
Learning and Exploiting Mixed Variable
Dependencies with a Model-Based EA

Krzysztof L. Sadowski
Utrecht University

Dept. of Computer Science
Utrecht

The Netherlands
k.l.sadowski@uu.nl

Peter A.N. Bosman
Centrum Wiskunde & Informatica

(CWI)
Amsterdam

The Netherlands
peter.bosman@cwi.nl

Dirk Thierens
Utrecht University

Dept. of Computer Science
Utrecht

The Netherlands
d.thierens@uu.nl

Abstract—Mixed-integer optimization considers problems
with both discrete and continuous variables. The ability to
learn and process problem structure can be of paramount
importance for optimization, particularly when faced with
black-box optimization (BBO) problems, where no structural
knowledge is known a priori. For such cases, model-based
Evolutionary Algorithms (EAs) have been very successful
in the fields of discrete and continuous optimization. In
this paper, we present a model-based EA which integrates
techniques from the discrete and continuous domains in
order to tackle mixed-integer problems. We furthermore
introduce the novel mechanisms to learn and exploit mixed-
variable dependencies. Previous approaches only learned
dependencies explicitly in either the discrete or the contin-
uous domain. The potential usefulness of addressing mixed
dependencies directly is assessed by empirically analyzing
algorithm performance on a selection of mixed-integer prob-
lems with different types of variable interactions. We find
substantially improved, scalable performance on problems
that exhibit mixed dependencies.

Index Terms—Mixed-Integer Optimization, Model-
building, Evolutionary Algorithms.

I. INTRODUCTION

The ability to learn and process problem structure
is a common challenge in optimization. This ability
is especially important for optimizing problems where
little information is known a priori about the problem
structure. Such problems are known as black-box op-
timization (BBO) problems and often emerge in real-
world applications. BBO approaches found in literature
are predominantly concerned with optimization in either
the discrete or the continuous domain. However, many
real-world problems contain variables from both discrete
and continuous domains simultaneously. Such problems
are known as mixed-integer (MI) problems, and are often
particularly difficult to solve.

Model-based Evolutionary Algorithms (EAs) are a
family of optimization algorithms known for their ro-
bustness and effectiveness in solving BBO problems. One
common approach adopted in EAs to learning the prob-
lem structure in a black-box setting is estimating a statis-
tical model which captures interactions between problem

variables. In mixed-integer problems dependencies be-
tween the discrete and the continuous variables are now
also possible. Such inter-domain variable dependencies
are one of the factors making mixed-integer problems
potentially very difficult to solve. This paper focuses on
model-based approaches which enable direct learning,
and subsequent exploitation of such dependencies.

A recently introduced Genetic Algorithm for Model-
Based mixed-Integer opTimization (GAMBIT) [1] in-
tegrates the model-building and sampling ability of a
discrete model-based EA with a continuous model-based
EA. Because of a well-balanced sampling and a model-
updating mechanism, GAMBIT has shown good promise
in solving a range of mixed-integer problems. The
model-building capabilities of GAMBIT can however be
considered to be limited, as mixed inter-dependencies
are not directly considered or exploited.

Specifically, GAMBIT represents the problem struc-
ture by learning and estimating variable subsets which
represent groups of problem variables believed to be
dependent on each other, known as the Family-of-
Subsets (FOS) denoted by F = {F 0,F 1, . . . ,F |F|−1}.
The subsets, denoted F i, can only represent discrete
or continuous variables exclusively, as different discrete
and continuous optimization mechanisms are used re-
spectively to process them.

In this work, we will extend the FOS structure used
with GAMBIT to allow for subsets containing both dis-
crete and continuous variables simultaneously, repre-
senting mixed inter-domain dependencies. We consider
different approaches to this end for learning, and intro-
duce a novel mechanism to allow GAMBIT to process
and exploit the mixed subsets directly.

A comparison of performance with alternative algo-
rithms is also provided. Specifically, we consider another
population-based approach: the Mixed Integer Evolution
Strategy (MIES) [2] as well as the well-known Solving
Constraint Integer Programs (SCIP) algorithm [3]. While
other alternatives exist, notably the Non-linear Opti-
mization with Mesh Adaptive Direct Search Algorithm
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(NOMAD) [4], MIDACO (Mixed Integer Distributed Ant
Colony Optimization) [5], GAMS suite of commercial
algorithms [6] and others, additional performance com-
parison is outside of the scope of this paper.

The goal of this paper is to examine the ability of
the new mechanism to capture, represent and exploit
mixed-variable dependencies and to measure the extent
to which it improves the optimization capabilities of
GAMBIT. For this, we consider a range of unconstrained
problems with different types of dependencies, and com-
pare algorithm performances in terms of number of func-
tion evaluations needed. Additionally, we consider a set
of constrained problems, and compare our results with
the MIES and SCIP algorithms. In order to maximize
applicability to the real world, in our implementation
we adapt a parameter-free scheme which allows an out-
of-the-box execution of GAMBIT.

II. BACKGROUND

GAMBIT is based on an integration of two model-
based EAs: LTGA and iAMaLGaM, for the discrete and
continuous domain respectively. GAMBIT utilizes the
model-building abilities of these algorithms with some
extensions. Details of the individual algorithms are pre-
sented first.

A. LTGA

The Linkage Tree Genetic Algorithm (LTGA) [7] learns
the problem structure by first computing a dependency
measure between problem variables. Specifically mutual
information (MI) is computed between all pairs of vari-
ables at each generation. These values are then used as a
distance measure in a hierarchical clustering algorithm.
LTGA thereby builds a tree of variable subsets, starting
from the leafs in which each variable is a singleton
subset. New subsets are created from other ones through
merging the nearest subsets, until one subset remains
containing all the problem variables. All the subsets
created in this process are then considered members of
the FOS, and are used for new solution generation.

To generate new solutions, LTGA iterates over all so-
lutions in the population in an attempt to improve them:
for each solution the FOS is traversed and each subset is
used as a crossover mask between a randomly selected
donor from the population and the parent solution. In
other words, the values of variables clustered together
at a given node of the linkage tree are copied from a
donor onto the parent solution. The crossover result is
immediately evaluated. If the resulting offspring solu-
tion is better or equal than its parent, it instantly replaces
the parent. Otherwise, the offspring is discarded. This
process is repeated until all the linkage tree nodes are
processed.

B. iAMaLGaM

The Incremental Adapted Maximum-Likelihood Gaus-
sian Model Iterated Density Estimation Evolution-
ary Algorithm (iAMaLGaM) [8] follows the general
estimation-of-distribution algorithm (EDA) paradigm.
Specifically, each generation iAMaLGaM estimates a
probability distribution from the selected solutions and
generates new solutions by sampling the estimated dis-
tribution. The probability distribution used in iAMaL-
GaM is the Gaussian distribution. The mean vector
and covariance matrix are estimated incrementally using
memory decay on maximum-likelihood estimates. Risk
of premature convergence is counteracted by a mech-
anism which scales up the co-variance matrix when
needed. Finally, a so-called Anticipated Mean Shift pro-
cedure is implemented to improve behavior in slope-like
regions of the search space.

III. GAMBIT

The Genetic Algorithm for Model-based mixed-Integer
opTimization (GAMBIT) is a recently introduced EA
designed for the mixed-integer domain [1]. Key features
of GAMBIT are (i) clustering algorithm, which allows for
better exploration of the search space, (ii) an integrated
models mechanism which extends the FOS structure of
LTGA to allow discrete as well as continuous subsets,
and (iii) balanced interleaved model sampling to create
new solutions.

GAMBIT Overview
P ← GENERATEANDEVALRANDOMPOPULATION(n)
while ¬TERMINATIONCRITERIONSATISFIED do

C ← DETERMINECLUSTERCENTERS(P, k)
for j ∈ {0, 1, . . . , k} do

Pk ← GROWSUBPOPFROMCENTERS(P, Ck)
O′k ← INTEGRATEDMODELSMECHANISM(Pk)

P ← O′0 ∪ O′1... ∪ O′k
Fig. 1. Pseudo-code overview of GAMBIT. P represents the population
of size n. C is a set of solutions representing k cluster (also called sub-
population) centers. Pi represents the i-th sub-population and O′

i is
the offspring generated from sub-population i.

A. Clustering Mechanism

Clustering can be a powerful means of identifying
and exploiting different regions of the search space. At
the beginning of every generation, the population is
clustered into k equally-sized clusters of solutions. Each
of the clusters correspond to k instances of the integrated
models mechanism, which are responsible for generating
offspring solutions. The clustering itself is based on a
distance metric which considers both the discrete and
continuous variables. Specifically, the distance between
solutions is measured using the Euclidean distance. To
calculate this distance, binary variables are treated as
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real valued, taking on values of 1 or 0. All continuous
variables are normalized to a [0;1] range.

To generate clusters, k far apart cluster centers are
selected by starting with the current best solution in the
population as one cluster center, and then choosing the
remaining k − 1 centers as the furthest away solutions
from the already selected cluster centers. With all the
centers selected, k sub-populations are formed by as-
signing to each cluster center the n/k solutions nearest
it. In every generation each of these sub-populations is
used in a independent instance of the integrated models
mechanism, which generates offspring solutions from
each cluster. Once all offspring solutions are generated,
they form a new population, and the clustering process
beings anew.

B. Integrated Models Mechanism

In order to deal with mixed-integer problems which
may be composed of different proportions of discrete
and continuous variables, and consist of different inter-
or intra- domain variable dependencies, a carefully
balanced model-learning and sampling mechanism is
needed.

In GAMBIT, this is achieved by expending the FOS
structure used with LTGA. Like in LTGA, a linkage tree
consisting of discrete variable subsets is constructed, and
each of the linkage tree nodes is considered a subset of
the FOS. Additionally, continuous subsets are now also
present in the FOS. Specifically, 2lc−1 continuous subsets
are added to the FOS, to maintain a proportionally
equivalent number of discrete and continuous subsets.
Unlike the discrete subsets, all continuous subsets are
the same and contain all continuous problem variables.

The (sub)population to optimize is provided through
the clustering mechanism. Each solution consists of a
discrete and a continuous component. The core of the
algorithm has two nested loops, which iterate over each
linkage tree subset, and additionally iterate over every
solution for each of the subsets. The parameters of the
Gaussian model for the continuous variables is learned
after a given discrete subset was applied to each solution.
The FOS model, however, is learned only after all the
subsets have been tried on all solutions. This process
continues until a termination condition is reached. So-
lution acceptance criteria also differ. The continuous
model is learned from the top τ = 0.35 fraction of
the population, following the procedure of iAMaLGaM.
When continuous variables are sampled, they are always
accepted without any other restrictions. The discrete
model is built from the entire population. To generate
selection pressure, when a crossover mask is applied,
the resulting solution is only accepted if it improves, or
has equal fitness following the procedure of LTGA.

C. Parameter Freedom
The need to specify key parameters prior to execution

is a common characteristic of many algorithms. One cru-
cial parameter of many EAs is the population size. While
an EA may perform very well for a certain population
size on a given problem, setting the population size too
small may result in premature convergence and failure to
solve the problem, while setting the population size too
large may result in very large overhead and inefficiency.
When clustering is involved, specifying the number of
clusters is often required, and has a significant impact
on the performance. GAMBIT needs the specification of
both these key parameters: population size and number
of clusters. Many algorithms report results only on the
optimal parameter settings, which are empirically deter-
mined over many runs and with the use of techniques
such as bisection search. While applying the optimal
parameter settings can be very useful in measuring the
algorithms’ ability to solve a particular problem, it may
often be infeasible to determine the optimal configura-
tion in practice, i.e., considering the black-box setting,
and possibly real-world applications with very large and
expensive to evaluate objective functions. In order to
create a useful algorithm for real-world applications, the
ability to run ”out of the box”, without the need to set
parameter values, is very desirable.

A population-size free scheme [9] is used in GAMBIT
that removes the need to specify the population size, and
extends it to also include the cluster size parameter. In
the adaptation of this scheme, an instance of GAMBIT
is used as a basis with an initial population size that
is determined using iAMaLGaM’s minimum population
size guideline, adjusted for the presence of discrete and
continuous variables: pinitialSize =

√
ld + lc and the

initial cluster size k = 1. When 4 generations of this
instance are completed, the current largest population
size instance is doubled, and the cluster size is increased
by one. One generation of this instance is completed for
every 4 generations of the smaller population size. This
process of introducing a new instance with a doubled
population size, and increased cluster size, continues
to happen every 4 generations of the currently biggest
instance. If at any generation, the average fitness of a
latter instance is better than the average fitness of an
earlier population instance, all smaller-sized populations
are terminated.

IV. INTER-DOMAIN DEPENDENCY LEARNING

The presence of mixed-variable dependencies is one of
the key difficulties in the mixed domain. The ability to
directly learn and address such dependencies promises
to be beneficial to optimization.

Previously, GAMBIT used FOS subsets of the same
variable type only. As a result, mixed inter-domain
dependencies were only addressed indirectly through
interleaved model sampling and clustering in the mixed
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solution space. In this paper, we introduce the ability
to directly deal with mixed-dependencies by allowing
FOS subsets that contain both discrete and continuous
variables. Two key aspects need to be considered. First
is the ability to quantify some measure of strength of
dependency between variables of different types, so
that subsets representing mixed-variable dependencies
can be learned. Second, once we encounter such subset
during variation, a mechanism is needed to process and
sample new values for all variables in this subset jointly.
In this section we focus on the first part. In the next
section, we consider the second part.

A. Mutual Information in the Mixed Space

MI between two random variables is a well known
measure of mutual dependence in information theory.
LTGA already calculates MI between pairs of discrete
variables. We consider three methods of extending the
use of MI to solution spaces that contain both discrete
and continuous variables.

In our first method, the continuous problem variables
are discretized. This is accomplished with a crude dis-
cretization that calculates the average value of a variable
in the current population, and assigns a zero value for
all values below, and a one value for all values above the
average. With these temporarily discretized variables, MI
can be calculated in the same way as with LTGA, but
now for all variables.

In our second method, we do the converse. It is again
possible to calculate MI between all variables if the
discrete variables are treated as real-valued and using
the definition of MI assuming a parametric distribution
over the variables such as the normal distribution. For
the purposes of this calculation, the continuous variables
are normalized to a [0;1] range, and binary variables are
treated as real values.

In our third method, we estimate MI without the need
to convert one type of variable into another. This is not
straightforward, as MI calculated in the discrete and in
the continuous domains are not directly comparable. For
this, we utilize a recently introduced approach called the
nearest neighbor method [10]. This method relies on
calculating the Jensen-Shannon divergence, which mea-
sures the dissimilarity between two or more continuous
probability distributions [11].

The nearest neighbor method aims to determine if
different values of the discrete variable X are biased
towards different values of the continuous variable Y .
More specifically, for each data point (xi, yi) a number
Ii is computed based on the nearest neighbors of (xi, yi)
considering only the continuous variable yi. First, the
k-th closest neighbor of point (xi, yi) is found whose
value of the discrete variable is xi, i.e. point (xi, yj)
for which |yi − yj | is the k-th smallest. Using d as the
distance to the k-th neighbor, the number of neighboring
points mi that are within distance d, is counted from

the entire data set, where distances again only consider
real-valued variables, but now the discrete value is not
restricted to match xi. We compute

Ii = ψ(N)− ψ(Nxi) + ψ(k)− ψ(mi) (1)

where ψ is the digamma function, N is the number of
all data points, Nxi is the number of data points whose
discrete values is equal to xi. The estimation of the MI
between the discrete continuous pair (X,Y) is an average
Ii over all the data points:

I(X,Y ) = 〈Ii〉 = ψ(N)− 〈ψ(Nx)〉+ ψ(k)− 〈ψ(m)〉 (2)

In our implementation we use k = 3, following a
recommended guideline for this method [10].

B. FOS Subset Selection
We now have the ability to estimate MI for mixed pairs

of 2 variables. However, a way to capture variable de-
pendencies for multiple variables in FOS subsets is still
needed. A FOS structure can be efficiently constructed
with hierarchical clustering, e.g., like in LTGA. This can
be expanded to allow for the generation of mixed subsets
within the FOS. We consider two intuitive ways of doing
so.

Our first approach is a direct extension: we use the
same method to create a linkage tree with hierarchical
clustering, but consider all problem variables. Although
we now have a way to compute MI for pairs of discrete,
continuous, or mixed discrete-continuous variables, the
notion and range of MI for these different types of pairs
is too difficult to build proper linkage trees directly from
all these different notions. Depending on various issues,
such as continuous correlations strength, such a tree
could unfairly focus on one type of variable domain
and disregard all other dependencies until the end. For
this reason, we consider only using converted variables
to compute MI in only one domain, i.e, as discussed
in the previous section. A tree obtained in this fashion
contains 2(lc + ld) − 1 subsets, and can include mixed
subsets. Depending if the MI was estimated entirely
in the continuous or discrete domain, we refer to this
approach as a fully continuous based FOS (G-Full Cont.)
or fully discrete based FOS (G-Full Disc.) respectively.

Our second approach retains existing mechanisms for
generating strictly discrete and strictly continuous sub-
sets, and appends it with mixed subsets, which are built
using an additional linkage tree. This approach allows
us to retain all specific intra-domain dependencies, and
join them with specifically learned inter-domain depen-
dencies. In order to generate the strictly mixed-subset
linkage tree, the MI between variables of the same type
is set to −∞, ensuring that in such a tree, all non-leaf
nodes are guaranteed to contain both types of variables
in each subset. These non-leaf nodes are appended to
the FOS used with the original GAMBIT. This results in

2016 IEEE Congress on Evolutionary Computation (CEC) 4385



3ld+3lc−3 subsets: 2ld+2ld−2 from the original GAMBIT
subset structure, joined with ld + lc − 1 non-leaf subsets
from the mixed variable linkage tree. Based on this FOS
representation, we introduce three additional GAMBIT
variants based on how MI is estimated: GAMBIT with
the nearest neighbor method (G-Joined NN), GAMBIT
with the appended mixed subsets based on continuous
estimation (G-Joined Cont.) and discrete estimation (G-
Joined Disc.).

V. MIXED SUBSET PROCESSING

With the FOS now capable of representing mixed
subsets, the ability to process such subsets needs to be
added to the integrated models mechanism.

When a mixed FOS subset is encountered, sub-models
are created. Specifically, the sub-population that is cur-
rently handled by the integrated models mechanism, is
grouped into clusters, this time on the sub-population
level, using the same mixed distance metric explained
in Section IIIA, however now only considering the vari-
ables present in the mixed subset for distance calcu-
lation. This results in k equally-sized sub-clusters for
every mixed subset in the FOS. The value for k is
set equal to the number of clusters used by the main
clustering mechanism of GAMBIT. This way k does not
need to be explicitly specified. A sub-model represents
only the variables present in those subsets, making it
relatively inexpensive in terms of additional computing
resources needed (i.e., computing covariance matrices
and decomposing them for sampling).

When a mixed subset is encountered, for each solution
a donor solution is randomly selected from the pop-
ulation. The sub-cluster to which this donor belongs,
is probabilistically calculated (i.e. maximum likelihood
match). Generating a new solution for a mixed subsets
samples the discrete and the continuous variables spec-
ified by the mixed subset. The discrete subset variables
are sampled from the donor, into the current solution.
The continuous variables are sampled from the sub-
model which was matched to the mixed subset. Only
after both, the continuous and discrete variables of the
mixed subset have been sampled, changes are evaluated
and kept only if it results in an improvement. Otherwise,
the change is rejected. This procedure is illustrated in
Figure 2.

VI. PROBLEMS

We consider a set of unconstrained and constrained
mixed-integer functions designed to exert different types
of landscape features.

A Mixed-Integer Problem is defined as follows:

min f(xd,xc)

s.t. h(xd,xc) = 0, g(xd,xc) ≤ 0

Where x represents the solution

Integrated Model Sampling for a cluster sub-population Pk

INTEGRATEDMODELMECHANISM(Pk)
F = LearnFOS(Pk)
for i ∈ {0, 1, . . . , (|F| − 1)} do

if F i is all continuous then
S ← TRUNCATIONSELECTION(Pk, τ)
UPDATEGAUSSIANPARAMETERS(k,S)
for j ∈ {0, 1, . . . , n− 1} do

((Pk)j)F i ← SAMPLECONTINUOUSMODEL(k,F i)
EVALUATEFITNESS((Pk)j)

if F i is all discrete then
for j ∈ {0, 1, . . . , n− 1} do

O ← (Pk)j
donor ← GETRANDOMSOLUTION(Pk)
(O)F i ← (donor)F i

EVALUATEFITNESS(O)
if fitness(O) at least as good as fitness((Pk)j) then

((Pk)j)F i ← (O)F i

if F i is mixed then
Pksub

[0, ..., k − 1] ← GROUPINTOCLUSTERS(i, k,Pk)
UPDATEMIXEDSUBMODELS(i,Pksub

)
for j ∈ {0, 1, . . . , n− 1} do

SubID ← DETERMINESUBPOPULATION(j)
O ← (Pk)j
(O)F i ← SAMPLESUBMODEL(i,Pksub

[SubID])
EVALUATEFITNESS(O)
if fitness(O) at least as good as fitness((Pk)j) then
((Pk)j)F i ← (Ok)F i

return Pk

Fig. 2. Pseudo-code for generating solutions for mixed integer prob-
lems with GAMBITs Learning Models.

x = xdxc = d0...dld−1 c0...clc−1

where di ∈ {0, 1}, ci ∈ R and xd, xc are the groups of
all discrete and continuous variables, respectively. f is
the objective function. h and g are the sets of equality
and inequality constraint functions respectively. If both
sets are empty, the mixed-integer problem is said to be
unconstrained.

A. Unconstrained Problems

The first mixed problem F1 is the Onemax-Sphere
function. It is a concatenation of two problems where
all the variables are completely independent. The DT5-
R.Ellipse, or F2, is a problem where subsets of discrete
variables are dependent on each other by use of well
known deceptive trap functions, while the continuous
variables are all strongly dependent on each other due
to a parameter rotation of 45 degrees. In our problems
we consider trap functions of size 5. Its definition in
Table I shows that the global optimum occurs when all
the bits are 1’s. However, 2m − 1 deceptive local optima
exist when all bits are 0’s or all bits are 1’s in a subset.
No dependence between the discrete and continuous
domains exist in F1 and F2. Function F3 includes intra-
domain, as well as inter-domain dependencies. It is a
specific combination of the previously defined FDT5

function with the rotated ellipsoid. It is additively de-
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composable and consists of sub-functions pertaining to
blocks of k discrete and k continuous variables. For a
trap function with k = 5, there are 2k = 32 different
binary combinations per block. A differently translated
k-variable 45 degree rotated ellipse function corresponds
with each of those combinations. The continuous func-
tion that is being optimized, depends on the binary
counterpart, introducing dependencies between the dis-
crete and continuous variables that pertain to the same
subset. In the function definition, Dblock

i is a block of
five discrete variables. Cblock are the corresponding five
real-valued variables. The Dblock variables determine
which of the 2k different rotated ellipsoid functions are
being optimized, while Cblock provides the values of the
ellipsoid function variables. In this benchmark the num-
ber of discrete variables is the same as the continuous
variables: ld = lc = l/2. Finally, function F4 represents
only mixed-variable dependencies. Similarly to F3 it is
a concatenation of 5 variable blocks, however because
of the use of onemax and sphere functions no intra-
variable dependencies exist. In this function the Onemax
Dblock correspondents to 32 differently translated sphere
functions. This means that the onemax function and the
correct sphere function needs to be solved for each block
to find the global optimum.

TABLE I
CONTINUOUS AND DISCRETE FUNCTIONS USED TO DEFINE OUR

UNCONSTRAINED MIXED BENCHMARKS

Functions

FSphere(xc) =
∑lc−1

i=0 c2i
FR.Ellip.(xc) = FEllip.(R ∗ xc) , where
FEllip.(xc) =

∑lc−1
i=0 106∗i/(lc−1) ∗ c2i

FOnemax(xd) =
∑ld−1

i=0 di

FDT5(xd) =
∑ld/k−1

i=0 fsub
Trap k(

∑ki+k−1
j=ki dj) ,

where

fsub
Trap k(u) =

{
0 : if u = k
1− (k − 1− u)/k : otherwise

TABLE II
UNCONSTRAINED BENCHMARK PROBLEMS

ID Definition
F1 F1(xd,xc) = FOnemax(xd) + FSphere(xc)
F2 F2(xd,xc) = FDT5(xd) + FR.Ellip.(xc)

F3 F3(xd,xc) =

∑0.5l/k−1
i=0 (1 + 100fsub

trap(
∑ki+k−1

j=ki dj))

∗(1 + fsub
Ellipse(D

block
i , Cblock

i ))

F4 F4(xd,xc) =

∑0.5l/k−1
i=0 (1 + 100fOnemax(D

block
i )

∗(1 + fsub
Sphere(D

block
i , Cblock

i ))

B. Constrained Problems

Many industrial mixed-integer problems include con-
straints. Often, it is the constraints, rather than the
objective function that contribute more to the difficulty
of a given problem. We therefore also consider a set
of mixed-integer problems from the MINLP Benchmark

Library [12]. The specification of the objective function,
constraints and parameters ranges can be found in Table
III. This benchmark set contains the same problems used
by [2] for testing MIES. Minimization is assumed for
both unconstrained and constrained problems. In GAM-
BIT, the objective function is adjusted using a standard
dynamic penalty method, which allows the exploration
of the infeasible space early on, but by increasing the
penalty factor over time, gradually puts more focus
on the feasible space. Specifically, the penalty factor (a
squared sum of all constraint violations) is multiplied
by the current generation count causing this dynamic
increase in the penalty values for infeasible solutions
over time. This default approach is used with all the
constrained problems tested, without any adjustments.

VII. RESULTS

All problems are tested with GAMBIT in the parame-
terless setting. The success criterion is finding a solution
within 10−10 of the known global optimum at least 29
out of 30 times. A run is considered unsuccessful if the
optimum is not found after 10 million evaluations or
execution time exceeds an hour. A successful run for
any tested algorithm was usually completed within a
few minutes. The reported results for the unconstrained
problems consist of the same number of discrete and
continuous variables (lc = ld = l/2), while the con-
strained problems vary in variable composition as spec-
ified in Table III.

Figure 3 shows that GAMBIT does not benefit from
any variant of the mixed-dependency processing mech-
anism on the F2 problem, where no inter-variable de-
pendencies exist, however it does on the F1 problem.
This can be attributed to the larger number of subsets
that exist per generation when the mixed dependency
learning mechanisms are used. Because the subsets are
correct, more subsets means more selection pressure
used to get better solutions faster. Since all problem
variables are independent, modeling dependencies over
generations is not necessary.

On problems that contain inter-domain dependencies
(F3 and F4) the advantages of the newly introduced
mechanism become apparent. All variants of GAMBIT
with the mixed subset processing mechanisms outper-
form the original GAMBIT. Approaches that use dis-
crete MI estimation (G-Full Disc. and G-Joined Disc.)
perform worse than the remaining alternatives. This is
likely due to the crude one bit discretization used in
these approaches. The G-Joined NN is the most efficient
variant. This suggests that calculating MI in exclusively
discrete or continuous domain results in a less accurate
estimation of mixed dependencies than with the nearest-
neighbor approach.

Our observations are further confirmed on the con-
strained problems (see Table V). Dependency processing
is less useful on problems with few variables. This can
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TABLE III
SPECIFICATIONS OF THE MINLP SELECTED CONSTRAINED BENCHMARK PROBLEMS

Name Function Constrains Range
F5 2r1 + d1 −r21 − d21 ≤ −1.5, r1 + d1 ≤ 1.6 r1 ∈ [0, 1.6], d1 ∈ {0, 1}
F6 2r1 + 3r2 + 1.5d1 + 2d2 − 0.5d3

r21 + d1 = 1.25, r1.52 + 1.5d2 = 3
r1 + d1 ≤ 1.6, 1.333r2 + d2 ≤ 3,−d1 − d2 + d3 ≤ 0

r1,2 ∈ [0, 10], d1,2,3 ∈ {0, 1}

F7 0.8 + 5(r1 − 0.5)2 − 0.7d1
−exp(r1 − 0.2)− r2 ≤ 0

r2 + 1.1d1 ≤ −1, r1 − 1.2d1 ≤ 0
r1 ∈ [0.2, 1], r2 ∈ [0.22554,−1]

d1 ∈ {0, 1}

F8

6 + (r1 − 1)2 + (r2 − 2)2

+(r3 − 3)2 − d1 − 3d2 − d3
−0.693147180559945d4

r1 + r2 + r3 + d1 + d2 + d3 ≤ 5, , r23 + d2 ≤ 4.64
r21 + r22 + r23 + d3 ≤ 5.5, r1 + d1 ≤ 1.2, r2 + d2 ≤ 1.8

r3 + d3 ≤ 2.5, r1 + d4 ≤ 1.2, r22 + d2 ≤ 1.64, r23 + d3 ≤ 4.25

r1,2,3 ∈ [0, 10]
d1,2,3,4 ∈ {0, 1}

F9 −5r1 + 3r2

8r1 − 2r0.51 r2 + 11r2 + 2r22 − 2r0.52 ≤ 39
r1 − r2 ≤ 3, 3r1 + 2r2 ≤ 24

r2 − d1 − 2d2 − 4d3 = 1, d2 + d3 ≤ 1

r1 ∈ [1, 10], r1 ∈ [1, 6]
d1,2,3 ∈ {0, 1}

F10

(r4 − 1)2 + (r5 − 2)2 + (r6 − 1)2

−log(1 + r7) + (r1 − 1)2

+(r2 − 2)2 + (r3 − 3)2

r1 + r2 + r3 + d1 + d2 + d3 ≤ 5
r26 + r21 + r22 + r23 ≤ 5.5, r1 + d1 ≤ 1.2

r2 + d2 ≤ 1.8, r3 + d3 ≤ 2.5, r1 + d4 ≤ 1.2
r25 + r22 ≤ 1.64, r26 + r23 ≤ 4.25

r25 + r23 ≤ 4.64, r4 − d1 = 0, r5 − d2 = 0
r6 − d3 = 0, r7 − d4 = 0

r1,2,3 ∈ [1, 10]
r4,5,6,7 ∈ [0, 1]
d1,2,3,4 ∈ {0, 1}

be seen in functions F5 and F9, where learning the
mixed subsets is not advantageous. Furthermore, the G-
Full Disc. and G-Full Cont. approaches fail to solve F10.
The joint tree approaches are successful however, and
improve on the original ”NoMixedLearning” variant on
most problems. This suggests that relying on a single
tree based FOS may be insufficient as intra-domain de-
pendency information may be lost. However, when the
mixed dependency information is considered separately,
and joined with the individual domain dependency
knowledge, the results show an increase in performance.
The G-Joined NN variant outperforms all alternatives on
F6, F7, F9 and F10, and will be used with GAMBIT from
now on.

TABLE IV
COMPARISON OF MIES, SCIP AND GAMBIT ON PROBLEMS F1-F10 .
ABILITY TO SOLVE ALL TESTED PROBLEM SIZES IS REPRESENTED BY �

Alg. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
MIES � x x x � � � � � �
SCIP � � x x � � � � � �

GAMBIT � � � � � � � � � �

Additionally, we consider the performance of two
known mixed-integer solvers: MIES and SCIP. MIES is
a mixed-integer extension to the well known (μ + λ)-
ES for continuous problems to mixed-integer search
spaces [2]. The Solving Constraint Integer Programs
(SCIP) algorithm [3] is an efficient branch-and-bound
MINLP solver. All three algorithms succeed in solving
the constrained problems. Unconstrained problems were
tested with all three algorithms on problem sizes of
length 20, 40, 80 and 160. The results are summarized
in Table IV. Only GAMBIT is capable of consistently
solving all functions presented in this paper. MIES does
not solve F2 − F4, while SCIP fails to solve F3 and
F4. These results suggest that dealing with landscape
features created by trap functions and rotated ellipsoids
(F2) or inter-domain variable dependencies (F3, F4) are
difficult for these algorithms to deal with, which further

highlights the usefulness of model-based approaches for
mixed-integer problems that contain such features. It
should further be noted that although SCIP solves many
of the problems, it relies heavily on a mathematical
input format that can exploited efficiently. Black-box
simulation could thus not be tackled (not a restriction
for MIES and GAMBIT).

VIII. CONCLUSIONS

The potential existence of mixed-variable dependen-
cies is one of the main factors why mixed-integer
problems are considered challenging. In this paper we
studied the potential benefits of adding a mixed inter-
variable dependency learning and processing mecha-
nism to a previously introduced Genetic Algorithm
for Model-Based mixed-Integer opTimization (GAMBIT).
For the dependency learning we considered three mutual
information (MI) based approaches to estimate a mea-
sure of dependency between all pairs of variables. We
estimated the mixed variable dependencies using an en-
tirely discrete, entirely continuous and a mixed nearest-
neighbor based statistical approach. We introduced an
extended Family-of-Subsets (FOS) structure, which al-
lowed us to represent not only exclusively discrete and
continuous variable subsets, but also mixed ones.

We showed that while a mechanism for explicitly
learning and exploiting mixed dependencies can gen-
erate some unnecessary overhead on problems where
no mixed-dependencies are present, it improves per-
formance on more difficult problems containing such
dependencies. On our benchmark set, the most suc-
cessful variant of the algorithm included the nearest-
neighbor MI estimation method, which on the majority
of problems outperformed our alternative approaches.

Real-world applicability is very important. With a
parameter-free scheme and the inclusion of our novel
dependence learning and processing mechanism, we
showed that GAMBIT is capable of solving a range of
unconstrained and constraint problems in a black-box
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Fig. 3. Average number of evaluations required by GAMBIT variants on unconstrained benchmarks F1-F4, over 30 runs

TABLE V
PERFORMANCE OF GAMBIT VARIANTS ON CONSTRAINT PROBLEMS (AVERAGE NUMBER OF EVALUATIONS REQUIRED, OVER 30 RUNS)

GAMBIT Variant
Problem No Mixed Learning G-Joined NN G-Joined Cont. G-Joined Disc. G-Full Cont. G-Full Disc.

F5 1056 4096.7 4521 5836.3 4939 4015.8
F6 50431.5 30868.3 35976 35724.6 41953.2 62347.2
F7 3404.8 2909 2911 2819.1 3388.4 2093.9
F8 114887.2 54645.3 57855 75241.6 58098.1 119347.4
F9 6271.6 4641.7 4693.3 6709.5 4771.6 4892.7
F10 720494 418224 558219 6311296 x x

setting, without the need to specify any parameters such
as population size or number of clusters. The perfor-
mance of GAMBIT was compared with two other mixed-
integer solvers: MIES and SCIP. Both of these solvers suc-
ceeded in optimizing the constrained problems, however
failed to consistently solve the unconstrained problems
with underlying mixed-dependencies. GAMBIT was able
to solve all the problems tested. Our results show the
potential and capacity of learning and exploiting mixed-
variable dependencies of mixed-integer problems with
model-based evolutionary approaches, and provide a
good foundation and framework for possible future real-
world applications.
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