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ABSTRACT
Gradient methods and their value in single-objective, real-
valued optimization are well-established. As such, they play
a key role in tackling real-world, hard optimization problems
such as deformable image registration (DIR). A key question
is to which extent gradient techniques can also play a role in
a multi-objective approach to DIR. We therefore aim to ex-
ploit gradient information within an evolutionary-algorithm-
based multi-objective optimization framework for DIR. Al-
though an analytical description of the multi-objective gra-
dient (the set of all Pareto-optimal improving directions) is
available, it is nontrivial how to best choose the most ap-
propriate direction per solution because these directions are
not necessarily uniformly distributed in objective space. To
address this, we employ a Monte-Carlo method to obtain
a discrete, spatially-uniformly distributed approximation of
the set of Pareto-optimal improving directions. We then
apply a diversification technique in which each solution is
associated with a unique direction from this set based on its
multi- as well as single-objective rank. To assess its utility,
we compare a state-of-the-art multi-objective evolutionary
algorithm with three different hybrid versions thereof on sev-
eral benchmark problems and two medical DIR problems.
Results show that the diversification strategy successfully
leads to unbiased improvement, helping an adaptive hybrid
scheme solve all problems, but the evolutionary algorithm
remains the most powerful optimization method, providing
the best balance between proximity and diversity.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Applied computing → Multi-criterion op-
timization and decision-making;
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1. INTRODUCTION
Local search algorithms that employ the gradient (i.e., the

direction of greatest increase) of a function to iteratively ar-
rive at a (locally) optimal solution have been studied for
a long time in single-objective continuous optimization. In
such approaches, gradient-based methods constitute a very
powerful mathematical tool and are an efficient and practical
way of finding (local) optima, especially when the function
f to be optimized possesses desirable properties such as dif-
ferentiability. As a consequence, their use is widespread in
solving real-world optimization problems.

In contrast to local search algorithms, population-based
algorithms such as evolutionary algorithms (EAs) seek to
exploit the global properties of the search space. The syn-
ergy of EAs with local search has been investigated and has
resulted in the so-called memetic algorithms or genetic lo-
cal search [8], which are frequently successfully applied in
single-objective- and multi-objective optimization.

Multi-objective optimization problems arise frequently in
real-world situations, where it is often the case that optimal
decisions need to be taken in the presence of two or more
conflicting objectives. In a multi-objective approach, there
are sets of optimal solutions to the problem, which represent
the most efficient trade-offs that can be considered to be
equally good [5].

One of the real-world problems that could benefit from
such an approach is deformable image registration (DIR).
DIR is a medical image processing task that can be of great
value for healthcare. Its clinical implementation is still lim-
ited and presents many challenges [9]. Currently, a regis-
tration outcome is computed based on a single combination
of different objectives, using predominantly single-objective
gradient methods. However, there is currently no insight-
ful way of finding the singular optimal combination of the
objectives beforehand, thus making clinical implementation
of such algorithms difficult. Different combinations lead to
different outcomes, which can ultimately only be judged
in quality by experts. For this reason, multi-objective op-
timization where multiple optimal outcomes with efficient
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trade-offs are computed and presented simultaneously could
be the key in obtaining wider clinical use. In this framework,
studying the design and use of gradient-based methods for
DIR becomes also of interest, as their efficient use could help
achieve improved results.

However, as a consequence of the existence of these numer-
ous (possibly infinite) trade-offs between objectives, the no-
tion of improvement also becomes different. This makes the
use of gradient information in multi-objective optimization
less straightforward than in the single-objective case. For
this reason, many different strategies have been proposed
for its exploitation in such settings. In some cases, gradient
information is not used explicitly [10]. Other multi-objective
methods make explicit use of the gradient after having re-
duced the multi-objective problem to a single-objective one
by constructing one function via weighted aggregation (see
e.g., [11]) which is then optimized. Therefore, there is no
guarantee that all objectives improve simultaneously. In an-
other approach, the direction of greatest simultaneous im-
provement has been derived analytically [7], and applied in
a hybrid algorithm [4]. Such approaches however can lead
to a bias, if the objectives have different ranges, towards
the objective with the largest range. Moreover, there are
still infinitely many directions, that cannot be compared to
each other; each one of them improves one objective more
than the others. A complete analytic description of the best
improving directions has been derived and has subsequently
been utilized as a part of a multi-objective gradient search
method [2]. Even then, a non-uniform spatial distribution
of directions can lead to a bias due to differences in range
or difficulty of the objectives. Therefore, to ensure gradi-
ent exploitation leads to a well-spread set of optimal solu-
tions, it is essential to determine a strategy in which the
multi-objective gradient is exploited such that it results in
a balanced improvement of all objectives.

In this paper, we propose a diversification technique to ex-
ploit in such an unbiased way this multi-objective gradient
information. We assess its utility by comparing a state-of-
the-art multi-objective evolutionary algorithm to three dif-
ferent hybrid versions thereof on several benchmark prob-
lems, which gives us insight into the performance of the
proposed approach when it comes to problems with great
variation in difficulty and scale. Additionally, we test the
best performing hybridization scheme on two DIR problems.
Considering that the objectives of our DIR problem have a
large difference in difficulty, we aim to assess whether the
new technique results in a clearer advantage of the hybrid
algorithm compared to the EA.

The remainder of the paper is organized as follows. In
Section 2 we present some definitions for multi-objective
optimization. In Section 3 we discuss the selected bench-
mark problems with an emphasis on those which exhibit the
aforementioned behavior. In Section 4 we discuss in more
detail the initial multi-objective gradient technique and the
new diversification technique. Further, we present results of
their comparison. In Section 5 we discuss the hybridization
schemes, and the DIR problems we will test them on. In
Section 6 we compare the performance of the schemes on
all problems and in Section 7 we discuss our findings and
conclusions.

2. DEFINITIONS

2.1 Multi-objective optimization
We assume to have m objective functions fi(x), i ∈ {0, 1,

. . . ,m} and, without loss of generality, we assume that the
goal is to minimize all objectives. A solution x1 is said to
(Pareto) dominate a solution x2 (denoted x1 � x2) if and
only if fi(x

1) ≤ fi(x
2) holds for all i ∈ {0, 1, . . . ,m} and

fi(x
1) < fi(x

2) holds for at least one i ∈ {0, 1, . . . ,m}.
A Pareto set (denoted PS) of size n is a set of solutions
xj , j ∈ {0, 1, . . . , n} for which no solution dominates any
other solution, i.e., there are no j, k ∈ {0, 1, . . . , n} such that
xj � xk holds. A Pareto front (denoted PF ) correspond-
ing to a Pareto set is the set of all m-dimensional objective
function values corresponding to the solutions, i.e., the set
of all f(xj), j ∈ {0, 1, . . . , n}. A solution x1 is said to be
Pareto optimal if and only if there is no other x2 such that
x2 � x1 holds. Further, the optimal Pareto set is the set of
all Pareto-optimal solutions and the optimal Pareto front is
the Pareto front that corresponds to the optimal Pareto set.

2.2 Multi-objective gradient
For any real-valued function f(x), x = (x0, x1, . . . , xl−1),

the gradient of f is defined as:

∇f(x) =

(
∂f(x)

∂x0
, . . . ,

∂f(x)

∂xl−1

)
.

The directional derivative then is a function that gives the
rate of change of f in direction û at any y:

∇uf(x)(y) = (∇f(x)(y))T û. (1)

Therefore, to find the direction of greatest decrease the fol-
lowing single-objective optimization problem must be solved:

min
û
{∇uf(x)(y)} .

It is easy to see that the directional derivative at a point
is minimal when the direction points to the direction of the
negative gradient, i.e., the solution to this problem is natu-
rally −∇f(x)(y).

If we extend the notion of gradient and directional deriva-
tives to a multi-objective setting, we must now solve the
optimization problem

min
û
{∇uf(x)(y)} ,

where f = (f0, f1, . . . , fm−1). The directional derivative
of f is now also a vector whose i-th component is the di-
rectional derivative in the i-th objective, i.e., (∇uf(x))i =
∇ufi(x) and therefore (1) for the multi-objective case is for-
mulated as

∇uf(x) = Gû,

where G = (∇f0(x), . . . , fm−1(x))T . Now, similar to the
single-objective case we are ultimately interested in the di-
rection that maximizes the improvement (i.e., the negative
gradient). However, now this is a multi-objective optimiza-
tion problem. Hence, no single direction of greatest increase
of f starting from y exists, but a set of directions that
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correspond to the optimal Pareto front of all improving di-
rections. A parametric description of these Pareto-optimal
directions is available [2], and a method called Combined-
Objectives-Repeated-Line search (CORL), that will be ex-
plained in more detail in Section 4, exploits them by choos-
ing a random direction from this parametrically described
set. However, choosing a direction at random can lead to a
bias, in particular when the objectives to be optimized vary
a lot in difficulty. To investigate this, we have specifically
chosen some problems in our multi-objective optimization
test suite that exhibit this bias.

3. BENCHMARK PROBLEMS
We have selected a set of well-known benchmark prob-

lems in multi-objective evolutionary optimization, see Ta-
ble 1. We first considered the well-known problems ZDTi,
i ∈ {1, 2, 3, 6}. The initialization ranges (IRs) of the ZDTi

problems are also constraints. For more details, see [12].
We also considered two problems with smooth properties.

These are the most simple ones, and they are a generaliza-
tion of the MED (Multiple Euclidean Distances) problems,
which we will refer to as GenMED. There are two cases, one
where the optimal Pareto front is concave and one where it
is convex, but both cases are smooth functions with equally
scaled objectives and without any local Pareto fronts.

Lastly, we have selected two more problems, which are
characterized by a strong difference in difficulty between
their objectives. Both of these problems, labeled BDi, i =
1, 2, make use of the Rosenbrock function in one of their ob-
jectives. The real-world problems we are interested in share
this difference in difficulty.

Name Objectives IR

ZDT1

f0 =x0, f1 = γ
(

1−
√
f0/γ

)
γ = 1 + 9

(∑l−1
i=1 xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT2

f0 =x0, f1 = γ
(
1− (f0/γ)2

)
γ = 1 + 9

(∑l−1
i=1 xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT3

f0 =x0, f1 = γ
(

1−
√
f0/γ − (f0/γ)sin(10πf0)

)
γ = 1 + 9

(∑l−1
i=1 xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT6

f0 = 1− e−4x0sin6(6πx0), f1 = γ
(
1− (f0/γ)2

)
γ = 1 + 9

(∑l−1
i=1 xi/(l − 1)

)0.25 [0; 1]10

(l = 10)

BD1

f0 =x0, f1 = 1− x0 + γ

γ =
l−2∑
i=1

(
100(xi+1 − x2i )

2
+ (1− xi)2

) [0; 1]×
[−5.12; 5.12]9

(l = 10)

BDs
2

f0 = 1
l

∑l−1
i=0 x

2
i

f1 = 1
l−1

l−2∑
i=0

(
100(xi+1 − x2i )

2
+ (1− xi)2

) [−5.12; 5.12]10

(l = 10)

GenMED1,2

f0 = || 1
2
(x− c0)||d

f1 = || 1
2
(x− c1)||d

c0 = (1, 0, 0, . . . ) c1 = (0, 1, 0, 0, . . . ) d = 1, 1
2

[−1; 1]10

(l = 10)

Table 1: The MO problem test suite.

4. EXPLOITING MULTI-OBJECTIVE
GRADIENT INFORMATION

4.1 Combined Objectives Repeated
Line-search (CORL)

In this multi-objective version of gradient descent, the set
of all Pareto-optimal improving directions for a vector func-
tion f is initially calculated [2]. To do so, every direction

û is mapped to its directional derivative ∇ûf from a unit
l-dimensional hypersphere (where l is the problem dimen-
sionality) to the surface and interior of an m-dimensional
hyperellipsoid, where m is the number of objectives. The
directions that are of interest, i.e., that lead to maximum
improvement of all objectives, correspond to the negative
non-dominated directional derivatives which lie in the inter-
section of the surface of the hyperellipsoid with (−∞, 0]m

(Figure 1). This set of directions can be described and sam-
pled.

f

f

1

0

Figure 1: Part of the ellipsoid (in red) that includes
the non-dominated improving directions.

One of these promising directions is chosen randomly and
a multi-objective line search is performed along that direc-
tion. Typically, in a single-objective line search scheme, it
is decided how far the algorithm should move in the chosen
search direction to reach a local minimum along that di-
rection, which maximizes the objective value difference be-
tween the starting point and the point where the line search
ends. The multi-objective version of line-search is a natu-
ral generalization of that scheme, where the negative scaled
Euclidean distance in objective space between the starting
point x and the local minimum is used instead. The further
x + αû travels in objective space along the chosen direc-
tion û while improving upon the starting point, the better.
When the line search terminates, a new promising direction
is sampled and a line search is repeated. This technique is
called Combined Objectives Repeated Line-search (CORL).

To understand why a uniform distribution of directions is
not necessarily preserved, one needs to look at the mapping
of a direction û from the parameter space to its directional
derivative in the objective space. When one chooses a direc-
tion û, this direction is taken from the unit l-dimensional
hypersphere. This direction is then collapsed onto the sur-
face of the m-dimensional hyperellipsoid via a sequence of
rotations, translations, and a projection. Therefore, the uni-
form distribution of the directions in the hypersphere is not
necessarily preserved in the distribution of the directional
derivatives on the hyperellipsoid, which depends on the ori-
entation of the hyperellipsoid as well as its scale.

The lack of a spatially uniform distribution is possibly
one of the reasons why in problems where the objectives
have a large difference in difficulty, powerful single-objective
methods such as conjugate gradients applied randomly or
alternatingly to the different objectives perform better than
CORL.

4.2 Rank-Based Combined Objectives
Repeated Line-search (RB-CORL)

In this technique, we change the way directions are chosen
for each member of the population. The multi-objective line
search remains the same as in CORL.

1257



4.2.1 A rank-based scheme
Aiming to exploit the analytically described set of Pareto-

optimal improving directions in a truly uniform manner,
we employ a diversification scheme, where as a first step
the solutions are classified according to their multi-objective
rank, which is calculated using the well-known domination-
ranking scheme [6]. Consequently, the non-dominated solu-
tions are of rank 0, the second best ones rank 1, and so on.

0

𝒇

𝒇

1

m.o. rank 0

m.o. rank 1

m.o. rank 2

Figure 2: Directions assigned according to their
multi-objective (m.o.) as well as their single-
objective rank (within each multi-objective rank
separately).

Subsequently, in each set of solutions that belong to the
same rank, the solutions get a direction that depends on
their ranks with respect to the individual objectives. In
other words, the better a solution ranks in one objective
compared to the other solutions that belong in the same
multi-objective rank, the more favorable the direction for
that objective (Figure 2). Each direction is associated with
a solution in objective space that expresses this relation.
Therefore, if we have k grouped solutions for one multi-
objective rank, and r0 is the rank of a solution s according
to f0, r1 the rank of s according to f1, rm−1 the rank of s
according to fm−1, the corresponding vector

(
k − 1− r0

k
,
k − 1− r1

k
, . . . ,

k − 1− rm−1

k

)
will be used to find a direction via sampling.

4.2.2 Monte-Carlo sampling
A uniform spatial distribution of the directional deriva-

tives is what we need in order to assign the directions accord-
ing to our rank-based scheme. We aim to partition uniformly
the set of directional derivatives in objective space. The set
of directional derivatives is parametrically described (see [2])
and therefore it can be sampled. This set can be easily visu-
alized for m = 2 objectives, as in Figure 1. We initially nor-
malize the directions to the observed ranges of solutions in
the population, to ensure that the outcome is independent
of the scaling of the objectives. To obtain a discrete uni-
formly distributed approximation, we employ Monte-Carlo
sampling of this set of directions. Subsequently, each di-
rection (which is an m-dimensional vector) is mapped via
spherical coordinates to m−1 angles. For instance, if m = 2,
each direction gets associated with one angle. We partition
our objective space into equisized bins, each represented by
an angle, and consequently by the direction associated with
that angle.

Finally, we can map the direction we want from the rank-
based scheme (by also converting it to spherical coordinates)
to its closest available one from our obtained discrete set.

4.3 CORL versus RB-CORL
We first tested the new technique alone in a random-

restart fashion, i.e., we applied it iteratively to 10000 ran-
domly generated starting points. We are mostly interested
in its behavior on problems with great difference in difficulty
between objectives, such as BD1 and BD2.

We see that for BD1, applying the multi-objective gra-
dient method and choosing a random improving direction
does not lead to a uniformly distributed improvement (Fig-
ure 3). CORL pushes all the members of the population
to the vertical axis, as a result of the difficult landscape of
the objective on the vertical axis, that uses the Rosenbrock
function. The different level of difficulty as well as scale
between the objectives translates into uneven spatial distri-
bution of the directional derivatives in objective space. It
demonstrates furthermore the need for a spatial uniformiza-
tion of the choice of directions. The new technique is able
to arrive much closer to the Pareto front of the problem,
while achieving a much better spread of the population, as
is the case also for BD2. Moreover, it performs equally well
on the GenMED problems (Figure 3). For BD1 neither of
the two techniques alone are able to actually find points on
the optimal Pareto front, and therefore the hybridization of
the new technique with an EA is considered necessary.

Optimal Pareto front
Initial population

Final population CORL
Final population RB-CORL

0.01

0.1

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 3: Distributions of optimized solutions us-
ing CORL and RB-CORL on BD1 (upper left), BD2

(upper right), convex (lower left) and concave (lower
right) GenMED.
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5. EXPERIMENT SETUP

5.1 Hybridization

5.1.1 iMAMaLGaM
Here we describe briefly the multi-objective EA we use

for our hybridization schemes. We use an Estimation-of-
Distribution Algorithm (EDA). EDAs are model-building
EAs that aim to exploit structural features of the problem
landscape. EDAs do so by estimating a probability distri-
bution from selected solutions and sampling the estimated
distribution to generate offspring.

The EDA we use is called iMAMaLGaM - incremental
Multi-objective Adapted Maximum-Likelihood Gaussian
Model. iMAMaLGaM, in contrast to well-known algorithms
such as NSGA-II [6], is specifically designed for real-valued,
multi-objective optimization. It should be noted that the
variation operators of iMAMaLGaM could be easily used
within NSGA-II as well and would approximately give the
same results. In iMAMaLGaM, the selected solutions are
grouped into clusters in objective space. For each clus-
ter a multivariate Gaussian distribution is estimated using
maximum-likelihood estimates, which are subsequently po-
tentially adapted to prevent premature convergence. iMA-
MaLGaM samples then the Gaussian distributions to gen-
erate new solutions. An elitist archive of non-dominated
solutions is also maintained. iMAMaLGaM has been shown
to perform excellently in various benchmark as well as real-
world problems [3].

5.1.2 Three hybridization schemes
In a multi-objective setting, it is not clear what is the most

efficient way of integrating local search. For this reason, we
consider different integration schemes. We compare these
hybrid variants of iMAMaLGaM to iMAMaLGaM alone as
well as to an adaptive hybridization scheme that was con-
sidered before for CORL [2]. The first two hybridization
schemes are common in evolutionary optimization and local
search [8].

Genetic Local Search 1 (GLS1): Given the large improve-
ment obtained in initial stages of optimization using gradi-
ent techniques, in this hybridization scheme RB-CORL is
applied only during initialization to all randomly generated
solutions.

Genetic Local Search 2 (GLS2): In this scheme, RB-CORL
is additionally called at the end of every evolutionary cycle
to all members of the population.

Adaptive Genetic Local Search (AGLS): In this method
RB-CORL is integrated in an adaptive hybridization scheme
taken from literature [2], which exploits gradient information
in three different ways. In this scheme, for maximum effi-
ciency, the scheme decides during the run which exploitation
method to use at the end of each evolutionary cycle, based
on the number of improved solutions found by that method
compared to the total number of evaluations used. The first
exploitation method is called Random Objective Conjugate
Gradients (ROCG); here, every time the method is called,
one objective is chosen randomly and the conjugate gradi-
ents technique is performed for that objective only. The
second exploitation method is called Alternating Objectives
Repeated Line search (AORL). AORL performs a line search
in the direction of the negative gradient of an alternatingly

chosen objective. The third method of this hybrid scheme
is CORL. We call this scheme old AGLS.

We made some changes to obtain a new AGLS version.
Considering that both ROCG and AORL play approximately
the same role during optimization - that is, they are able to
find extreme points on the Pareto front, in this paper for
the adaptive scheme we choose to only consider a variant of
ROCG. Moreover, instead of applying conjugate gradients
to a randomly chosen objective for a solution, we apply the
method to only members of the population following again a
rank-based scheme. More specifically, conjugate gradients is
applied to (maximum) two solutions of each multi-objective
rank that rank best at each objective individually. There-
fore, conjugate gradients is applied to the solution that ranks
best in one objective to further improve it. Finally, we re-
placed the old CORL with RB-CORL.

5.2 Benchmark problems
The problems we use to test the performance of iMAMaL-

GaM and our hybridization schemes are described in Table
1.

5.2.1 Measuring performance
To measure performance we consider the set of the non-

dominated solutions of the final population of the EDA,
which we denote by S. To measure how well S approxi-
mates the optimal Pareto set PS of each problem, we use a
well-known indicator in multi-objective optimization which
takes into account proximity to PS as well as the spread
along PS . This indicator, called Inverted Generational Dis-
tance (IGD) does so by computing the average distance to
the closest solution in an approximation set S over all so-
lutions in PS . The lower the value of the IGD, the better
the overall approximation is, and IGD is 0 if and only if the
approximation set and PS are identical. IGD is denoted by
DPf→S , and formulated as follows:

DPf→S(S) =
1

|PS |
∑

x1∈PS

min
x0∈S

{
d(x0,x1)

}
,

where d(x0,x1) is the Euclidean distance between the objec-
tive values f(x0), f(x1). For the problems in our test suite,
given the ranges of the objectives for the optimal Pareto
front configurations, a value of 0.01 for the DPf→S indica-
tor corresponds to fronts that are quite close to the optimal
Pareto front.

5.2.2 Algorithmic setup
We experimentally investigate the performance of RB-

CORL as part of hybridization with iMAMaLGaM on the
benchmark problems taken from literature shown in Table
1. We gave each algorithm a budget of 1,000,000 evaluations
(per objective). The number of clusters was set to 20, since
it was shown previously to yield good results. The cluster
size for problems of dimension 10 was 11 and for problems
of dimension 30 was 19. The selection percentile was set to
τ = 0.35, and the elitist archive target size was set to 1000.
The evaluations for the computation of the gradient were
not counted, considering that for our real-world application
where we would like to use our hybrid version the gradient
can be computed analytically.
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5.3 Deformable image registration

5.3.1 Definition
Deformable image registration, i.e., finding the optimal

transformation to align two images, is of great value in med-
ical imaging. Healthcare specialists use it to combine images
of different imaging modalities, as well as images taken at
different time points. This allows them to get a clearer and
more complete picture of the situation at hand as well as see
how the anatomy of a patient changes over time. This is very
important for example for radiation treatment planning, for
diagnostic as well as for follow-up purposes.

In image registration, one image is referred to as the source
image, whereas the other image is referred to as the target
image. In the case of affine transformations (e.g. rotations
or translations), the registration is called rigid. If non-affine
transformations are needed to transform one image to the
other (in the case of large anatomical differences, e.g., due
to different positioning of the patient in image acquisitions)
the registration is called deformable.

In this work, DIR is approached from a multi-objective
optimization perspective [1]. This approach removes the
need for pre-determining a singular combination of objec-
tives, which is difficult to determine but necessary in exist-
ing registration methods. Moreover, since multiple outcomes
are produced, this approach gives more options to the expert
to choose the best outcome for the case at hand.

An image registration algorithm can be decomposed in
three parts: the transformation model (the representation
of all possible transformations from one image to the other
image), the objective(s) to be optimized, and the optimiza-
tion method.

5.3.2 Transformation model
We use a dual-dynamic transformation model based on B-

splines that allows us to formulate differentiable objectives
and calculate the gradient analytically.

B-splines (cubic polynomial functions used to model de-
formable objects) are widely used in image registration be-
cause they provide flexibility, transformation smoothness,
and computational efficiency. In such transformation mod-
els, the source image is deformed by manipulating an under-
lying grid of control points that govern, via interpolation,
the deformation and thereby the transformation of the im-
age. In our dual-dynamic transformation model we have two
grids associated with source- and target image, respectively,
allowing us to handle large deformations. The correspon-
dence between these two grids is established via a mapping
from a ‘virtual’ fixed grid to the other two (Figure 4). More
specifically, we loop over the virtual grid and we map the
points to a location in the source- and a location in the
target image. These locations are derived via the B-spline
transformations Ts, Tt(which depend on the control points).
Finally, the grey value at the obtained location is derived
via pixel grey value interpolation. The sets of control points
φs, φt that correspond to the source- and target- image are
the parameters to be optimized.

5.3.3 Objectives
There are at least two objectives that are of interest in

DIR and have to be minimized simultaneously. The first
objective is quality of fit, i.e., the degree of similarity be-
tween the two images. The second objective is related to

the smoothness of the transformation and aims to prevent
implausible deformations.

The similarity measure we use is the sum of squared dif-
ferences in pixel grey values between the source- and the
target image:

Similarity =
∑
x,y

[Is(Ts(x, y;φ))− It(Tt(x, y;φ))]2 ,

where Is, It are the grey values at a point (x, y) on the
source- and target image, respectively, and Ts, Tt are the
B-spline transformation functions that determine the defor-
mation of the source- and target- image. Is, It are interpo-
lated functions constructed again via B-splines which make
them differentiable.

The second objective is introduced to measure smooth-
ness, using the sum of squared second order derivatives of

each B-spline transformation
(

∂2T
∂x2

)2
,
(

∂2T
∂y2

)2
. We formu-

late the smoothness objective as the sum of the squared dif-
ferences of the smoothing terms evaluated at pairs of points
in the source- and target image. This objective is easier to
optimize than the similarity objective, as no displacement
of control points is already (close to) an optimum.

X̄

Ts Tt

Source Target

Figure 4: Dual-dynamic transformation model.

5.3.4 Optimization method
We apply three optimization methods to the DIR prob-

lems: iMAMaLGaM alone, the old AGLS scheme and and
the new AGLS scheme. We use settings for the EDA which
were shown to yield good results [3].

5.3.5 Algorithmic setup
We considered two test cases; the first one is a large-

deformation registration case: prone-supine breast MRI reg-
istration. All MRI scans were acquired from a healthy vol-
unteer. First, the two MRI scans were rigidly registered on
the bony anatomy. Subsequently, one central pair of 2D
slices was selected. The second case concerns MRI bladder
registration, where there is also a large deformation of the
bladder between image acquisitions, with an empty bladder
in one image and a full bladder in the other. For both cases,
we performed registration using two 8×8 grids of control
points, which resulted in 256 parameters to be optimized.
These settings are not necessarily sufficient to obtain the
best possible registration result, but certainly sufficient to
demonstrate the capabilities of the approach, and the im-
pact of choosing different multi-objective optimizers.

6. RESULTS

6.1 Results on the benchmark problems
Results show that the use of gradient-based local search

every generation, i.e., in the traditional GLS sense, is very
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Figure 5: Convergence of all algorithms on 6 bench-
mark problems, averaged over 10 runs. Horizon-
tal axis: number of evaluations (both objectives per
evaluation). Vertical axis: DPF→S .

computationally expensive (Figure 5). Note that evalua-
tions required to approximate gradients are not even counted
here as we are interested in the real-world application case
where we have analytical expressions for the gradients of
the objectives. iMAMaLGaM is capable of making many
improvements all along the Pareto front at a much smaller
budget of evaluations, which results in overall superior per-
formance. This is in line with the common conception that
EAs are well-suited and among the state-of-the-art for multi-
objective optimization. Only by making use of the adaptive
scheme for gradient integration that only uses gradient ex-
ploitation methods more often if they are really capable of
making improvements more frequently than the EA, results
can be obtained that come close to the performance of iMA-
MaLGaM. However, for problems BD1 and BD2, which ex-
hibit most strongly the difference in objective complexity
that we are interested in and that we redesigned AGLS for,
the performance of the new version of AGLS is equal or
even better than iMAMaLGaM. Moreover, the new AGLS
clearly outperforms the old version of AGLS on these prob-
lems, which was one of our main objectives.

6.2 Results on the registration problems
For the breast MRI problem, iMAMaLGaM finds the most

interesting solutions (i.e., solutions with a low value for
the similarity measure, resulting in highly similar images).
Compared to the old AGLS, we see that the new AGLS
finds solutions which are slightly better in the interesting
region, and it is closer to the final Pareto front of iMAMaL-
GaM (Figure 6). For the bladder MRI case, we can see a
large difference between the old and the new AGLS; the new
AGLS is able to obtain much better solutions regarding both
objectives compared to the old AGLS. Also here, the EA is
the most successful at finding solutions in the interesting
region (Figure 6).

Although iMAMaLGaM finds the best solutions in a strict
sense, the registration results of all algorithms on the breast
MRI case are visually comparably good (Figure 7). For the
bladder MRI case (Figure 8), the registration outcomes are
overall not as good, however iMAMaLGaM and the new
AGLS are able to obtain much better registration results
compared to the old AGLS. It is worth noting that both the
bladder and the breast MRI cases are difficult tasks, since
there can be structures between these image acquisitions
that move in the non-visible third plane, making it impossi-
ble to find a perfect match. Furthermore, many small struc-
tures do remain visible but are difficult to match using a low
complexity deformation model of 8×8 control points. There-
fore, it is possible that a larger number of control points is
necessary to improve the registration results, especially in
the bladder case. Additional guidance information such as
contours could also be of great help.

Nonetheless, the above test cases demonstrate the capabil-
ity of producing promising registration results using a multi-
objective optimization approach to DIR. Moreover, the abil-
ity of RB-CORL to improve in an unbiased way all objec-
tives, as shown in problems such as BD1 and BD2, can have
a potentially large effect when it is part of a hybridization
scheme: on hard, DIR problems like the bladder MRI case,
the new AGLS is capable of obtaining results as good as of
iMAMaLGaM. Lastly, its use could become more favourable
in a hybridization scheme where not only the number of im-
provements are taken into account, but also the length of
each improvement.
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Figure 6: Final Pareto fronts for the breast MRI
case (left) and the bladder MRI case (right).

7. DISCUSSION AND CONCLUSIONS
In this work, we developed and studied a new diversifi-

cation technique for the exploitation of multi-objective gra-
dient information, based on an analytically described set of
Pareto-optimal improving directions. We assessed whether

1261



Source Target EA Old AGLS New AGLS

Figure 7: Selected DIR results on the breast MRI problem instance.
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Figure 8: Selected DIR results on the bladder MRI problem instance.

this new technique can be combined efficiently with a multi-
objective evolutionary algorithm, by considering three dif-
ferent hybridization schemes. Results showed improvement
over existing adaptive hybridization schemes, especially for
the problems we are particularly interested in: when there
is a large difference in difficulty and/or scale between the
objectives to be optimized, as is the case for the deformable
image registration problem. The unbiased improvement of
all objectives in a multi-objective gradient technique as part
of a hybridization scheme was indeed successful at solving
the tested hard DIR cases, as opposed to a previously in-
troduced adaptive hybridization scheme. Nonetheless, the
EA is still the most robust and powerful optimization algo-
rithm, having the best balance between proximity and diver-
sity. This is testimony again to the power of state-of-the-art
EAs for multi-objective optimization, even for medical im-
age processing applications, that have predominantly been
solved using other types of algorithms, albeit from a single-
objective optimization perspective.

For problems such as DIR, where a particular region of
the Pareto front is of interest, it would also be interest-
ing to investigate methods that are able to discover indi-
vidual solutions on only part of the Pareto front, using lin-
ear/Chebyshev combinations of objectives.
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