stichting
 mathematisch
 centrum

AFDELING MATHEMATISCHE STATISTIEK
SW 82/82
APRIL
(DEPARTMENT OF MATHEMATICAL STATISTICS)
H.C.P. BERBEE

A BOUND ON THE SIZE OF POINT CLUSTERS OF A RANDOM WALK WITH STATIONARY INCREMENTS

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

[^0]```
A bound on the size of point clusters of a random walk with stationary
increments
```

by
H. Berbee

SUMMARY

Consider a random walk on $\mathbf{R}^{\text {d }}$ with stationary, possibly dependent increments. Let $N(V)$ count the number of visits to a bounded set $V$. We give bounds on the size of $N(t+V)$, uniformly in $t$, in terms of the behavior of N in a neighborhood of the origin.

KEY WORDS \& PHRASES: Stationary increments, point cluster, point process

## 1. INTRODUCTION

Let $\left(\xi_{n}\right)_{n \in \mathbb{Z}}$ be a stationary sequence of random vectors in the d-dimensional Euclidean space $\left(\mathbb{R}^{d}, B^{d}\right)$. The process $\left(S_{n}\right)_{n \in \mathbb{Z}}$, determined by

$$
S_{0}:=0, S_{n}=\xi_{n}+S_{n-1}, n \in \mathbb{Z}
$$

is called a random walk with stationary increments. This definition of $S_{n}$ for all $n \in \mathbb{Z}$ is uncommon but will be useful in the present context. Define the point process $N$ by

$$
N(B):=\sum_{n \in \mathbb{Z}} 1_{B}\left(S_{n}\right), \quad B \in B^{k}
$$

We assume that the random walk is transient, i.e. $N$ is finite on bounded Borel sets B.

For random walks on $\mathbb{R}^{1}$ with stationary, non-negative increments KAPLAN (1955) proved that $E N(t, t+h) \leq E N(-h, h)$ for real $t$ and $h>0$. In case the increments are independent, this inequality is a simple consequence of the Markov property (see FELLER (1970,VI.10) ) and in fact $N(t, t+h)$ is stochastically dominated by $N(-h, h)$. Below we shall see that this domination does not hold without independence.

Let us now consider random walks on $\mathbf{R}^{\mathrm{d}}$. Assume V is a bounded Borel set with translate $\mathrm{V}+\mathrm{t}:=\{\mathrm{s}+\mathrm{t}: \mathrm{s} \in \mathrm{V}\}$, and suppose $\mathrm{V}_{0}:=\{\mathrm{s}-\mathrm{t}: \mathrm{s}, \mathrm{t} \in \mathrm{V}\}$ is also a Borel set. We prove that if $f \geq 0$ is a function, growing not too slowly such that

$$
\begin{equation*}
n(f(n+1)-f(n)) \geq 0 \text { is non-decreasing } \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
E f(N(V)) \leq E f\left(N\left(V_{0}\right)\right) \tag{2}
\end{equation*}
$$

The condition (1) is satisfied for e.g. $f(n)=n^{\alpha}, \alpha>0$, or $f(n)=\log n$. If (2) were true for any non-decreasing $f$ then $N(V)$ would be stochastically dominated by $N\left(V_{0}\right)$. However we prove
(3)

$$
P(N(V) \geq p) \leq \gamma P\left(N\left(V_{0}\right) \geq p\right) \quad \text { where } \gamma=2-\frac{1}{p}
$$

for $p=1,2, \ldots$. An example will show that $\gamma$ cannot be smaller without restricting $V$. The two results above will follow from the more general theorem 1 below. Inequality (3) could also be proved directly using the method of BERBEE (1979), theorem 2.2.3.

Suppose $0=f(0) \leq f(1) \leq \ldots$ is given. Let $c(n):=\frac{1}{n} \sum_{k=1}^{n} f(k)$ be a Cesaro average and let

$$
h(n):=c(n)+\sup _{k \leq n}(f(k)-c(k))
$$

We shall see that (1) implies that $f-c$ is non-decreasing and then $f \equiv h$. In section 2 we show

THEOREM 1. Ef $(N(V)) \leq \operatorname{Eh}\left(N\left(V_{0}\right)\right)$.
This result and also (2), (3) and (5) can be improved slightly if -V is a translate of $V$. In that case we may replace $N\left(V_{0}\right)$ by

$$
\begin{equation*}
\sup _{V^{\prime} \rightarrow 0} N\left(V^{\prime}\right) \tag{4}
\end{equation*}
$$

where $V^{\prime}$ runs over the translates of $V$.

In section 3 we pay special attention to random walks on the real line. We prove for an interval $V=(t, t+h)$

$$
\begin{equation*}
P(N(V) \geq p) \leq \gamma P\left(N\left(V_{0}\right) \geq p\right) \quad \text { where } \gamma=\frac{3}{2}-\frac{1}{2 p} \tag{5}
\end{equation*}
$$

for $p=1,2, \ldots$. An example shows that $\gamma$ cannot be smaller.
Replacing $V$ by $V+t$ in the inequalities does not change $V_{0}$. As a consequence an important application of our results concerns uniform integrability. Suppose that $\operatorname{EN}(U)<\infty$ on a neighborhood $U$ of the origin. Using that the bounded set $V$ is contained in a finite union of translates of $U$, it is proved easily from our inequalities that $N(V+t)$ is integrable, uniformly in $t$. This result is used in BERBEE (1979) to obtain Blackwell's theorem for stationary processes. A related integrability problem is solved
in DALEY (1971) in connection with the global renewal theorem. A condition for finiteness of EN(U) can be found in LAI (1977) in terms of strong mixing. In the limit theory of semi-Markov chains very complicated integrability conditions are used (see KESTEN (1974)).

## 2. INEQUALITIES FOR GENERAL V

The proof of theorem 1 is based on a combinatorial lemma. Let $A:=\left(s_{0}, \ldots, s_{n}\right)$ be a finite sequence of points in $\mathbf{R}^{k}$. Define the distant cluster of $s \in A$ as the subsequence $A(s) \equiv A \cap(V+s)$ of points of $A$ in $V+s$ (with the same multiplicities) and the close cluster as $A_{0}(s) \equiv A \cap\left(V_{0}+s\right)$. Let $n(s)$ and $n_{0}(s)$ denote the number of points in the distant and close cluster of $s$.

With $f$ and $h$ as in theorem 1 we have the following comparison lemma for the sizes of distant and close clusters.

LEMMA 2. $\sum_{s} \mathrm{f}(\mathrm{n}(\mathrm{s})) \leq \sum_{\mathrm{s}} \mathrm{h}\left(\mathrm{n}_{0}(\mathrm{~s})\right)$.

Here as in the proof below the sums are over the points in $A$ with the right multiplicities.

PROOF. Obvious1y for $s \in A$

$$
f(n(s)) \leq c\left(n_{0}(s)\right)+\left(f(n(s))-c\left(n_{0}(s)\right)\right)^{+} .
$$

Define

$$
\begin{array}{ll}
h_{1}(s, t):=\frac{1}{n(s)} c\left(n_{0}(s)\right), \quad t \in A(s), \\
h_{2}(s, t):=\frac{1}{n(s)}\left(f(n(s))-c\left(n_{0}(s)\right)\right)^{+}, \quad t \in A(s), \\
h_{1}(s, t)=h_{2}(s, t):=0, & \text { otherwise. }
\end{array}
$$

Because $n(s)=\# A(s)$ we have, rewriting sums,

$$
\sum_{s} f(n(s)) \leq \sum_{s}\left(\sum_{t} h_{1}(s, t)+\sum_{r} h_{2}(r, s)\right)
$$

and it suffices to prove that the term in brackets is at most $h\left(n_{0}(s)\right)$. This term equals

$$
\begin{equation*}
c\left(n_{0}(s)\right)+\sum_{r: s \in A(r)} \frac{1}{n(r)}\left(f(n(r))-c\left(n_{0}(r)\right)\right)^{+} \tag{6}
\end{equation*}
$$

If $s \in A(r)$ then $V+r \subset V_{0}+s$ so $n(r) \leq n_{0}(s)$. Hence (6) is at most

$$
c\left(n_{0}(s)\right)+\sum_{r: s \in A(r)} \sup _{n \leq n_{0}(s)} \frac{1}{n}\left(f(n)-c\left(n_{0}(r)\right)\right)^{+}
$$

The sum above is taken over $k:=\# A \cap(-V+s)$ terms. If $s \in A(r)$ then $-V+s \subset V_{0}+r$, so $k \leq n_{0}(r)$. Because $c$ is non-decreasing ( $\left.f(n)-c(j)\right)^{+}$ is non-decreasing in $j$. Hence (6) is at most

$$
\begin{equation*}
c\left(n_{0}(s)\right)+k \sup _{n \leq n_{0}(s)} \frac{1}{n}(f(n)-c(k))^{+} \tag{7}
\end{equation*}
$$

By the definition of $c$ as Cesaro average, the difference

$$
\frac{k}{n}(f(n)-c(k))-\frac{k-1}{n}(f(n)-c(k-1))=\frac{1}{n}(f(n)-f(k))
$$

is non-negative for $k \leq n$ and non-positive for $k \geq n$. So the expression (7) is maximal for $k=n$. Therefore (7) and so also (6) is at most $h\left(n_{0}(s)\right)$.

REMARK 3. If $-V$ is a translate of $V$ we can do better than in lemma 2 by taking

$$
\begin{equation*}
\mathrm{n}_{0}(\mathrm{~s}):=\sup _{\mathrm{V}^{\prime} \exists \mathrm{s}} \# \mathrm{~A} \cap \mathrm{~V}^{\prime} \tag{8}
\end{equation*}
$$

where $V^{\prime}$ runs over all translates $V+t$ of $V$. Then lemma 2 holds again (note that in the proof also now $n(r) \leq n_{0}(s)$ and $k \leq n_{0}(r)$ if $s \in A(r)$ ). The assertion concerning (4) is obtained by following the arguments below with the obvious changes.

Theorem 1 follows from lemma 2 using the ergodic theorem as follows.
$\underline{\text { PROOF of theorem } 1}$. Take $A:=\left(S_{0}, \ldots, S_{n}\right)$ and define

$$
\bar{N}(B):=\sum_{k=0}^{n} 1_{B}\left(S_{k}\right)
$$

By 1emma 2
(9)

$$
\sum_{k=0}^{n} f\left(\bar{N}\left(S_{k}+V\right)\right) \leq \sum_{k=0}^{n} h\left(\bar{N}\left(S_{k}+V_{0}\right)\right)
$$

Choose some large constant $m$ and define for $-\infty<k<\infty$ a stationary sequence

$$
\begin{aligned}
N_{k}^{(m)} & :=N\left(S_{k}+V\right) & \text { if for a11 }|j| \geq m \text { holds } S_{j+k} \notin S_{k}+V \\
& :=0 & \text { else. }
\end{aligned}
$$

With these definitions

$$
\begin{aligned}
\mathrm{N}_{\mathrm{k}}^{(\mathrm{m})} & \leq \overline{\mathrm{N}}\left(\mathrm{~S}_{\mathrm{k}}+\mathrm{V}\right) & & \text { for } \mathrm{m} \leq \mathrm{k} \leq \mathrm{n}-\mathrm{m} \\
& \leq 2 \mathrm{~m}-1 & & \text { for all } k
\end{aligned}
$$

and hence

$$
\sum_{k=0}^{n} f\left(N_{k}^{(m)}\right)-2 m f(2 m-1) \leq \sum_{k=0}^{n} f\left(\bar{N}\left(S_{k}+V\right)\right)
$$

By (9) the right hand side is dominated by

$$
\sum_{k=0}^{n} h\left(\bar{N}\left(S_{k}+V_{0}\right)\right) \leq \sum_{k=0}^{n} h\left(N\left(S_{k}+V_{0}\right)\right)
$$

In the last inequality we used that $h$ is non-decreasing and $\bar{N} \leq N$. Hence

$$
\sum_{k=0}^{n} f\left(N_{k}^{(m)}\right)-2 m f(2 m-1) \leq \sum_{k=0}^{n} h\left(N\left(S_{k}+V_{0}\right)\right) .
$$

Divide by $n+1$, let $n \rightarrow \infty$ and apply the ergodic theorem. After taking expectations we obtain

$$
\operatorname{Ef}\left(N_{0}^{(m)} \leq \operatorname{Eh}\left(N\left(V_{0}\right)\right)\right.
$$

Let $m \rightarrow \infty$. By the monotone convergence theorem this implies the assertion.

To get (2) from (1) we apply theorem 1 and the following remark,

REMARK 4. Obviously $h \equiv f$ if and only if $f(n)-c(n)$ is non-decreasing. This property holds under (1). To see this observe that $f$ can be expressed as $f \equiv \sum_{1}^{\infty} a_{p} f_{p}$ where $a_{1}:=f(1)$ and

$$
(n-1)(f(n)-f(n-1))=a_{2}+\ldots+a_{n}, \quad n \geq 2,
$$

specifies the other $a_{p}$. They are non-negative by (1). Here $f_{p}$ is defined by

$$
\begin{aligned}
f_{p}(n) & :=\sum_{p}^{n} \frac{1}{k-1} & & n \geq p>1 \\
& :=1 & & n \geq p=1 \\
& :=0 & & \text { else. }
\end{aligned}
$$

That $f-c$ is non-decreasing is checked easily for $f \equiv f_{p}$. This follows then also for $f \equiv \sum_{1}^{\infty} a_{p} f_{p}$.

Inequality (3) follows from theorem 1 by using $f \equiv l_{[p, \infty)}$ and observing that for $n \geq p$

$$
\begin{equation*}
h(n)=1-\frac{p-1}{n}+\frac{p-1}{p} \leq \gamma=2-\frac{1}{p} \tag{10}
\end{equation*}
$$

The constant in (3) cannot be smaller because of the following example for $\mathrm{d}=1$ 。

EXAMPLE 5. Fix some $m \geq 1$. We construct a sequence $\bar{A}$ of reals $x_{1}<y_{1}<\ldots<x_{m}<y_{m}<z$ and a set $V$ such that $y_{i} \in x_{i}+V, z \in y_{i}+V$ and $\left(x_{i}+V_{0}\right) \cap \bar{A}=\left\{x_{i}\right\}$.

Suppose this is done. Let $A=\left(s_{0}, \ldots, s_{n}\right)$ consist of ( $p-1$ )-tuplets at $x_{1}, \ldots, x_{m}$ and $p$-tuplets at $y_{1}, \ldots, y_{m}, z$. Then, counting with the right multiplicities

$$
\begin{aligned}
& \#\{s \in A: n(s) \geq p\}=m(p-1)+m p \\
& \#\left\{s \in A: n_{0}(s) \geq p\right\}=m p+p
\end{aligned}
$$

If $m$ is large the ratio $\gamma_{m}$ of these numbers is clase to $2-\frac{1}{p}$.
To construct the probabilistic example, let $\omega:=\left(\omega_{k}\right)_{k \in \mathbb{Z}}$ have period $n+1$ such that $\omega_{i}=s_{i}-s_{i-1}, 1 \leq i \leq n$, and $\omega_{0}$ is some very large number. Let each element of $\Omega:=\left\{T^{i}{ }_{\omega}, 0 \leq i \leq n\right\}$ have equal probability. The identity $\xi$ on $\Omega$ is stationary and the ratio of the probabilities in (3) is $\gamma_{m}$ as above.

To construct $\bar{A}$ let $2<\mathrm{p}_{1}<\mathrm{p}_{2}<\ldots$ be primes. Take $\mathrm{z}:=0$ and

$$
\begin{aligned}
& y_{i}:=-p_{1} \cdot \ldots \cdot p_{m+i} \\
& x_{i}:=y_{i}-p_{1} \cdot \ldots \cdot p_{i}, 1 \leq i \leq m
\end{aligned}
$$

and let $V:=\left\{p_{1} \cdot \ldots \cdot p_{i}: 1 \leq i \leq 2 m\right\}$. The only property of $\bar{A}$ that is not obvious is $\left(x_{i}+V_{0}\right) \cap \bar{A}=\left\{x_{i}\right\}$. Let us call products of more than $m$ primes long and the other products short. Each $v \in V_{0}$ is uniquely represented as difference of two elements in $V$. Let $v_{\ell}$ be obtained by replacing in this difference the short products by 0 . Also $\left(x_{i}\right)_{\ell}:=y_{i}$.

Suppose $\mathrm{x}_{\mathrm{j}} \in \mathrm{x}_{\mathrm{i}}+\mathrm{V}_{0}$. It is easily proved that for the long products in $x_{j}-x_{i}=v \in V_{0}$ we have $y_{j}-y_{i}=v_{\ell}$ and then we should have $v=v_{\ell}$. So $y_{j}-y_{i}=x_{j}-x_{i}$ and $i=j$. Similar considerations disprove $y_{j}$ or $0 \in \mathrm{x}_{\mathrm{i}}+\mathrm{V}_{0}$. Hence $\left(\mathrm{x}_{\mathrm{i}}+\mathrm{V}_{0}\right) \cap \overline{\mathrm{A}}=\left\{\mathrm{x}_{\mathrm{i}}\right\}$.
3. INEQUALITIES FOR INTERVALS

Let $d=1$ and assume $V=(t, t+h)$. Let $A:=\left(s_{0}, \ldots, s_{n}\right)$ and take $n(s):=\# A \cap(V+s)$ as before but define $n_{0}(s)$ by (8). Because $-V$ is a translate of $V$ lemma 2 holds. We get (5) from lemma 6 as in the proof of theorem 1. Counting $s \in A$ with its multiplicity, we have

LEMMA 6. \# $\{s \in A: n(s) \geq p\} \leq\left(\frac{3}{2}-\frac{1}{2 p}\right) \#\left\{s \in A: n_{0}(s) \geq p\right\}$.
PROOF. Let $f \equiv{ }^{1}[p, \infty)$. Then $h(n) \leq \frac{3}{2}-\frac{1}{2 p}$ for $n \leq 2 p$ by (10). Hence if $\mathrm{n}_{0}(\mathrm{~s}) \leq 2 \mathrm{p}$ for $\mathrm{all} \mathrm{s} \in \mathrm{A}$ then the assertion follows from lemma 2.

Let $\gamma(\mathrm{A}):=\#_{0} \#_{0}$ be the ratio of the numbers at the left and right in the assertion. If $\gamma(A) \leq 1$ nothing has to be proved. Otherwise there may exist an interval $I=(x, x+h)$ with more than $2 p$ points of $A$. We will remove
one of these points to get $A^{\prime}$ and will show $\gamma(A) \leq \gamma\left(A^{\prime}\right)$. Continuing this procedure we would come in finitely many steps to $A^{\prime \prime}$ with no such intervals I. For such $A^{\prime \prime}$ we already obtained the assertion and so $\gamma(A) \leq \gamma\left(A^{\prime \prime}\right) \leq \frac{3}{2}-\frac{1}{2 p}$ would complete the proof.

So consider $A$ and $I$ as above and remove $\bar{s} \in A \cap I$ from $A$ such that both in ( $x, \bar{s}]$ and $[\bar{s}, x+h$ ) at least $p$ points of $A$ are left. One checks easily that then $\# A^{\prime} \cap V^{\prime} \geq p$ if $\# A \cap V^{\prime} \geq p$ for any translate $V^{\prime}$ of $V$. Hence in $\gamma(A):=\# / \#_{0}$ the removal of $\bar{s}$ causes the denominator (numerator) to decrease by (at most) 1. Because $\gamma(A) \geq 1$ we may conclude $\gamma\left(A^{\prime}\right) \geq \gamma(A)$. EXAMPLE 7. The constant $\gamma$ in (5) cannot be smaller than $\frac{3}{2}-\frac{1}{2 p}$. To see this let $0<\varepsilon_{0}<\ldots<\varepsilon_{m}<1$. Let A contain p-tuplets at $5 k$ and $5 k+\varepsilon_{k}$ and ( $\mathrm{p}-1$ )-tuplets at $5 \mathrm{k}+\varepsilon_{\mathrm{k}}+1,0 \leq \mathrm{k} \leq \mathrm{m}$. With $\mathrm{V}:=(5,6)$ the ratio $\gamma_{m}$ of

$$
\begin{aligned}
& \#\{s \in A: n(s) \geq p\}=(3 p-1) m \\
& \#\left\{s \in A: n_{0}(s) \geq p\right\}=2 p(m+1)
\end{aligned}
$$

is close to $\frac{3}{2}-\frac{1}{2 p}$ for large $m$. Here we may take $n_{0}(s):=\# A \cap\left(V_{0}+s\right)$. Just as in example 5 we can construct a probability space where the ratio of the probabilities in (5) is $\gamma_{m}$.

ACKNOWLEDGEMENT. I am grateful to a referee for comments that led to much more general results. Also example 5 is due to this referee.

## REFERENCES

[1] BERBEE, H.C.P. (1979), Random walks with stationary increments and renewal theory, Math. Centre Tracts 112, Math. Centre, Amsterdam.
[2] DALEY, D.J. (1971), Weakly stationary point processes and random measures, J. Roy. Statist. Soc. Ser B 33 406-428.
[3] FELLER, W. (1970), An introduction to probability theory and its applications II. 2nd ed. Wiley, New York.
[4] KAPLAN, E.L. (1955), Transformations of stationary random sequences, Math. Scand. 3 127-149.
[5] KESTEN, H. (1974), Renewal theory for functionals of a Markov chain with general state space, Ann. Probability $\underline{2}$ 355-386.
[6] LAI, T.L. (1977), Convergence rates and r-quick versions of the strong low for stationary mixing sequences, Ann. Probability $\underline{5}$ 693-706.


[^0]:    1980 Mathematics subject classification: Primary: 60G10 Secondary: 60C05, 60K05

