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Topological spaces with complete uniformities 

Miroslav Rusek 

It waB proved by Shirota· in [23] that a uniformizable Hausdorff 

space having no closed discrete subspace of measurable cardinality 

admits a complete uniformity if and only if it can be embedded as a 

closed subspace in a product of real lines (i.e. if it is realcompact -

see [4], [ 11], [26]). The aim of this paper is to prove analogous 

assertion also for spaces having closed discrete subspaces of measurable 

cardinalities (if they exist) and to state new modifications of the 

Shirota' s theorem. Several comments concerning Herrlich' s a-compact 

spaces and van der Slot's a-ultracompact spaces with complete uniformities 

are stated at the end of this paper. The main results are Theorems 

2, 3 and 4. 

§ 1 . Introduction. 

All the topological spaces under consideration are supposed to be 

uniformiz~)le Hausdorff. Mainly the terminology of [1] and of [4] is 

used throughout this paper. The symbol (CH) will mean that we assume 

the continuum hypothesis. 

Cardinals will be denoted by letters a, e and identified with 

initial ordinal numbers; arbitrary are denoted by E;, n. 

If a is a cardinal, then a+ is the immediate cardinal successor of a. 

Relatively measurable cardinals are infinite cardinals a admitting 

nontrivial two-valued measures which are e-addi ti ve for all e < a 

(see [3], [18]). If we arrange the class M' of all relatively measurable 

cardinals :i.nto a transfinite sequence fot;}, then a0 = w0 and at;, E; > 0, 

is the firi:it cardinal admitting a nontrivial two-valued measure which 

is an-additive for all n < E;. It should be noticed that an existence 

of a nontr:i. vial two-valued e-addi ti ve measure on a set D is equivalent 

to an existence of a free ultrafilter on D with e+-intersection property 

(i.e., any subcollection of cardinality less thane+ has a non-empty 
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intersection). It is not known whether M' can contain more than one 

element in a model of set-theory. In the sequel, the transfinite 

sequence {a~} will be used only as a substitute of M' or of M, where 

M = M' if M' is a proper class and M = M' u (a ) if M' is a set 
n 

{a~ I ~<n}, where an is a symbol greater than any ordinal number. The 

reason for this convention is to ensure that any cardinal is followed 

by a member of M, By a nonmeasurable cardinal we shall mean any 

cardinal smaller than a 1 • 

Another important concept used frequently throughout this paper 

is that of E-compact space introduced in [2]. The E-compact spaces 
a are homeomorphs of closed subspaces of powers E ; thus I-compact spaces 

or R-compact spaces are just compact or realcompact spaces, respectively 

(here I = [O, 1 J and R is the space of real numbers). 

The class of all E-compact spaces will be denoted by K(E). Every space 

P has an E-compactification SEP' i.e., a reflection in K(E) (see [2]); 

van der Slot and Herrlich in [10], [24] have proved that if any compact 

set is E-compact, then the reflection SEP can be naturally embedded 

into the Cech-Stone compactification Sl' of P - all these results were 

generalized by Herrlich in [7] on the case when Eis a class of spaces. 

A class of spaces is equal to a K(E) for a class E if and only if the 

class is productive and closed-hereditary; if a class of spaces is 

equal to a K(E) for a single space E, then the class is called simple 

(see [7]). Further results of this sort and their generalization can be 

found in [8 J, [9 J and [25 J. 

Many generalizations of compact spaces can be obtained by 

generalization of definitions of compactness. If we want for the obtained 

spaces to form a class closed under products and closed subspaces, 

then mainly two such generalizations were studied. The first one is 

the class of all a-compact spaces in the sense of Herrlich [6], [7] 

and the second one the class of all a-ultracompact spaces of 

van der Slot [25]: a space Pis said to be a-compact or a-ultracompact, 

where a is an infinite cardinal, if each ultrafilter in P converges 
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whenever any of its subcollections of cardinalities less than a and 

composed of zero-sets or closed sets, respectively, has a non void 

intersection. We can obtain another generalization of compactness by 

requiring that maximal filters of zero-sets are fixed provided any 

of its monotone subcollections of ordinali ty a has a nonvoid inter­

section (Le., R -spaces, where R is the long line till a - see [4]). 
a a 

This last generalization has the disadvantage that the union of all 

R -compact spaces is not the class of all spaces as is the case for 
a 

a-compact and a-ultracompact spaces. We denote by K or U the class a a 
of all a-compact spaces or a-ultracompact spaces, respectively. It is 

almost obvious that K c U , that K = U are all compact spaces and a a w0 w0 

K 
w1 

are alJL realcompact spaces ( K is a proper subclass of U 
w1 w1 

- see 

below). All the classes K 
a 

are simple (see [12]) and can be characterized 

by algebraic properties of sets of continuous mappings into generating 

spaces (see [ 13]). But for a 4 M, K are not stable under perfect 
a 

images (see [20], [21] for a= w1, [15] for a 4 M). On the other hand 

each class U is stable under perfect images (see [25]) but need not 
a 

be simple (see [15]). 

Thus many properties of compact spaces are inherited in K or U , 
a a 

But there J.s an important characterization of compact and realcompact 

spaces by means of completeness which cannot carried over to K or U a a 
for a > w 1 :: A space is compact or realcompact if and only if it has 

a complete uniformity and each of its closed discrete subspaces is 

finite or of nonmeasurable cardinality, respectively (see [4], [23]). 

Both classes K , U , a > w, contain a space without complete uniformity 
a a 

(e.g. the space T of all countable ordinals endowed with the order­
w 1 . 

topology) -· the same is true for K(R ) . It follows that if we put 
a 

S ~ to be the class of all spaces with complete uniformities and con-
(;, 

taining no closed discrete subspace of cardinality a~, then we get new 

classes of spaces. We shall see that classes S ~ ~re productive and 

closed-hereditary. We will study relations between Se:, K and U and ., a a 
prove that any S~ is simple. We then deduce the class of all 

spaces with complete uniformities is simple if and only if the class 

Mis a set .. 
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The further concept used in the sequel is that of a pseudo--a­

compact space introduced by Frolik in [5] and Isbell in [16] (we use 

the term from [ 16]: a space P is said to be pseudo-a-compact if every 

uniformizable covering of P has a uniformizable.refinement of cardinality 

less than a (i.e., the cove~ing character of the fine uniformity of 

Pis at most a). Evidently, pseudo--w0-compact spaces are just pseudo­

compact spaces. It is easy to characterize pseudo-a-compact spaces as 

those having no discrete family of open sets which has cardinality a 

(see [5], [22]). Many other characterizations of pseudo-a-compact spaces 

are contained in [5] and, for a to be the first uncountable measurable 

cardinal, in [ 14]. 

The symbol S(a) will denote the metrizable hedgehog with a 

prickles, i.e., a copies of the closed unit interval I= [0,1] sewed 

together in the point O. The points of the 8-th copy of I are then 

<8,x>, x € I, or O if x = O. We shall use the following complete metric 

on S(a): 

jx-x' I if a = a' 
d<<S~x>, <8 1 ,x 1 >> = 

X+X I if /3 f a I • 

Finally we denote s 0 =I= [0,1] and for a;€ M,; > o, S; 

§2. ss-compact spaces. 

= II{S(a ) I 11<;}. 
11 

In this section we shall investigate a generalization of the Shirota's 

theorem mentioned at the beginning of this paper; S;-compact spaces 

(i.e., homeomorphs of closed subsets of powers S~) will be convenient 

objects for this investigation. We shall show that S;-compact spaces 

coincide with members· of the class S; introduced in § 1. 

As in the realcompact case (i.e. when ;=1) we must investigate discrete 

spaces at first. Recall that a discrete space Dis of cardinality less 

than an a; € M if and only if any ultrafilter in P with 

a+-intersection property for any 11 <; is fixed, i.e., if and only if 
11 + + 

Dis a -compact (or, which is the same, a -ultracompact for any 11 < ;. 
11 11 
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Theorem 1. A discrete space is S~~compact if and only if it is of 

cardinality less than a;. 

Proof. We will suppose that;> 0 because for;= 0 the result is well­

known (s0-compact spaces are just compact spaces). Assume first that 

D is a discrete space with card D < ar. We wish to prove t)lat S D = D, 
.,, s; 

i.e. , that for any X E BD-D there is a mapping f: D -+ S~ which cannot 

be continuously extended to X. Since Xis a free ultrafilter on D, there 

is a monotone subsystem {x;l;<an} of X for an<; such that x0 = D, 

n{x;,I;'<;} = X; for any limit ordinal;< Ctn andn{x;l;<an} = & • 

But fx = <;, 1} whenever x E X;-X;+ 1• Certainly, f is a mapping on D 

onto a closed discrete subspace D' of S(a ) with card D' < a . If f n =- n 
had a continuous extension to X (into D' then) with a value <;,1>, 

then f- 1[<;,1>] EX, which is impossible. 

We shall now assume conversely, that card D ~a;. There is a free 

ultrafilter X on D with a+-intersection property for each n <;.We 
n 

shall prove that any mapping f: D-+ S; can be continuously extended 

to X (as a point of SD); hence XE Ss D-D and, consequently, Dis not 
; ' 

S;-compact. Since S; = TI{S(an)ln<;} we mey and shall suppose that 

f:D -+ S(an) for a n < ; • There is _a ;-th prickle I; such that f- 1 [I;]E X 

(X has a+-intersection property); consequently, f[[X]] converges to a 
n 

point of I; and, thus, f has a continuous extension to X. The proof is 

complete. 

In fact we have shown more in the proof just accomplished:~ 

discrete space is of cardinality smaller than a; if and only if it 

can be embedded as a closed subspace· into a product of discrete spaces 

with cardinalities at most a , n < ;. 
n 

Now the main theorem of this section: 

Theorem 2. Let P be a space and a; EM, Then the following conditions 

are egui valent: 
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( 1 ) P is S_1;:-c0mpact; .· 

(2) P has a complete uniformity and no closed discrete subspace of 

cardinality -a · • · · · · . - I;' 

* (3) P has a complete uniformity and no closed discrete C -embedded 

subspace of cardinality al;;· 

(4) P has a complete-uniformity,and- no closed.- discrete· c..:.embedded 

subspace .. of· cardinality al;; 

· (5) P has a complete uniformity and no uniformly discrete subspace 

of cardinality a. I; ( i • e • • P has a complete uniformity and is pseudo­

a. l;-compact); 

(6) p has a complete uniformity with covering character at most a. I; ; 

(7) p has a com:elete uniformity with covering character at most 

su:e{c/ I n<I;}. 
n 

Proof. Evidently, (2) ~( 3) ~ 4) =:>( 5), ( 7) =>( 6). If P is Sl;-compact, 

then any of its closed discrete subspaces is Sl;-compact and, thus by 

Theorem 1, is of cardinality less than a.I;; it follows that (1)~(2). 
If P fulfils (5), then the fine uniformity of P satisfies the condition 

(6). Since the metrizable uniformity of S(a.) has the covering character 
+ equal to a , every Sl;-compact space has a complete uniformity with the 

covering character at most the least cardinal greater than any 

a. , n < I; - i.e., (1)~(7). Therefore it remains to prove the 
n 

implication (6)-==}(1). 

Suppose that P has a complete uniformity U with covering character 

smaller or equal to a.~. We wish to prove that S P = P. Pick out an 
~ SI; 

X € Ss Pc SP (Xis to be understood as a maximal filter of zero-sets 
I; 

in P) and an arbitrary uniform cover C of <P,U>. We shall show that 

there is an element of C containing a member of X; hence Xis a Cauchy 

·filter in <P,U> and thus it is convergent (i.e., X € P). By our 

assumption, Chas a refinement C' in U of cardinality less than a.I;. 

The covering C' has a a-uniformly (in the fine uniformity of P) discrete 

refinement C' ', i.e., C'' = U {C In € N}, where each C is a uniformly 
n n 
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discrete collection of zer0-sets in P - a Stone's theorem (see [16], 

VII 4). Since card C' < a~, we may and shall suppose that card 

C" < a~. 

The filter X has countable intersection property (a> 0 and hence 

e8 Pc e8 P = vP) and, consequently, there is an n € N such that 
~ 1 

Uc € X (union of a uniformly discrete collection of zero-sets is a 
n 

zero-set). Let en= {Vala€ A}, card A< a~, and let W be a uniformizable 

neighborhood.of the diagonal in P x P such that {W[V Jla € A} is a 
a 

uniformly discrete family. Now we can construct (see [14], proposition 1) 

a continuous mapping f: P -+ S( card A) with f[V J = <a, 1>, 
a 

f[P-W[ U {V I a € A} J J = 0. Denote by } the continuous extension of f 
a 

on e8 Pinto e S(card A). If we denote by D the closed discrete 
~ s~ 

suospace {<a,1>la € A} in S(card A), then fX must belong to the closure 

D of Din e8 S(card A). But we have D = e8 D = D; the second equality 
~ ~ 

follows by Theorem 1 because card D < a~ and the first one by the fact 

that any mapping on D into S~ can be continuously extended on S(card A) -

this extension property suffices to check only for mappings into 

S(a ) for arbitrary n <~and.this is Proposition 1 in [14] (stated for 
n 

other cardinalities but the proof is the same also in our case - see 

also similar assertion in [4], 3L.1). Therefore there is an a€ A such 
"\, 

that fX = <a,1> and hence, V € X. This concludes the proof since 
a 

V c U for a U € C. 
a 

The second part of the foregoing proof is similar to that of 

Shirota's theorem given in.[4]. The main difference is in using of the 

hedgehog instead of real line. 

Since we use the spaces S~ only for the purpose to investigate 

S~-compact spaces, we could define S~ = TI{S(an)ln € C~}, where C~ is a 

cofinal set in the set of all ordinals smaller than ~-especially we 

could define 8~+ 1 = S(a~). This is a consequence of the fact that, for 

n < ~, S(an) can be embedded as a closed subspace into S(a~). All 

the assertions of this paper remain true after this change. 
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The next result is an easy consequence of Theorem 2 but because 

of its importance we will state it as Theorem. 

Theorem 3. The class of spaces with complete uniformities is simple 

if and only,if the class of all relatively measurable cardinals is a set. 

Proof. If Mis a set with the last member a;, then the class of all 

spaces with complete uniformities coincides with S;, i.e., with the 

class of all S;-compact spaces, by Theorem 2. Let M be a proper class 

and take an arbitrary space P with a complete uniformity. There is an 

ordinal; such that Pis S;~compact; thus s,+1 is not P~compact 

because it is not S;-compact by Theorem 2,(2). 

There is a problem to characterize simple categories ( see [7], 

[8], [9], [15]); Theorem 3 shows that a solution of this problem is 

closely connected with the problem of measurability of cardinals. 

Now we will consider conditions of Theorem 2 but stated for cardinals 

not belonging to M. It is clear from the conditions (6) and (7) that if 

a; is the first member of M greater or equal to a cardinal a, then P 

has a complete uniformity with covering character at most a if and 

only if Pis S;-compact. The following two Propositions show that a 

similar case occur for the condition (1) but not for those remaining. 

Proposition 1. ll a; is the first member of M greate_r than a cardinal 

a,~ S(a)-compact spaces coincide with S;-compact spaces. 

Proof. Of course it suffices to show that the space S(a)- is S;-compact 

and that the space S; is S(a )-co!_Ilpact. The latter condition is t~i vial 

since a is greater or equal to any a , n < ;. Conversely, since 
n 

a< a;, the space S(a) is S;-compact by Theorem 2,(2). 

Denote by E. (a) the class of all spaces satisfying the condition 
J.. 

(i), i = 2,3,4,5, of Theorem 2 for a instead of a;. 
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Pr0p0siti0n 2. Let i = 2,3.4 25. The class E. (a) is pr0ductive and 
l 

cl0sed-hereditary if and 0nly if a E M. If as is the first element 

0f M greater 0r equal t0 a, then E i (a. )-c0mpact spaces c0incide with 

Ss-c0mpact spaces. 

Pr00f. Evidently E2(a.) C E3(a.) C E4(a.) C E5(a.) C K(ss) (the last 

inclusi0n foll0ws by the implicati0n ( 5) ==?( 1) The0rem 2). Since 

a < a f0r any n < s, the spaces S(a ) bel0ng t0 E2 (a.) and, hence, the 
n n 

space Ss i:s E2 (a)-c0mpact. C0nsequently, E2 (a)-c0mpact spaces (and 

therefore Ei (a.)-c0mpact spaces for 0ther i) c0incide with K(Ss), If 

a.< a.s' then S(a) E K(Ss) - E5(a) and thus Ei (a.) = K(Ei (a.)) for n0 L 
It f0ll0ws that in this case neither 0f E. (a.) can be b0th pr0ductive 

l 

and cl0sed--heredi tary. 

Obvi0usly, the class E2 (a) is cl0sed-hereditary. It need n0t be 
'v 

finitely pr0ductive: if we take the space R of real numbers with the 

t0p0l0gy generated by the base [a,b), then f{ E E2 (w 1) because any 

Lindelof SJ>ace bel0ngs to E2 (w 1), and RxR { E2 (w 1)w(the diag0nal 

{ <x,-x> I XER} is closed discrete 0f cardinality 2 O. 
'v 'v 'v 'v 

(CH): The pr0duct R x R bel0ngs t0 [ 3 (w 1) (RxR is separable and 
* 'v 'v Wo wo • w1 'v 'v 

hence card C (RxR),:;., 2 ; by (CH), 2 < 2 ; if RxR contained an 
. * *('v '\,) unc0untable discrete C -embedded subspace D, then card C RxR ~ 

* w7 card C (D) ~2 ). From this result we can deduce that E2 (w 1) is a 

pr0per subelass of E3(w 1) and that neither 0f E3(w 1), l\(w 1), E5 (w 1) 

need be closed-hereditary (RxR has a cl0sed subspace { <x,-x> I xER} 

n0t belonging to E5 (w 1)). 

Now we shall show that the classes E3 (w 1), E4 (w 1) and E5 (w 1) 

need not even be finitely productive. In [19], Michael has constructed 

under (CH) a Lindelof space Y the square YxY of which is pa.rac0mpact 

and not Lindelof. As a Lindelof space, YE E2 (w 1). It is easy to show 

that YxY { E5 (w 1); indeed since YxY is paracompact, unif0rmizable 

covers coincide with interior c0vers and because YxY is n0t Lindelof, 

there is ru1 0pen cover with n0 c0untable 0pen refinement - i.e., YxY 

is not pseud0-w 1-compact. 
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As for the relations between E3(w 1), E4(w 1) and E5(w 1) the author 

conjectures that E3(w 1) is a proper subclass of E4 (w 1) and that E4 (w 1) 

is a proper subclass of E5(w 1). 

§ 3, Relations between classes S ~, Ka and lJa. 

First we recal that the class K of all a-compact spaces is a 
a 

subclass of 

Ka C Kf3, ua 
is a-compact 

the class U 
a 

of all a-ultracompact spaces and that 

c u8 provided a~ a. Evidently, a-ultracompact space P 

if each closed subset of P is a zero-set, i.e., if P 

is perfectly normal (especially if P is metrizable). We shall ~rove 

now that a-ultracompactness and a-compactness coincide also for spaces 

with complete uniformities. First we will investigate discrete spaces. 

Proposition 3, A discrete space Dis a-compact if and only if a> a 
n 

for all n <;,where a; is the first member of M greater than c'ard D. 

Proof. Assume that Dis a-compact. Since Dis not a -compact for any n 
n <; (D contains a free ultra.filter with a -intersection property, 

T) 

because card D ~an), the cardinal a must be greater than any such an. 

Suppose now conversely that Dis not a-compact. Then there is a free 

ultra.filter on D with a-intersection property and therefore a ~an 

for an<; because otherwise card D ~ a;. 

Corollary 1. If Pis a-ultracompact and a; EM is greater or equal to 

£!., then Pis pseudo-a;-compact (moreover any closed discrete subspace 

of Pis of cardinality less than a;). 

Proof. If Dis a closed subspace of P, then Dis a-ultra.compact and, 

hence by Proposition 3, if Dis discrete, then a must be greater than 

any an' n < ; 0 , where a; is the first member of M greater than card D. 

It follows that a;~ a; O because a;~ an' n < ; 0 . Consequently, 
0 

card D < a; ~ a;. 
0 
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Corollary 2. ll a~ is the first member of M greater or equal to an 

infinite cardinal a, then for any S· < a~ there is an a-compact space 

which is not pseude-S~ciompact. 

Proof. By Proposition 3, a discrete space of cardinality Sis a-compact 

and certainly is not pseudo-S-compact. 

Several times there appeared a condition "a is greater than any 

a , n < ~" in the preceding assertions; it is easy to see that it is 
n 

equivalent to the condition "a~ sup{a~I n<O", which is the same as 

a> sup{a In<~} if~ is limit and a> a~ 1 if~ is isolated. 
- T) ~-

Now we turn our attention to the hedgehogs. 

Proposition 4. The hedgehog S(S) is a-compact if and only if 

a > an for all n < ~, where a~ is the first member of M greater than 

!• 

Proof. Since S(S) contains a closed discrete subspace of cardinality 

S, the necessity follows by Proposition 3. For the other implication 

assume that a is greater than any a , n <~-By Proposition 1, the 
T) 

hedgehog S(S) is S~-compact and, thus, it suffices to prove that S~ 

is a-compact, which is the same as that S(a ) is a-compact for any 
T) 

n <~-Let n <~and take an arbitrary maximal filter of zero-sets 

in S(a) with a-intersection property. Since a < a, there must be 
n n 

a prickle in S(a) belonging to the ultrafilter; it follows that the 
n 

ultrafilter contains a compact set and thus converges. 

Corollary 1. The space S~ is a-compact or a-ultracompact if and only 

if a> a for all n < ~. 
- n 

Proof follows at once from Proposition 4 because S~ is a-compact if 

and only if all the S(a ), n <~are a-compact and the same for 
n 

ultracompactness. 
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Corollary 2. ~a> an for all n <·~.Then-any pseudo-a;-compact 

space with a c0:rrwlete- uni f1:>rmi ty is a-compact. 

Proof, If Pis pseudo-a;-compact and has a complete uniformity, then 

it is S;-compact by Theorem 2. By the foregoing Corollary, Pis a­

compact. 

The next theorem states other generalized modifications of the 

Shirota's theorem: 

Theorem 4. Let a; E: M and a; > a > an for all n < ; • Then the following 

conditions on a space Pare equivalent: 

(a) Pis S;-compact; 

(b) P has a CO!!!J2lete uniformity and l.S a-co!!!Eact ; 

(c) P has a co!!!Elete uni fc:>rmi ty and l.S a-ul tracom;eact . 

Proof. Obviously (b)~(c); by Corollary 2 of Proposition 4, (a)====}(b). 

The last implication (c)~(a) follows by Corollary 1 of Proposition 3 

(Pis a-ultracompact and hence pseudo-a;-compact; since in addition 

it has a complete uniformity, it is S;-compact by Theorem 2). 

Corollary 1. If a s;eace has a co!!!Elete uniformity, then it is a-com;eact 

if and only if it is a-ultracompact. 

Evidently, the converse implication of Corollary 1 does not hold 

(the space T of all countable ordinals with order-topology is both 
w1 

w2-compact and w2-ultracompact (see [6], [25]) and has no complete 

uniformity ) . 

Corollary 2. If P has a complete unif0rmity and a;~ a> an for all 

n <;,then the fellowing conditions are equivalent: 

( a) 

(b) 

(c) 

( d) 

P is a-compact; 

Pis a;-co!!!Eact; 

Pis supfo+ln<O-compact; 
n 

Pis pseudo-a.;-compact. 
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Proof. The implication (a);:::::>(b) is obvious, (b)~(c) follows by 

Theorem 4, (c)~(d) is Corollary 1 of Proposition 3 and (d) ~(a) 

follows at once from Theorem 2, implication (5)~(1), and from 

Theorem 4, implication ( a) ==,(b). 

The same assertion can be stated for a.-ultracompact spaces. 

As an application of Theorem 4 we shall give another proof of a 

van der Slot's result proved in [25]: 

Corollary 3, A coutably paracompact normal w1-ultracompact space is 

realcompaci;:_. 

Proof. By ~~heorem 4 or by its Corollary 1 it suffices to prove that 

an arbi trai~ countably paracompact normal w 1-ultracompact space P 

has a complete uniformity. A space P is countably paracompact normal 

if and only if all its countable open coverings form a base for a 

uniformity on P. Denote this uniformity by U. We shall prove that U 

is complete. Let X be an ultrafilter on P which is U-Cauchy and 

assume that X does not converge. Since Pis w1-ultracompact, there 

are countably many closed sets A. € X with an empty intersection. 
1. 

But this is a contradiction because the open cover {P-A.} is a member 
1. 

of U and no its element belongs to the LI-Cauchy filter X. 

Now we shall summarize our results for the case ~ = 1. All the 

conditions in the next theorem which contain a direct assumption on 

completeness can be regarded as modifications of the Shirota I s theorem 

mentioned at the beginning of this paper. Of course, some of them 

are well-known - see [4], [16], [17], [23], 

Theorem 5, The following conditions are equivalent for a space P: 

( a) P is realcompact; 

(b) P can be embedded as a closed subspace into a power ~( wO) of 

the metrizable hedgehog S(wO); 
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(c) P has a complete uniformity and each of its closed discrete 

subspaces ·is· of nonmeasurable, cardinality; 

* (d) P has a complete uniformity and each of its closed discrete C -

embedded- subspaces is of nonmeasurable cardinality; 

(e) P has a complete uniformity and each of its closed discrete C-em­

bedded'subspaces-is of nonmeasurable cardinality; 

(f) P has a complete uniformity and each· of its uniforml.y discrete 

subspaces is of nonmeasurable cardinality (i.e., P has a complete 

uniformity and. is pseudo-a 1-compact; 

(g) P has a complete uniformity with covering character at most a 1: 

(h) P has a complete uniformity with covering character at most w1; 

(i) P has a. complete uniformity and each maximal filter of zero-sets 

in P with nonmeasurable intersection property is fixed (i.e., P 

has a complete uniformity and is a-compact)~ 

(j) P has a complete uniformity and each ultrafilter with countable 

intersection property for closed sets converges (i.e., P has a 

complete uniformity and is w1-ultracompact) ~ 

(k) P has a complete uniformity and each ultrafilter with nonmeasurable 

intersection property for closed sets converges (i.e., P has a 

complete uniformity and is a 1-ultracompact). 
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