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Abstract. The Parameter-less Population Pyramid (P3) uses a novel
population scheme, called the population pyramid. This population
scheme does not require a fixed population size, instead it keeps adding
new solutions to an ever growing set of layered populations. P3 is very
efficient in terms of number of fitness function evaluations but its run-
time is significantly higher than that of the Gene-pool Optimal Mix-
ing Evolutionary Algorithm (GOMEA) which uses the same method of
exploration. This higher run-time is caused by the need to rebuild the
linkage tree every time a single new solution is added to the population
pyramid. We propose a new population scheme, called the multiple inser-
tion pyramid that results in a faster variant of P3 by inserting multiple
solutions at the same time and operating on populations instead of on
single solutions.

1 Introduction

The recently introduced Parameter-less Population Pyramid evolutionary algo-
rithm uses a novel population scheme, called the population pyramid [2,3]. A big
advantage of the population pyramid is that there is no need for the user to set a
fixed population size. Instead, P3 keeps adding new solutions to an ever growing
set of layered populations. To explore new solutions, P3 uses the model-building
technique and the Gene-pool Optimal Mixing operator from GOMEA [5]. The
way it exploits these solutions however, is very different from the classical fixed
size population method. P3 is very efficient in terms of number of fitness func-
tion evaluations but its run-time is significantly higher than that of GOMEA,
this is because P3 rebuilds the linkage tree every time a single new solution
is added to the population pyramid, while GOMEA only rebuilds the linkage
tree every single generation. A typical GOMEA run only needs about 10 gen-
erations, so the difference between the number of linkage trees generated by P3
and GOMEA is huge. We propose a new population scheme, called the multiple
insertion pyramid that results in a faster variant of P3 by significantly reduc-
ing the number of linkage trees built. Multiple insertion is a population scheme
which basically combines P3 with ideas from the Exponential Population Scheme
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(EPS) by inserting growing populations instead of single solutions. The multiple
insertion pyramid scheme drastically reduces the run-time overhead caused by
maintaining a population pyramid. It also requires a lesser number of fitness
evaluations than required by EPS [4]. Finally, the multiple insertion pyramid
scheme yields a robust GOMEA that performs better in the number of fitness
evaluations and on par with the run-time of the original GOMEA on the major-
ity of the test problems. In the next Section, we discuss background information
about the Gene-pool Optimal Mixing Evolutionary Algorithm, the Exponential
Population Scheme, and the Parameter-less Population Pyramid. Section 3 intro-
duces the Multiple Insertion Pyramid. Section 4 discusses experimental results,
followed by our Conclusion.

2 Background

2.1 Gene-Pool Optimal Mixing Evolutionary Algorithm

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is designed
for detecting and optimally mixing partial solutions into new solutions [5]. It uses
a model, called the family of subsets (FOS), for representing problem variables
whose values should be copied together during crossover. Each subset in the
FOS is a set of problem variable indices. Each generation GOMEA learns a
FOS from the population. Then each solution is subjected to the Gene-pool
Optimal Mixing (GOM) crossover operator. First the solution is cloned into an
offspring population and for each subset in the FOS, GOM will randomly select
a donor from the population and copy the bits indicated by the subset into the
current solution. If the donor and the parent solution have the same bits for
the problem variables, then the offspring solution is equal to the parent solution
and no fitness evaluation is performed. If the donation resulted in an offspring
solution with a greater or equal fitness to its parent solution, then the changes
are kept, otherwise the changes are undone. All algorithms in this paper use the
linkage tree from the Linkage Tree GA as their FOS model [5].

2.2 Exponential Population Scheme

A simple parameter-less population scheme is to keep restarting a GA with
an increased population size until the solution quality has become acceptable.
The growth function determines the rate at which the population size grows in
the number of converged runs. The scheme for doubling the population size is
called the Exponential Population Scheme (EPS) [4]. EPS is comparable to the
behavior of a user, who will often keep doubling the population size until the
results are satisfying. Although there is only a constant overhead, EPS inevitably
throws away several populations worth of fitness evaluations.
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2.3 Parameter-Less Population Pyramid

The Parameter-less Population Pyramid (P3) uses a novel population scheme,
called the population pyramid [3]. The population pyramid is a set of populations
with two specific methods for inserting new solutions and performing crossover
with the existing solutions. The set of populations expands slowly and forms a
pyramid-like structure where the populations are arranged in increasing fitness
and decreasing size. Each layer represents a population. Initially there is only one
empty population P0. Every iteration, a new random solution undergoes local
search by a first-improvement hill climber and is then added to the bottom layer
of the pyramid P0. Whenever a population has changed due to the insertion of
a solution, the linkage tree of that layer is rebuilt. Then the solution undergoes
crossover with the layers of the population pyramid, starting with the bottom
layer and working its way up. The crossover operator is the GOM operator from
GOMEA. If crossover at layer Pi results in a fitness improvement, then the
solution is added to the next population Pi+1 (or a new population is created
if there was none existing). The linkage tree at layer Pi+1 is rebuilt and the
solution is GOM crossed over with population Pi+1. This process is repeated
until the top of the pyramid has been reached. To ensure diversity is preserved
duplicate solutions are not added to the pyramid.

P3 selects the donor for the GOM crossover operator differently than
GOMEA. GOMEA continues with the next FOS cluster when the solution and
donor have equal values for the problem variables. P3 alters this procedure by
searching the entire population in a random order until a donor with non-equal
values has been found. The upper-bound on the run-time of the crossover oper-
ator increases by a factor linear in the population size. Another difference is
that P3 sorts the clusters in smallest-first order instead of the randomized order
used by GOMEA. However, this has only a minor, problem-dependent, effect on
performance.

3 Multiple Insertion Pyramid

The exponential population scheme (EPS) is characterized by its efficiency in
model-building, while the parameter-less population pyramid (P3) is character-
ized by its efficiency in fitness evaluations. From an algorithmic perspective the
two algorithms look very different and share only the GOM operator and link-
age tree model learning. We now show how to combine the two approaches into
a new population scheme. A visual interpretation of the population schemes is
given to more easily explain how they are similar and how they can be combined.

3.1 Visualizing Population Schemes

Deriving a generic representation for either population scheme requires a more
careful look at how GOMEA works. Each of the schemes relies on the GOM
operator for performing crossover between a solution and a population. Two key
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properties describe a call to GOM: the set of solutions that are available for
donation, and what happens with the solution after crossover.

GOMEA. The grid in Fig. 1a represents GOMEA running for 5 generations
(vertical axis) with a population size of 7 (horizontal axis). Each cell of the
grid represents the state of solution x at generation y. Each row represents the
state of the population at generation y, and each column is the progression
of solution x over the generations. The solid arrows show whether the solu-
tion changed by GOM was accepted into the next generation. Because GOMEA
always accepts the offspring solution into the new population, the progression is
a chain of arrows in the visualization. GOMEA traverses the grid in left-to-right
first (applying GOM to the population), bottom-to-top second order (initial gen-
eration until termination). Lastly, the dashed lines show which solutions from
the previous generation have successfully donated bits to a solution.

The probability of a successful donation decreases over time, and this is seen
in the uppermost row where the donations are more sparse. If a cell has no
dashed line with the previous row, then there was no successful donation during
crossover, hence the solution indicated by the cell was not even improved. As seen
by the mess of dashed lines in the grid, each solution has the remainder of the
population at its disposal for mixing. Let the age of a solution x be the number
generations y it has existed, in other words the row index y of column x in
the visualization. Two solutions live in the same population if they are improved
under the same circumstances, meaning they are improved using the same linkage
tree and have access to the same donor solutions. If two solutions live in the same
population and are of the same age, then applying GOM crossover to them
should be optimal as their fitness should be similar due the competition with
each other over the span of multiple generations. This is automatically true for
GOMEA, and together with the high availability of donors, the GOM operator
is able to optimally mix solutions. GOMEA learns the model, namely the linkage
tree, from the entire population (i.e. row) of generation y. Whenever a model is
learned before GOM crossover is applied, the corresponding cell is colored gray.
For GOMEA this is the start of the generation, i.e. the first column. Clearly
GOMEA is minimal in the number of times a model is learned, because otherwise
a model would have to be used over multiple generations. No parameter-less
population scheme can learn only one model on a row, because then it would
have perfectly predicted the population size. Only oracles can tell beforehand
what the population size necessary to solve the problem instance is.

The visualization highlights the strengths and weaknesses of a population
scheme. Given that the global optimum resides amongst solutions of similar
fitness in the final generation, GOMEA has the weakness that it must fully eval-
uate every generation until the final generation has been reached. However, the
sparsity of gray squares shows that relatively few linkage trees are constructed
during a single run. The dashed arrows show how optimal mixing allows every
solution to donate to every other solution over the entirety of the run.

EPS. Figure 1b shows the visualization of the exponential population scheme
(EPS). EPS starts with a run of GOMEA of size one, and continuously restarts
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the population on convergence with a doubled population size. Each of the pink
squares denotes one run of GOMEA and is traversed exactly as explained in
the previous section. The pink squares illustrate how EPS is a rather simplistic
wrapper around GOMEA for doubling the population size. An iteration of EPS
is the complete evaluation of one run of GOMEA, traversed from left-to-right
in the grid. Note that the horizontal axis no longer corresponds to a single
population. Learning a linkage tree only uses the solutions of generation y inside
the pink square instead of the entire row. The visualization shows the two major
weaknesses of the EPS scheme. First, there is no optimal mixing between the runs
of GOMEA as indicated by the lack of dashed arrows between the runs. Second,
the gray squares are more abundant and show the wasted effort in building
linkage trees for the previous generations. But it has already been shown that
no parameter-less population scheme can get away with learning only one model
per row, hence there being an additional cost of model learning is inevitable.

P3. Figure 1c shows the visualization of the parameter-less population pyramid.
With P3 comes a slightly different interpretation which mostly changes how the
grid traversed. Green squares indicate that a solution was already present in the
population pyramid, hence it was not accepted into the next layer of the pyramid.
There is no solid arrow leading into a green square for this very reason. There is
a direct correspondence between a population and the layer of a pyramid. Both
contain a set of solutions, but the latter cannot contain duplicates by definition.
Almost every cell is colored gray to show just how often P3 learns a new model,
with the only exception being when a solution is not accepted into the next
population. That only occurs when the solution is a duplicate already present
in the pyramid, or the solution did not improve in fitness after GOM crossover
with the population. The latter happens more often for the higher layers of the
pyramid, because improving the fitness of an already optimized solution is more
difficult. The linkage tree must be updated every time a new solution is inserted
into the corresponding pyramid layer. Each iteration of P3 a solution is drawn
from the population generator, and is then improved until GOM crossover has
been performed with each layer of the pyramid. A column x is then equivalent
to xth iteration of P3. Whereas GOMEA traverses the grid from the left-to-right
first, P3 traverses the grid from bottom-to-top first. This behavior is the exact
opposite of each other, as is illustrated further in the next subsection. Looking at
the dashed lines in the visualization, the solutions receive only donations from the
previously evaluated solutions. The mixing that occurs in P3 is unidirectional
over the horizontal axis, in contrast to the bi-directional mixing in GOMEA
and EPS. Not only that, a solution x at generation y only has access to other
solutions that also reached generation y. Hence the number of donors available to
a solution (x, y) is lower than the number of donors available to a similarly placed
solution (x, y) in GOMEA. Age becomes an even more important factor when
GOM is applied to solutions that were improved using different populations.
How many the layers the solution has passed (the row) is equivalent to the age
of the solution in GOMEA. The linkage trees learned by P3 become more precise
as more solutions are added to the pyramid. However, a solution x was improved
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with a different linkage tree and population from any other solution. Thus when
a solution is donated to, the age of the donor and the receiving solution will
be the same, but they were raised in different populations. Hence there is a
possible discrepancy in fitness and structure between the solution and the donor,
which may lead to lesser performance when performing GOM crossover. The
entropy in a population grows slower as more solutions are added, hence the
linkage trees will change less over time. As a result, the discrepancy between
solutions and donors is reduced over time, but is never truly eliminated. Again,
the visualization helps in understanding the strengths and weaknesses of P3. The
scheme is over-saturated with model learning at every step of the algorithm, even
though the entropy in the populations changes increasingly slower over time.
Crossover uses donors of equal age to the receiving solution, but the donors were
constructed under different circumstances. This may lead to fitness discrepancies
in the early stages of the algorithm, because the model and populations are
changing significantly with the addition of a single solution. In exchange for
these weaknesses, the population pyramid requires no population size parameter
and it gains access to the older generations earlier on than GOMEA.

(a) GOMEA (b) EPS

(c) P3 (d) Multiple Insertion

Fig. 1. Visual representation of the four population schemes.

3.2 Multiple Insertion

Multiple Insertion is a new population scheme designed to combine the efficiency
in amount of linkage trees built of EPS with the efficiency in fitness evaluations
of P3. The goal is to enhance EPS by using the population pyramid as a way
to reuse the solutions from the previously converged populations. Similarly, the
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goal can be stated as using the strictly growing populations of EPS with P3
instead of one solution per iteration.

As in EPS, Multiple Insertion generates a new, larger population at each
iteration. A growth function determines the size of the population generated
at the start of iteration, this could be the exponential growth function or the
linear growth function. Let Pi be the ith layer (or population) of the pyramid at
the start of an iteration. First a population X is randomly generated with the
population size determined by the growth function. Optionally the hill climber
is invoked on each of the solutions in population X. The entire population X
is checked for duplicates already in the pyramid, and the unique solutions are
inserted into the bottom layer of the pyramid P0 and a linkage tree model is
learnt. Then GOM crossover is applied to the population X using the pyramid
layer P0. Those solutions whose fitnesses were improved by the GOM crossover
are inserted into the set of accepted solutions. Solutions that are already present
in the pyramid are filtered from the set of accepted solutions. Finally, the set
of accepted solutions is inserted into the next pyramid layer Pi+1. This process
repeats itself with X and the next pyramid layer Pi+1 until the top of the
pyramid has been reached. Note that the entire population X transitions to the
next pyramid layer for GOM crossover, not just the solutions accepted into the
next pyramid layer. As with P3, GOM crossover with the top layer may result
in a new layer Pt. The new top layer Pt contains every solution from the set of
accepted solutions at layer Pt−1. Unlike P3, the new layer may contain enough
information for GOM crossover to improve the solutions, which would lead to the
construction of a new top layer Pt+1. This process repeats itself until no fitness
improvement is found in the top layer of the pyramid. If none of the solutions
were improved by the GOM crossover, then nothing happens to the pyramid.

Visualization. Figure 1d shows the visualization of the multiple insertion pop-
ulation scheme. The density of the gray squares has been significantly reduced in
contrast to P3, indicating that there should be a drastic gain in run-time because
much less linkage trees are learned. The dashed lines show that solutions can
receive donations from either the previous populations or the current population
under construction. There is the constraint that a solution is only a donor if it
was accepted in the previous generation, because otherwise it would not be in
the population. The receiving solution has more available donors during GOM
crossover than it would have in either EPS or P3. More importantly, the solutions
in the current population are improved using the same model, hence they are of
the same age and live in the same population. As mentioned for GOMEA, these
conditions allow for optimal mixing between the solutions. When mixing occurs
with a donor from a previous population, there may still be a fitness discrep-
ancy as shown for P3. The linkage tree is no longer relearned for every solution
inserted into the pyramid, so the population pyramid loses some of its immedi-
ate adaptiveness to a change in the pyramid. As more solutions are inserted into
the pyramid layer at once, namely a subset of the population currently being
improved, the entropy in the pyramid layer changes more significantly than it
would have if one solution were inserted. This means that even though the model
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is relearned less frequently, the changes to the model are more substantial. The
termination criterion for population convergence is a mix between EPS and P3,
namely when the population has not been improved during an entire generation
and when there are no more layers of the pyramid to perform crossover with.

4 Experimental Results

We have tested five, binary encoded, benchmark problems of increasing length.

1. Deceptive Trap Function: we consider the randomly linked DFT which
tests the ability to detect and combine good building blocks (k = 5).

2. Hierarchical If and Only If: we consider the HIFF version where problem
variables appear in randomized order.

3. Ising Spin Glass: the variables interact with neighboring vertices in a lat-
tice graph. The problem instances are from the public repository hosting the
source of the P3 algorithm [2].

4. Nearest Neighbor NK Landscapes: each variable depends on the k =
4 subsequent variables in the bit-string. The order of the variables in the
representation are again assumed to be completely randomized.

5. MaxCut: find a maximum cut on a given graph. The instances are taken
from [1], and were solved to optimality on the BIQMAC server.

Multiple insertion requires the specification of a growth function to determine
how fast the population increases in size per iteration of the algorithm. Let S(i)
be the size of the population inserted into the population pyramid at iteration i.
Three growth functions are tested: the linear function Sl(i) = i, the quadratic
function Sq(i) = i2, and the exponential function Se(i) = 2i−1. P3 uses the
parameter configuration of the original P3 algorithm. The population pyramid
scheme (PT) removes from P3 the hill climber, exhaustive donor searching, and
it randomizes the FOS ordering. This way, PT is better comparable with the
results from GOMEA. Multiple insertion is added to both population schemes.
One can interpret both PT and P3 as a form of multiple insertion with a constant
growth function S(i) = 1.

Figure 2 shows the relative average number of fitness evaluations for the P3,
PT, and its multiple insertion variants. The labels in the legend follow a spe-
cific format: {Scheme} – MI – {Growth}, where Scheme is either PT or P3 and
Growth is either the constant, linear, quadratic, or exponential growth func-
tion. The results are normalized using the results of the original P3 to better
highlight the differences in the performance. As seen in Fig. 2 the quadratic and
exponential growth functions diverge significantly from PT at several occasions.
In contrast, the linear growth function is less prone to this erratic behavior.
Especially the exponential growth function tends to have outliers in the number
of fitness evaluations, to the point of exceeding EPS. For EPS it makes sense to
scale exponentially, as a slower growth leads to more population being converged
and rejected, which is terribly expensive. PT with multiple insertion is an exten-
sion of EPS that reuses every solution whereas EPS cannot do that. Because PT
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Fig. 2. Relative comparison to P3 of the median number of fitness evaluations for the
multiple insertion variants of PT and P3.

Fig. 3. Relative comparison to P3 of the average running time for the multiple insertion
variants of PT and P3.
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with multiple insertion is less prone to outliers with a slower growth function,
there is little reason to use an exponential growth function.

Figure 3 shows the relative average run-time in milliseconds for P3, PT, and
the multiple insertion variants. Using multiple insertion with PT reduces the
run-time to the level of the original P3 which uses the hill climber. However,
increasing the growth function beyond linear has no significant effect on the
run-time, as seen by the tightly grouped lines per population scheme. Applying
multiple insertion to the original P3 algorithm greatly speeds up the run-time.
On any of the test problems the run-time of P3 matches or outperforms EPS,
which is something it rarely achieved without multiple insertion. The excep-
tion to the rule are the NK-S1 problem instances, but that is due to the poor
performance caused by the hill climber. The effectiveness of multiple insertion
shows that P3 wastes a liberal amount of processing time on rebuilding linkage
trees to little effect. The results also indicate that the performance of the linear
growth function is on par with the quadratic function and more reliable than the
exponential function, hence we recommend the use of the linear growth function.

5 Conclusion

We have proposed a novel parameter-less population scheme, called the Mul-
tiple Insertion Pyramid. We have discussed two populations schemes that do
not require the user to set a fixed population size: the Exponential Population
Scheme (EPS) and the Parameter-less Population Pyramid (P3). P3 is a model-
based evolutionary algorithm that applies the linkage tree model building and
the Gene-pool Optimal Mixing crossover operator from the Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA), but uses a novel population scheme
as exploitation mechanism. P3’s population pyramid scheme outperforms the
linkage tree based GOMEA in terms of number of fitness evaluations at the cost
of a significantly increased run-time. It is noted that P3’s method to rebuilt the
linkage tree whenever a single new solution is added to the population pyramid is
too costly. By changing the population scheme to the Multiple Insertion Pyramid
scheme the run-time is significantly reduced. The Multiple Insertion Pyramid
combines EPS with the population pyramid, which allows solutions from pre-
viously converged populations to contribute to the current population. Because
previous populations are retained for donation, the growth rate is reduced from
exponential to a linear function. Multiple insertion can be applied to P3 to
greatly reduce the time spent on relearning linkage trees.
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