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1. Introduction 
Suppose Sn are the partial sums of i.i.d. random variables with distribution 

F. Baum, Katz (1965) showed that if ap ;;a.. I, a>± 

~nap-l P(ISnl;:;;;.. Ena) <oo fou>O (1.1) 
n;;;>l 

if and only if F has finite p 1h moment and moreover in case a.;;;; I has vanish
ing mean. 

We consider Sn: =111 + · · · +11n, n ;:;;..1, the partial sums of random vari
ables bounded by I with vanishing mean. We want to prove (1.1) under a 
sharp condition on the mixing rate. Let 'Fn- : = o( 11;, i .;;;;n) and 
~ : = 0(11;, i ;;a..n ). Define for n ;;a..Q 

an := SUD . sup IP(AB)-P(A)P(B)I, 
k ;$ l A e'lfk ,B el£'+k 

/Jn := suvE sup IP(A l~.++k)-P(A)I, 
k;$l Ae1/ir 

(1.2) 

(1.3) 

The process ( 11; ); .,.1 is called strong mixing if an ,io and absolutely regular (or 
weak Bernoulli) if /Jn ,io. Because an .;;;;!Jn the latter concept is stronger. 

Our results deal mainly with absolutely regular processes. This leaves open 
a wide range of applications because e.g. an aperiodic, positive rectllTent Mar
kov chain is absolutely regular. Berbee (1984) studies /Jn, n~oo, for station
ary processes. 

The main result, given below is a convergence theorem for dependent ran
dom variables. It is interesting because it is a sharp result. The reader will 
notice that it is a rate of convergence result for the ergodic theorem. The 
theorem is valid also for non-stationary sequences. 

Theorem 1.1: Suppose (11;);;;. 1 is a sequence of random variables bounded by 1 
with vanishing mean. Let ±<a.;;;; I and ap ;;a.. I. If for p ;;a.. I 

(1.4) 

then 

(1.5) 

To judge the mixing rate (1.4) in this theorem we consider in section 6 a spe
cial class of processes that is still rich enough to discriminate effectively 
between mixing rates. We consider a stationary renewal process on the positive 
integers, aperiodic with finite mean. Let Sn be the number of renewals in 
{ 1, ... , n } and take Sn : = Sn - ESn. Then (11;) is a stationary sequence of 
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·random variables bounded by 1 with vanishing mean. We show for this clru.:s 
of processes that (1.4) and (1.5) are equivalent. Let F be the distribution of the 
increments of the renewal process. We also show that (1.4) is equivalent to the 
finiteness of the p'h moment of F in case p > 1. It will appear that these results 
are closely related to the theorem in Baum and Katz (1965), quoted above. 

For stationary, strong mixing sequences Lai (1977) obtained earlier results 
related to theorem 1.1. The main interest of that paper is to prove under cer
tain conditions the equivalence between (1.5) and finiteness of the p'h moment 
of 11;. If the results of Lai (1977) are applied to bounded random variables, 
then to get (1.5) stronger conditions are imposed on the mixing rate an then 
we impose on Pn . 

Property (1.5) describes speed of convergence in the strong law. It implies 
in case ap >1 

(1.6) 

by lemma 4 in Lai (1977). Because the probabilities above are non-increasing 
in n we may infer 

The proof of theorem 1.1 bears some resemblance to ideas used by Baum, 
Katz (1965). In that paper the increments of Sn are truncated at height na and 
then the Markov inequality is applied to get (1.1). We do not truncate but 
replace Sn by sums of independent random variables of size o(na). At this 
point we use the absolute regularity to estimate the error. Lemma 2.1 is used 
for this purpose. Then we apply the Markov inequality and finally we use 
bounds for E (Sn )2m to obtain (1.5). These bounds are derived in section 3 and 
are valid for strong mixing sequences. They are closely related to similar 
bounds in Yokoyama (1980). 

Strong mixing is easier to formulate but technically less nice because the 
coupling argument of section 2 is not available (in the same way). Therefore 
we only discuss averaging, i.e. (1.6) with a= 1. We could also get results for 
a< l but they may not be precise and we do not present these. 

'lbeo:rem 1.2: Suppose (11;);;;;.1 is a sequence of random variables bounded by I 
with vanishing mean. If for p = 1 

~np-Z an <CO 
n ;;;.} 

then ..!.sn ~o a.s. and if p > 1 then (I. 7) implies 
n 

(1.7) 
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(1.8) 

Averaging as is done in (1.8) is a much easier procedure than comparison 
with na with t<a<l. The proof of the last theorem is therefore much simpler 
because we do not use the trick of replacing Sn by sums of independent ran
dom variables of o(n) (the analogue of truncation). Etemadi (1981) showed 
that Kolmogorov's inequality is not needed in an elementary proof of the 
strong law for averaging. 

2. A dependence coefficient. 
If v is a signed measure, define its total variation 

llvll:=sup v(A) - P(Ac) 

where the supremum is taken over all measurable sets A 

Suppose X and Y are real random variables (or vectors). Define their 
dependence as 

/j(X,Y) := tllPx,y-PxXPyll. 

Vanishing of this coefficient expresses that X and Y are independent. Schwarz 
(1980) discusses this notion and its connection with coupling. The following 
properties can be found there or in Berbee (1979). We can rewrite 

/j(X,Y) := EtllPxlY - Pxll 

where P xi y is the conditional distribution of X given Y. Hence if X ' is X -
measurable 

/j(X ',Y),,;;;;,/j(X,Y). (2.1) 

Also (1.3) is equivalent to 

/3n = SUD fl((11;,i ,,;;;;,k), (1J;,i ~n +k)). 
k~l 

The relation between /j(X,Y) and independence of X and Y can be described 
very precisely. If Y' is distributed as Y and is independent of X then we can 
prove 

P(Y '*Y) ~ /j(X,Y). 

Moreover we can always construct such a random variable Y ' on an extended 
probability space such that the equality holds, i.e. such that Y and Y ' are 
maximally coupled. The next lemma discusses a similar construction for a given 
sequence X i. ... , Xn. 

Lemma 2.1: Let X i. ... , Xn be real random variables. De.fine for I ,,;;;;,i <n 
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fi-i) : = P(X; ,(X; +i. ... , Xn )). 

The probability space can be extended with random variables it distributed as X; 
such that X 1, ••• , Xn are independent and 

P <J0=1=)(_; for some j ) <./f-1> + ... + pn - 1>. 

Proof: We construct by induction for i = 1, ... , n probability spaces such that 
the i'h space is an extension of the jth, j <i, and has a vector 
y(i) : = (X;<i>, ... , XJi)) distributed as (X;, ... , Xn) such that 

P ((X;<n, ... , xJi>) =I= (X;<; -1>, ... , xJ; -1>)) = p; -1> ,i > 1, (2.2) 

Xf1> x<; -1> (x<;> x<;>) . d d t , · · ·, ;-1 , ; , ... , n are m epen en (2.3) 

Let the first probability space be the given one with x_;O> : = }{_; , 1 f.j <.n. 
The other requirements for i = I are void. Suppose that for some 1 <.i <.n the 
(i - I)'h probability space is constructed, satisfying the proper requirements. 
Note that y(i - 1> = (X;<!_ J.1> ,X;<; - 1>, .•. , XJ; - 1>) has the prescribed distribu
tion. As mentioned in the introduction to this lemma we can extend the proba
bility space with y(i) = (X;<n, ... , xJi>) such that y(i) has the right distribu
tion, X;<!_ 1. 1> and y<n are independent, while 

P(y<i> -1- (x.<;-1> x<;-1>)) = p(x.<;-1> (x.<;-1> x<;-1>)) = ai-1) -r 1 , • • • , n . 1 -1 ' 1 , • • • , n P" • 

In the last equality we used that y(i -:-1) has the right distribution. The exten
sion we used is discussed in detail in corollary 4.2.5. in Berbee (1979). 

It is shown there that the extension can be given in such a way that if Z is any 
random variable on the original (i - l)'h probability space, then 

Pz1ri-1>,y<'> = Pz1ri-•>. (2.4) 

Thus certain conditional distributions did not change b~ the introduction of 
the new random variable. Take Z : = (Xf1>, ... , X;<!_2 >). By induction the 
components of Z are independent and moreover Z is independent of y(i - 1>. 
Hence Z is by (2.4) independent of (y<i- 1>,y<n) , so of (X;<!_J. 1> ,y(i>). By our 
construction the two components of the last vector are also independent. 
Hence (2.3) follows. This completes the proof of the induction step. 

If we let it : = X;(i) ,1 <.i ,,;;;,n , then it is distributed as X; because y(i) 
has the right distribution. By (2.3) for i = n the X -random variables are 
independent and by (2.2) and because x<1> = x1 

n 
P(J0 =fa}{_; for some j) ,,;;;;-, ~P((X/i>, ... , xn<i>) =fa (X;(i-l), ... , Xn(i- 1>)) 

i=2 

,;;;,ff-I)+ ... +pn-1). D 

To obtain theorem 1.2 we want to apply lemma 3.1 with 
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k21+1 

X; = ~ T/j , i = I, ... , mn , 
j=k21+1 

where k; + 1 - k; =Mn for all i. So we apply the lemma on block sums with 

indices in different blocks separated by distance of at least Mn. We also want 

that m,, Mn is about n. To apply the lemma succesfully we need that mn fJM. is 

sufficiently small. This is guaranteed by the following lemma. 

Lemma 2.2 : Suppose that ~ nP - 2pn < oo for some given p ;;;;;. 1. 
n;;>l 

Let i<a=s;;;; 1. Then there exists Mn =o(na) such that if mn: =[;; ] 
n 

~ nap-2mnfJM. < oo (2.5) 
n ;;.1 

Proof: Observe that for each j ;;;a.: I 

jP ~ nP-2fJn ~ 0 as k~oo. 
n;;>k 

Choose a sequence l=k1<k2< · · · such that 

~jP ~ nP-2fJn < 00. 

j;;>l n;;>(~ktJ 
J 

Define 

Mn :=£1:-na] for kj =s;;;;n <kj+I, j;;;;;.I. 
J 

(2.6) 

Because Mn.;;;;; n~ if n ;;;a.:kj, we have Mn =o(n~. Observe that (2.5) is bounded 
J 

by 

~ ~ nap-2(-n-] fJ 1 •• 

j;;>l n;;.k1 £1:-na] ljn I 
J 

To prove that this expression is finite observe first that for m ,j ;;;;;.1 

I l l 
# {n :[-:-n1=m } .;;;;; ((m + l)j)a - ((m -l)j)a 

J 
l m+l l l_1 l l_1 

=s;;;;ja j-xa dx=s;;;;ca.iama 
m-1 a 

1 1 

(2.7) 

I - -
for some constant Ca. H [-:-na]=m then (mj)a =s;;;;n =s;;;;4(mj)a. Hence (2.7) is 

for a suitable constant c' a ifounded by 
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by (2.6). D 

3. Moment bounds 
In this section we assume that ('11;);;;;.t is a sequence of random variables 

bounded by 1 with vanishing mean such that for p ;;;i: 1 

(3.1) 

where (an) is defined by (1.2). For l~ <2 we use the estimate 

Lemma3.1 
n-l 

E(Snf '50;; 4n ~ ak. (3.2) 
k=O 

Proof: By Thragimov (1962), lemma 1.2 

IE('11;'11j)I '50;; 4a(l/-il). 

After summing over 1 '50;;i ,j '50;;n we easily obtain the inequality. D 

For p;;;i:2 we need bounds on higher moments of Sn. Yokoyama (1980) 
discusses this subject for stationary sequences. For bounded sequences he 
proves 

(3.3) 

We need bounds for E (Sn ym , for integer m ;;;i: 1. To be able to obtain theorem 
1.1 we need a bound that is more precise then (3.3)in the way it depends on 
the mixing coefficients , like in (3.2) 

Lemma 3.2: If p ;;;i:2 then for each integer m ;;;i: 1 there is a finite constant c 
depending on the mixing coefficients (1.2) and m such that 

n-l 
E(Snf"' '50;; c ma.x(nm+(m-p)+,n ~ (k + 1ym-2ak)· (3.4) 

k=O 

Note that if 2m ~ then the second term at the right is O(n) by (3.1). For 
larger m ;;;i:1 this term is O(n2m-p+l) by (3.1). So for large m, and in fact 
m ;;;i:p -1, the second term is more important than the first term. Thus we 
obtain 

Corollary 3.3: If p ;;;i:2 then 

E(Snf"' = O(n2m-p+l) if m ;;;i:p-1, 

= O(nm) if los;;;m ~ -1. 
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.Proof of lemma 3.2: As in the corresponding part of Yokoyama (1980) our 
proof is similar to Sen (1974). 

We denote by ~ the summation over all I :s;;;;; 1.;;;; • • • :s;;j .;;;;n. Let 
nj 

Note that 

bk(n,j):= ~ IE(71k+I71k+;, · · · 71k+;)I, 
nj 

b(n,j):= suo bk(n,j). 
k;$O 

E(Sn)2m :s; (2m)! ~ IE(71;, · · · 71;,.JI 
n,2m 

n 

= (2m)! ~ b;,- 1(n -i1 + l,2m -1) 
i1=l 

.;;;; (2m)! n b(n,2m -1). 

(3.5) 

Define rj: = ij - ij- l and let ~_(h > I .;;;;h .;;;;} , be the components of ~ for which 
nJ nj 

rh = max {ri. ... , rj }. 

Our aim is to find a bound on b. By lbragimov (1962), lemma 1.2 
n-l 

n b(n,l) = n suo ~ IE('l'Jk+I '11k+;,)I :s; 4n ~ ak. (3.6) 
k;$O n,l k=O 

We want to prove by induction on j ;;;;.2 that there are finite constants c and 
c' depending on j and the mixing coefficients (1.2) such that 

where 

n-l 

n b(n ,j -1) .;;;; c max(nl' ,n ~ (k + 1y-2ak) .;;;; c'nr (3.7) 

j* :=max([f ],j-p) 

j**: =max([ f ],j-p + 1). 

k=O 

If this is proved then the assertion of the lemma follows by applying the first 
inequality of (3.7) with j =2m in (3.5). 

Let us note first that the second inequality of (3.7) is obvious, following in 
the same way as in the proof of corollary 3.3, i.e. by applying (3.1). So we are 
only concerned with the first inequality in the induction proof. 

For j =2 the first inequality of (3.7) follows from (3.6). Suppose now that 
(3.7) holds for all j .;;;;m with m ;;;;.2 arbitrary. It suffices to prove the first ine
quality of (3.7) for j =m + 1. Note 

m 

n bk(n,m) = ~ [n ~(h) IE(71k+I71k+;, · · · 'l'fk+i.JIJ. 
h =l n,m 
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.We consider the term between[.] separately. The total number of these terms is 
m and so does not depend on n. Again using Ibragimov (1962), lemma 1.2 
the term is bounded by 

n,m 

n,m 

Note that (3.9) is bounded by 
n-1 

n ~ (rh + l)"'- 1 4a(rh) 
o.=0 

in accordance with the induction assertion. 

(3.8) 

We still have to consider (3.8). It vanishes for h = l,m. For other values of 
h it is bounded by 

n 
n ~·bk(i,h-I)b;+k-l(n-i+l,m-h) 

i=1 

with i = ih • By the induction assumption (3.8) is bounded by 
n 
~ ·h**-1( · + l)(m-h +l)**-1 nc£.ii n-i 
i=l 

where c depends on m and (1.2). Because 2:s;;;.h :s;;;.m -1 all powers are non
negative and so (3.8) is bounded by 

n·c·n·nh*• -ln(m-h +I)** -1 

=c·nh**+(m-h+l)** 

llwe show 

h** +(m -h + l)** :s;;;.(m + l)* for 2:s;;;.h :s;;;.m -1 (3.10) 

then it follows that (3.8) is bounded by cn<m +I)* and we completed the proof 
of the induction step. 

To prove (3.10) it suffices by symmetry to consider only values 
h :s;;;.i(m + 1). Let us say that an integer j ;;;;.2 is in the area of constant increase 

of(.)** if. j -p + 1 ;;;;.[ f ], so for sufficiently large j. In this area (.)** increases 

with unit speed and outside this area (.)** increases at most with unit speed. 
Suppose first that m -h + 1 is in the area of constant increase. Replacing h 
by 2 in the left hand side of (3.10), and so replacing m -h + 1 by m - 1 would 
certainly not decrease this expression. Because 

m-1 
2** + (m-1)** = l+ max([-

2
-),m-p) = (m+l)* 

this proves (3.10). In case m -h + 1 is not in the area of constant increase, also 
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h :s:;;;f(m + l):s:;;m -h + 1 is not in this area. In that case the left side of (3.10) 

equals 

[;] + [m-~+11 :s:;; [m;l] :s:;; (m+l)*. 

Thus (3.10) holds for all h. D 

4. Proof of theorem 1.1 

Proof: We split up Sk in blocks to which we can apply lemma 2.1. Define mn 
and Mn as in this lemma. Write for k :s:;;;n 

+ [ ~ 1/; ]. 
m.M.<i.;;n,i.;;k 

Denote by sp), Sj2) and Sj3) the first, second and third term of the sum 
above. Observe 

max !Ski :s:;; max ISP)I + max ISP)I + n -mnMn. (4.1) 
k.;;n k.;;n k.;;n 

The last term is at most Mn and for p= 1,2 

max ISk(p)I :s:;; ~x ISj~ I +Mn. (4.2) 
k<n 1.;;1<m. 

By lemma 2.2 Mn =o(n~. Choose N so large that Mn :s;;;ft:na for n ;;;.:N. Hence 

by (4.1) and (4.2) 

(4.3) 

:s:;; ~ P( f!UlX ISj~ I ;;;:,: tma) for n ;;;.:N. 
p=l,2 1<m. 

Consider e.g. p = 1. Let aj : = ~ 1/; and observe 
(j- l)M. <i .;;jM. 

s/1). = ~ ak. 
J.;;k~,k odd 

We want to replace aj, j odd, by independent random variables aj, j odd. 
Observe that by (2.1) 

/J(aj, (ak: k;;;.:j, k odd)) 

:s;;;p((1/; : i :s:;;;jMn ) , (1/; : i ;;;:,:(} + l)Mn ) = PM.· 

Hence by lemma 2.1. there are independent random variables oj , 1 :s:;;j :s:;;;mn, j 
odd, distributed as aj such that 
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P( fli =I= <Ji for some j ) ~ rri,,fJM. 

So with probability at least I-mnf1M. 

S/j). ~ flk 
l<k<j,k odd 

~ f12k-h 
l<k<[fo+I)] 

where the last sum consists of independent random variables, distributed as 
SM.· Hence 

P( ~ ISiW.1 ;;;;. ±£na) 
l<J<m. 

cfo+l)] 

.;;;; mnf1M. + P( ~ I ~ f12k-l I;;;;. ±ma) 
l<1<m. k =l 

I 
!2(m. + l)] 

E( ~ f12k-1>2" 
k=l .;;;;mn/JM. + ~~~~~~-
<±£n«)2" 

for any d;;;;. I by the inequality of Markov-Kolmogorov-Doob. A similar esti
mate holds for p=2. So by lemma 2.2 and (2.3) it is sufficient to show 

< 00 (4.4) 

for m'n o;;;;mn while ak consists of independent random variables distributed as 
SM •. We take here d to be an integer such that 

d = I if l .;;;;_p <2 

d ;:;;i, pa-I th . 
-'P 2a-l o erwise. 

The expectation in ( 4.4) may be written as 

~ E 'ii;, ... "ii;,.. • 
l.;;i~ ... ,iu<m'. 

For given (i 1, ••• , iu) write, using independence 

E 
_ _ E _k, _k 
<J;, ... <1;,.. = o1 ... E o1, . 

Here k1;;;;ok2;;;;o · • • ;;;;okr are the i -multiplicities and k 1 + · · · +kr =2d. The 
total number of (i., . . . , i u) with given multiplicity configuration 
k1;;;;o • · • ;;;;okr is bounded by 
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where ck is a constant depending on the multiplicity configuration 
k 1~ • • · ~kr but not on n. To prove (4.4) it is sufficient to show for each of 
the finitely many multiplicity configurations k 1 ~ • • • ~kr that 

( )
r E_k, E-k, 

m 01 • • • 01 "'1 ap-2 n < 
"""n 2ad oo. 

n;;.I n 
(4.5) 

Because Eo1 =O we only have to consider the cases where all kj ~2. In case 
l~ <2 this leaves only one configuration to consider, because d= 1. 

case 1: r = 1 and so the entire configuration consists of k 1 =2d. We use the 
moment bounds of section 3. First consider 

M.-1 

mn[Mn ~ (k+l)2d-2ak] 
~ nap-2_~~-k_=O~~~~~-

n;;.I n2ad 

where ak is defined by (1.2). Because mn Mn o;;;;;n and because for sufficiently 
large n we have Mn o;;;;;na the sum above is finite if 

n ~ (k + 1)2d-2ak 
~ nap-2 __ o.;;_k_<_n_· ____ _ 

n;;.I n2ad 

= ~ ~ nap-I-2ad (k + l~-2ak < oo. 
k;;.I l 

n>k" 

Because 2d>p this sum is finite if 

_!_( -2ad) 
~ k a ap (k + 1)2d-2ak 

k;;.I 

with c a finite constant. Because an o;;;;;pn this holds by our assumption (1.4). If 
1 ~ <2 this proves ( 4.5) by lemma 3.1 because d = I. Hence the theorem is 
proved for 1~<2. We can assume now thatp~2. To prove (4.5) for r=l, 
it is sufficient by lemma 3.2 to show that also 

m Md+(d-p)+ 
"'1 ap-2~n~-n~~~< 
""" n 2ad oo. 

n;;.I n 

Because mn Mn o;;;;;n and Mn =o(na) it is sufficient to show 
n na(d-1 +(d-p)+) 

~ nap-2 · 2ad = ~ nP <oo 
n;;.I n n;;.I 

Becausep~2 we have d~p and so {J=-a-1. Hence /3<-1 and (4.5) fol
lows for r = 1. 

case 2: r~2 and k 1 ~2p. If k 1 is even then by corollary 3.3 
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Eat• = O(M:,-p+l). 

If k 1 is odd then also by this corollary 

Elal•...;; MnE at·-l = Mn.O(M:,-l-p+l) 

= O(M:,-p+I). 

For all other kj ~2 by this corollary 

Elal1 .s;;; M:1 -
2 

E af = M:1 -
2
.0(Mn) (4.6) 

= O(M:1-\ 

because p ~2. To prove (4.5) it is sufficient to show 

k-p+l k-l+···+k-l 
~ ap-2 (mn'f Mn' .Mn> ' 
~n ~ <~ 

n;;;.I n 

Because mnMn E;;;n and we can use Mn E;;;na for large n it is sufficient to prove 
r a(k1+ · · · +k,.-(p-2)-2r) 

~nap-2 n n ~ = ~n/J <oo. 
n;;;.I n n;;;.l 

Because 2d =k1 + · · · +kr 

P = ap-2 -r(2a-l)-a(p-2) 

E;;; -2a <-1 

because r ~2 and also a>i. Thus (4.5) holds in case 2. 

case 3: r ~2 and all ':!, <2p. Again using ( 4.6) as above we obtain now that it 
is sufficient to show .i; n/J < oo with 

n;;;.I 

P = ap-2 -r(2a- l). 

Now 2d = k 1+ · · · +kr < 2p.r so r> d. By our choice of d it follows that 

indeed P<-1. This completes the proof Jf theorem I.I. 0 

In the case of unbounded random variables (11n) we could also use this 
proving technique but it is not clear how to get a nice split-up with random 
variables of o(n«>. This makes it not probable that our results would be precise 
and we do not discuss this here further. 

Absolute regularity was needed in the application of lemma 2.1, for a 
split-up in random variables of size o(n«>. In case a= 1 we can however get the 
corresponding results for a-mixing. Using the Markov equality and the lem
mas of section 3 gives (1.1) for all p ~ 1. If a= 1 and p > 2 we can also get 

(4.7) 
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for all r <ap - 2 by using the Markov inequality, corollary 3.3 and Serfling 
(1970), theorem B. Generally for t<a~l and p >2 the last method gives 

(4.7) only for all 

r <(2a- l)(p -1) -1. (4.8) 

An application of Lai (1977), theorem 2 for stationary bounded (TJ;) gives for 

t<a~l and p >2 that (4.7) holds for 

r <a(p -1) -2. (4.9) 

It is interesting to see that ( 4.8) is sometimes better and sometimes worse than 
(4.9). As we might have expected the upper bounds in (4.8) and (4.9) are both 
dominated by ap -2. We also mention here that Hipp (1979) has stronger 
bounds than ours but his results for the a -mixing case are in conflict with 
theorem 6.1. For <j>-mixing his results were studied later by Peligrad (1981). 

5. Strong mixing and averaging: a= 1. 

Proof of theorem 1.2: Apply lemma 3.1 (3.2) with m ;;_:;,,p and the Markov ine
quality to get after a simple calculation that 

~ ..;(p-t) P(lS/I ;;_:;,, ef) <oo for any E>O 
k;;>l. 

and y>l arbitrary. Because for Y"~J<Y"+l holds ISj-S/l~(y-l)Y" it fol-
lows that · 

~ ..;<p-I>p<. s~ok+, ~ISjl ;;_:;,,E')<ooforanyE'>y-1>0. (5.1) 
k;;>l y ..;.1<1 J 

For p = 1 this implies the strong law by Borel-Cantelli. For p > 1 note that 
(1.8) is dominated by 

~ ~ nP-
2 P( 1~~I>.-• 1

1
. ISj I > E) 

k;;>l l-1,,;;,n<l -. 

~ c ~ ..;(p-l) ~ P(.. S~Dm+1 ~ISjl > E). 
k;;>l m;;>k-1 Y ..;l<Y J 

Exchange summation an'.d observe that for suitable choice of y we obtain from 
(5.1) that the last expression is finite. 0 

6. Sharpness and renewal theory for independent random variables 

We show that both theorems of section 1 are sharp for renewal sequences. 
Let F be a probability distribution on 1\1: = { 1,2 · · · } and let X l>X 2, • • • have 
distribution F. Assume 

P(Xo=i)=l_P(X1>i)' i ;;_:;,,o, 
µ 

whereµ is the mean of F and let X0,Xt>X2, • • • be independent. Then 
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fin : = 1 if n =X0+ X 1 + · · · + Xk for some k 

: = 0 otherwise 

defines a "renewal" sequence (fin )n ;;.0• It is stationary and its distribution is 

uniquely determined by F. Let 'lln:=fin _ _!_ ,nEZ. We study the strong law 
µ. 

(1.5) for 'lln. Note 

Sn ;;;.: a if and only if X0+ X1 + · · · + XcaJ ~n (6.1) 

We write p* (.) for P(. IX0)=0. Using the notations of section I also, we 
have 

Theorem 6.1 : The following assertions are equivalent for p > 1 : 

(i) F has finite p 1h moment 

(ii) ~ nP - 2pn < oo 
n';;.tl 

(iii) ~ nP-2an < oo 
n;;.tl 

(iv) ~ nap-2p* (ISn l;;;.:n«t:) < oo for any given a,p with i<a~l and ap > 1 
n;;.tl 

(v) ~ nap-2P(max ISkl ;;;.: n°t:) < oo for all a,p with 
n;;.tl k<.n 

i<a~ 1 and ap > 1. 

L T' K L T 
Proof: (i) ==> (ii) ==> (iii) ==> (iv) for a= 1 and p > 1 =>(i) ==>(ii) ==> (v) ==>(iv). 
Here Lis Lindvall (1979) , proposition I; (ii) ==>(iii) is trivial because an ~Pn; 
K is Baum, Katz (1965);T' is theorem 1.2 and T is theorem 1.1; (v) ==>(iv) is 
trivial because 

P(ISnl;;;.: t:n°);;;.: P*(ISnl;;;.: t:n)P(Xo=O), 

where p* (.) is the "Palm measure", under which Sn are the partial sums of 
i.i.d. r.v .. So from (v),(iv) we have 

~ nap-2 p* (ISn I ;;;.: t:n°) < oo. 

To get (i) from (iv) one uses Kand the following considerations 

{Sn ;;;.: t:n°} = {Sn ;;;.: µ.- 1n + t:n°} 

= {Xo+ · · · +XU&-'n + mj} ~ n} 

by (6.1). So also by using that p• (X0 =0)= 1, we have 

oo > ~ nap-2 p* (ISn I ;;;.: t:n°) 
n;;.tl 

~nap-2[P*(X1+ · · · +XU&-'n+mi ~ n] 
n;;.tl 
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+ p* (X1 + · · · + Xll'-'n-m"J ;;;i. n)] 

;;;i. CE ~ nap-2 P*(IX1+ · · · +Xn -µnl ;;;i. yn"), 
n;;;.l 

where y=y(£)J,O as £.1,0. This implies by K that (i) holds. D 

The result (ii) => (i) is known in case p ;;ai.2 by Davies and Grubel (1983) 
where a similar stronger result is given for p ;;;i.2. In this and in the related 
paper Davies and Grubel (1981) these authors use analytic techniques for func
tion algebras. A nice aspect of such results is that they form a converse to the 
Pitman-Llndvall results (see Lindvall (1977).) 

Also a very interest4tg aspect of these results is that speed of convergence 
in the ergodic theorem is coupled to the mixing rate of a stationary sequence 
i.e. (ii) or (iii) ~(iv) or (v ). Note that here Tin is a functional of the Markov 
chain 

Yn := n- max LJ: Tlj =l for j<n }. 

The functional has the property that the event {Tio= 1} disconnects past and 
future in the sense that (Yn)no;;;O and (Yn)n;;i.o are independent given this event. 
The question arises how much (iii)~ (v) can be generalized for subclasses of 
the set of strongly mixing sequences. 

7. Averaging a function along a random walk 

Consider a random walk (Tn )n .,.0 started at the origin with strictly positive 
increments, having an aperiodic distribution F. Let F have finite mean p.. Sup
pose there is given a bounded function f on the integers. 

Theorem 7.1: If F has finite p1h moment, f <a:e;;;; 1, ap > 1, then 

1 n 1 
~ Nap- 2 P(suo ~I ~/(Tk)-:-- ~ /(k)I ;;;i.£)< oo. 

N;;i.o n;;i."N n k=l P. O<k<n1& 

Proof: Section 2 of Bingham, Goldie (1981) shows that this is implied by 
theorem 6.1 (iv) and (i) .. o 

Meilijson (1973) and Stam (1968) discuss related results. Investigation of 
distributions F with mass on the negative axis would go too far here, but Bing
ham, Goldie (1982) contain a useful idea for this case. 

Acknowledgement: The last application stimulated the research of this paper 
and therefore I thank N. Bingham for a visit to Westfield College in connec
tion with these investigations. 
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