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ABSTRACT
�e recently introduced Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA) has been shown to be among the state-of-the-
art for solving discrete optimization problems. Key to the success
of GOMEA is its ability to e�ciently exploit the linkage structure
of a problem. Here, we introduce the Real-Valued GOMEA (RV-
GOMEA), which incorporates several aspects of the real-valued
EDA known as AMaLGaM into GOMEA in order to make GOMEA
well-suited for real-valued optimization. �e key strength of
GOMEA to competently exploit linkage structure is e�ectively pre-
served in RV-GOMEA, enabling excellent performance on problems
that exhibit a linkage structure that is to some degree decomposable.
Moreover, the main variation operator of GOMEA enables substan-
tial improvements in performance if the problem allows for partial
evaluations, which may be very well possible in many real-world
applications. Comparisons of performance with state-of-the-art
algorithms such as CMA-ES and AMaLGaM on a set of well-known
benchmark problems show that RV-GOMEA achieves comparable,
excellent scalability in case of black-box optimization. Moreover,
RV-GOMEA achieves unprecedented scalability on problems that
allow for partial evaluations, reaching near-optimal solutions for
problems with up to millions of real-valued variables within one
hour on a normal desktop computer.
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1 INTRODUCTION
Key to the success of any optimization algorithm is the e�cient
exploitation of problem structure. Model-based Evolutionary Algo-
rithms (EAs) do this by maintaining an explicit model that should
be aligned with the problem structure to obtain the best perfor-
mance. In real-valued optimization, arguably the most state-of-the-
art model-based EA is CMA-ES [6], where the model is a multi-
variate Gaussian probability distribution that determines the part
of the search space where new solutions should be sampled. �is
model is very competent, but has an unnecessarily high capacity
for many optimization problems, because, for instance, the rota-
tional invariance of CMA-ES is not required to solve a wide range
of optimization problems. Instead, to improve performance, model
complexity can be reduced by be�er aligning required model capac-
ity with problem structure. In particular, the model can be aligned
with the structure of the problem by exploiting the so-called linkage
structure of the optimization problem, which describes dependen-
cies between problem variables. Recently, quite some a�ention
has been given to the exploitation of linkage structure by EAs.
One recent approach is the projection-based restricted CMA-ES [1],
which reduces the size of the covariance matrix by parameterizing
it with a smaller number of parameters that accurately describe
the most important sources of variance. Although in itself a valid
and successful approach, it is not directly clear how these reduced
models correspond to dependent variables. A di�erent approach
involves explicitly describing whether or not interdependencies
between speci�c subsets of variables must be considered. Such an
approach previously proved successful in the domain of discrete
optimization in the Linkage Tree Genetic Algorithm (LTGA) [12]
and in its generalized form, the Gene-pool Optimal Mixing Evolu-
tionary Algorithm (GOMEA) [3, 13], which is considered to be a
state-of-the-art EA for discrete optimization problems. Despite the
success of GOMEA in the domain of discrete optimization, it has
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never been applied to real-valued optimization. In this paper, we
study the explicit exploitability of linkage structure for real-valued
optimization problems by adapting GOMEA into the Real-Valued
GOMEA (RV-GOMEA). RV-GOMEA combines the Gene-pool Op-
timal Mixing (GOM) procedure of GOMEA with aspects of the
Adapted Maximum-Likelihood Gaussian Model Iterated Density-
Estimation Evolutionary Algorithm (AMaLGaM-IDEA or AMaL-
GaM) [2] in order to exploit the linkage structure of real-valued
optimization problems, while still using continuous distributions
to cover the real-valued search space.

Most work in model-based EAs considers Black-Box Optimiza-
tion (BBO), meaning that virtually no knowledge about the structure
of the optimization problem is supplied to the algorithm. Linkage
structure can still be learned through statistical analysis of the pop-
ulation. However, for many real-world problems, some problem
structure may be inferred directly from the problem de�nition. We
speak of a Gray-Box Optimization (GBO) se�ing when the structure
of dependencies between variables is roughly known. In this paper,
we further consider a se�ing to be GBOwhen the problem structure
is known to a degree that allows for e�cient partial evaluations,
meaning that the objective value of partially modi�ed solutions
can be updated more e�ciently than through a full re-evaluation.
Studying the design of EAs for such GBO se�ings is less well es-
tablished. Yet, for many practical situations these assumptions
are easily met, allowing important performance improvements of
EAs applied to real-world problems, potentially opening up new
possibilities based on already existing powerful model-based EA
paradigms. It is mainly this situation for which we study the design
of RV-GOMEA and aim to achieve improvements. GOMEA and
also its real-valued variant RV-GOMEA that we introduce here
are especially well-equipped to exploit additional problem-speci�c
knowledge. �e reason for this is that the main variation operator
of GOMEA applies partial modi�cations to existing solutions. Par-
tial evaluations then allow e�cient update calculations of objective
values. Note that the possibility of performing e�cient partial eval-
uations is certainly not restricted to trivial or even decomposable
problems. �e well-known discrete optimization problem Max-Cut
[8] is an example of an NP-complete problem where e�cient par-
tial evaluations are possible. E�cient partial evaluations are also
possible in the real-world problem known as deformable image
registration [4], which deals with real-valued variables.

To observe the performance of RV-GOMEA, RV-GOMEA is tested
in GBO and BBO se�ings on a set of well-known benchmark prob-
lems and compared to that of the state-of-the-art EAs CMA-ES
[6, 11] and AMaLGaM [2]. Excessive manual tuning of the popula-
tion size parameter is avoided by applying an interleaved multistart
scheme to all tested algorithms.

�e remainder of this paper is structured as follows. Firstly, the
way in which linkage structure is modeled by (RV-)GOMEA is de-
scribed in Section 2. �is is followed by a detailed description of
RV-GOMEA in Section 3, and in Section 4 a description of the inter-
leaved multistart scheme is given. All experiments and results are
then discussed in Section 5, �nally leading us to draw conclusions
in Section 6.

2 MODELING LINKAGE INFORMATION
In GOMEA, linkage information is modeled using a so-called Family
Of Subsets (FOS) that describes supposed dependencies between
the variables of the problem. A FOS, denoted F , is a subset of the
powerset P (S) of S, where S = {0, 1, . . . , ` − 1} denotes the set of
indices of problem variables, and ` is the total number of problem
variables. Each element Fj ∈ F , with Fj ⊆ S, describes the indices
of a set of variables that are deemed dependent by the model. Any
FOS can be used to model linkage structure, but in this section
we highlight the marginal product FOS and the linkage tree FOS,
which will be used throughout this paper.

2.1 Marginal Product FOS
A marginal product FOS is de�ned as a set F s.t. Fi ∩ Fj = ∅
for any two Fi ,Fj ∈ F . �e simplest marginal product FOS is
the univariate FOS, which models each problem variable to be
independent, i.e., F = {{0}, {1}, . . . , {` − 1}}. We de�ne the k-
block FOS as a marginal product model that models dependencies
between non-overlapping blocks of k consecutive variables, i.e.,
F = {{0, 1, . . . ,k − 1}, {k,k + 1, . . . , 2k − 1}, . . . , {` −k, . . . , ` − 1}}.

2.2 Linkage Tree FOS
A linkage tree model [12] models multiple levels of dependencies at
the same time. Partly because of this hierarchy of dependencies that
is modeled, the linkage tree model was found to be the most reliable
and overall most e�cient FOS in discrete GOMEA for BBO [13].
�e main property of a linkage tree FOS F is that each element Fi
of size larger than one is the union of two other sets Fj ,Fk ∈ F
with i , j , k . Formally stated, for any subset Fi having more than
one element, there exist subsets Fj and Fk such that Fj ∩ Fk = ∅,
|Fj | < |Fi |, |Fk | < |Fi |, and Fj ∪ Fk = Fi .

Learning a linkage tree structure is done through the Unweighted
Pair Grouping Method with Arithmetic-mean (UPGMA) clustering
method, of which we use the implementation with time complexity
O (`2) discussed in [5]. �e tree is initialized with all univariate
elements as leaves. New elements are then iteratively created by
merging the two nodes of the tree that are regarded as the most
dependent. Dependence can be estimated based on the population
or quanti�ed by a problem-speci�c distance metric. Each node of
the tree can only be merged once and the merging procedure stops
when the root of the tree has been reached, which is an element
that naturally contains the indices of all problem variables. �e
linkage tree FOS then consists of all internal nodes and leaves of the
linkage tree, and has 2`− 1 elements. �is model therefore includes
multiple levels of dependencies, ranging from the univariate level
up to a level with complete dependency between all variables.

3 REAL-VALUED GOMEA
RV-GOMEA maintains a population P of n promising solutions,
and during each generation applies variation to improve existing
solutions. In the following, we describe the key mechanisms of
RV-GOMEA, including the Anticipated Mean Shi� (AMS), Adap-
tive Variance Scaling (AVS), and Standard Deviation Ratio (SDR)
mechanisms [2], which are inherited from AMaLGaM.
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Function RV-GOMEA :
P ← Initial population, evaluated
pop-NIS← t ← 0
for Pi ∈ P do NIS(Pi ) ← 0
while not terminated do

S ←�e best bτn c solutions in P
F ← Learn FOS from S /* Unless FOS is fixed. */

for Fj ∈ F do
Estimate N (µ̂Fj (t ), Σ̂Fj (t )) with maximum-likelihood based on S

µ̂Shi�
Fj

(t ) ← µ̂Fj (t ) − µ̂Fj (t − 1)

for i ∈ {0, . . . , nelitist − 1} do Pi ← i th best solution in P
generateNewSolutions
t ← t + 1

Algorithm 1: �e basic structure of RV-GOMEA.

3.1 Gene-pool Optimal Mixing
�e key to success of the discrete GOMEA is its main variation
operator, known as Gene-pool Optimal Mixing (GOM), combined
with a proper FOS linkage model. �e GOM procedure is applied
to each solution in the population, mixing this so-called parent
solution with a random donor solution. Speci�cally, each FOS
element describes a set of indices of problem variables for which
the values are copied from the donor solution and inserted into
the parent solution. If the modi�ed parent solution has a be�er
objective value than the parent solution had in its previous state,
the modi�cation is accepted. Otherwise, the parent solution is
returned to its previous state. Linkage structure is exploited by
GOM, because problem variables are mixed independently if they
are deemed independent by the linkage model. Moreover, selection
is directly integrated into the variation operator.

To adapt GOM to the domain of real-valued variables, certain
mechanisms of AMaLGaM [2] are employed. For each FOS element
a Gaussian model is learned that resembles the model used by
AMaLGaM, but then restricted to the variables in the FOS element.

�e basic structure of RV-GOMEA is described in Algorithm 1.
Each generation of RV-GOMEA starts by the selection procedure,
selecting S to be the fraction τ = 0.35 (following the guidelines
for AMaLGaM, see [2]) best solutions in the population P . If no
�xed FOS is set a priori, the selection procedure is followed by
the learning of the linkage tree, which is described in Section 3.5.
For each FOS element Fj of size k , a k-variate normal distribution
is estimated with maximum likelihood based on S . �is normal
distribution is described by its covariance matrix Σ̂Fj and its mean
vector µ̂Fj , whose components are estimated as follows:

µ̂Fj [u] =
1
|S |

∑
s ∈S

s[u]

Σ̂Fj [u,v] =
1
|S |

∑
s ∈S

(
s[u] − µ̂Fj [u]

) (
s[v] − µ̂Fj [v]

)

A number of nelitist elitist solutions are then copied into the popu-
lation, overwriting existing solutions, and the untouched solutions
are subject to the GOM procedure, which is described in Algo-
rithm 2. For each FOS element Fj , in a random order, a new partial
solution is generated for each solution in the population by sam-
pling from the normal distribution N

(
µ̂Fj , Σ̂Fj

)
. All values of a

newly generated partial solution yFj are inserted into a solution

Function generateNewSolutions :
for i ∈ {nelitist, . . . , n − 1} do improved(Pi ) ← False
for Fj ∈ F do /* In a random order. */

for i ∈ {nelitist, . . . , n − 1} do
for u ∈ Fj do b [u]← Pi [u]
fb ← fPi

y ← N

(
µ̂Fj , c

Multiplier
Fj

Σ̂Fj

)
if i < nelitist + b 12 τn c then
y ← y + cMultiplier

Fj
δAMS µ̂Shi�

Fj
for u ∈ Fj do Pi [u]← y[u]
fPi ← f (Pi )
if fPi < fb then improved(Pi ) ← True
else if U (0, 1) > paccept then

for u ∈ Fj do Pi [u]← b [u]
fPi ← fb

AdaptMultiplier

(
cMultiplier
Fj

)
for i ∈ {nelitist, . . . , nelitist + b 12 τn c − 1} do
b ← Pi ; fb ← fPi
Pi ← Pi + δAMS µ̂Shi�

fPi ← f (Pi )
if fPi < fb then improved(Pi ) ← True
else if U (0, 1) > paccept then
Pi ← b
fPi ← fb

for i ∈ {nelitist, . . . , n − 1} do
if improved(Pi ) then NIS(Pi ) = 0
else NIS(Pi ) ← NIS(Pi ) + 1
if NIS(Pi ) > NISMAX then

ForcedImprovements(Pi )

Algorithm 2: Generating new solutions in RV-GOMEA.

Pi . If the modi�cation of the solution leads to an improvement,
this modi�cation is maintained. Otherwise, the modi�cation is
maintained with a probability of paccept = 0.05, and reset to the
pre-existing state with a probability of 1 − paccept. Allowing modi-
�cations that do not lead to improvements can help steering the
population out of local optima, especially when the FOS does not
contain high-dimensional elements, as was observed in prelimi-
nary experiments on the Rosenbrock function. Good results were
observed for paccept = 0.05.

3.2 Adaptive Variance Scaling according to the
Standard Deviation Ratio

�e AVS mechanism multiplies Σ̂Fj by the distribution multiplier
c
Multiplier
Fj

to counteract the variance-diminishing e�ect of selection.
�e distribution multiplier is initialized to 1.0 and is dynamically
adapted by the SDR [2] approach, which scales it based on the aver-
age improvement vector xAvg-imp

Fj
. �e SDR procedure is described

in Algorithm 3. �e average improvement vector describes the
average parameters of all solutions in X

Improved
Fj

, which includes
all solutions for which an improvement over the best solution in
the selection was observed during the mixing procedure of Fj .
If no solution was improved during the mixing procedure of Fj ,
c
Multiplier
Fj

is decreased by a factor ηDEC = 0.9, according to the

guideline of AMaLGaM in [2]. �e value of cMultiplier
Fj

can only drop
below 1 by this operation if not a single solution in the popula-
tion has improved for at least a prede�ned number, the so-called
maximum no improvement stretch NISMAX, of generations. �e
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vector zAvg-imp
Fj

= L−1
Fj

(
x
Avg-imp
Fj

− µ̂Fj

)
describes the average im-

provements in terms in standard deviations along all principal axes
of N

(
µ̂Fj , Σ̂Fj

)
, where L−1

Fj
is obtained from a Cholesky decom-

position Σ̂Fj = LFjL
−1
Fj
. If the average improvement along any of

the principal axes of the normal distributionN
(
µ̂Fj , Σ̂Fj

)
is larger

than θSDR = 1 standard deviations, the search space is most likely
slope-like and cMultiplier

Fj
is increased by a factor ηINC = 1/ηDEC.

Function AdaptMultiplier
(
cMultiplier
Fj

)
:

if X Improved
Fj

, ∅ then

pop-NIS← 0
if cMultiplier
Fj

< 1 then cMultiplier
Fj

← 1

SDR← maxu∈Fj

{ �����

(
L−1
Fj

(x
Avg-imp
Fj

− µ̂Fj )

)
[u]

�����

}
if SDR > θ SDR then cMultiplier

Fj
← ηINCcMultiplier

Fj
else

if cMultiplier
Fj

≤ 1 then pop-NIS← pop-NIS + 1

if
(
cMultiplier
Fj

> 1
)
or

(
pop-NIS ≥ NISMAX)

then

cMultiplier
Fj

← ηDECcMultiplier

if
(
cMultiplier
Fj

< 1
)
and

(
pop-NIS < NISMAX)

then

cMultiplier
Fj

← 1

Algorithm 3: Adapting cMultiplier
Fj

of FOS element Fj depending
on the improvements found for this FOS element.

3.3 Anticipated Mean Shi�
Applying AMS shi�s a fraction 1

2τ of the generated solutions by
δAMS = 2 times the di�erence between the means of subsequent
generations µ̂Shi�

Fj
, scaled by cMultiplier

Fj
. �is procedure is aimed at

accelerating the search, mostly when the population is in a slope-
like region of the search space. AMS is applied directly a�er the
sampling of a partial solution, before the evaluation of the solution.
A�er the complete GOM procedure, an additional round of AMS is
applied to the same fraction 1

2τ of the population. With this round
of AMS, all parameters of a solution Pi are shi�ed by δAMSµ̂Shi�,
with δAMS = 2. If this shi� leads to an improvement of the objective
value of Pi , the modi�cation of the variables is accepted. Otherwise
the modi�cation is accepted with a probability of paccept = 0.05, as
in Section 3.1, and returned to the previous state with a probability
of 1 − paccept. �e second round of AMS allows for the shi� of a
fraction of the population in all dimensions at once, which may be
prohibited by the mixing procedure if the linkage model does not
include an element that includes the full set of problem variables,
e.g., in case of the univariate model.

3.4 Forced Improvements
To move solutions out of local minima and ensure e�cient conver-
gence of the population to a single point in the search space, we
adapt the Forced Improvements (FI) procedure that was introduced
in [3] to the domain of real-valued variables. Pseudocode for this is
shown in Algorithm 4. At the end of each generation, FI is applied

Function ForcedImprovements(Pi ) :
b ← Pi ; fb ← fPi ;α ← 0.5
while α ≥ 0.01 do

for Fj ∈ F do
for u ∈ Fj do Pi [u]←

(
αPi [u] + (1 − α )x elitist[u]

)
fPi ← f (Pi )
if fPi < fb then return
else

for u ∈ Fj do Pi [u]← b [u]
fPi ← fb

α ← 0.5α
Pi ← x elitist

Algorithm 4: �e FI procedure.

to any solution Pi that has not been improved for the last NISMAX

generations. For each FOS element Fj , this procedure then changes
the relevant variables of Pi into a linear combination of Pi with
weight α and the elitist solution xelitist with weight 1 − α .

�e initial value of α is set to 0.5. If the adoption of a linear
combination of variables leads to an improvement, this modi�cation
is accepted and the FI procedure is terminated. Otherwise, α is
multiplied by a factor of 0.5. �is process is repeated until the
objective value of Pi is improved or α has reached a value below
0.01, at which point all variables of Pi are overwri�en by all the
values of the variables of xelitist.

3.5 Linkage Tree
A linkage tree FOS, discussed in Section 2.2, can be used by RV-
GOMEA in order to model linkage. �is FOS model was previously
found to be the most reliable and overall e�cient FOS model in
discrete GOMEA for BBO [13].

3.5.1 Dynamic Linkage Tree. A new linkage tree can be learned
at the start of each generation based on the population. Speci�cally,
RV-GOMEA uses the mutual information (MI) [9] metric to estimate
distances between problem variables to use when building a linkage
tree. Considering the use of Gaussian distributions, the joint MI
between two real-valued variables with indices i and j is de�ned as

MIi j = log
*.....
,

√√√√√√ 1

1 −
(
Σ̂i j
σ̂i σ̂j

)2
+/////
-

,

where σ̂i is the estimated standard deviation of i and Σ̂i j is the esti-
mated covariance of the variables with indices i and j. �e factor
r = Σ̂i j/(σ̂i σ̂j ) ∈ [−1, 1] is known as the Pearson product-moment
correlation coe�cient, of which the absolute value here describes
the estimated degree of linear correlation between problem vari-
ables i and j. �e MI between a pair of problem variables will be
high when a high absolute correlation coe�cient is estimated. For
this reason, the distance metric used to build the tree is actually
the negative MI so that high correlation corresponds to being more
likely to be merged �rst when building the linkage tree. For any
merged set of variablesX = A∪B the MI betweenX and any other
set of variables Y is calculated as done in [5], i.e.,

MIX Y =
|A|

|X |
MIAY +

|B |

|X |
MIBY .
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Learning a linkage tree from the population causes it to poten-
tially be di�erent at the start of each generation. �e distribution
multiplier cMultiplier

Fj
of some FOS element Fj can therefore not sim-

ply be copied from one generation to the next. �e distribution
multipliers can substantially accelerate convergence, so passing an
existing distribution multiplier to a very similar FOS element in the
following generation is likely bene�cial. We pass the distribution
multiplier of a FOS element to the most similar FOS element of
the following generation by performing a matching algorithm. �e
similarity between two FOS elements is de�ned as the number of
elements they have in common, divided by the average size of these
two FOS elements. With this similarity metric the well-known
Hungarian algorithm is performed to �nd a one-to-one matching
of each element of the FOS of generation t to one element of the
FOS in generation t − 1. Each element of the newly learned FOS
then directly inherits the distribution multiplier of the previous
generation’s FOS element it was matched with. �e Hungarian
algorithm has a time complexity of O ( |F |3) = O (`3), which does
not increase the overall complexity of RV-GOMEA, because the
complexity of the Hungarian algorithm equals that of the Cholesky
decomposition of a FOS element of size `. Note that FOS elements
of size 1 or size ` are present in all dynamic linkage trees, and
should not be considered by the Hungarian algorithm, leading to a
decrease in time complexity by a constant but substantial factor.

3.5.2 Fixed Linkage Tree. Alternative to learning a linkage tree
online, a �xed linkage tree can be learned o�ine based on a pre-
de�ned distance matrix. �is matrix should describe a distance
between problem variables that is meant to correspond to an in-
verted or negated de�nition of linkage strength, i.e., the stronger
the suspected linkage, the smaller the distance, for which an esti-
mate can likely be inferred from the problem de�nition if a GBO
se�ing is assumed.

3.5.3 Bounded Linkage Tree. In order to prevent some of the
largest FOS elements from dominating the required computational
e�ort in high-dimensional problems, the maximum size of each
linkage tree element can be bounded by a non-trivially sized con-
stant assuming that the maximum order or (strong) interactions
between variables is bounded by some constant. Such a so-called
bounded linkage tree can be constructed by learning a linkage tree
based on a distance matrix, while preventing merging operations
that would create FOS elements larger than the upper bound. �e
upper bound on the FOS element size can be set to a small number
to make the linkage tree more similar to the univariate model, or
to a large number to make it more similar to the non-bounded
linkage tree. �e need for either a small or a large upper bound is
problem-dependent, and could be tuned accordingly.

4 INTERLEAVED MULTISTART SCHEME
Correctly se�ing the population size parameter of an EA is o�en
crucial to obtain good performance. �e optimal population size
is however problem-speci�c, so guidelines for the population size
may be relatively large in order to be useful on a wide range of
optimization problems. To avoid the need for excessive manual
tuning of the population size parameter, we use an interleaved
multistart scheme, to which we shall refer as IMS, inspired by

one introduced in [7, 10] and apply it to all tested algorithms. In
the IMS, generations of multiple independent instances of an EA
with varying population sizes are interleaved, such that a�er cIMS

generations of the instance with population size n, one generation
of the instance with population size 2n is performed. An instance
can be terminated if a di�erent instance with a larger population
size is deemed to be be�er. In our implementations, if some instance
with a population sizen has a be�er average objective value than the
instance with population size n/2, each instance with a population
size smaller than n is terminated. �e �rst instance of a run with
IMS is initialized with a population size of nbase, which is typically
chosen to be small.

5 EXPERIMENTS
5.1 Optimization Problems
We consider a set of �ve optimization functions that are decompos-
able to some degree, all of which need to be minimized. �is set
includes the sphere, Rosenbrock, Rastrigin, Michalewicz, and Sum
of Rotated Ellipsoid Blocks (SoREB) functions.

Firstly, we consider the well-known sphere function, which is a
trivial, completely decomposable problem, de�ned as:

fsphere (x ) =
`−1∑
i=0

x2i

Secondly, the Rosenbrock function is considered, which has
overlapping dependencies because each pair of consecutive problem
variables is dependent on each other. �is function is known to be
relatively di�cult, mostly when a univariate variation operator is
used. �e Rosenbrock function is de�ned as follows:

fRosenbrock (x ) =
`−2∑
i=0

[
100

(
x i+1 − x

2
i

)2
+ (1 − x i )2

]

�e Rastrigin function, like the sphere function, is completely
decomposable in each of its problem dimensions. It is however
more di�cult due to regular “noise” that is added to the function,
causing the landscape to have many local minima. �e de�nition
of the Rastrigin function is as follows:

fRastrigin (x ) = 10` +
`−1∑
i=0

[
x2i − 10 cos (2πx i )

]

�e Michalewicz function is also completely decomposable in
each of its problem dimensions, but the number of local optima in
the ith dimension is larger than that in the i-1th dimension. �e
de�nition of the Michalewicz function is as follows:

fMichalewicz (x ) =
`−1∑
i=0

[
− sin (x i ) · sin

(
(i + 1) x2i /π

)20]

Finally, we use the SoREB function, which is de�ned in terms
of the ellipsoid function and a rotation function Rθ that de�nes
the counterclockwise rotation of a vector around the origin by an
angle of θ . For a su�ciently large rotation angle, this problem
has very tight interdependencies between blocks of k consecutive
variables, but no dependencies between variables in di�erent blocks.
In particular, we use the SoREB function with block size k = 5 and
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θ = 45°. �e ellipsoid function and the SoREB function are de�ned
as follows:

fellipsoid (x ) =
`−1∑
i=0

[
10

6i
`−1 x2i

]

fSoREB (x ,k ) =
`/k−1∑
i=0

[
fellipsoid

(
Rθ

( [
xki , . . . ,xk (i+1)−1

] ))]

5.2 Setup
�e main goal of our experiments is to study scalability, because
this gives a very broad, informative, and general impression of
an algorithm’s performance, including prediction of performance
for higher-dimensional problems. We compare the scalability of
RV-GOMEA with di�erent linkage structures to that of CMA-ES,
sep-CMA-ES, and the univariate AMaLGaM. We use the CMA-ES
with the parameters described in [6]. �e sep-CMA-ES di�ers from
CMA-ES in that the covariance matrix is constrained to the diagonal
and the learning rate is scaled accordingly [11]. RV-GOMEA-Uni
uses a univariate FOS, RV-GOMEA-5B uses a 5-block FOS depen-
dency structure, introduced in Section 2, and RV-GOMEA-LT uses
a dynamic linkage tree. A random bounded �xed linkage tree
used by RV-GOMEA-BFLT is learned for the sphere, Rosenbrock,
Michalewicz, and Rastrigin functions, based on a random distance
between each pair of variables. In order to avoid excessive memory
requirements, no explicit distance matrix is used for these problems.
For the SoREB function, a bounded �xed linkage tree is learned
based on a distance matrix for which a very small random distance
is assigned between variables in the same block, and a very large
random distance is assigned to variables in di�erent blocks. Learn-
ing a linkage tree from this distance matrix results in a linkage tree
where each element is either a subset of all variables of a single
block, or the union of a number of complete blocks of variables. All
bounded linkage trees use an upper bound of 100 for the size of
any FOS element. For the SoREB function, a version of AMaLGaM
that factorizes the covariance matrix into blocks of 5 consecutive
variables, called AMaLGaM-5B, is also considered, because this fac-
torization substantially reduces the time required to compute the
Cholesky decomposition of the covariance matrix. All parameters
for AMaLGaM are set identical to RV-GOMEA. All algorithms use
the IMS described in Section 4 with cIMS = 8 and nbase = 10.

Although the key motivation for this paper is the GBO se�ing,
all optimization problems are considered in a GBO and in a BBO
se�ing. In the GBO se�ing RV-GOMEA is able to use e�cient
partial evaluations. For the sphere, Rosenbrock, Rastrigin, and
Michalewicz functions, a partial evaluation a�er a modi�cation of q
variables is counted as a fraction q/` of an evaluation, because the
computational e�ort to perform a partial evaluation for any consid-
ered benchmark problem scales with O (q). For the SoREB problem,
the modi�cation of any variable requires the re-evaluation of the
entire block that contains this variable. A partial evaluation of q
blocks of the SoREB function is therefore counted as a fraction qk/`
of an evaluation, where k is the block size of the SoREB function.

For each problem dimensionality and each algorithm, 30 inde-
pendent runs are performed. Each run has a time limit of one hour.
For the Michalewicz function a value-to-reach (VTR) of 95% of the
optimum, and an initialization range of [0,π ] are used. All other

problems are initialized within the range [−115,−100] to prevent
biased initialization around the optimum, and had a VTR of 10−10.

All experiments are performed on desktop computers, either
using the Intel Core i7-2600 CPU @ 3.40GHz or the Intel Core i7-
3770S CPU @ 3.10GHz, and su�cient memory. Computation times
of the fastest CPU, the former, are scaled up by 4.4% to match that
of the slower CPU. �is factor is determined by using RV-GOMEA
to perform 104 runs on the 1000-dimensional sphere problem in a
GBO se�ing. All algorithms are implemented in C. Source code of
RV-GOMEA is available on the homepage of the last author.

5.3 Results
Scalability graphs showing the medians and interdecile ranges are
displayed in Figure 1. Only results for which all 30 runs were
successful are reported. A run is considered successful when VTR
is reached within the time limit.

5.3.1 GBO. We observe that, especially in a GBO se�ing, RV-
GOMEA has the capacity to exploit linkage structure, achieving
superior scalability compared to all other tested algorithms when a
suitable dependency structure is used, i.e., a univariate structure
on the sphere, Rosenbrock, Rastrigin, and Michalewicz functions,
and a 5-block structure on the SoREB function. Unprecedented
scalability for an EA is achieved on the sphere problem, where
the 5 · 220 = 5,242,880-dimensional problem was solved to near-
optimality within one hour. With the bounded linkage tree, RV-
GOMEA is a constant factor slower than with the univariate model,
but the performance gap between the two can be decreased by
tightening the upper bound of the FOS element size.

�e SoREB problem is the only problem where a non-univariate
structure is necessary to solve the problem e�ciently, and here we
see that the capability of using a prede�ned dependency structure
leads to a clear advantage over the restriction of having to use
either a univariate factorization or no factorization at all. Moreover,
RV-GOMEA with a bounded linkage tree achieves be�er scalabil-
ity than CMA-ES, although it still performs worse for most tested
problem sizes. �is can be a�ributed to small FOS elements barely
contributing to the optimization, and to relatively expensive par-
tial evaluations due to the rotated block structure of the problem.
However, the biggest contribution to the observed performance
decrease is the fact that, before FOS elements of a certain size can
be e�ective, a minimal population size is required that is governed
by the internal mechanisms of AMaLGaM. �e standard guideline
for this is 17 + 3λ

√
λ, where λ is the size of the largest FOS ele-

ment. Consequently, this is quite a bit bigger than the nbase = 10
that is started from, resulting in substantial overhead of the IMS in
these cases. Indeed, on problems that admit a univariate linkage
structure, the performance of the linkage tree in both BBO and
GBO and the BFLT in GBO is much be�er, scaling o�en be�er than
CMA-ES both in time and evaluations, because the smallest FOS
elements in the linkage tree (i.e., the univariate ones) can already
contribute much even for small population sizes. Additional exper-
iments indeed show substantial improvements if nbase is increased
to 50, according to the guideline for AMaLGaM with k = 5.

A remarkable pa�ern can be seen in the scalability graphs of RV-
GOMEA for the Michalewicz function, where the time and number
of evaluations required to solve the problem decrease substantially
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for problems of higher dimensionality. Considering the fact that the
number of local optima per dimension of the Michalewicz problem
is correlated with the index of this dimension, approaching the
global optimum up to a constant ε becomes very di�cult for high-
dimensional problems. Using a VTR that di�ers from the global
optimum by ε would therefore, depending on the size of ε , make
the problem trivial in small dimensions and virtually unsolvable in
high dimensions, leading to a very small number of dimensions for
which reliable results could be achieved. In contrast, using a VTR
that is a fraction of the global optimum, as we did here, will result
in very high-dimensional problems becoming trivial, because the
modularity of these dimensions will cause even initial samples to
be relatively close to the global optimum of this dimension. �e
apparent pa�ern in the scalability of RV-GOMEA is on one hand
caused by the naturally increasing di�culty of the problem, and
on the other hand by the decreasing di�culty of reaching a �xed
fraction of the global optimum, as problem dimensionality increases.
We expect the same pa�ern to appear for the other algorithms given
enough time to solve the very high-dimensional problems.

5.3.2 BBO. For the sphere function, RV-GOMEA using the uni-
variate model is a constant factor worse than CMA-ES and sep-
CMA-ES in terms of the required number of evaluations. How-
ever, RV-GOMEA is still a constant factor be�er than sep-CMA-ES
in terms of required computation time. �is also applies to the
Rosenbrock, Rastrigin, Michalewicz, and SoREB functions, where
RV-GOMEA not only performs be�er in terms of computation time,
but also in terms of the number of evaluations. �e di�erence in
performance is caused by the fact that RV-GOMEA using the uni-
variate model performs O (`n) evaluations per generation, whereas
sep-CMA-ES performs only O (n) evaluations. �erefore, a rela-
tively small amount of time is spent on computational e�ort other
than function evaluations compared to sep-CMA-ES. Note that sep-
CMA-ES can still perform be�er in terms of computation time if
the evaluation function requires (much) more computation time.

For BBO problems with strong dependencies, we compare the
performance of RV-GOMEA-LTwith that of CMA-ES, because these
are the only models that use a non-factorized Gaussian distribution.
�e comparative performance of the two algorithms is very problem
dependent, seeing as RV-GOMEA performs be�er than CMA-ES
on the Rastrigin and Michalewicz functions, but it performs worse
on the sphere and SoREB functions. �is is partly due to the larger
required population size by the AMaLGaM mechanisms as pointed
out in Section 5.3.1. Moreover, in terms of actual computation time
however, apart from SoREB, RV-GOMEA has the upper hand.

6 CONCLUSIONS
We have introduced RV-GOMEA by combining strengths of the
discrete GOMEA and the real-valued EDA AMaLGaM, aiming to
exploit linkage structure in real-valued optimization problems, es-
pecially in a gray-box se�ing where e�cient partial problem eval-
uations may be possible. �e performance of RV-GOMEA was
tested on a set of well-known benchmark problems and compared
to the state-of-the-art algorithms CMA-ES and AMaLGaM. Our
experiments show that RV-GOMEA achieves excellent scalability,
sometimes performing be�er and sometimes performing worse
than CMA-ES in case of black-box optimization in number of evalu-
ations. In case of problems that are computationally fast to evaluate,

RV-GOMEA does perform be�er than CMA-ES in black-box opti-
mization when considering the required computation time, because
GOMEA spends less time on computational e�ort other than func-
tion evaluations. Moreover, when e�cient partial evaluations are
possible, RV-GOMEA achieves unprecedented scalability, achieving
near-optimal solutions for the sphere problem with over 5 million
variables in less than one hour on a normal desktop computer. It
also achieves superior scalability compared to any other tested
algorithm on any of the tested benchmark problems when an ap-
propriate linkage model is used. �is shows that RV-GOMEA is
very much capable of exploiting the linkage structure of problems
with real-valued variables, preserving a key strength of the discrete
GOMEA. �is is especially interesting when considering the use of
RV-GOMEA for solving real-world optimization problems where
o�entimes it may be possible to perform partial evaluations, even
when the problem is not fully understood, nor decomposable, nor
easy from a computational complexity perspective.

Moreover, the combination of GOMEA with AMaLGaM is not a
mandatory choice. Rather, the linkage learning capabilities o�ered
by GOMEA may be seen as a general idea or framework that may
also be combined with other real-valued EAs or EDAs, including
CMA-ES, which may potentially lead to further improvements and
interesting results. Generally speaking, given the observations
of how RV-GOMEA performs, we conclude that regardless of the
choice of real-valued EA to combine GOMEA with, in contrast to
CMA-ES, which is considered to be state-of-the-art for real-valued
BBO, RV-GOMEA excels in the se�ing of GBO.
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Figure 1: Medians and interdecile ranges of all experiments with each data point being the median of 30 successful runs.
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