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A bound on the size of point clusters of a random walk with stationary

increments

by

H. Berbee

SUMMARY

Consider a random walk on ]fi with stationary, possibly dependent in-
crements. Let N(V) count the number of visits to a bounded set V. We give
bounds on the size of N(t+V), uniformly in t, in terms of the behavior of

N in a neighborhood of the origin.

KEY WORDS & PHRASES: Stationary increments, point cluster, point process






1. INTRODUCTION

Let (gn)neﬂl be a statignary sequence of random vectors in the d-dimen-

sional Euclidean space (R@, Bd). The process (S )

o’ nez determined by

S . :=0, Sn = gn + Sn—

0 , N € Z,

1
is called a random walk with stationary inerements. This definition of S,
for all n € Z is uncommon but will be useful in the present context.
Define the point process N by

NB) = § 1g(s), B e B

nez

We assume that the random walk is transient, i.e. N is finite on bounded
Borel sets B.

For random walks on Iﬂ with stationary, non-negative increments
KAPLAN (1955) proved that EN(t,t+h) < EN(-h,h) for real t and h > 0, In
case the increments are independent, this inequality is a simple consequence
of the Markov property (see FELLER (1970,VI.10)) and in fact N(t,t+h) is
stochastically dominated by N(-h,h). Below we shall see that this domina-
tion does not hold without independence.

Let us now consider random walks onIRd. Assume V is a bounded Borel set

with translate V+t := {s+t:s € V}, and suppose V., := {s-t:s,t € V} is also

a Borel set. We prove that if £ 2 0 is a functiog, growing not too slowly
such that

(1) n(f(n+1)-f(n)) 2 0 is non-decreasing

then

(2) E£(N(V)) < EE(N(V()).

The condition (1) is satisfied for e.g. f(n) = na, a >0, or £f(n) = log n.
If (2) were true for any non-decreasing f then N(V) would be stochastically

dominated by N(VO). However we prove



(3 P(N(V)2p) S YR(N(V,)2p) where y = 2 - =
for p =1,2,... . An example will show that y cannot be smaller without
restricting V. The two results above will follow from the more general
theorem 1 below. Inequality (3) could also be proved directly using the
method of BERBEE (1979), theorem 2.2.3.

Suppose 0 = £(0) < £(1) <... is given. Let c(n) := %-XE=1 f(k) be a

Cesaro average and let

h(n) := c(n) + sup (£(k)-c(k)).
k=n
We shall see that (1) implies that f-c is non-decreasing and then f = h.

In section 2 we show
THEOREM 1. EfE(N(V)) = Eh(N(VO)).

This result and also (2), (3) and (5) can be improved slightly if -V

is a translate of V. In that case we may replace N(Vo) by

(4) sup N(V')
V'30

where V' runs over the translates of V.

In section 3 we pay special attention to random walks on the real line.

We prove for an interval V = (t,t+h)

(5) P(N(V)2p) S YR(N(V,)2p) where Y = 3 - 5
for p = 1,2,... . An example shows that y cannot be smaller.

Replacing V by V+t in the inequalities does not change Vy. As a con-
sequence an important application of our results concerns uniform inte-
grability. Suppose that EN(U) < = on a neighborhood U of the origin. Using
that the bounded set V is contained in a finite union of translates of U,
it is proved easily from our inequalities that N(V+t) is integrable, uni-
formly in t. This result is used in BERBEE (1979) to obtain Blackwell's

theorem for stationary processes. A related integrability problem is solved



in DALEY (1971) in connection with .the global renewal theorem. A condition
for finiteness of EN(U) can be found in LAI (1977) in terms of strong mixing.
In the limit theory of semi-Markov chains very complicated integrability

conditions are used (see KESTEN (1974)).
2. INEQUALITIES FOR GENERAL V

The proof of theorem 1 is based on a combinatorial lemma. Let
A := (so,...,sn) be a finite sequence of points in Rk. Define the distant
cluster of s € A as the subsequence A(s)=A n (V+s) of points of A in V+s
(with the same multiplicities) and the close cluster as Ao(s) = An(VO+s).
Let n(s) and.no(s) denote the number of points in the distant and close
cluster of s.

With £ and h as in theorem 1 we have the following comparison lemma

for the sizes of distant and close clusters.
LEMMA 2. ) , f(n(s) = L hng(s)).

Here as in the proof below the sums are over the points in A with the’

right multiplicities.

PROOF. Obviously for s € A

£(n(s)) s clny(s)) + (f(n(S))—C(nO(S)))+-

Define
hy(s,t) = E%ET cng(s)),  teAds),
hy(s,8) i= == () -clny®N’, € < As),
h,(s,0) = h(s,0) := 0, otherwise.
Because n(s) = # A(s) we have, rewriting sums,

I £@(e)) < I(] hy(s,t) + ] hy(x,s))
s st r



and it suffices to prove that the term in brackets is at most h(no(s)).

This term equals

1 +
(6) c(n,(s)) + —— (£ (n(x))-c(n, (x))) .
0 r:sZA(r) n(r) 0

If s € A(r) then V + r © VO + s so n(r) s no(s).’Hence (6) is at most

1 +
cny(s)) + ) sup = (£(m)=c(n,(x)))".
r:seA(r) nSno(s)
The sum above is taken over k := # A n (-V+s) terms. If s € A(r) then
-V +sc¢C V0 +r, so k s no(r). Because ¢ is non-decreasing (f(n)-c(j))+

is non-decreasing in j. Hence (6) is at most

) c(ng() +k sup L (F@-c)”.
nSnO(s)

By the definition of ¢ as Cesaro average, the difference

k-1

S (@ - cl) - EL (E@-cl-D) = & (Em-£1))

1
n

is non-negative for k = n and non-positive for k 2 n. So the expression (7)

is maximal for k = n. Therefore (7) and so also (6) is at most h(no(s)). O

REMARK 3. If -V is a translate of V we can do better than in lemma 2 by
taking

(8) no(s) :=sup # An V'
V'3s

where V' runs over all translates V + t of V. Then lemma 2 holds again
(note that in the proof also mow n(r) < no(s) and k S?nO(r) if s € A(r)). The
assertion concerning (4) is obtained by following the arguments below with

the obvious changes.
Theorem 1 follows from lemma 2 using the ergodic theorem as follows.

PROOF of theorem 1. Take A := (SO,...,Sn) and define

n

N(B) := Y 1.(S)).
o Bk



By lemma 2

n n
(9) Y E(N(S,+V)) s § h(N(S +V.)).
k=0 k k=0 k0

Choose some large constant m and define for — » < k < = a stationary se-

quence

N(m)

MR N(Sk+V) if for all |j| 2 m holds Sj+k ¢ 8, Vs

=0 else.

With these definitions

Nﬁm) < ﬁ(Sk+V) for m £ k £ n-m,
< 2m-1 for all k,
and hence
n (m) n _
I £ - 2m £(2m-1) < ) £(N(S, +V)) .
k=0 k=0

By (9) the right hand side is dominated by
n _ n
) h(N(S,+V)) < ] h(N(S+V)).
k=0 k=0
In the last inequality we used that h is non-decreasing and ﬁ < N. Hence
n (m) n
I £au™) -m £(2n-1) S ] h(N(S.+V)).
k=0 k=0

Divide by n+l, let n > «» and aﬁply the ergodic theorem. After taking ex-

pectations we obtain

(m)

Ef(N0

s Eh(N(VO)).

Let m + », By the monotone convergence theorem this implies the assertion. [



To get (2) from (1) we apply theorem 1 -and the following remarc,

REMARK 4. Obviously h = £ if and only if f£(n)-c(n) is non-decreasing. This
property holds under (1). To see this observe that f can be expressed as

:= £(1) and

f = 21 apfp where a]

(n~-1)(f(n)-f(n-1)) = a, +...+ a_, n =2,

n

specifies the other ap. They are non-negative by (1). Here fp is defined by

£ (n) := §-—l- n2p>1
P P k-1
=1 nz2p-=1
=0 else.

That f-c is non-decreasing is checked easily for f = fp' This follows then
also for f = zw a f .
1 'pp

Inequality (3) follows from theorem 1 by using f = 1[ ) and observing

that for n 2 p

=1 bl ,.pt o _,_ 1
(10) h(n) 1 ~ + 5 < vy 2 >

The constant in (3) cannot be smaller because of the following example for
d =1,

EXAMPLE 5. Fix some m-2 1. We construct a sequenceﬂl.ofvreals ’
X, < Y, <...< fm < Yo < z and a set V such that v € X, +V, z € v; +V
and (Xi+VO) naA= {xi}.

Suppose this is done. Let A = (so,...,sn) consist of (p-1)-tuplets at
X seeesXy and p-tuplets at YysoeesYps2e Then, counting with the right mul-

tiplicities

# {s € A: n(s) 2 p} = m(p-1) + mp

# {s € A: no(s)'Z p} = mp + p.



If m is large the ratio Yo of these numbers is close to 2 - %—.

To construct the probabilistic example, let w := have period

W ez

n+l such that w, =8, =8 1 <i=<n, and Wo is some very large number.

i i-1’°
Let each element of Q := {T'w, 0 < i < n} have equal probability. The iden-
tity £ on Q is stationary and the ratio of the probabilities in (3) is Y, 28
above.

To construct A let 2 < P; < Py <... be primes. Take z := 0 and

Vi T TPpteretPos

X, 1= ¥, T PpteeetPss 1 <ism,
and let V := {pl'...'pi: 1 £ i < 2m}. The only property of A that is not
obvious is (xi+V0) naA-= {xi}. Let us call products of more than m primes

long and the other products short. Each v € V. is uniquely represented as

0
difference of two elements in V. Let vp be obtained by replacing in this
difference the short products by 0. Also (xi)Z =y,

Suppose xj € x, + V_ . It is easily proved that for the long products

0
in xj X, =V € V0 we have yj “Y; TV and then we should have v = Vo
So yj -y = xj - X, and i = j. Similar considerations disprove yj or
0 € x; + V. Hence (Xi+VO) nA-= {xi}.

3. INEQUALITIES FOR INTERVALS

Let d = 1 and assume V = (t,t+h). Let A := (s ,...,sn) and take
n(s) := # A n(V + s)as before but define no(s) by (8). Because -V is a
translate of V lemma 2 holds. We get (5) from lemma 6 as in the proof of

theorem 1. Counting s € A with its multiplicity, we have

LEMMA 6. # {s € A: n(s) 2 p} < (%-- %%9 # {s € A: no(s) 2 pl.

[p,)" Then h(n) < % —-%5 for n S 2p by (10). Hence if

no(s) < 2p for all s € A then the assertion follows from lemma 2.

PROOF., Let f = 1

Let y(A) := #/#0 be the ratio of the numbers at the left and right in
the assertion. If y(A) < | nothing has to be proved. Otherwise there may

exist an interval I = (x,x+h) with more than 2p points of A. We will remove



one of these points to get A' and will show y(A) < y(A'). Continuing this
procedure we would come in finitely many steps to A" with no such intervals

I. For such A" we already obtained the assertion and so y(A) < y(A") < 3_1

2 2
would complete the proof.
So consider A and I as above and remove s € A N I from A such that
both in (x,s] and [s,x+h) at least p points of A are left. One checks easily
that then # A' n V' 2 p if # An V' 2 p for any translate V' of V. Hence
in v(a) := #/#0 the removal of s causes the denominator (numerator) to de-
crease by (at most) 1. Because y(A) 2 1 we may conclude y(A') 2 y(A). U

EXAMPLE 7. The constant y in (5) cannot be smaller than %--455 . To see this

let 0 < €y <o+ €y < 1. Let A contain p-tuplets at 5k and 5k + €1 and

(p-1)-tuplets at 5k + e+ 1, 0 < k < m. With V := (5,6) the ratio y_ of
k m

# {s € A: n(s) 2 p} = (3p-I)m

# {s € A: no(s) 2 p} = 2p(m+l)

is close to-% —-%5 for large m. Here we may take no(s) = # AN (V0+S).
Just as in example 5 we can construct a probability space where the ratio

of the probabilities in (5) is Yo
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