and it delivers tree-like objects (like the 
denotational semantics). An essential further property of the intermediate semantics (compared 
to the operational semantics) is that it keeps the intermediate states in the computation. This 
facilitates the proof of the theorem which we prove in two steps. First we show that I= 'D and 
secondly we show that 0 = restr o I. 

We prove I= 'D by showing that 'Dis a fixed point of the defining contraction of I, and hence, 
by Banach's theorem, we have that I ='D. We give the transition system for the intermediate 
semantics I in 

Definition 5.3 Let 

-+ ~ Prog x :E x :E00 x ( Prog U { E}) x (:E U { 6}) 

be the smallest relation satisfying (writing ( s, u) ..!!.+ ( s', u') for ( s, u, y, s', u') E-+, { s, u) ..!!... { E, u') 
for(s,u,y,E,u') E-+, (s,u) ..!!... (s1 ,6)for(s,u,y,s',6) E-+ and(s,u) ..!!... (E,6)for(s,u,y,E,6) E-+ 
and writing A -+ Ai 1- .. !An => B -+ Bi I · .. IBn for A -+ Ai => B -+ Bi/\ .. . /\A -+ An => B -+ Bn 
where A,,,B are typical elements of (ProgU {E}) x (:EU {6})) 
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• (b, u) ~ (E, f(b)(u)) if f(b)(u) exists 

• (b, u) ~ (E, e) if f(b)(u) does not exist 

• ( d(P), u) .!!.+ (s, u')l(E, u')l(s, e)l(E, e) =? (P, u) .!!.+ (s, u')l(E, u')l(s, e) l(E, e) 

• (si, 0-1) .!!.+ (s2, u2)l(E, u2)l(s2, e)l(E, e) =?(s1; s, 0-1) .!!.+ (s2; s, u2)l(s, u2)l(s2; s, e)l(s, e) 
(s1 11s,0-1) .!!.+ (s2 11 s, u2)l(s, u2)l(s2 11 s, e)l(s, e) 
(s II s1, 0-1) .!!.+ (s 11 s2, u2)l(s, u2)(s l1 s2, e)l(s, e) 
(s + s1, 0-1).!4 (s2, u2)l(E, u2)l(s2, e)l(E, 6) 
(s1+s,0-1).!4 (s2, u2)l(E, u2)l(s2, e)l(E, e) 

Note that we have defined two transition relations: one in definition 3.3 and the other in defini­
tion 5.3. The second relation is always written with a superscript. The following lemma holds 

Lemma 5.4 

3y[(s, u) .!!.+ (s', u')] {:} (s, u) - (s', u') 

3y[(s, u) .!!.+ (E, u')] {:} (s, u) - (E, u') 

It follows that 

(s,u)-f+<=? ..,3y,s',u'[(s,u) .!!.+ (s',u')V (s,u) .!!.+ (E,u')] 

Next we give the intermediate semantics: 

Definition 5.5 Let I: Prog - P be the unique fixed point of the contraction W : (Prog - P) -
(Prog - P) which is defined as follows. 

w(F)(s) = >.u. {yu' : (s, u) .!!.+ (E, u')}U 
{ye : (s, u) .!!.+ (E, e)}u 
{ye: (s,u) .!!.+ (s',e)}u 
{(yu', F(s')): (s, u) .!!.+ (s', u')} 

In an appendix we show that W is well-defined (i.e. for any F, sand u we have that w(F)(s)(u) 
is a compact set). We provide a lemma with properties of the defining contraction W of I: 

Lemma 5.6 

1. w(V)(b) = V(b) 

2. w(V)(P) = w(V)(d(P)) 

3. '\If(V)(s1; s2) = w(V)(si) © V(s2) 

4. '\If(V)(s1 + s2) = w(V)(si) + w(V)(s2) 

5. '\If(V)(s1 II s2) = w(V)(si) ll_V(s2) + w(V)(s2) ll_V(si) 

6. w(V)([s]) E P n s 
,. 
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7. w{V)([s]) = Au. {yu' : {s, u) .!4 (E, u')}U 
{y6 : (s, u) .!4 (s', 6)}U 
{y6 : (s, u) .!4 (E, 6)}U 
LJ{yu' · w(V)([s'])( u') : ( s, u) .!4 ( s', u')} 

We give some details of the proof of case 5. 

w(V)(s1 II s2) =AO". {yu' : (s1 II s2, u) .!4 (E, u')}u 
{y6 : (s1 II s2, u) .!4 (E, 6)}U 
{y6: (s1 II s2,u) .!4 (s',6)}u 
{(yu', V(s')) : (s1 II s2, u) .!4 (s', u')} 

Because a transition from (s1 II s2 , u) never yields a configuration of the form (E, u') or (E, 6) we 
have that 

w(V)(s1 II s2) =AO". {y6: (s1 II s2,u) .!4 (s',6)}U 
{(yu',V(s')): (s1 II s2,u) .!4 (s',u')} 

By properties of the transition system we have 

(s1 II s2, u) .!4 (s', u') 

if and only if 

3sH{si, u) .!4 (sL u') As' = s~ II s2] 

or 

or 

(s1,u) .!4 (E,u') As'= s2 

or 

( s2, u) .!4 ( E, u') A s' = s1. 

By similar properties we have 

if and only if 

3sH{s1, u) .!4 (s~, 6) As' = s~ II s2] 

or 

or 

or 

(s2, u) .!4 (E, 6) As'= s1. 

Hence 
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w('D)(s1 II s2) =AU. {yc5: (s1,u) .L, (sLc5)}u 
{ yc5 : ( s2, u) l4 ( s~, 6)} U 

{yc5 : (si, u) l4 (E, c5)}U 

{yc5 : (s2, u) l4 (E, c5)}U 

{(yu', V(s~ II s2)) : (si, u) l4 (sL u')}u 

{(yu', 'D(s1 II s~)) : (s2, u) l4 (s~, u')}U 
{(yu',V(s2)): (s1,u) l4 (E,u')}U 

{(yu', 'D(s1)) : {s2, u) l4 (E, u')} 

Rearranging and using the compositionality of 'D we obtain 

w('D)(s1 II s2) =AU. {yc5: (s1,u) .L, (sLc5)}u 
{yc5 : (s1, u) l4 (E, c5)}u 

and this equals 

Lemma 5.7 W('D) = 'D 

{(ycr', V(si) II 'D(s2))) : (s1, u) l4 (s~, u')}U 

{(yu', 'D( s2)) : ( s1, u) l4 ( E, u')}u 

{yc5 : (s2, u) l4 (s~, c5)}U 

{yc5 : (s2, u) l4 (E, c5)}U 

{(yu', 'D(s1) 11 V(s~)) : (s2, u) l4 (s~, cr')}U 
{(yu', 'D(s1)) : (s2, u) l4 (E, u')} 

Proof We show that for all s E .C 

d(W('D)(s), 'D(s)) :::; !.d(W('D), 'D) 

This implies that d(W('D), V):::; !.d('1!('D), 'D), i.e. d(W('D), 'D) = 0, i.e. '1!('D) ='D. 

We first prove it for g E £ 0 • We use structural induction on the elements of .C0 • We give only the 
cases g; s, [g]: 

(g; s) d(W('D)(g; s ), 'D(g; s)) = 
(lemma 5.6) 

d('1!(V)(g) © 'D(s), 'D(g) © 'D(s)) :::; 

(lemma 4.5) 

max{d('1!('D)(g), 'D(g)), d(V(s), 'D(s))} = 

d('l!('D)(g ), 'D(g)) :::; 

(induction) 

!.d('1!('D), 'D) 

([g]) d(w(V)([g]), 'D([g])) :::; 

( d is an ultrametric) 

max{ d('1!('D)([g]), stream('1!('D)(g)) ), d( stream('1!('D)(g) ), 'D([g]))} 
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We show that 

1. d(w(V)([g]), stream(w('.D)(g))) $ !.d(W'(V), V) 

2. d(stream(w(V)(g)), V([g])) $ !.d(W'(V), V) 

1. w(V)([g]) = 
(lemma 5.6) 

Au. {yu' : (g, u) l4 (E, u')}U 
{y6: (g, u) l4 (s', <5)}u 
{y6 : (g, u) l4 (E, 6)}U 
LJ{yu'. w('.D)([s'])(u'): (g,u) l4 (s',u')} 

On the other hand, we have 

stream(W'(V)(g)) = 
(definition of w) 

stream( Au. {yu' : (g, u) l4 (E, u')}U 
{y6: (g,u) l4 (s',<5)}u 
{y6 : (g, u) l4 (E, 6)}u 
{(yu', V( s')) : (g, u) l4 ( s', u')}) = 

(definition of stream) 

Au. {yu' : (g, u) l4 (E, u')}U 
{y6: (g,u) l4 (s',6)}U 
{y6 : (g, u) l4 (E, 6)}u 
LJ{yu' · stream(V)(s')(u')): (g,u) l4 (s',u')} = 

Au. {yu' : (g, u) l4 (E, u')}U 
{y6: (g,u) l4 (s',6)}U 
{y6 : (g, u) J4 (E, 6)}U 
LJ{yu' ·V([s'])): (g,u) l4 (s',u')} 

so 

d(W'(V)([g]), stream(W'(V)(g))) $ !-d(w(V), V) 

since yu' is not equal to the empty word (hence the factor !)· Note that the last step 
does not use the induction hypothesis. 

2. d(stream(w(V)(g)), '.D([g])) = 
d(stream(W'('.D)(g)), stream(V(g))) $ 

(lemma4.5) 

d(w(V)(g), V(g)) $ 

(induction hypothesis) 

t.d(W'('.D), V) 

Secondly, we extend £ 9 to .C. We use structural induction on the elements of£. All cases are the 
same as for £ 9 , except for P (which is not present in the guarded case). 

(P) By lemma 5.6 we have 

w(V)(P) = w(V)(d(P)) 
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and by the definition of V we have 

V(P) = V(d(P)) 

Hence 

d(w(V)(P), V(P)) = 

d(w(V)(d(P)), V(d(P))) :S 

( d( P) is a guarded statement) 

~.d(w(V), V) 

By Banach's fixed point theorem we have the following 

Corollary 5.8 I = V 

Lemma 5.9 0 = restroI 

Proof We show that 

A( restr o I) = restr o I 

D 

where A is the defining contraction of 0. By the definition of A, A(restr o I)(s)(u) = {o} if 
(s, u) -f+. Because (s, u) -f+ implies 

-.3y, s', u'[(s, u) .!!,. (s', u') V (s, u) .!!,. (E, u')] 

we have by definition of I that 

I(s)(u) c Ew u E* . {o} 

i.e. (restroI)(s)(u) = {o}. Now assume that there are transitions possible from (s,u): 

A(restro I)(s)(u) 

= 
{u': (s,u)-1- (E,u')}u 
LJ{u' · (restroI)(s')(u'): (s,u)-1-(s',u')} 

= (because restroI E Prog -1- S we have that A(restroI)(s)(u) is a closed set by definition of 
A ( cf. the justification for definition 3.8)) 

Cl( {u': (s,u) -1- (E,u')}u 
LJ{ u' · ( restr o I)(s')( u') : (s, u) -1- (s', u')} 

) 

Cl( { last(x · u') : (s, u) ~ (E, u') /\ x E E*}U 
LJ{ last( x · u') · ( restr o I)( s')( last( :c · u') : ( s, u) ~ ( s', u')} 

) 

( restr o I)(s )(u). 

D 
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6 Concurrent Prolog 

In this section we apply the framework of the previous sections. We choose a set of elementary 
actions, a set of procedure variables, a set of states and an interpretation function in such a way 
that we obtain a denotational and an operational semantics for Concurrent Prolog. A Concurrent 
Prolog program is 'translated' to an element of Prog. 

We first introduce the language Concurrent Prolog (CP for short) in an informal way. The 
reader not familiar with CP should consult [Shl], the paper which introduces the concepts of CP. 

Let a be a typical element of the set of atoms Atom. Atoms are built up in the usual way 
from constants, variables, functors and predicate symbols. In CP there is a special functor ? of 
arity one which is called the read-only functor. The paper [Sa] signals some problems with the 
interpretation of the read-only functor in [Shl] . Saraswat gives in [Sa] an alternative interpretation 
for the read-only functor (input-only functor in his terms). This interpretation is an extension of 
normal unification. We take over his interpretation. In this section we do not give a formal 
definition of the extended unification. We provide an appendix in which we give the details. The 
rest of the paper can be read without knowledge of the exact details. We denote the extended 
unification function by mgu?. It is a partial function on Atom x Atom. If it is defined it delivers 
a substitution. 

A CP program is a finite set of elements (called clauses) of the following form: 

Both n, m can be 0. The bar I is called the commit operator, a the head, a 1 /\ ... /\an the guard 
and an+i /\ ... /\am the body of the clause. If n = 0 we have an empty guard and if n = m we have 
an empty body. Let Clause be the set of clauses and let c be a typical element of Clause. Besides 
a finite set of clauses, we also have a goal which is of the form 

If k = 0 we say that the goal is empty. The (interleaved) execution of a CP program goes as 
follows. We execute the goal given the identity substitution. The execution of a goal given a 
(current) substitution means that we try to resolve all the atoms in the goal until the goal is 
empty. If the goal is empty we return a substitution. In order to resolve an atom we unify it with 
the head of a clause (taking the current substitution into account) and we try to execute the guard 
(given the 'new' substitution resulting from the unification). The unification and the execution 
of the guard do not yet influence the current substitution. Only after the guard becomes empty 
we commit: we do not consider alternatives for this clause anymore and we replace the atom by 
the body of the clause and update the current substitution. The execution model described here 
is an interleaving model. We do not consider here a parallel model where we have truly parallel 
processes. In such a model we also would have to check if a substitution delivered by the execution 
of a guard matches with the current substitution. 

We introduce disjoint sets of variables. This is done for technical reasons. During the process 
described above we replace atoms by bodies of clauses. In order to avoid clashes of variables, every 
time we rewrite an atom we 'replace' the variables in the clause by new ones. This is intuitively 
correct because clauses are assumed to be universally quantified. Therefore we partition the set of 
variables Var into infinite disjunct subsets Vara, where a ranges over N", the set of finite words 
of integers. Assume injections a : Vare __,. Vara (and their natural extensions to elements of 
Atom). Now we choose our basic sets: take l: the set of substitutions, B = Atom x Atom and 
Proc =Atom x N* (where N* is the set of finite words of integers). A pair (a, a) in Proc specifies 
that we have to rewrite the atom a with a clause of the program in which the variables are taken 
from Vara. Take 

if mgu?(a1, u(a2)) is defined and is undefined otherwise. The composition o is the usual composition 
of substitutions (see for example [Ap]). 

q, 
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Fix a CP program and a goal. We assume that all variables in the program and in the goal are 

taken from Vare. We define a function 

by 

stm : Clause x Proc -+ C0 

stm(a - ai /\ ... /\ anlan+l /\ ... /\am, (a, o:)) = 

[(o:(a), a); (o:(a1), o: · 1) II ···II (o:(an), o: · n)]; 

(o:(an+1), o: · n + 1) II ···II (o:(am), o: · m) 

Suppose the set of clauses is { c1, ... , ck}. Define 

(*) d(P) = stm(c1, P) + · · · + stm(ck, P) 

Assume the goal is ii1 /\ ... /\ iik. Take 

s = (ai. 1) 11 .. ·II (ak, k) 

Some explanation is at its place. Execution of the goal consists in parallel execution of the k 

procedure variables (a1 , 1), ... , (ak, k). When we call stm on a clause c and a pair (a, o:) it considers 

what has to be done in order to rewrite atom a with clause c in which we have to take the variables 

from Vara. Suppose c =a - ai /\ ... /\ anlan+l /\ ... /\am. First we unify a with a (the head 
of clause c). Because we have to take variables from Vara we rename the variables in a with the 

operator o:: this results in the pair (o:(a), a). After this unification, we have to execute the guard 

of the clause c, i.e a 1 /\ ... /\an. We can execute all the atoms (in which the variables are renamed 

by o:) in parallel. In order to avoid clashes of variables, we specify that if o:( ai) is rewritten by a 

clause, variables in that clause are to be taken from Vara·i· The resolving of the guard and the 
unification is not (yet) allowed to influence other computations. This is modeled by considering 

them to be an elementary action by placing [·] around the unification and the guard. After the 

execution of the guard, we continue with the execution of the body: again with the renaming and 

the specification of sets of variables. 
Now we can also have a better understanding of the operator restr (see definition 5.1). Alter­

native clauses are joined together by the +operator in(*). Semantically this means that they are 

alternative computations. As indicated above, the grainsize (the computations between two inter­

leaving points) is the computation of guards. If there is a terminating guard computation, it can 

be chosen: deadlocking and/or nonterminating computations of guards need not to be considered 

anymore. If there are only deadlocking and/or nonterminating computations we never reach the 

commit and we have deadlock. 
This translation induces an operational- and denotational semantics for Concurrent Prolog: 

We combine the translation to C with the operational- and denotational semantics for C. Also 

the equivalence (an operator linking the two semantics for Concurrent Prolog) is induced by the 

translation: we already have the restriction operator restr that relates the two semantics for C. 

This method of uniform abstraction gives in our opinion more insight into the semantic models 

than a direct definition would give. A direct definition yields a transition system in the style of (Sa] 

and a denotational semantics as in [K]. The proof of the equivalence between two such semantic 

definitions would be more difficult to understand (due to the interpretation of the abstract sets). 

Note that the renaming of variables takes place at the level of syntax. An alternative would be 

to treat this renaming at a semantic level (for example in the states). 

Acknowledgement: we acknowledge fruitful discussions on our work in the Amsterdam concurrency 

group, including Frank de Boer, Arie de Bruin, John-Jules Meijer, Jan Rutten and Erik de Vink. 

We thank Erik de Vink and Katiuscia Palamidessi for the comments and suggestions made during 

the work. 

17 



References 

[AR] 

[Ap] 

[AvE] 

[AP] 

[ABe] 

[Be] 

[B] 

[BM] 

[BZ] 

(BKPR] 

[CG] 

[DM] 

[vEdL] 

[En] 

[FL] 

[GCLS] 

P. America, J .J .M.M. Rutten: Solving reflexive domain equations in a category of com­
plete metric spaces, Proc. of the Third Workshop on Mathematical Foundations of Pro­
gramming Language Semantics, Lecture Notes in Computer Science, Vol. 298, Springer 
(1988) 254-288. 

K.R. Apt, Introduction to logic programming, Report CS-R8741, Centre for Mathemat­
ics and Computer Science, Amsterdam (1987), to appear as a chapter in Handbook of 
Theoretical Computer Science, North-Holland. 

K.R. Apt, M.H. van Emden, Contributions to the theory of logic programming, JACM 
Vol. 29, No. 3, July 1982, pp. 841-862. 

K.R. Apt, G. Plotkin, Countable nondeterminism and random assignment, JACM Vol. 
33, No. 4, October 1986, pp. 724-767. 

B. Arbab, D.M. Berry, Operational and denotational semantics of PROLOG, Journal 
of Logic Programming 4 (1987) 309-330. 

L. Beckman, Towards a formal semantics for concurrent logic programming languages, 
Proc. of the Third International Conference on Logic Programming, Lecture Notes in 
Computer Science, Vol. 225, Springer (1986) 335-349. 

J. W. de Bakker, Comparative semantics for flow of control in logic programming without 
logic, Report CS-R8840, Centre for Mathematics and Computer Science, Amsterdam 
(1988). 

J. W. de Bakker, J .-J. Ch. Meyer, Metric semantics for concurrency , Report CS-R8803, 
Centre for Mathematics and Computer Science, Amsterdam (1988) to appear in BIT. 

J.W. de Bakker, J.I. Zucker, Processes and the denotational semantics of concurrency, 
Inform. and Control 54 (1982) 70-120. 

F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten, Control flow versus logic: a 
denotational and a declarative model for guarded horn clauses, Report CS-R88 .. , Centre 
for Mathematics and Computer Science, Amsterdam (1988) to appear. 

K.L. Clark, S. Gregory, Parallel programming in logic, ACM Trans. Program. Lang. 
Syst. Vol. 8, 1 (1986) 1-49. Res. Report DOC 84/4, Dept. of Computing, Imperial 
College, London (1984). 

S.K. Debray, P. Mishra, Denotational and operational semantics for PROLOG, in For­
mal Description of Programming Concepts - III (M. Wirsing, ed.), North-Holland (1987) 
245-269. 

M.H. van Emden, G.J. de Lucena, Predicate logic as language for parallel program­
ming, Report CS79-15, Dept. of Computer Science, Univ. of Waterloo. Also in Logic 
Programming (K.L. Clark & S.A. Tarnlund, eds.) Academic Press, New York (1982) 
189-198. 

R. Engelking, General Topology, Polish Scientific Publishers 1977. 

M. Falaschi, G. Levi, Operational and fixpoint semantics of a class of committed-choice 
languages, Techn. Report, Dipartimento di Informatica, Universita di Pisa, Pisa (1988). 

R. Gerth, M. Codish, Y. Lichtenstein, E. Shapiro, Fully abstract denotational semantics 
for concurrent prolog, Proc. Logic In Computer Science (1988) 320-335. 

18 



[HP] M. Hennessy, G.D. Plotkin, Full abstraction for a simple parallel programming language, 
in: Proceedings 8th MFCS (J. Becvar ed.), Lecture Notes in Computer Science, Vol. 74 
Springer {1979) 108-120. 

[JM] N.D. Jones, A. Mycroft, Stepwise development of operational and denotational seman­
tics for prolog, Proc. 1984 Int. Symp. on Logic Programming, Atlantic City, N.J. {1984). 

[K] J .N. Kok, A compositional semantics for concurrent prolog, Proc. Symp. on Theoretical 
Aspects Computer Science (R. Cori, M. Wirsing eds.), Lecture Notes in Computer 
Science Vol. 294, Springer (1988) 373-388. 

[KR] J .N. Kok, J .J .M.M. Rutten, Contractions in comparing concurrency semantics, Proc. 
15th International Colloquium Automata, Languages and Programming (T. Lepisto, A. 
Salomaa eds.), Lecture Notes in Computer Science Vol. 317, Springer (1988) 317-332. 

[Le] G. Levi, A new declarative semantics of flat guarded horn clauses, Techn. Report, ICOT, 
Tokyo {1988). 

[LPl] G. Levi, C. Palamidessi, The declarative semantics of logical read-only variables, Proc. 
Symp. on Logic Programming, IEEE Comp. Society Press {1985) 128-137. 

[LP2] G. Levi, C. Palamidessi, An approach to the declarative semantics of synchronization in 
logic languages, Proc. 4th Int. Conference on Logic Programming, Melbourne, {1987) 
877-893. 

[Ll] J.W. Lloyd, Foundations of Logic Programming, Springer {1984), (Second edition 1987). 

[MTSLS] C. Mierkowsky, S. Taylor, E. Shapiro, J. Levy, M. Safra, The design and implementation 
of flat concurrent prolog, Techn. Report CS85-09, Dept. of Applied Maths, Weizmann 
Institute, Israel (1985). 

[OH] E.-R. Olderog, C.A.R. Hoare, Specification-oriented semantics for communicating pro­
cesses, in: Acta Informatica 23 (1986) 9-66. 

[Pl] G.D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, 
Comp.Sci.Dept., Aarhus Univ. 1981. 

[Ri] G.A. Ringwood, Parlog 86 and the dining logicians, Comm. ACM, Vol. 31 (1988) 10-25. 

[Ru] J .J .M.M. Rutten, Correctness and full abstraction of metric semantics for concurrency, 
in Linear Time, Branching Time and Partial Order in Logics and Models for Concur­
rency (J .W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), Lecture Notes in Computer 
Science, Springer, to appear. 

[Sa] V .A. Saraswat: The concurrent logic programming language cp: definition and opera­
tional semantics, in: Conference Record of the Fourteenth Annual ACM Symposium on 
Principles of Programming Languages, Munich, West Germany, January 21-23, 1987, 
pp. 49-62. 

[Shl] E.Y. Shapiro, A subset of concurrent prolog and its interpreter, Tech. Report TR-003, 
ICOT, Tokyo (1983). 

[Sh2] E.Y. Shapiro, Concurrent prolog, a progress report, in Fundamentals of Artificial In­
telligence (W. Bibel, Ph. Jorrand, eds.), Lecture Notes in Computer Science, Vol 232, 
Springer (1987). 

[Ue] K. Ueda, Guarded horn clauses, Techn. Report TR-103, ICOT, Tokyo {1986). 

[Vi] E. de Vink, Equivalence of an operational and a denotational semantics for a prolog-like 
language with cut, Report IRR-151, Free University, Amsterdam {1988). 

19 



7 Appendix: welldefinedness of '1! 

In this appendix we show that the function w as defined in defintion 5.5 is welldefined: we show that 
w(F)(s)(u) is a compact set for any F, s, u. Before we state this as a lemma, we first define another 
transition system which enables us to analyse a computation (s, u) .!4 (s', u') by giving intermediate 
statements and states. When we have established relations between this new transition system to 
the old one, we are able to use a standard method to show compactness. 

We first extend the language .C to .c,ext by introducing the operators leftmerge lL and rightmerge 

11: 

The intuition behind the left (right) merge is that before we do the normal merge, we first do a 
step from the left (right) statement. Next we give the transition relation 

-+3C .c,ext X :EX (£ext U {E}) X (:EU {6}). 

It is the union of transition relations 

-+i. -+2C .c,ext X :E X (£ext U { E}) X (:EU { 6} ). 

The intuition behind -+i and -+2 is that we do -+2 transitions inside atomic brackets and that we 
do -+i transitions as long as we are outside the scope of such brackets. The transition relations 
-+i. -+2 are defined as follows: 

Definition 7.1 Let 

be the smallest relation satisfying (writing (s,u) -+i (s',u') for (s,u,s',u') E-+i and (s,u) -+i 
(E, u') for (s, u, E, u') E-+i and (s, u) -+i (E, 6) for (s, u, E, 6) E-+i and writing A -+i Ail· .. IAn ::::} 
B -+i Bil · .. IBn for A -+i Ai ::::} B -+i Bi A ... A A-+; An ::::} B -+; Bn where A, B are typical 
elements of (Prog U {E}) x :EJ (i = 1, 2} 

• (b, u) -+i (E, f(b)(u)) if f(b)(u) exists 

• (b, u) -1-i (E, 6) otherwise 

• (d(P),u)-+; (s,u')l(E,u')l(E,6)::::} (P,u)-+; (s,u')l(E,u')l(E,6) {i=l,2} 

• (si,ui)-+i (s2,u2)l(E,u2)l(E,6) ::::}(si;s,ui) -+i (s2;s,u2)l(s,u2)l(E,6) 
(si + s, ui)-+i (s2, u2)l(E, u2)l(E, 6) 
(s + si, ui)-+i (s2, u2)l(E, u2)l(E, 6) 
(s II si,ui)-+i (s II s2,u2)l(s,u2)l(E,6) 
(si II s,ui)-+1 (s2 II s,u2)l(s,u2)l(E,6) 
(s1 lL s, ui)-+i (s2 II s, u2)l(s, u2)l(E, 6) 
(s Jlsi, ui) -+i (s II s2, u2)l(s, u2)l(E, 6) 
([s1], ui) -+2 ([s2], u2)l(E, u2)l(E, 6) 

• (si,ui)-+2 (s2,u2)l(E,u2)l(E,6) ::::}(si;s,ui) -+2 (s2;s,u2)l(s,u2)l(E,6) 
(si + s, ui)-+2 (s2, u2)l(E, u2)l(E, 6) 
(s + si, ui)-+2 (s2, u2)l(E, u2)l(E, 6) 
(si II s, ui)-+2 (s2 lL s, u2)l(s, u2)l(E, 6) 
(s II si, ui)-+2 (s Jls2, u2)l(s, u2)l(E, 6) 
(s1 [Ls,ui)-+2 (s2 [Ls,u2)l(s,u2)l(E,6) 
(s Jlsi, ui) -+2 (s Jls2, u2)l(s, u2)l(E, 6) 
([si], u1) -+2 ([s2], u2)l(E, u2)l(E, 6) 

20 



Note that transitions of the form (s1 op s2, u) -+1 ···for op E {11_,Jl} are not needed if we consider 

only transition sequences from (s, u) where s E £. 

Lemma 7.2 For any (s, u) E 1:,ext x :E the sets 

{(s',u'): (s,u)-+3 (s',u')} 

and 

{(E, u') : (s, u) -+3 (E, u')} 

are finite. 

Next we give a relationship between the transition relations: 

Lemma 7.3 For all n 2'.: 0, s,s', u,u', u1, .. . ,un, ... we have: 

1. (s, u) ui:_:::n (E, u') => 3s1, ... , Sn E 1:,e:ct[(s, u) -+3 (s1, u1) -+3 · · · (sn, O'n) -+3 (E, u')] 

2. (s, u) ui:_:::n (s', u') => 3s1, ... , Sn E 1:,ext[(s, u) -+3 (s1, u1) -+3 · · · (sn, O'n) -+3 (s', u')] 

3. (s, u) ui:_:::n (s', 6) => 3s1, ... , Sn E 1:,ext[(s, u) -+3 (s1, u1) -+3 · · · (sn, O'n) -+3 (E, 6)] 

4. (s,u) ui:_:::n (E,6) => 3s1, .. . ,Sn E 1:,ext[(s,u)-+3 (s1,u1)-+3 · · ·(sn,O'n)-+3 (E,6)] 

5. (s,u) ui~··· (E,6) => 3s1,s2, ... E 1:,e:ct[(s,u)-+3 (s1,u1)-+3 (s2,u2)-+3 ···] 

6. (s, u) ui~··· (s', h) => 3s1, s2, ... E 1:,ext[(s, u) -+3 (s1, u1) -+3 (s2, u2) -+3 · · ·] 

The inverse implications are not true in general: take b1, b2 such that /(b1)(u) = u and f(b2)(u) 
is undefined for all u. We have 

1. (b1;b1,u)-+3 (bi,u)-+3 (E,u) but not (b1;b1,u) .!!.+ (E,u), 

2. (b1;b1;bi,u)-+3 (b1;b1,u)-+3 (b1,u) but not (b1;b1;b1,u) .!!.+ (b1,u), 

3. (b1;b2,u)-+3 (b2,u)-+3 (E,6) but not (b1;b2,u) .!!.+ (s',6), 

4. (bi;b2,u)-+3 (b2,u)-+3 (E,6) but not (b1;b2,u) .!!.+ (E,6), 

5. d(P) = b1; P and (P, u) -+3 (P, u) -+3 (P, u) -+3 ···but not (P, u) u::..:;· (E, 6), 

6. d(P) = b1;P and (P,u)-+3 (P,u)-+3 (P,u)-+3 ···but not (P,u) u::..:;· (s',6). 

We can summarize these counterexamples above by saying that we do not have enough information 

about the grain size in the sequences of -+3 transitions. 
We introduce the notion of a substatement. A substatement intuitively is a part of a statement 

that can perform one step. The function sub delivers a set of substatements. 

Definition 7 .4 

1. sub(b) = {b} 

2. sub(s1; s2) = sub(s1) 

3. sub(s1 + s2) = sub(s1) U sub(s2) 

4. sub(s1 II s2) = sub(s1) U sub(s2) 

5. sub([s1]) = {[s1]} 

6. s;µb(P) = sub(g) if d(P) =g. 
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With the notion of substatement we are able to state the following lemma: 

Lemma 7.5 For all n ~ 0, s, u, u', ui, ... , Un, ••• we have: 

2. 3s'[(s, u) qi:.:_:: .. (s', 6)] V (s, u) qi:.:_:: .. (E, 6) 

3. 3s'[(s, u) qi~··· (s', 6)] V (s, u) qi~··· (E, 6) 

Now we turn to the welldefinedness of W: 

Lemma 7.6 We have that W'(F)(s)(u) is a compact set for any F, s, u. 

Proof 

Pick arbitrary F, s, u. Take an arbitrary infinite sequence in w(F)(s)(u). There exists an infinite 
subsequence of this subsequence in one of the following four subsets of '1i'(F)(s)(u): 

1. {yu' : (s, u) .!4 (E, u')} 

2. {y6: (s,u) .!4 (E,6)} 

3. {y6: (s,u) .!4 (s',6)} 

4. {(yu',F(s')): (s,u) .!4 (s',u')} 

We only consider case 4. The other cases can be handled in a similar way. First note that there is 
only a finite number of statements s' such that 

3u'3y[(s, u) .!4 (s', u')] 

Hence there exists an infinite subsequence of the form (yiuL F(s'))i for some fixed s'. Hence it 
suffices to show that (Yi<TDi has a converging subsequence. 

For all i there exists a statement s~ such that 

Yi 1 1 (s, u) ---+- (si, ui)· 

By lemma 7.5 we have that for each i there exist a substatement Si E sub(s), integer n, ~ 0, tuples 
(sil, uil), ... , (sin;, <Tin;) such that 
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There exists only a finite number of substatements of s. Hence an infinite number of the Si is 
equal to a certain s. So we are able to pick an infinite subsequence (YJ(i)Uf(i))i of (y,uDi where 
f is chosen such that f is monotonic and BJ(i) = s for all i. For each n ~ 1 we can pick a tuple 
(sn, un) and a monotonic function fn : N -l- N such that 

1. if n = 1 then (Y(Jiof)(i)u(Jiof)(i))i is an infinite subsequence of (YJ(i)Uf(i))i 

2. if n > 1 then (YUn+io···ofiof)(i)UC!n+io···ofiof)(i))i is an infinite subsequence of 

(Y(f nO···ofi of)( i)UC! no. ··fiof)( i) )i 

3. \li[(s(fno···ofiof)(i),n, U(JnO···ofiof)(i),n) = (sn, Un)]. 

We have 

(s,u)-l-3 (s1,u1)-l-3 (s2,u2)-l-3 ···. 

Take the infinite subsequence 

(Y(f ;o ·· ·ofi )( i)UC! ;o· ··ofi )( i))i 

of (y;u~)i. Note that 

Jim Y(f;o···ofiof)(i)UCJ;o···Ofiof)(i) = U1U2 · · · =def Y •-oo 
and by lemma 7.5 either 3s'((s, u) ~ (s', 6)] or (s, u) ~ (E, 6). 

8 Appendix: the function mgu7 

D 

In this appendix we show a way to define the function mgu7 based on the paper (Sa]. (Following 
(Sa] we interpret the read-only functor? as an input-only functor.) There are other ways to define 
this function. This paper is independent of the way the mgu7 function is defined. 

Following Saraswat, we impose the following restrictions: 

1. read-only functors are only allowed in heads of clauses, 

2. if a subterm of a term is annotated, then also the term is annotated. 

We formalize these points: Let t be a typical element of the set Term of terms in which the 
read-only functor ? does not appear: 

t ::= X I f(t1, ... , tn) (!f.?/\ n ~ 0). 

We extend Term to Term? as follows. Lets be a typical element of the set Term?: 

s ::= t I ?(x) I ?(f(s1, ... , sn)) (!f.? An~ 0). 

Let Atom contain elements of the form P(t1, ... , tn) and Atom? elements of the form P(si, ... , sn) 

where P is a predicate symbol of arity n. The restrictions can now be stated as follows: elements 
of Atom? are only allowed as the heads of clauses. All other atoms (in goals, guards and bodies) 
are to be taken from A tom. 

Assume that a variable in the head of a clause is annotated (preceeded by a read-only functor). 
The meaning of this annotation is that the variable should receive a (partial) value (i.e. a term 
that is not a variable) when it is unified with an atom in the goal. 

We give an extended version of the unification algorithm based on (Ap] and (BKPR]: A finite 
subset of Term? x Term? we call solved if it is of the form 

{< Xi,fi >, · · .,< Xn,tn >} 

where for 1 :'.S i :'.S n we have that Xi E Var, t, E Term, Xi does not occur in ti and for 1 :'.S i < j :'.S n 
we have Xi f. x;. A finite solved subset of Term? x Term? determines a substitution 0 as follows: 
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O(xi) = ti (1 :::; i :::; n), 

O(x) = x (x fJ. {xi, ... , Xn}). 

Assume that X, Y C Term? x Term7. We write X ~ Y if Y is obtained from X by choosing an 
element of one of the forms below and by performing the corresponding action. 

1. < x, x >: delete the pair, 

2. <?(x), f(t1, ... , tn) >: replace by< x, f(t1, ... , tn) >, 

3. < f(t1, ... , tn), ?(x) >: replace by < f(t1, ... , tn), x >, 

4. <?(f(s1, ... , sn)), f(t1, ... , tn) >: replace by< s1, ti >, ... , < Sn, tn >, 

5. < f(t1, ... , tn), ?(f(s1, ... , Sn)) >: replace by< ti, S1 >, ... , < tn, Sn >, 

6. < f(t1, ... , tn), f(tL ... , t~)) >: replace by< ti, ti >, ... , < tn, t~ >, 

7. < t, x >: replace by< x, t >, 

8. < x, t > where x occurs in other pairs and x does not occur in t: apply substitution x := t 
to all other pairs. 

Now define 

by 

mgu7(P(s1, ... , sn), P(si, .. . , s~)) = 8 

if there exist an~ 0 and X1, X2, ... ,Xn such that 

where Xn is in solved form and determines 8, and is undefined otherwise. 
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